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Summary. We express the momentum current (= stress) tensor for a periodic fluid
with two hard disks per unit cell in terms of a single particle billiard. We establish
a central limit theorem for the time-integrated stress tensor and thereby prove the
existence of a strictly positive shear and bulk viscosity.

1. Introduction

One of the great challenges of statistical mechanics is to prove the existence of
finite (and non-zero) transport coefficients for a system of particles governed by
Newton's equations of motion. For a one component fluid these transport coefficients
are the shear and bulk viscosity and the thermal conductivity. There are several,
presumably equivalent, ways to define them - the clearest and least ambiguous of
which is through the Green-Kubo formula. Let us briefly recall the basic structure.
We consider an infinitely extended, one component fluid in thermal equilibrium. The
equilibrium average is denoted by (•). In three dimensional physical space the fluid
has five locally conserved fields: the particle density n(0)(x, f), the three components of
the momentum density n(α)(x, t), a = 1,2, 3, and the energy density n(4)(x, t), which
depend on location x £ M3 and time t G EL [These are distributions on phase space
indexed by x, t. Their precise form is of no importance for what follows. More details
can be found in [17,21].] By the local conservation law we have, in a distributional
sense,

r\

— nω(x, t) + div jω(x, t) = 0, (1.1)
CJL

i — 0 , . . . ,4, with the local currents j^\ [Since the interaction between particles has
some range, the local currents are not uniquely defined. However, the space averaged
currents always are, cf. Sect. 2.] The Green-Kubo formula for the transport coefficients
reads then
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(1.2)

α,/3 = 1,2,3, i,j = 0, . . . ,4, with T the temperature of the fluid, where we used
already the stationarity of the equilibrium measure in space-time. By rotation invari-
ance and by time reversal symmetry in fact only three out of the 15 x 15 coefficients
in (1.2) survive. They can be expressed by a linear combination of shear and bulk
viscosity and by the thermal conductivity [17,21].

Within molecular dynamics [13] it has been noted for some time that, at least in
principle, transport coefficients are well defined also for systems with a finite number
of particles. The main observation is that for a periodically repeated fluid the total (-
space averaged) currents are meaningful and transport coefficients can still be defined
via the finite volume version of (1.2). Then (1.2) equals the covariance matrix of the
time-integrated total currents, normalized by \fi. Thus the mathematical issue is to
prove a central limit theorem for the time-integrated currents.

The simplest, yet nontrivial, case turns out to be a periodic fluid with two hard
disks per unit cell. Using the well developed theory of billiards [19, 5-12] we establish
a central limit theorem for the time-integrated stress (momentum current) tensor.
Thereby, the first time for a mechanical system, we prove the existence of a non-zero
shear and bulk viscosity. For two particles the thermal conductivity vanishes. For that
case three disks per unit cell would have to be considered, which is a much tougher
problem, since the boundary of the corresponding billiard has submanifolds of zero
curvature.

So far, essentially the only mechanical system for which finite transport has been
proved is the periodic Lorentz gas [5-11, 17]. In this model a single point particle
moves through a periodic array of convex scatterers, where it is elastically reflected.
It is assumed that the time between collisions is uniformly bounded. The analogue
of the total current is now merely the velocity of the particle in a unit cell with
periodic boundary conditions. When integrated in time it yields the position of the
particle in the periodically extended scatterer configuration. The central limit theorem
for the position means that the particle diffuses in physical space. The corresponding
diffusion coefficient is determined by the Green-Kubo formula, i.e., as a time integral
over the velocity autocorrelation. For the viscosity we will find a similar structure
with one crucial difference: the time-integrated momentum current tensor has no such
direct mechanical meaning. (We should mention that Knauf [16] considers a particle
in two dimensions moving in a periodic potential which has an attractive singularity.
He proves the K-property for the dynamics at sufficiently high energy and a central
limit theorem for the velocity.)

