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Abstract: We cstablish a relation between the coefficients of asymptotic expansion
of the trivial connection contribution to Witten’s invariant of rational homology
spheres and the invariants that T Ohtsuki extracted from Witten’s invariant at prime
values of K We also rederive the properties of prime K invariants discovered by
H Murakami and T Ohtsuki We do this by using the bounds on Taylor series
expansion of the Jones polynomial of algebraically split links, studied in our previous
paper These bounds are enough to prove that Ohtsuki’s invariants are of f{inite
type The relation between Ohtsuki’s invariants and trivial connection contribution
is verified explicitly for lens spaces and Seifert manifolds

1. Introduction

Witten’s invariant of 3d manifolds defined in [1] by a path integral over the SU(2)
connections 4, on a 3d manifold M

Z(M, k) = (/b[DAu]eé_A’"‘S(SH“] ; (11)

I . 2
Ses = 5 Tre™ [ s <A},F‘\‘AO + gANA\.A,,> (12)
M

(k € Z, Tr is the trace taken in the fundamental representation of SU(2)) can also
be calculated combinatorially with the help of the surgery formula. Let M be a 3d
manifold constructed by (p;, 1) surgeries on the components £, of an N-component
link £ in S*. A (p, 1) surgery means that the meridian of the tubular neighborhood
is glued to the parallel plus p meridians on the boundary of the knot complement
(in other words, a Dehn’s surgery is performed on a knot with framing number p)
The invariant of M reduced to canonical 2-framing can be expressed in terms of
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the framing independent colored Jones polynomial J,, ,, (£, k) of the link £

Z(M .k 2\ ° 3 (2 N
ZES3,/3 B <E> e {4 <E - ‘> o “”)}

x > J (L, k)ex ﬁi (o2 —1) ﬁsin(ny) (13)
o T (B g 2 21 sng)
(ls7=\)
2 ) =) Zsin . K=k 42 (1.4)
> - KS K: - .

The Jones polynomial J,, ., (£; k) is normalized in such a way that it is multiplica-
tive for unlinked links and J(empty link, k) = 1, J,(unknot; k) = sin (£x)/sin (£)

Although N Reshetikhin and V Turaev proved [2] that Eq (1.3) indeced defines
an invariant of M (ie¢ the [hs of Eq (13) is invariant under Kirby moves),
the topological origin of this invariant remains somewhat obscure The question is
which of the “classical” topological invariants of M are contained inside Z(M;k)?
Two distinct approaches to this problem have been tried The first one is to study
Z(M, k) for some particular values of K R Kirby and P. Melvin discovered [3]
that if K is odd, then Z(M, k) is proportional to Z(M, 1)

Z(M.1) : _
Z(83, k) , ;;{R, if K =1 (mod4)

If M is an integer homology sphere (ZHS), then Z(M,1)= Z(§3,1) so that
7M. k) = 55
The new invariant Z/(M, k) can be calculated by the following surgery formula:

\ ‘ 6\ N
Z'(M,k)=K™ T exp L PR >~ sign (p;)
4 k)5

" L.k ﬂﬁj (22— 1 ﬁ(ﬁ ) (1.6)
X Z . (L, k)exp 2[(].:]])/ % ) /:lsm %) :

here

—1 ifK=—1(mod4)
K= (1.7)

+1 if K=1(mod4)

while >°" means that we add an extra factor of % to the terms corresponding to the
boundary values of summation index (2, = =K in this case) We changed slightly
the original formula of [3] instead of taking a sum over 1 < o, < % we sum
over odd «; between | and K — 1. This allows us to get rid of some phase factors
We also double the range of summation to 1 — K < », < K — | by using the fact
that J,,. . (L£,k) is an odd function of its indices (we use the 2K periodicity in
%; in order to extend J,, ., (L, k) to negative values of 2,) Note that the whole
summand of Eq (1 6) has a periodicity of 2K
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S Garoufalidis [4] used nice properties of the gaussian sum S5 ' o exp (o)
for prime values of K in order to study Witten’s invariant of lens spaces and Seifert
manifolds H Murakami and T Ohtsuki [5-8] carried out a detailed study of the
invariant Z'(M; k) of rational homology spheres (RHS) for prime K

Theorem 1.1 (H Murakami, [5, 6]). For a« RHS M and a prime K > 2,

vidl

Z'(M,k) € Z[G), G =¥, (1.8)
Z(q) being a cyclotomic ring

We need more notations in order to present the results of Ohtsuki’s papers [7, 8]
We introduce a new variable

x=g—1. (19)

A polynomial from Z[g] can be reexpressed as a polynomial in x with integer
coefficients It is defined modulo the polynomial
(1 +x)f —1 CAK(K 1) (K —n)
x = (n+ 1!

X (110)

which is identically equal to zero for x = e* — 1 All the coefficients of this poly-
nomial except the one at xX~!, are divisible by K As a result, all the coefficients
at ¥", n < K — 2 for a polynomial of x coming from Z[q] are well defined modulo
K We will limit our attention to the powers of x up to X They are all well
defined as elements of Zx if K = 3. Thus there is a homomorphism of rings

° Zg) — Zlx] L Zilx) T Zilx] (111)

There is another homomorphism from polynomials (of maybe infinite degree) of x
with rational coefficients whose denominators are not divisible by K to Zj[x]:

Y QU] Zklx] (112)

The action of the operation ¥ on rational numbers was introduced in relation to

Witten’s invariants at prime values of K by S Garoufalidis [4]

VoQ—Z,  (plg) = pq. (113)

here ¢* is the inverse of ¢ modulo K- g¢* = 1 (mod K) The homomorphism v acts
on polynomials (infinite series) by removing all powers of x higher than 5;—1 and
converting the remaining coefficients to Zy.

Now we can present (a slightly stronger version of) Ohtsuki’s results

Theorem 1.2 (T° Ohtsuki {7, 8]). For any RHS M there exists a sequence of ra-

tional numbers 7,(M) € Z [2 3 2]”, ’H](MZ)J C ©Q, n = 0 so that for any prime

number K such that |Hi(M,Z)| %0 (mod K)

oc \
[|H\(M, Z)| (|H](M,Z)[/K)Z’(M,k)}<> = {Z /"V,I(M)x”} , (1.14)
n=0
here ( + /K) is the Legendre symbol for p € Z, (p/K) =1 if there exists p' € Z
such that p = (p')y (modK) and (p/K) = —1 otherwise
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We have slightly modified the theorcm of [8]. Ohtsuki required that K > |H{(M,Z)|,
he estimated that 4,(M) € Z - ] C @, n>0 and he used

2’ 3’ S+l 1H|(/WZ)I
Zi[x] = [ ]/x Sz Z[x] instead of (1 11) (in other words, he did not fix the coef-
ficient at x = ) Murakami showed that

L0 =1, 71 =3%cw (L15)

here /cw is the Casson-Walker invariant of RHS

The second approach to the search of the topological meaning of Witten’s invari-
ant Z(M, k) is based on the path integral representation (1 1). According to quantum
field theory, this integral can be calculated by stationary phase approximation when
K — oc The invariant is presented as a sum of contributions coming from connected
components ¢ of the moduli space of flat connections on the manifold M.

