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Abstract: We prove that the Schrédinger operator —d?/dz? + Fz + W(z) on L*(R)
with W bounded and analytic in a strip has no resonances in a region
Im E > —exp(—C/F).

1. Introduction and Main Result

The resonance problem of a Schridinger particle subject to an electric field with non-
vanishing mean bears interesting physical and mathematical aspects and has attracted
much activity in both fields. From the point of view of transport in solids not only
fluctuations of short range or Coulomb type but also random, quasiperiodic and espe-
cially periodic potentials, the Wannier case [25], are of interest. For the physics we
refer to Avron [3], Grecchi and Sacchetti [15] and their references. Mathematically
the classical questions are definition, existence and location of resonances. They are
non-trivial even in a one dimensional situation.

For the case of fluctuations which do not decay at infinity the definition setup
for resonances by spectral deformation was essentially given by Herbst and Howland
[18].

The existence of resonances in the Wannier case was discussed by Avron [3].
Rigorous results were obtained in the high field regime by Agler, Froese [1]; in a small
field and semiclassical context by Combes and Hislop [10], Bentosela and Grecchi [5];
for potentials with a finite number of bands by Buslaev and Dmitrieva [9], Grecchi
and Maioli and Sacchetti [14] who have also results for the disordered case with
large periods [13]. The techniques in [10, 5, 13, 14] were spectral deformation and
perturbation theory; in [9] the complex poles of the reflection coefficient were studied
directly by ODE methods; in [1] a Birman—Schwinger technique was employed.

Concerning the location in the Wannier case it is suggested by the Zener tilted band
picture that the width —or imaginary part, or the inverse lifetime of the resonances—
is exponentially small in the strength of the homogeneous part of the field [3]. The
works on the existence confirm this: upper bounds on the imaginary part were given
in [10, 5, 14] for the semiclassical and for the finite band case.
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There are several results concerning the notorious problem of lower bounds on the
resonance width. In [4] Bentosela et al. proved for a very general class of fluctuations
that the spectrum is purely absolutely continuous. In [9] asymptotics of the resonance
width in the field strength were obtained by a detailed study of the wavefunctions in
the Wannier case for finite band potentials; Jensen [20] showed for bounded analytic
fluctuations that resonances go away from the real axis with increasing field strength;
Ahia [2] gave an exponential bound with an explicit constant for compactly supported
fluctuations.

Lower bounds on the resonance width of Schrédinger particles in potentials de-
caying at infinity are known from the works of Harrell [16] and of Fernandez, Lavine
[11] for potentials of compact support and from Helffer, Sjostrand [17] for harmonic
wells on an island in the semiclassical limit. The results in [11, 17] apply in more
than one dimension.

Our contribution are lower bounds which are exponentially small in the field
strength; they are valid for the class of potentials for which they are expected to be
true.

The condition on the potential is:

(A) Let W be analytic and bounded in a strip around and real on the real axis.
The result is:

Theorem 1. Let W satisfy (A). There are Fy > 0,c > 0 such that the selfadjoint
operator
—d*/daz® + Fz + W,

uniquely defined by extension from C§°(R), has no resonances in the region
{EcCImE>—-F} (F<R).

Let us describe in prose the idea —which is promising to apply in other situations—
and the organisation of the proof.

Resonances of the Hamiltonian H = —A + Fz + W are defined as eigenvalues
of the complex distorted H(f) = U(@)HU~1(6). The distortion U(@)y(z) := (1 +
0f")/24(z +0 f(x)) is well defined if sup |0 f’| < 1. f will be chosen according to the
following observation.

From the relation (1 +0f)H@®) — EY1 +6f)= H — E +0Pf + O(6?) with the
differential expression P defined by

ua

Pf :=—%+2(Fx+W—E)f'+(F+WI)f»

it will be deduced that the existence of an f which satisfies Pf = —1 and is slowly
oscillating implies (for Ref = 0) that Im(H(6) — E) is negative for —ImE — Imf <
0. So there are no resonances with ImE > —1/sup|f’|. The problem of bounding
ImE is coded in the control of solutions of Pf = —1. Our analysis of these is
based on their intimate relation to the solutions of the Schridinger equation whose
asymptotics are well studied in the case at hand.