Our paper is organized as follows. In Sect. 2 we discuss the transport coefficients
for periodic fluids in d dimensions with an arbitrary number of particles per unit cell.
In Sect. 3 we specialize to two hard disks. Using conservation of total momentum we
arrive at a single point particle which is elastically scattered off a piecewise convex
boundary. We remind the reader of some basic notions in the theory of billiards in
Sect. 4 and prove the central limit theorem in Sect. 5. In an appendix by M. FlieBer
the viscosity is computed by molecular dynamics and compared with the one of larger
size systems.
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2. Transport Coefficients for Periodic Fluids

We divide Mrf into cells (hypercubes) of linear dimension t and consider a fluid
periodically repeated over all of W1 with TV particles per unit cell. They interact via a
central force, — VTΛ Equivalently, we consider TV particles, position qj, momentum
Pj, mass 77i, on the ^-dimensional torus Λ = [0, t]d. They interact via the pair force
F(q) = - Σnζβd W(q - ni), which is constructed as a sum over periodic images.
In the short range case considered here, in fact the sum consists only of a single
non-zero term.

As a distribution, the momentum density is defined by

N

dd x f (x)n(0ί\x, t) = V^ f ( q (t))p α(t), (2.1)
Λ '=ι

a = 1 , . . . , d, for all smooth test functions / on Λ. We determine then the stress
tensor, τΛ /g(x,t), through the conservation law

g d^ r Q
ddxf(x)— n(a\x, t) - > / ddx(-— /(z))τα/3(z, t) = 0. (2.2)

dt j^JΛ dxβ

We have

(2.3)

where we used that F(q) = —F(—q). Let us consider now one pair i φ j of particles.
Then for an arbitrary smooth curve λ ι-> 7^(λ) G Λ with 7^(0) = qτ, %3(\) = g? we
have

(2.4)

Inserting in (2.3) and comparing with (2.2) we obtain the stress tensor

N I

~ x)Fβ(q3(t) ~

The stress tensor depends on the choice of 7^ . This reflects that the interaction
between particles is not strictly local. One conventional choice is to take the shortest
straight line joining q% with QJ. However, for our purpose we need only the total stress
tensor, which is independent of the choice for 7^ provided 7^ 07^ has zero winding
number. We have
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Taβ(t)= I d xτaβ(x,t)

Λ
N (2.6)

Here QJ — qι is the shortest distance on the torus Λ.
We are now on familiar grounds. We fix the total momentum to be zero and the

total energy to be E. Expectations with respect to the corresponding microcanonical
measure are denoted by (-)E,N The mechanical flow on phase space is stationary
under ( )E,N- If the dynamics is ergodic and has sufficiently good mixing properties,

then we expect that the time-integrated stress tensor, normalized by \/t,

— / ds(raβ(s) - (τQβ(Q))E,N), (2-7)
v t Jo

satisfies a central limit theorem. The corresponding variance is formally given by

£>α/3,76 = fdt ((τaβ(t)τΊδ(ty)E,N - (τaβ(0))E^N(rΊδ(0))EίN) , (2.8)

α,/3, 7, £ = 1, . . . , d. Up to conventional factors, D is the viscosity tensor for the
periodic fluid. For d > 3 it should be proportional to the volume \Λ\ = id and

Daβ,Ίδ/2kBT\Λ\ should converge to Γ^ of (1.2) in the infinite volume limit.
By symmetry actually most of the coefficients in (2.8) are either equal or vanish.

First note that

Daβ,Ίδ = DΊδ^aβ = Dβa^Ίδ = Daβ^Ί, (2.9)

since D is given through a correlation and since

- Tβa(t) (2.10)

because F is a central force. Secondly, the fluid is invariant under rotations by right
angles. Let us define a linear operator, ,̂ acting on the space of d x d matrices by

(&A)aβ = J^7 δ=l DΆβ^ΊδAΊδ. Then our discrete symmetry can be written as

&(R~1AR) = R-\&A)R (2.11)

for all matrices A and all matrices R which rotate by 90°. Equations (2.10) and (2.1 1)
imply that the only nonvanishing coefficients are Daβ^aβ = Dβa,aβ and Dan^ββ.
Furthermore, for a ^ /?, 7 ^ δ,