Z(M . k) =372 9M, k). (1.16)

Each contribution has a general form

Noero

Z9M k) = (i”—> :

K Vol(#,)

exp |2miKSL) + ZSf,”(M)(%) } (1.17)
n=0

here H, is the isotropy group, N,e, = dim /1 — dim /!, H*! being the cohomolo-
gies of 0,1-forms taking values in the adjoint su(2) bundle, S(C‘S) is the Chern—Simons
action and Z;’iOS,,‘)(M) ('A—’f)” is an asymptotic series The coeflicients S,(,()(M) are
called (n + 1)-loop corrections They might be related to “classical” topological
invariants of M Indeed, the 1-loop correction S((f) is related to the Reidemeister-
Ray-Singer torsion An attempt to relate the asymptotic properties of the surgery for-
mula (1 3) for lens spaces and Seifert manifolds to the quantum field theory predic-
tions of Eqs (1 16), (1 17) was initiated by D Freed and R Gompf [9] and carried
out further by L. Jeffrey [10], S. Garoufalidis [4] and also in the papers [11, 12].
A complete agreement between the surgery formula and [-loop predictions was
observed

If the manifold M is a RHS, then the trivial connection is a separate point in the
moduli space of flat connections According to quantum field theory, its contribution
is of the form

e (5o ()]
ZWM k) = STy T € Su(M 1.18

(see eg [9] Eq (136), [10] Eq (51) and [11] Eq. (2.14)) A representation
of the coefficients S, (M) in terms of (n + 1)-loop Feynman diagrams was carried
out by S Axeclrod and I Singer [13], M Kontsevich [14], C. Taubes [15] and
others We studied how the trivial connection contribution can be extracted from
the surgery formula (1 3). We derived a knot surgery formula [16] and a link surgery
formula [17] for it The knot formula allowed us to show that

Si(M) = 6/cw (1.19)
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The link surgery formula of [17] was much less explicit than the knot formula
of [16], because it did not express Z"(M, k) directly in terms of derivatives of the
Jones polynomial J,, ., (£;k) However we derived an explicit surgery formula [18]
for algebraically split links (a link is algebraically split (ASL) if all of its off-
diagonal linking numbers arc equal to zero)

In this paper we are going to prove the following'

Proposition 1.1. Ohtsuki’s invariants 7,(M) of Eq (1 14) and loop corrections to
the trivial connection contribution S,(M) of Eq (1 18) can be expressed in terms
of each other through the following relation:

x

S i = e | Ss,0n - 55 (£ ) |

n=0 n=1

(%) exp {Z Sy(M) ( )I]} (120)

sin (%) n—1

by substituting either

2m 2ni & 1 2mi\"
e K 2 ) <1< ) ’ (12l

or

-1

- %log(l ta) =1 Z( ! (122)

n+1

in
K
In other words, we will show that

VARUNIN

[H\(M, )| (|H\ (M, Z)|[K) Z'(M . K)]” = | |H 756

(123)

In the process of doing this we will rederive the results of [5-8] in a more explicit
way

The results of this paper are rigorously derived from the following two
propositions
Proposition 1.2. Let L be an algebraically split link (ASL) in S* Then its
framing-independent colored Jones polynomial has the following Taylor series ex-
pansion in powers of K

N > ; n
J7|. J\(Ea/") - <H 2/) z Z D!!I.Il(‘%lv s 11\') <%> 5 (1 24)

=1 n=0m< 3n
here Dy, (21, , ay) are even homogeneous polynomials of degree 2m-

Dm_”(i] s s 0N ) — Z D(/H n) 2I1I| 7.%\]-"\ ( 1 25)

my. o x
my o omy Z0
my+ o imy =m

and

m; < n—m, 1=/ <N (126)
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Proposition 1.3. Let M be a rational homology sphere (RHS) constructed by
(p), 1) surgeries on the components of an N-component ASL L in S* Then the
loop corrections to the trivial connection contribution (1.18) to Witten's invariant
of M are given by the formula

exp {f(s,,(M) 5,(57)) (%) } (127)
n=1
= 3 '<21)ZN:9in( )ex i N( +1> " H L
= exp 47u e 1‘71& gn ( p, p 2K & P (2K) b,

+oc N
x [ dw  doy exp <ﬁ S p,-ozf) o (LK)
. j—1 AR

14, 0]

(S,(S?) are defined by the relation exp (Z” 1Su(S?) (£ )”) - 5?%))

The symbol j ~ means that the integral has to be calculated in the follow-
[7;-0]
ing way first, an expansion (124) has to be substituted and then the
gaussian  integrals over o; have to be calculated for each polynomial
N : .
(H/:] (1, -+ %))Dm‘n (ocl + i, Lo p%) separately (for more detuils see [18]

and [20])

Proposition 1.2 was rigorously derived in [18] (Proposition 3 1) from Resheti-
khin’s formula for the colored Joncs polynomial of a link. Reshetikhin’s formula
was introduced and “physically derived” in [19] with the help of Chern—Simons
perturbation theory The mathematically rigorous proof can be obtained [21] by us-
ing Kontscvich’s intcgral representation of the Taylor serics cxpansion of the Jones
polynomial

Proposition 1 3 presented in [18] (Proposition 3 2) is a mathematical conjccture.
Its status is similar to that of Eqs (116), (1 17) and (1 18) However we can
proceed rigorously by declaring Eq (1 27) a definition of an infinitc sequence of
RHS invariants S, (M) without mentioning their relation to the asymptotic properties
of Witten’s invariant Z(M, k)?> By using Reshctikhin’s formula of [19] we can prove
that S,(M) as defined by Eq. (1 27) are invariant under the Kirby moves (see [20]
for details) Now Proposition 1 I becomes a rigorous statement about the relation
between Ohtsuki’s invariants /,(M ) and invariants S,(M) defined by Eq. (127)

In Sect 2 we modify the surgery formula (1 6) and prove Theorem 11 Our
main tool is the ob%ervation that the gaussian sum Z:O' g* s proportional to
x"T, while the sum ZJ 0 (j 2 for m < KT] is only proportional to x o
This is similar to the behavior of gaussian integrals. each two extra powers of «
in the integral jf: eRT 2m bring a power of K to denominator. In Sect 3 we
prove Proposition [ 1 and thus also Theorcm 12 Wec use again the similarities of

K-1 v’ -mc u
the formulas for 777 ¢" o*" and [~ %7 a* dx These similarities are due to

> This is sumilar to the approach of N Reshetikhin and V Turaev [2] who ticated Eq (12) as a
definition of the invaiiant Z(M; k) 1ather than as a property of the path integral (1 1) detived “physically”
by £ Witten in [1]
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the fact that both the sum 7' ¢” 2% and the integral . e T2 gy can be
calculated by completing the square in the exponents In Sect. 4 we derive a rational
surgery formula for Z/(M, k) which is similar to the formula (4.1) of [10] for the
original Witten’s invariant Z(M, k). We use this formula to verify Proposition 1 1
for lens spaces and Seifert manifolds which are rational homology spheres In Sect. 5
we discuss the properties of Ohtsuki’s invariants 4,(M) as related to the properties
of invariants S,(M) studied in [18]