The physical background of this is: Pf is the on—shell part of the commutator of
H and the distortion operator:

[3(/D+Df), H) = ~iPf + f'(H ~ B)+ (H ~ B)f’)
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((D:=—18y)). In this sense Pf = —1 means that %( fD + Df)(t) is decreasing along
trajectories: for a wave packet concentrated near the energy shell ((t), %( fD +
D)) ~ —t for i0up(t) = Hi(t). Remark that we discuss the full on—
shell part of the commutator and not, as it is usually done, its classical limit
20Fz+W — E)f' +(F +W"f.

In more than one dimension the on—shell part of the above commutator is not a
function; this is the main obstacle for an extension of our approach to that case, see
also [6].

We shall proceed as follows. In Sect. 2 the resonance theory will be given sup-
posing existence of a suitable distortion field f. In Sect. 3 we shall establish our
analytic result: the existence of a unique, slowly oscillating f with || f'||cc < e¢/F
and Pf = —1 on a sufficiently large region and prove Theorem 1.

Finally a remark concerning notation: the quantities which are derived from H and
f depend on the parameters F, F', 6; if we feel that this is clear from the context we
shall not burden the reader with an explicit notation of the indices. A generic constant
not depending on the parameters will be denoted by cte., the norm of u € L*(R) by
lul|. Cg° are the functions whose derivatives are bounded.

2. Resonances

We shall now define resonances by spectral deformation and establish a theory of
resonance free domains.
Let W satisfy (A), F' > 0; denote by

Hp=—A+Fx+W(x)

—or simply H- the selfadjoint operator which by the Faris—Lavine theorem (see Reed
and Simon [24]) is uniquely defined by extension from C§°(R).

For f € C*(R,R) sup,cg |f'(®)| < L, define a family of unitary transforma-
tions by

UO)yp(x) =1 +0f)?px+0f(x)) (e L’R), —1/L<6<1/L).

A resonance is understood to be a complex discrete eigenvalue of

H@®)=U@HU 9

=—(1+0f)'2VA+0f) V(A +0f)? + Fx + Fof(z) + W(x + 0 f(z))
analytically Type (A) (see Kato [21]) continued to complex |6 < 1/L.

There exist meromorphic continuations of sufficiently many matrix elements of
the resolvent (H — E)~! to a complex neighborhood of each real energy FE, whose
poles are the eigenvalues of H(#). This concept of resonance has a long story which
can be traced from Hunziker [19].

We start by proving the analyticity of H(f) assuming that an f with the desired
properties exists, then continue by showing that certain sets are free of spectrum of
H().

Denote (z) := (1 + F222)'2 || f|l = sup,cp | f(2)], and

(—k)

3
A=Y ) = 0F fllre + [ F e+ 11 (@)l + @) 2 7l + 1 [l
k=0

We have
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Theorem 2. Let f € C3(R) such that for some c > 0: ||| f||| < e/F.
Then there exists ¢’ > ¢, Fy > 0 such that for F < Fy, Hp(0) can be extended to a

Type (A) analytic family in {0 € C;|0] < e~¢'/F},
Proof. Since C§°(R) is a core for Hp it is sufficient to show equivalence of the
graph norms of Hp(6) for all |§] small enough and analyticity of 6 — Hp(0)u for
u € C°(R).

Denote J(z,0) := 1 +8f'(x), by B a generic bounded operator and by cte. a
generic positive real number. It holds:

vglv _ J—I/Z(J—I(J—I/Z)l)l
+0Ff+ W(z +0f(x)) — W(x)
= gA+g;V+gp+B

HO) - H

with gy :=1— J 72, g :== —J /2T~ (J~1/2)Y. Let x* be a real C™ characteristic
function of (r,c0) for an 7 > 0, x~ := 1 — x*, g% := x*g for a function g. From the
assumption on f it follows with