Daβ,aβ ~ ^7<5,7<$; ^αα,αα = Dββββ, Daa,ββ = DΊΊ^δ. (2.12)

Thus there are in fact only three independent coefficients. Traditionally they are ex-
pressed through the shear viscosity

1 A2,i2 (2.13)
Λ\ 2kBT

and the bulk viscosity
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ι ι ι
Daa^ (2 14)

The third viscosity coefficient is an artifact of the periodic approximation. Under full
rotation invariance (2.11) implies 2Daβ,aβ = Daa^aθί — Daaββ, a ^ β, in addition
to (2.12). Then 77, £ are the only viscosity coefficients.

For the thermal conductivity we follow the same route. The total energy current
turns out to be given by

N 1 1 N 1
2

TΎl έ~ TTl

Again the goal is to prove a central limit theorem for the time-integrated current,

i /"*
-j-l d s ( j E ( s ) - ( J E ( 0 ) ) E , N ) . (2.16)
v o

The corresponding covariance matrix is formally given by

, Λ Γ ) . (2.17)

Because of invariance under discrete rotations D^ = κδaβ. Conventionally the ther-
mal conductivity is defined by

1 1

(2.18)

Taβ(t) is even and JE(Ϊ) is odd under the reversal. Therefore the cross terms
between (2.16) and (2.7) vanish.

3. Viscosity for Two Hard Disks

To prove a central limit theorem for (2.7), (2.16) is a formidable task and no general
results are available. Thus we might as well try the simplest, yet nontrivial case,
which clearly is TV = 2. If p\ +p2 = 0, then

mJE = — (PiPi +P2P2) + 2 1̂ - 22)(pι +P2) ' F(qι -q2) = 0. (3.1)

Thus the thermal conductivity vanishes and we are left with the viscosity only. For
thermal conductivity we would have to take TV > 3.

Since the total momentum is conserved, we transform canonically as

, Λ , x
qc = ^ wi + ^2), PC = ̂  (Pi +^2).

Then the relative motion is governed by

m ̂  q(t) = p(t), ϊ- p(t) = 2F(q(t)), (3.3)
at dt
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where q G [—|, f ] with periodic boundary conditions (^-dimensional torus). Impos-
ing the center of mass momentum pc - 0, we obtain for the stress tensor

1

2raJ (3.4)

For the central limit theorem we certainly need the dynamics (3.3) to have good
mixing properties, which we ensure by taking V as a hard core potential. To simplify
even further we choose d = 2. We have then a periodically repeated fluid in the
plane consisting of two hard disks of diameter R per unit cell. They interact through
perfectly elastic collisions. Dynamically equivalent are two disks on the two-torus.
We streamline our notation. We set p = mv and the mass m = 1. To have the relative
speed \v = I we set E = ̂  (p\ + p^} = 1/4- The relative velocity is then specified
by an angle, $, with 0 < ΰ < 2π. We take a unit two-torus, i.e., i = 1. Then the
only parameter left is the hard core radius R, which can be used to label the reduced

density, i.e. density/closed packing density, according to p* = λ/3R2. We distinguish
two dynamically very different cases, cf. Fig. 1. If 0 < R < 1/2, then the fluid
particles can easily enter the next cell and in fact may move a long distance without
collision. We call this case "infinite horizon" because the corresponding one-particle
billiard (3.3) has infinite horizon. If J/2 < R < l/V2 the disks are confined and cannot
pass each other. The one-particle billiard has a "finite horizon" and its domain has
a "diamond" shape. Note that because of the imposed quadratic symmetry closed
packing cannot be reached. Before stating the central limit theorem, we discuss each
case separately.