2. Gaussian Sums and Divisibility in Cyclotomic Ring

We start by modifying the surgery formula (1 6) Since j—‘(a% — 1) € Z, then

I

o o
exp | 55 pi(a] - ”} N Al @
j=1

Also since %(oc,- +sign(p;)) € Z,

Sin (Efy_/) = i Z IL[/'G_%“/I, — i Z I“ q —-2" %y (2 - )Slgll(p,) (2 2)
K 2 ==l 2 ==

The Jones polynomial J,, (L, k) is odd and e* 7% is even as a function of
o, Therefore we can drop the factor % and put u, = 1 in Eq (2 2) upon substituting
it into Eq (16)

Z/(M,k) — K zlNe— ﬂ(3+l\)z/ |31gn(p) (4+2 )L, |51gn(p,) 4 Z

ST @ 27y
X g, (L. (23)
—K=z/ =5
s 2Z +1

X

After completing the square
4 pjog — 2%y =4 pi(x, — p;)’ — 4" p; (modK) (24)

we shift the summation variable 2; by p; (we assume that p; is even in order to
preserve the parity of «,, we can always make such choice of p; since K is odd)
Then

21

Z/(M,k) _ Kfl.Ne—%(.’H—z\)Z\: sign(l),)q(%—ﬂ*)z,\:,51gn(p/) v—4* Z (PP
y Z/ 4% Z, 1Pi% /J - j\,_,rp:(ﬁ,k), (2.5)

—K=<y, =K
v, €27+
(l=ys\V)

Next we use the identities
ie—%slgn(h/) = Sign (P/'), (26)

I — kK
4

=4 27)
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in order to rearrange the phase factors preceding the sum in Eq. (2.5)

N . .
Z'(M, k) = K~ F = DXL sien(p,) (H sign (p,)) qrz/\:l(“‘g“(l’/)—l’r—ﬂ,)

J=1
S DA .
X Z q =t /JIH—})]*. A1\+[7i(£>k) (2 8)
—A’gylgl\'
/,Gll—lrl
(l=7=\)

Since the values of the Jones polynomial J,, ., (L, k) belong to the cyclotomic
ring Z[g] when all the indices «; are odd, we can apply to it a combination of
Proposition 12 and Lemma 2 3 of [5]

Proposition 2.1. For odd values of its indices o,, the unframed colored Jones poly-
nomial of an N-component ASL L in S* can be presented as the following sum

A—1

N (N+1)=5 R
J7|. ,7\(‘6»/() = H % Z Z Dm,n('xl, 3/‘ZN)‘X”

i n=0 3
m=1n

j=1

PV ey i) (Loky e ZG),  (29)

Iy

here Dy, (o, oy ) are homogeneous polynomials of degree 2m

2 ~(m.n) 2m) 2y
Dnul(“la s O(N) - Z Dm1~ X Ay (210)
my my 20
mny - 4’”1\ =m
mp<n—m, (211)

. N ~ .
and the polynomials (H/.Zloc,) Yom<in Do, on) take integer values when
=3
o are odd

The latter property of the polynomials D, , allows us to express them in terms
of “binomial coefficient” polynomials

) =1 oy — 1
% Z Dyn(or, s oy) = Z C)(rgll) JII\,P”” <T> Py, < 2 > 5
=1 mg’}n T=m, <2, 1

/ 1
RN

=

C(H)

My, omy

ez, (212)

here

(a—1) (x—m+1)
m!

Pu(2) = 2 (2 13)

and m; are the maximum values of m, in the representation (2 10) of all the poly-
nomials D, , appearing in the /4 s of Bq (2 12)
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The following proposition is a reflection of the inequality (2.11) for the repre-
sentation (2 12):

Proposition 2.2. There is an upper bound on the indices of the coefficients C,(,f'l) o
of Eq (212)
B
2

here [ﬂ denotes the integer part of 5

IA

p _é {%} (2.14)

The proof i1s completely similar to that of Proposition 3 4 of [18] Suppose that
there is a coefficient C\) .. for which (2.14) is not true, say, for m; If all indices
m, of C,(,f,) oy are odd, then the highest degree monomial of the corresponding

polynomial
, a — 1 oy — 1
L Py, (]—2—> Po, (NT> (2.15)

violates the inequality (2.11). Therefore it has to be canceled by monomials of other

polynomials
C(”) P a-— ! P, -y ! (2 16
ml, .l | P m', 2 )

N N
N, Somy >y omy. (2.17)
=1 j=1

for which

[IA

my=m, 1 =]

If some m, arc even, then the highest degrec monomial of the polynomial (2.15)
is incompatible with the structure of the / /s of Eq. (2.12) and it also has to be
canceled The inequalities (2 17) show that the index m; of the polynomials (2.15)

again violates (2.14), so we need to go to higher values of Z;V:l m, for further can-
cellation Since Zfl:] m; < n, this process can not be completed This contradiction

proves the proposition
Now we begin to prove Theorem 1.1. Following [5], we use the relations

K—1 .
g o= IVK, (2 18)
2=0

K—1 2 A—1

¢ =xruls wu ezlq) (219)
2==0

(see e g [22], chapter 6) in order to present K~ in the following form

_a IZN(1—n) I/IN
K™ =eiNa-m_ 2 (2 20)
xNT
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Substituting this expression into Eq (2 8) we find that

L N . N . EAmh . I
ZI(M,k) _ e;(l\—l)2,=1(51511(p/)~1) (H sign (P/)) qv4 2 Bsign(p,)—p,—p))

j=1

. LR, L,k 221

X NVE=T ,\Z: I\q n+prs .1\+p*\‘( k) ( )
X 2 —K=z, =K
(127N

Since J—l(/c — 1)(sign (p,) — 1) € Z, we conclude that to prove Theorem 11 it is
enough to show that

/ AN 2 LSl "
S G e e (Lk) =XV T, w e Z[G] (222)
—-k<7, 2K
:«/62/7/“
(122N

We will substitute the expansion (2.9) and check the property (222) for ev-
ery polynomial (H?’j,ac,) nggn [),,,,,,(11,. ., oy ) separately The remainder term

A—1

= JU), (L:k) obviously satisfies Eq (2.22) Morcover, for some w € Z[d],

x(N+l)

o
1 AFSY 2 ' A-1 el ]°
{N—_ > g ZP"“'Ji:?%\(ﬁ;k)xw*”z“} :[xzw} =0. (223)
X 2 fl(gz/gk'

7, €22+

A=)

so that we can neglect the contribution of this term in all further calculations
To estimate the contribution of a polynomial (H;V:l oc,) ng " Dyn(on, oy )x"
we need the following simple lemma:

Lemma 2.1. For pmeZ, m = 0

Z/ qvp12,12m _ xmax{O,%—l"}W, we Z[Cj] (224)