—-1/2

gt Il + [1(z) g1 e + [I(z) ="/ (g1)" [Ir+

(229D IR + (@) "' g3 1= + llg5 [l < cte.fle/ "
Combined with the following four estimates (see also below):
()" Aul| + [[(z) "/ Dul + || x* Aul| + |x* (@)ul| < cte.(|Hpul + [ul)),

this gives ||(Hr(0) — Hp)ul| < cte.|0]e/F(||Hpu| + ||u||) and so there is a ¢/ > 0
and an o < 1 such that for |§] < e=¢/F

[(HrO) — Hr)u|| < a(|Hpull + [[ul),

which implies equivalence of the Hr(f) graph-norms. Analyticity of
0 — Hp(0)u is immediate. We finish the proof giving one of the operator estimates
used above:

()" /*Dul® = —(u, V(z)"'Vu) .
= —%(u,((w)—1A+A(x)‘l)u) + %(u,((m)_l ")
< M @ He + o)™ )+, B

< ctell@) ull Hrull + ul®) < cte.(|HF| + lul®). O

We are now coming to the announced theory of resonance free domains: Techni-
cally the simple idea to prove absence of resonances explained in the introduction does
not work for large values of  where we shall use ellipticity instead. We introduce a
family of helper functions which satisfy the following assumptions:

(T) For F >0 let a € Cy°(R,R), a(z) € [-1,0],
a(x)=—1 (z € (—o0,(1+|W]|gr+E)/F)),
a@)=0 (€ (2+||W|r+E)/F,o00)).

The result is:
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Theorem 3. Assume (T) holds for a. Let f be a solution of Pf = a such that 3¢ >
OVE € R : |||f|l| < e*/F. Define b by a +b = —1.Then

there exists ¢ > 2¢,F' > 0 such that for F < F'it holds for |0 < e~/ and
Imf=062>0:

U (= € C: jnf Im(@1 + 66031 + 1679z — B)) > 2} € pltHz @),
EeR

where p denotes the resolvent set.

Proof. A real shift in 6 leads to a unitary equivalent H (), so it is sufficient to treat
the case 6 = i3. Because of technicalities we treat the region of ellipticity separately,
this is accounted for by the function b. Denote u(6) := (1 +60b)(1 +6f'). Let E € R.
It is known (cf.: [6, 7], see also [8]) that

{z € C; Im(u, W(@)(H(0) — 2)u@)u) <0 (u € CP(R)} C p(HF(H)).
So all we have to do in order to prove the assertion is to show
Im(u@O)(H(0) — E)yu®)) < —B/2

in the quadratic form sense on Cg°(R).
Denoting V(x) := Fx + W(x) — E, J(z,0) := (1 + 0f'(x)) and using the identity
gVhVg =Vg*hV + g(hg') we have

(WH — E)p)®) = (1 + 0b)(—A + J*V(z +0f) — %JI/Z(J‘WJ’)’)(I +0b).
Using b < O this implies

Im(u(H — E)u)(0) < Im(u?V(z +0f) — 6" (1 +6b) — (1 + 0b)2( J” - mJ'Z))

A calculation using Taylor expansion in 6 shows that the right-hand side of this
inequality is

Im(O(Pf + 26V + (1 + 6b) + 6(O(1) + O()F"2 + O() £ £')))
where, using || f|| + ||f/|] < e¢/F, one sees that #O(1) is uniformly bounded in F,z
for § < e~2¢/F. By the assumption on f we have

|f”2(ac)+f”’f’(m)| < e2/F bV (x)+1). Using b = O(F?) we see: for any 1 > ¢ > 0
there exists ¢’ > 2¢, F’ > 0 such that for F' < F” it holds for 0 < |f] < e~¢ '/

Im(uH — E)u)@) < B(Pf+Q2—ebV +e) < Ba+b+e) < B(—1+¢). O
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3. The Distortion Field

In this section we shall establish existence of the function f needed for the machinery
of Sect. 2. As a corollary we shall give the proof of Theorem 1.

Let a be a smooth negative switching function which is zero for large =z and
—1 to the left of the first turning point of —A + Fx + W(x) — E. Denote again
V(z) =Fz+W()— FE.