Fig. 1. Two disk fluid

3.1. Infinite horizon, 0 < R < 1/2. The one-particle billiard is the two-torus

[- ]/2, l/2\ with a disk of radius R centered at the origin, cf. Fig 2. Let tn be the time

of nth collision and v'(tn) be the postcollisional, v(tn) = v'(tn-\) the precollisional
velocity. Then the time-integrated stress tensor, τnβ([Q, t]), reads
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Fig. 2. Corresponding billiard problems: a) infinite horizon, b) finite horizon

1 /•*
τα/3([(U])=- / dsυft(s)^(s)

2 7o
(3.5)

The invariant measure is Z ^dqidq^dϋ. If we denote its average by {•}, then

(TQίβ[Q,t]) = δaβtpD (3-6)

pD is sometimes called the dynamical pressure and agrees with the thermodynamic
pressure in the infinite volume limit [18]. For two disks we have

PD = (4(1 - (3.7)

We may simplify (3.5) by subtracting a function bounded in time. Let us again
approximate the hard core by a very steep but smooth potential supported on the
disk of radius R and let g(y) = y for \y\ < (1/2) - e and smooth on the unit circle
[- l/2, !/2] otherwise. Then

Let
'^αW = sign(i;a(tn)) x [number of crossings of the line gα = 1/2

between tn and tn+\9 t0 = 0, tn+1 =tiftn<t< tn+λ}.

Then the central limit theorem has to be proved for

(3.8)

1

.X(tn< (3.9)
n=0

One may suspect that the central limit theorem fails for (3.9) because of the long
free paths as in fact it happens for the Lorentz gas [3,5,6,8,10,11]. Note however that
Va(t)vβ(t) suppresses phase space volume. E.g., if in the correlation (τι2(t)τι2(0))
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only contributions up to the first collision are taken into account, then a decay as
t~3 (ίntegrable) results, whereas the corresponding velocity autocorrelation for the
Lorentz gas decays as t"1 (nonintegrable) only. On the other hand, for sufficiently
small diameter the 45° channels open up and our heuristic argument yields a t~l

decay. We leave the central limit theorem for the infinite horizon stress tensor for
future investigations.

3.2. Finite horizon, l/2 < R < Yλ/2- If we shift our coordinate system by (^2, λ/ι\
then the one-particle billiard has diamond shape corresponding to four disks of radius
R centered at (± */2, ± l/2), cf. Fig. 3. The dynamic pressure, cf. (3.6), turns out to be

pD=(l- Λ/4Ή2 - 0 I 4 I 1 - λ/4Ή2 - 1 - πR2(l arccos —)
\ / \ \ 7r 2R

(3.10)
pD diverges at R = l/\/2 as (4 - 4^/2R)~l and decreases at R = l/2 as a square root.
Sometimes this is considered as a precursor of the gas solid transition for the infinite
hard sphere system.

As before (3.5) may be simplified by subtracting a bounded function. Since the
billiard has finite horizon, q is a smooth function and

raβ(t) = jt Q qa(f)vβ(ty\ + (g(qa(t)) - qa(t»Fβ(q(t)). (3.11)

Here F is a smoothened version of the hard core billiard force, g appears because of
the shift of the origin. We have

Π 12Ϊ
/ 2 f o r 2 / < 0 / v / ^ ~'^' l ^

with θ the standard step function. The central limit theorem has to be proved for

1 1 °°

-F faβ([Q, t]) = — \Σ χ(tn < ΐ)( 1/2 - θ)(qa(tn))
v* v* n=ι (3.13)

1 f Ί

• ~(V (tn) — V(tn})β — SaβtpD
2 J

3.3. Central limit theorem (finite horizon). We have τaβ = Tβa. To simplify notation
we set T = (TI , T2, τ3) with

τι([0, t]) = (fn([0, t]) + f22([0, t])) -

r2([0,ί])= i

According to (2.12) the covariance matrix for r has the form

"σ\ 0 0 "
D= 0 σ2 0 . (3.15)

.0 0 σ3 .
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Then, up to dimensional factors, cf. Appendix, σ\ = ζ, the bulk viscosity, σ3 = 77,
the shear viscosity, and σ^-T] which becomes equal to η for a rotationally invariant
fluid. To establish D > 0 as a matrix we only have to prove that for ί = 1,2, 3

lim 7(τ,([0,t])2) = σ, (3.16)

exists and is strictly positive, where the average is with respect to μ = Z Idq\dq2dϋ.