—K<v2k
€27 +1

The lemma needs a proof only for m < K—z‘—l To prove that an element u € Z[q]

is divisible by x", n < K — 1 one may present it as an integer coefficient polynomial
of x and check that the coefficients in front of all ¥"', n' < n are divisible by K.
We substitute ¢ =x+ 1 in Eq (2.24) and express the powers of ¢ in terms of
“binomial” polynomials

Z/ th“ 9(21;1 — Z Z/ P”(pxz )a2mxn

—K=s2K nz0 —K=r=k
sE2L 1 N €2
_ M pZm’ o Xmtnt’ )x"’ (2.25)

)OI D
nz00<m' <n -K<zsk M
- - - JE2L+]

here

U.(d - 1) (d —h+ l) = Z Cn,m’am/a Cn.m' €Z (226)

m' <n
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It is well known in number theory that

S =0 (modK) for0 <m< K -2, (2.27)
- K<2<k
7E27+1

Therefore the numerator of the contribution of a term CT— pz’”lxz(’”*”’l)x” will be
divisible by K for all m +m’ < % < K — 2, that is, for all n < % —m The
denominator n! is harmless, because since n < K, it is not divisible by K and can
not cancel the factors of K coming from the sum over o This proves the lemma.

This lemma can be easily generalized to the “binomial” polynomials (2 13)

Lemma 2.2. For p,p',mec Z, p' € 2Z, m = 0,

2 1 —1_m
> P, <‘H§ ) =0 D wez (228)

The proof is similar to that of the previous lemma The choice of summation

+p —1
2

range for » makes obvious the fact that odd powers of o in P, ( ) can be

ignored The numerators of the contributions of even powers of « are divisible by K.
The coeflicients of P, have a denominator m!, but we may assume that m < K — 1
(otherwise Eq (2.28) is obvious) so that the denominator does not cancel the factors
of K

Let 7i1(n) be the maximum value of m appearing in the / /1 s of Eq (2.12) Then
for every coefficient C,(,Z) .my from the r /s of that equation

my + +my < m(n) (229)

Therefore we can combine Egs (2 12) and (2 28) into the following estimate of the
contribution of polynomials D,, , to the sum (2 22)

L A N ; A * N
Z/ 674 2 m <H (11+p;)> Z Dy (o0 + pi,. ’C{‘\'+p-l\")x”

~KzZ/2A =1 <3
Jea i / m=in

= VI e 720G (2 30)
Since m(n) < %n < n, this estimate is enough to prove Eq (2.22) and also Theo-
rem 1 1 Note that the proof required only a weaker bound m < n for 13,,,4,, rather
than a stronger bound m =< %n of [18] However the bound m < %/1 is necessary to
prove that only a finite number of polynomials D,, , contribute to the coefficients
of x', 0 < "T“ in the expansion of [Z/(M,k)]°. Indecd, since m(n) < %n, then

n—mn) = %n and Eq (2.30) suggests that we may limit our attention to only

those polynomials (2 15) for which

n<2K-—1) (2.31)
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3. Gaussian Sums and Integrals
We are going to derive a surgery formula for [Z/(M,k)]® which would express it

in terms of the derivatives D~,,,A,, of the colored Jones polynomial As we will sce,
this requires a calculation of the gaussian sum

e, K—1
G(p,g,m) = " P o2 m< —— 31
(p.q.m) 7% _KZ;M q = 31
yC27 +

More precisely, we need to find only [G(p, ¢, m)]°. We already know that G(p,q, m)
e Z[4].

Proposition 3.1. The sum of Eq (3.1) is related to the gaussian integral For
pqE€EZ, pg+0(modK), 0 < m =< K=l

() (2)'

+x'T M, we Z(q) (32)

2m

1 \
[G(p,g.m)]° = (pq /K)|e ft / daeT’f/?zyZ"’X”}

To prove the proposition we calculate the following sum

e’ﬁ("_]) el-’}(kfl)

Ioepgt A 2nn v—pign’ I pqT(anptq)
—= 2 " q = g > 4 (33)
K —K<u<h \/1? —K<v<K
1€2Z+1 sC2L41
Since (for p* € Z)
I pgt(arnptg)y? e Vpq* (2341)°
>0 4 = > ¢ =¥ g
K<s5h ~K=7%h 3ok _ye kot

€201 €27 +1

_ z q4/)(f(‘i42‘)l _ \/Eeig(lfh)(pq*/K)’ (3 4)

e
we find that
(,14(1 K—1) 5 § o
Z/ q/}q % 2/1/ . (pq /K) prgn’ (3 5)
VK ek
2E€2Z--1
~2ny

We substitute ¢ = 1 + x in ¢™"" and c]_”xq": After going from Z[4] to the factor-ring
Zi|x] = Zg [A]/X > Z[x] and using the “checked binomial polynomial”

m

Pl(2)=(m)ux—1) (x—m+1)=(m) 3 Cp, (3.6)
1=0

we find that

(] °
Z Z(m ) C, 71G(p, q, 1)41112])(’” !
m=0 =

= (pq’ /K) Z»’”i(m') Cot(=D'(p*q)'n 2’} . (37
m= =0
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We limited the sum over m in the //hs of this equation to m < K — 1 because

for m > K the minimum power of x"~/ is greater than &1 Note that since m <
K — 1, then (m!)* is well defined

If we substitute the expansion

AL

< A ] m ALy v
[G(p.g. D" = > Gu(p.g. Dx"+x7""w, weZ[q] (38)
m=0
into Eq (3 7), then we can find all the coefficients G, (p,q;!) by equating the
coefficients of //1s and rhs of Eq (37) at equal powers of x and n These
coefficients have to be equal due to the following simple lemma

Lemma 3.1. If a degree of a polynomial P(n) € Zg(n) is less than K and P(n) = 0
for all n € Zg, then all the coefficients of P(n) are zero modulo K

The proof follows from the fact that the K x K Vandermonde determinant in
Zy is non-zero

Each gaussian sum G(p,q,/) appears in the /s of Eq (37) with its own
power of n n?! Therefore the coefficients G,,,/(p q; 1) of Eq (3 8) can be calculated

by “dividing” the polynomial (—1)/( p* q) Zm ,(m') C,..x" appearing at n*! in the

rhs of Eq (37) by the polynomial -8~ C,, »4/x"~! appearing in the r i s of
that equation at the same power on n The division is not quite well-defined, hence
the indeterminacy in the elements w of Eq. (3 8)

This whole calculation of dividing the polynomials can be made more explicit
if we go back to Eq (3 5) and make the following substitutions

, S low( 14 2nx)!
F = ey _ 3 ',”)< g(1+x)) (39)
=0 I
. 2 ( * 2)/
(i—/n/ o e —pq* n log(14+v) __ Z( / pq (1 g(l +X))/ (3 10)
After “checking” the logarithm
log"” (l—}—r)—rZ(—l)”(ﬂ—é—lf & (3.11)

n=0
we sce that Eq (3 7) transforms into
A--1

Vv ne
- Gp.gs (@00 (g (140 (FELE) }
=0 J

k-1

Z( D'n*(p*g)(11)"(log" (1 +x>>/} (312)

= (pq"/K)

Thus we find that

[G(p.g,m)]° = (=1)" (pg"/K) (2" 2m)(m!)* (p*q)" Klogv(x—1+x)> }

+x 2 "w, we Z[g] (313)
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Consider now the following identity which is an integral analog of Eq (3.5)

oo 3
; Ly onr )us:gn(’) E )
J dugi” g e ‘ <2>

—0oC

q .2

g (3.14)

After substituting Eqs (39), (3 10) we find that

t/xd“qq 2m mo_ Cl slz,n(il) <£>§ ’1‘5

(—1)"2m)! [ ¢ m X m
T gom (;) (log(l—f—x)) (3.13)

Equation (3.2) follows from comparing Eq (3.15) to Eq. (3 13).
The formula (3 2) can be generalized to the type of summands that appear in
Eq. (2.8) after the substitutions (29) and (2 12).