We shall construct the unique solution of the equation

Pf=(-0*2+Vo+0V)f=a
subject to the growth condition
71l < e/F.

For the construction we use the following nice observation: Let ¢, ¢, be a fun-
damental system of the time-independent Schrddinger equation

—Ap+Vp=0, (Sch)
then the products ¢?, 2, @1, form a fundamental system of
Pg=0.

This relation is well known for the Airy equation, in general we could trace it to
McKean and Trubowitz [22]. We thank E. Mourre and V. Ovsienko for telling us
about it. We refer also to Gelfand and Zakharevich [12] who studied Pf = 0 as a
spectral problem on the circle for periodic V.

Let us describe why it is non-trivial to gain control on the derivatives of f and
how we do it. From the standard asymptotic approximation of solutions of second
order differential equations [23] one has that a generic solution of the homogeneous
equation Pg = 0 behaves like

B 2[TVV y ge2 [TV

9(T) ~z oo \/‘7(0‘6 +7),

1 T T
T) g0 — = alcos(Z/ VV) + f;sin 2/ VV)+
9(z) o m( )+ By sin( )+ )
with some «, 3,7, oy, 81,11 € C.
We see that generic f with Pf = a will exhibit exponential growth to oo and
fast oscillations to —oo. It turns out that the inconvenient terms are killed if the
Sturm-Liouville type boundary condition

(Va + aV)f(CL') - a(x) —zr—too 0

is imposed.
To have a flavour of this, note that smooth solutions of the classical equation
(V9 + 0V)h = 0 behave like

C

VIVI@)
Because of the presence of turning points in a region which scales like 1/F these
exist, however, only for large |z|.
The idea of imposing this boundary condition is implemented in the construction
of the Green’s function for the problem:
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Theorem 4. Let E € R, F > 0,W € C{°R,R). Denote V(x):=Fx+W(x)-E.
There exists a function G € C°°(R2 \ {z = y},R) N C'(R%R) such that for
a € C°(R,R),a(x) =0 (z > r > 0 suitable) the function

f@):= /R G(z,ypay)dy (z €R)

is in C°°(R, R) and is the unique solution of
Pf=(-0*/2+Vo+0V)f=a
such that 3¢ > OVF > 0
IFI < e/F,

where
3
A =S 1) T2 0% fllre + £ llr- + 1) £ llr- + () £ lr= + 11F" Ir-
k=0

Furthermore, c can be chosen uniformly in E.

Proof. We shall give an explicit construction of the Green’s function in terms of
solutions of (Sch), then verify the assertions.

Let us establish the rules of the game:

Lemma 1. There exist two real, independent solutions p.,p_ € C* of (Sch) with
the following properties: Choose x; < x, such that |V (z)| > 1 (z ¢ (z1,z,)) and
V(z)+V"/V(z)| >1 (x € (—o00,x))), define

s(x) = |V(z)+ V" /V(@)|'/? (x € (—o0,x))). Then

(1) There exist a.,a_ € C\ (0); ry,7—,l € C®R), c > 0 such that for F > 0:

i(@) = exp(+ / VI +r(@) (@ > ),

V( )1/4

T

s) +aIeXP(—i/ NI +1U(2) (& <),

Ty

T

1
px(r) = W(ai exp (i‘/z

Wronskian(p,, p—) =2 = 2i(a,a” — aa_).

1
Furthermore for I := (x,,00), I} := (—00, x;) it holds:
2
D (@) 20k |1, + |[(2) 920k e p, + ()R 20k ) < e/
(2) dc > 0,VF > 0:
1
> U105 lIr + 1002 |- o0,e,0) + 10%0% [l 1,2y < €/ F.

k=0

For g € C} it holds:
(3) for x, <y <z,
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|/y \/iv(z)exp(—Z/zr \/V)dz+(%(z)exp(—2/w \/V))IZ,“I

y x / !
g gV
SeXp(—2/ x/V)/ 1L+ 120);
- y 2V V?
(4) fory < x < xy,

| / =(z)exp(2i / s)dz — ( g 5+ 49 s 4)(z)exp(2z /z ’ s)

Scte./(|3|+| |+| |,
y

(S)forz, <y<zory<z<uz,

=T

|

z=y

T g cte. 1/2 5=z
—= < —|glllVI"“(2)]
/y v~ F

z=y"*
Proof of Lemma 1.