Proposition 3.2. for p+0(modK), 0 < m =< K,

i

1E(n—1) o
e ) a—1+p [2]
N AL ( > X
sc2

741

P %‘V 7.—1+l m ¢
o vson (1) g, (__2 p>xm}

T we zig]. (3.16)

= (p/K)

V(2% (e — 1+ p*)) for
P, (’ 12 i ) in the / /1 s of this equation and then take the sum for cach monomial

To prove the proposition for m < K we substitute P

of PY(2*(x — 1 + p*)) separately If m is odd then the highest power & does not

contribute to the sum, therefore the factor x[2] is enough to apply Eq. (32). We
also used the multiplicativity of Legendre symbol and (4*/K ) = 1, since 4* = (27)°.

The case of m = K requires special care. We start with the //1s of Eq (3.16)
We can use the symmetry of the summation range and gaussian exponent in order
to substitute

o | v—1+ p* 1+ p*
PV () = 5 (PK (%) 4Py (%)) (3 17)

instead of Py (/—'—l;—”

o and its degree is equal to K — I Therefore the highest divisor of denominators of
its coeflicients is K — 1 and we can apply all our previous results to the calculation
of the contribution of its monomials Equation (3 16) indicates that we need to
determine only the terms of order xY, hence we are interested only in the contribution
of the highest degrec monomial

). The even polynomial (3 17) takes integer values for odd

pr—K
FE-t G 19
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which is determined with the help of Eq (3 13). Consider now the rhs of
Eq (3 16). Again we substitute the even polynomial

. 1 a41+l) —x—1+41
P;<C (2) = 3 (PK <———2 ]>+P1< (72 L (319)

Some of its denominators may have K as a divisor, but according to Eq (3.16) we
arc interested only in the contribution of the highest power of «

=K 320)
WEK—1p* (
Comparing it to monomial (3.18) and applying Eq (3.2) to their contributions we
arrive at Eq (3 16) This ends the proof of Proposition 3 2
Next we move to the polynomials D, , which participate in the expansion
Eq. (2.9).

Proposition 3.3. The gaussian sums and integrals of polynomials D, , are related
by the equation

(ZN(n=1) N
e / 4% . ~ . .
b _ V4 7 * * * n
— > 4 " H (o +p;) | X Dun(oi +pi, o + py)x
K> —Ksy, =K j=1 m<3n
s, €211 4

N
- (H P//K> 1IN vsien(p ) (oK) H p;
=1 1]

<
JOC \’ l : 1 l
X do e ORI H <1 + —) Z Dy n <1] + —, Loay + __)
7/; <_ / Py m<3in P PN

(321)

N

To prove this proposition we rearrange the representation (2 12) in the following
form-

N ~ "y n
<H 1/’) Z Dy a(o, //\’)x” =x"" Z/ [[3] Z Cz(rx) ,"\X[T]]

=] 3
] m§411

2 — 1 oy — 1
Py, <"'2 ) J\-[T‘]P,,,\(“z ) (322)

We know from Lemma 2 2 that the contribution of ecach polynomial X[T/] P, (1’2_1

to the //1s of Eq (321) belongs to Z[g] Therefore the contribution of the whole
RNEY

expression (3 22) starts at x" . Hence we may assume that

N orm; K —1
_ Ll <= 3.23
-3 [F =T 6.23)
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otherwise the contribution of the polynomial

a3 " my q — 1 m N 1
.\’I L’:] [ ! JC?(l;:) J}I\x[ 2I]Pm) <01 2 > X[T\]Pﬂl.\ <x\]2 > (324)

<

is annihilated by the homomorphism
The inequalities (2 14) and (3 23) mean that m, < KT’I, so we can apply Propo-

m m
/

sition 3 2 to every polynomial x[T}P,,,/ (Lz_—]) The terms x 2 [*] wof Eq (3 16)
can be neglected because

n © (i1 m m; ©
X" '\:'[%]x%{%] w} = {xkz (-2 21-[+]) w} =0 (325)

in view of the inequality (2.14) This proves Proposition 3 2
Now we can prove Proposition 1 1. We substitute Eq. (29) into Eq (2 5).
apply the homomorphism ¢ and retain only the relevant terms from the sum of
o
Eq (29) Since the contribution of the / /1 s of Eq. (3 22) starts at X %] and

Zjv:l [%] =m= %n, it is enough to retain only the terms with n < 2(K — 1).

- [N N
[Z/(M;k)]o — l:€13(1\~l)2,,(51gn(/)/)l) <H sign (pi)>

/=1
. ) . [EN(n—1) . N
gt L Gsien(p)=p—p) €1 SV G I (2 + p7)
K= —K<y, =A j=1 ! !
7, €27+1

(r=y=\)
2K—1) N ) ¢
X Z Z Dm.n(“l + PT, S oy T+ ]77\/))"”

n=0 pm<in

N \ . Y N
- <H p//K> ol TN =X (sign(p,))—1) {erﬁz,nlmgn(m) (H sign (p/.)>
;=1

/=1

1
3

N
H[:] pj

X(Z%Z/\T](Rign(l)l)wpl_p’*)_—\v* +foc da, o ez’—ﬁ,Z‘]\:]p/zf
(2K)z =
N V) 261 . ] ] !
X H <1/ + _> Z Z Dyn <Zl + —., . ay —“>x”
)= Py n=0 m§%n P by
(3.26)
Here we used an identity
[c}“’zf 1(3sigﬂ(/ﬂ/)—ﬂ/—ﬂ7>r _ [qu,‘_—ﬁSlgn(pz)—w—m}v (327)

We can extend the sum over n in the r/1s of Eq (3.27) to all n = 0 because
. . ~ . A—
the contribution of D, ,x" with n > 2(K — 1) starts above T As a result, we
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obtain the full Jones polynomial. Now using the identities

ol Fr—=)(sign(p)— 1’(p/K)*(|P’/K) (328)
N

[1p| = HMZ). (329)
=1

sign (p) = ie 3P (330)

we get the following formula

[Z'(M,;))° = (|HI(M.Z)|/K)

3 \ N ign( p ) N :
% e*;lnz/:,mgn(p,)_l_\e Z/ l(sL (P))—p— )> H p,
(2K)* B
\
oo m NN 2
<[ du daye®EOPI, L (LK) (331)

[2j=0]

Combining it with Egs. (1.27) and (1 18) and using Eq (3.29) again wec cas-
ily arrive at Eq. (1.23). Note that Eq (3.29) guarantees that p;#0 (modK) if
|H|(M,Z)|+0 (mod K) This proves Proposition I 1.

4. A General Rational Surgery Formula

Up until this point we were working only with surgeries of the type (p,1). This
was enough to prove the theorems of Sect 1, because H Murakami and T Ohtsuki
showed [6] that any RHS M can be constructed by (p;, 1) surgeries on an ASL in
S3 up to a connected sum of lens spaces L}];_l, that is, instead of M one might end
up with M#L pa#t #L, 0. However from the technical point of view it would be
better to have a formula for the invariant Z/(M, k) of a manifold constructed by
general rational surgeries (p;,q,) on the components of an N-component link £ in
S3.
The formula for Witten’s invariant Z(M, k) was derived by L Jeffrey [10]

nK—-2[X ( .
o Pid;)
14 (.Z_ QU 3sign (L))}

j=1

Z(M. k) = Z(S* k)exp

x ) N VNS 1‘[ o (4.1)
<o oy gKfl j=1
here L is the linking matrix of £, bemg the self-linking numbers The matrices

Urra) — (é’/ ;/> € SL(2,Z) (42)

/ ]
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describe the surgeries (a meridian on the tubular ncighborhood is glued to
pj(meridian) + g;(parallel) of the link complement),

p r _p—i—s~
<P{q S}~—q 125(p.q) (43)

s(p,q) being the Dedekind sum, and

~(pq) _sign (C])ek,%q,(uuu/;)t/il o

g =
r AV 2K|q| n=0 pu—==1
X exp {EZKL(;UZ — 20(2Kn + uf) + s(2Kn + uf)?) (44)
q

(sce [10], Propositions 2 7 and 2 8)
Let us introduce some notations A rational (p,,q,) surgery on L; can be pre-

sented as a combination of (mﬁ”, ), 1 £t < ek surgeries on a chain of unknots

simply linked to £, (see ¢y [9, 10] and references therein) such that

) ()
U(l)/’q’) _ T”l:‘//'STm'mflS TW(IHS ’ (4 5)

0 -1 , 11
s=(0 ) (5 1) (46)

We denote this chain (including £, itself) as £, and all the chains of £ as £. For
1<t <77 we set

here

yrlhah = s iy (47)

so that p;’/t =p,, q;/,), = ¢, From now on we assume for simplicity that none of

the numbers qf/) is divisible by K Then we are going to prove the following:

Proposition 4.1. Let M be a manifold constructed by (p,,q,) surgeries on an N -
component link £ in S Then

N .
/K) H/:] Slgﬁ (q/) 6713‘1\‘ Sign(L)eﬂn%% sign(L)

hY
2

N
Ij] q;

7M. k) = (
Xq\,74"zl\:]([)(u‘/’/ (//')qV(z* - % )Z/\:\ sign (%)

N ) N /
/ A4S g, ! V27T 1,y
X Z Jl], .1\(5,/()61 T H 5 Z g e
—K<7,<h =1
/,627‘|
(1=7=\)

(48)

(s, come from Eq (4.2))
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We could use the general surgery formula (4 8) instead of the (p;, 1) surgery
formula (16) throughout Sects 2 and 3 in order to produce a somewhat more
flexible proof of Theorems 11, 12 and Proposition 1 1

We begin the proof of Proposition 4 1 by recalling the Kirby-Melvin formula
([3], Corollary 8 9) which expresses Z/(M, k) in terms of data associated to L.

Z/(M,k) _ elﬁ% [Z/\:NP(L"”/ 9)—-3 sign(L)} e‘1§;\~sign([:)

N o,
< (LK LU 49)
—Kzu =K j=1
/€27 +1

(T=y=\)

here (we drop the index j in Eq (4.5))

o = (7'”'5 s T”“S) . (4 10)
f‘_‘/ﬁ 26—1%457267/;’ 5‘7/; = _I_Sln (_71:_a[f>q (4 11)
' ' TVK T \K

and L is the linking matrix of the “expanded” link £
The following lemma presents an explicit expression for U ;};{q}, which is similar
to that of Eq. (44)

Lemma 4.1.

Ui}/}.p) _ (|(]|/K) sign (q)e—l'f‘P(U(” q))e—:’}'l\‘zg,l sign(%)

VK

XqY(%“W)ZLNH«+(2*—%)ZL,s1gn<%) q4xq*(p73+s'/32)é $ ’uq—z'q*uyﬂ‘
p=x1
(4.12)

To prove the lemma we slightly change Eq (4 11)

) it gt . 1 0 gyt e
Ty=e T ¢ 0y Sy=-—=sq @) Y wg T (413)
1

the choice of sign in (f:(zl_%) is arbitrary
We prove Eq (4 12) by induction on 7 If 7 = 1, that is, if U'»? = TS, then
the check is trivial if we recall that ¢(7"'S) = m. It is also easy to check Eq (4 12)
for Uprma-a) = Tmyr4) 1t remains to check Eq. (4 12) for U ¢») = sUy»9)
We have to calculate the sum

v (—q.p) 5 ~(pg)
Uy = S 8,07 (4 14)
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The following gaussian sum is at the center of this calculation

VAT G PR =2 (g7 B ) +AT g SR
SN e g q"p, (4™ i 1 qsp

—K=, 2K

€271 fa=£l

_ ! A7 p(—p i = pT ey —47 g7 pT (i fHquaxy +47q" s
= > X g P T

*/:f sh gy ==1
_ 2\/1?811‘(’\* )(pq*//K) qv4x,0x(*(l7z"/5z) Z llq*’ P “//5 (4.15)
==l
here we used the following rclations
Gt = VK (pg KO (416)
e
s—p*=pigr, (417)

the latter relation follows from ps — gr = 1 To complete the verification of Eq (4 12)
we recall the following identities.

PSUPDY = (UP D) — 3sign ({‘;) ) (418)
isign (q) = ¢35 () sign (p). (4.19)
e/;(h—l)ﬂq‘/]()(pq*/]()_ i (z—l)mgn( >(|p]/K) (4 20)

This ends the proof of the lemma.
To finish the proof of Proposition 4.1 we rearrange some phase factors of
Eqs (49) and (4.12). We substitute a relation

N p(/)
sign (L) = sign (L) + Y E sign | = (421)
C]

j=1 t=

into the factor ¢ 5 sen(£) of Eq (4 9) Then we calculate the combination of phases
coming from that factor and from Eq (4 12) (we drop the index ;)

qr

L] —*4 )Z’ - (2 — )Zi_lsign(%) 071 ,Z 1‘ >1gn(m>

(44" P mer (27 ) sien(4) (27— 3 =20 sien ()

(1—4 )[ = 32 o mgn(”’)} 4(2‘4%)5@11(1’—;)

=4

— Loam U oy (2 — )sign(ff). (422)

We used here Eq (2 7) and the formula

mww)_Zm—sz$@<§> (4.23)

t=1

(sec [10] and references therein)
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A combination of Eqs (49), (4 12), (4.21) and (4.22) leads to Eq. (4 8). This
concludes the proof of Proposition 4 1.