(1) Cf.: [23].

(2) From Gronwall’s inequality it holds for solutions ¢ of (Sch)

le@)| + ¢ @) < (Jp(zo)| + ¢’ @o)|) exp((1 + W]}z — mo) + F/2(z — w0)*)

The assertion follows from the asymptotics in the region (z,, 00), from the estimate
in the region (x;, =), again from the asymptotics in (—oo, x;)

(3,4,5) are by integration by parts. This finishes the proof of Lemma 1

We resume the proof of Theorem 4: Take .,

O
Uniqueness:

_ as in the Lemma 1.
Let f be a solution with ||| f||| < co. An arbitrary solution h is given by

h=cop?+c @ +co_0yp_ +f
[l|h||] < oo implies absence of growth and oscillations

2
c+=0,( o - ) ( e~ ):0. With
ac a0 Co

It follows ¢, =c_ =c¢c,_ =0,s0 h=f
Existence:

We give G constructively, then verify the properties
G(z,y) =

HPE + |25 P —2Re2 0,0 )@)p2 (y) (z <)
300 (@) Prp— — Re220 )(y) — 102 (@)@ — |2 22 )y) (z>y)
The solutions of (Sch) are C*°. It is algebraic to verify

GeC®R*\ {z=yHNC'RY), P°G(z,y)=0 (zFy),
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—%((aga)(x,x —0)— (02G)z,z+0))=1 (z €R).

Thus f(z) = fR G(z,y)a(y)dy is a solution of P f = a; the existence of the oscillatory
integral will follow from the estimates which we readily shall prove using Lemma 1.

Define h, g1, 92, fu, fa by

Mz)p? (y) (z <vy)

m%”={%qu@+d@M@ @2y’

[ = fu+ fa with

ful@) hm/ P,

fa(@) i () / gia+ ¢ (z) / Qa

In the region I} = (—oo, ;) it holds Ph =0
and h = ﬁW(a:) + V" JV(x)|7121 +1)% so

3
(@) 2hllz + Y 1@ 20 Ry, < e/F.
k=1

It follows from Lemma 1, writing [ o2 a=([7"+ [+ f;l' Yot a

3

2 4
D @CPREE flln + I fullr, < €T NI0%all x D 8V

k=1 k=0 k=1
Concerning f; we have by a similar argument:

3

3
Y @) P20 o)l + Y () IR0k |y, < €T
k=0 k=0

A calculation shows that g;, g» have only oscillating components (sic!) so
T
I(z) [ giall, < e?/* and

3
| fallr+ Y @) C=P208 fa |y, < e/ F.
k=1
In the region I, = (z,,00) it holds

3
S e VY @ya-brgkp)), < el
k=0

/ P a< el V)T 14 (@) ),

which gives the estimate
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3
D@20k fullr, < e“/F.

k=0
Concerning fg: @, = ﬁ(l +r)(1+7_), 50

3 3 -
S @) 20 pup s, + 3 )RRV o2 |y < e T

k=0 k=0
x T
/ gi10a < / giaa < /¥ gives
— 00 — 00

3
D K@) P20k fyllw, < e
k=0

In the region (z;,x,) the estimates are straightforward. Thus |||f]|| < /¥ and

we have finished the proof of Theorem 4. O

This finishes the construction of the distortion function f which is needed as input to
the resonance theory of Sect. 2. We end with the

Proof of Theorem 1. By Theorem 4 there exists f € C™ with |||f]|| < e¢/F and
Pf = a for a satisfying (T). By Theorem 2 Hy(f) is analytic for |9] < e~/F. As
there exists ¢ > 0, F’ > 0 such that

{zeC;Imz > e F}

U {= € G inf I + 801 +i87 Wz — B) > ~2),

E€R

Theorem 3 implies absence of resonances in

{E € C;ImE > e_C/F}. a
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