As an application of Proposition 4.1 let us calculate the invariant of a lens
space L, , lts Witten’s invariant was calculated originally by L. Jeffrey in [10]
(Theorems 3.4 and 3 7)

This manifold is constructed by a U(=7%) surgery on an unknot in S°. Since

=|

B sin ( Z 1)
Jy(unknot, k) = —~—- | (424)

sin (£)

we can say that L, , is constructed by a chain surgery U=4-=r) = SU P9 applied

Pl

to an empty knot, times a factor VK Then we can read the result directly from

sin( £ )
Eq. (4.8) by setting there N =1, sign(L) =0, 2« = 1 and
U—en — (i j) (425)
instead of U(74)-
2% p” V2% p*
. AP (g—1)— DU T YY) 27 —
Z(Lpg) = (| pl/K)sign (p) gm0 g
y 2ty 2yt
= (plK)sign(p) g 7§ T
LB o2
. V35V (q. <19 : —dq 2
= (|pl/K)sign(p) ¢* @ (~ 1) T E—— (426)
qZ — q 2

here sY(g, p) is the “checked” Dedekind sum, that is, its denominator is inverted

modulo K as in Eq (1.13) We used the relation qux = ~c]% in order to derive the
last expression in this equation. Although it might look simpler than the previous

one, it obscures the fact that Z'(L,,) € Z[g] Also note that the expression cj% by
itself is ambiguous since p* is defined only modulo K

Comparing the second expression in the r /s of Eq (4.26) with the formula
for the trivial connection contribution to Witten’s invariant of the lens space

4 !

Sign (p)(fs(p.q) qv' - q_-

V1rl G’ —q

derived in [10] (take the term n = p in the formula of the Theorem 3 4 of [10]),
we can easily check the relation (1 20).

The formula (4 8) also allows us to check Proposition 1.1 for Seifert manifolds
which are rational homology spheres Consider an (N + 1)-component link £ in S*
consisting of N unknots £,, 1 < j < N simply linked to a single unknot £, A

ol

2Ly 4o k) = Z(S: k) (427)

ol
o=

Seifert manifold X (%, , %) is constructed by performing (p,,q;) surgeries on

the components £, and a (0, 1) surgery on Ly (see, e g [9]) The Jones polynomial
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of L is known [1] to be equal to

l H/ ,sin (£ fa,)
sin () sin" 71 (£5)

here f is the color of £y and 2; are the colors of £; The signature of £ is equal
to

J/5,1|. .7\(‘(::/():‘ £ (4 28)

H
sign(L) = — sign (—) + Z sign (q, ) (429)
P j=1 P
Here we introduced notations
N N g
P=1lp. H=PY -, (4 30)
i1 =1 P

so that

w2 2o

Proposition 4 1 provides the following expression for the invariant of the Seifert
manifold X <”—' &>

q1° > Y

i
7

1y (1
P

P r qen( 1) ind e
Z/(X,k) _ e/;l\mgn(/—,)e 3
2VK

« Z'/ (Ljfz‘/i o qZ‘/f)ZI/;(L(COII)’ k) , (432)
here
N1
. sin (= N
Zy(LM Ky = —# 11 Z4(L ) .4:K) . (4 33)
sin (E[ﬁ Py
sign q —1FN Sigll(%) 717‘(—"— 51gn<—’l>
ZﬂbwwﬂK>:(MmK)—~Lﬁf ' Ve ! (4 34)

VK
- . q
Xqv—4*¢(U’/’/ ‘/r’)qv(z *%)Mgn(#) Z/

A w2
/)(}4 g, (pyay+3))

2
=
[ B PN
0=
=

Xé <472xz/:2, . (}2“q71,> (435)

In these formulas ZIQ(L_pM,,,k) is an invariant of the f-colored link £ inside the

lens space L, ,, constructed by the (p,, g,) surgery on the unknot £; Z/’}(L(CO“),k)
is the invariant of the fi-colored knot £, inside the connected sum of lens spaces

L =L, o H# o R, g (4 36)
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The calculation of invariants Z/’;(L prg, k) tuns similar to that of Z'(Lyg4,k) in

Eq (4 26) The only difference is that by taking a sum over «, we go from U(p )
U/fl 9P rather than to U]1 ~4r o) As a result,
Z/j(L—/},Aq/,k) = (![J/VK) sign (}7 )674 pra, =357 (q.p))
=2"p B 2"l
a4 g, 4 -q "
xg Al (437)
q9  —9q
and
i Eocon( Y i3k o2 oo Lo "
7Z'(X, k) = b primsign( ) ping A sign(5) 5(5 =27 ) sien( )
(X, k) WA g
% (PY/K ) sign (P) g7 117350 @
N =2"prf 25t
X ! Z/ 6;74*1’*/1/f3 H/zl(q P -4 p//)
T GGy
(4.38)
The preexponential factor of Eq (4.38) can be put in the form
TG =, (439)
where
N =27 pfp 27 pr
. ( PP 7y
J(B) = - 1 (4.40)

((fz* vz NG~ B vzw/;)NH ‘

It is easy to check that the function J(f) belongs to Z[¢] and satisfies the properties
of the Jones polynomial described in Proposition 1.2. Therefore the full machinery of
Sect 3 could be applied to the sum of Eq (4 38) in order to convert it to the integral
and ultimately prove Proposition 1.1 for Seifert manifolds However there is an easier
way. The numbers py, 1 < j = N determine a set of positive integer numbers
A(p},  , py) € N and multiplicity factors C,(pj, ,py) € Z, n € A(p],....py)
such that
1,27 =gy

. * v—2"nf 27 nf
G AT 1<;Z /)V)Cn(ph Py (G =g ). (441)
APy Py

Now we can apply Eq (3.5) to the calculation of the sum

=27 prf 25 prf
! / q—4PlI/fH/ (g -4 ")
T 2 _ v2*/f N-2
q q ﬂg;k (q )
~4 P H[? , v—2* np V2" (n—1)p
= Z Cu Z : (q (D) _ q v )/)
— (4 neA —I\</f<l\
pe2l41

v4 PH*(n+1) qv4*PH*(n—1)3

— 2K (P HIK) i) ¥ ¢, 4 s
4 —4q

neA

. o, q2‘PH*n _ (;72*PH*11
_ 2\/E(P*H/K)eli(,\7]) Z C”qv4 PH™(n"+1) — — (4 42)
ne1 q -q
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Combining Eqs (4 38) and (4.42) we find the formula

Z/(X, k) = ([H|/K)sign (F)g* 713+ 47 sen(3) =380 e
W—2PH'n qu*PH*n

% Z C,,q4 PH*(*+1) 4
neA

—> , (443)
g —q

which demonstrates that Z/(X; k) € Z[4].
Now we come back to Eqs (4.41), (442) and use the fact that for n € Z,

Z/ qv—4*P*H/3272‘11/i _ \/E(P*H/K)eliﬁ(“*l)é“*PH*”z’ (4.44)
S K=pzk
perzh

+oc 2 “ e . S pppw 2
/' d,[))qvwr’/’f_*’jgz pn e—zjslgn(PH ) /2K|PH*|qv4 PH™n , (445)

so that

I AT PTHE 2" 0 * 12(1-71)61%“@(%‘) T g s 2
S g = (P*H/K )e'i [ dpg o . (4.46)

~K=psh V2|PH*| “%

perz+

This equation allows us to convert the sum over  in Eq (4 42) into an integral
Then by using Eq. (4.41) backwards we arrive at Eq. (4.38) with the integral instead
of a sum

Z/(X,k) — ([H|/K)51gn (H)Lf*P*H—} . 4" sign(%)~3z,\:]s‘v(q/~p/ )](qV) , (447)

1 o' sign(PH™)  +oc 2 H,/\;](qv—z* P8 _ qv2*P7/5)

(§) = 57— [ dpg T — TR
G — ¢ ¥ 2\ 2K|PH*| (G 2P g

The integral over f§ is well defined in view of Eq (4.43) (actually, one might

add a regularizing factor lim,_, e'“/’z) It can also be calculated by expanding the

preexponential factor in powers of x = ¢ — 1 and integrating their coeflicients, which
2

. . . . . U i .
are polynomials in f;, with the gaussian exponential ¢~ #7= This procedure leads
to the following relation:

(4 48)

(1°
- ek v
_ 1 efive(s) ’E ?wg-&%ﬁln" 1 )
q%,(]*% 2V2K P o (C]—g_q@)\*

i z
_ K p,
- f dfe”x PP ———p5mt
} K F2 T
Esin (2) o s ()

: H
1 sign (F)ei%nmgn(%) ‘H
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Since
{qv4‘P‘H~3 < 4 sign( 4 )—3ZL)\'V(¢/,./J/)]O _ [q}’,—f~} sign(%)—SZLp(q,.p,)J N . (4.50)
and according to [11, 12, 16] (sec, e g Eq (49) of [16])

3gion(4Y) s
o3 sien( ) sign (P)eé;;' [%,3 sign(4)—1252" x'(q,.p,)]

K
(£5)
<

T2 o Hop2
x [ dBe =l
—oc

1=0]

7YX k) =

H,\:. sin

sin' ~’ ’ (451)

s
K
1
K

==

we conclude that Eq (1 23) holds for Seifert manifolds which are rational homology
spheres

Ohtsuki’s invariants of a particular class of 3-fibered Seifert manifolds con-
structed by an integer surgery on a (2,7) torus knot were studied recently by
R Lawrence [25] She came to a conclusion that these invariants were integer
if a manifold was a homology sphere and that Ohtsuki series (i¢ the /hs of
Eq (1.20)) converged K-adicly to the total invariant Z'(M, k) This reinforcement
of Ohtsuki’s results demonstrates a very interesting interplay between the differen-
tial geometry (see the calculations of [13] which should presumably produce the
invariants S,(M)) and number theory

5. Discussion

We have already mentioned in the Introduction that if we view Eq. (127) as a
definition of an infinite sequence of invariants S,(M ) of a RHS, then Proposition 1.1
becomes a mathematically rigorous (modulo the proof of Reshetikhin’s formula that
we will provide in [21]) statement about a relation between S,(M) and Ohtsuki’s
invariants /,(M) This relation combined with Theorem 12 can be expressed by
one formula

[|[H(M,Z)| (|H\(M,Z)|/K)Z' (M , §)]°

= @H«Mﬂ)ﬁ exp <<s,1<M) ~5,(5) (%) )] , 5D

which we have proved in Sect. 3

If we conjecture that the invariants S, (M) are related to the trivial connection
contribution to the total Witten’s invariant Z(M, k) by Eq. (1 18) then we face a
much more interesting equation (1 23). The //is there comes from the number-
theoretic manipulations with Z'(M, k), while the r & s should be calculable by the
differential-geometric methods of [13]

In our previous paper [18] we studied the properties of S,(M) as they follow
from Eq (127), Proposition 1.2 and some other properties of Reshetikhin’s for-
mula [19] Now we use Eq (120) in order to extend them to 4,(M)
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Proposition 5.1. The invariants 7,,(M ) are finite type invariants of RHS as defined
in [23] and [24] An invariant 7,(M) is of Ohtsuki order 3n, Ohtsuki' ([18]) order
2n and at most of Garoufalidis order n Also

2%t 2m) (9n)! |H{(M, Z)|" 3, (M) € Z , (52)
n; 1 ] 4[_
|H(M,Z)|" /(M) € Z {5’5’ . 2,7] (53)

To sce that 2,(M) is of exactly Ohtsuki order 35 one has to find an n-component
link £ such that the alternating sum

S (=D (e (57) (54)

L'cL

is non-zero (here 7,(S*) denotes a manifold (RHS) constructed by (1,1) surgeries
on the components of a link £ in S*) Recall that according to Eq. (1.20),

Jn(M) = > Co ST (M) Si(M) (55)

my, my =0

my+2my+  dnmy=n

for some numbers C,, ., Consider the n-loop diagram consisting of (7 — 1) small
loops sitting on one big loop, and the corresponding [23] link £ This diagram has
no subdiagrams with only trivalent vertices. Then according to [18], for any S, (M),
n’ < n the alternating sums are equal to zero

S (=S (e (M) = 0, (56)
L£rcL

it £/ C L and #£' = n’. Therefore an invariant S,,(M) is of Ohtsuki order less
than n’ with respect to £ and its subdiagrams (of course, there exist other links for
which the /hs of Eq (56) is non-zero if #£' = n’). As a result, only the term
Co, 01S:(M) in Eq (55) matters for the calculation of the alternating sum (5 4)
Since, according to [18], the sum

S (=) S, (70 (57) (57)

L'ce

is non-zero, we conclude that the sum (54) is also non-zero Hence /,(M) is of
exactly Ohtsuki order 3n

Finally, let us comment on the relation (1 23) between the invariant Z'(M; k) at
prime values of K and the trivial connection contribution to Witten’s invariant This
relation is not an obvious result in the sense that the contributions of non-trivial
connections to Z'(M, k) do not seem to cancel at prime K (one might expect that
there is some cancellation leaving only the contribution of the trivial connection)
This can be seen at the example of a lens space L, , for which

o v .., sin (% p*
2Ly =sign(p)(|pl/K) B 0 (s SLEPT) s
p.q T
Sin (?)
. i (2L
Z(t )(Lp.t/sk) o Slgn(p) e‘%\‘(qu)Sln (K 17> (59)

/N SV sin ()
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Although these two expressions have many common features, which ultimately lead
to the relation (1 23), still their numerical values are quite different The p and K de-
pendence of Z'(L, ,) is somewhat typical of contributions of U(1)-reducible connec-
tions Besides, the Dedekind sum s(q, p) is generally a fraction, so sV (g, p)*s(q, p)

We established the relation (1 23) by comparing directly the surgery formulas
It would be much better to have a conceptual explanation for this phenomenon
One might speculate that it would come from number theory and perhaps p-adic
quantum field theories
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