Theorem 1. (Central limit theorem for the stress tensor). There exist a dense open
subset ̂  C [ ]/2, ]/V2\ ana variances στ : .>£ -̂  ]0, oof such that for every R £ M
and for any real number z,

lim μ I —= Ti([0, t]) < z \ = / \ du e~u2/2σ* , (3.17)

i - 1, 2, 3. /« particular, 0 < ry, ζ" < oo. For every bounded open set A C M3

boundary of zero Lebesgue measure we have

(3.18)

Theorem 1 establishes the existence of a strictly positive viscosity for a periodic
two disk fluid. As for the Lorentz gas we also prove a bound on the stress tensor
correlation function (considered only at the moments of collisions) which decays as a
stretched exponential. The question whether this decay is actually exponential remains
open.

4. Theory of Billiards, Some Definitions and Results

Let Q be a bounded connected domain with a piecewise smooth (of class C3) boundary
dQ belonging to the Euclidean space M2 or to a two-dimensional torus T2 with the
Euclidean metric. In our case the boundary dQ always has the specific shape of a
diamond. However we will give the general definitions and results if they cannot be
formulated more briefly for this special case.

Definition. A billiard in Q is a dynamical system of a point particle with uniform
motion inside Q and with elastic collisions at the boundary dQ.

Billiards with diamond shape belong to the class of hyperbolic billiards. This
means that the Lyapunov exponents are nonzero almost everywhere in phase space.
Moreover diamond billiards belong to the more narrow class of hyperbolic billiards
that are called dispersing (or Sinai billiards if we require also that the regular com-
ponents of dQ intersect transversally).

Regular components of the boundary dQ are the non-self-intersecting curves Γ;,
1 < i < k, that are closed or intersect each other only at their endpoints.

We denote dQ = {J^J=l(Γτ Π Γ3) the singular part of the boundary. In our case

dQ consists of four points. Correspondingly dQ = dQ\dQ is the regular part of dQ.
At any regular point q £ dQ there exists the unique internal normal vector n(q).

Thus the curvature κ(q) of dQ at such a point is uniquely defined (with respect to the
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chosen vector n(q)). In dispersing billiards the curvature κ(q) is positive at all points
of the boundary.

A billiard defines the piecewise smooth flow {*?*} on its phase space .y/S =
Q x 51 = {x = (q,υ) : q e Q? \\υ\\ = 1}. The flow {5*} preserves the Liouville
measure dμ = cμd

2qdv, where d2q and dυ denote the Lebesgue measures on Q and
S*1 respectively and the constant cμ is a normalization. For billiards one can naturally
pass from the dynamical system with continuous time {S*} to the dynamical system
with discrete time where one counts the time by the number of collisions with the
boundary.

Let M = {x = (g, v) : q G dQ,(v,n(q)) > 0}, where ( , •) is the standard inner
product. Denote by M the closure of M in the space ,Λ6. The boundary dM =
M\M consists of two parts, i.e., dM - So u VQ = RQ, where 50 = {(<?, ^) ' q £
dQ,(v,n(q)) - 0}, which corresponds to the "grazing" collisions with the boundary
dQ, and V0 = {(q, v) : q G dQ}, which corresponds to the singular points ("corners")

of dQ. We denote by T the map on M induced by the flow {5*}.
We introduce in M the coordinates (r, φ), where r is the parameter of the length

of an arc on the curve dQ and φ is the angle between the vectors v and n(q) (—π/2 <
ψ < τr/2). In our case in these coordinates M is the union of four rectangles. The
map T preserves the measure dv - cv cos φdrdφ, where cv is the normalization. Let
us denote by τ+(x) = r(x) and T-(X) the first positive and the first negative moment
of collision of the trajectory of x G M with the boundary. Thus T±lx = S'r±(x)+()x.

The mappings T and T~l are piecewise smooth. The map T (T~l) has sin-
gularities on the set T~lRo (TR0\ We denote R, = T1RQ and Λm,n - UΓ=m^'
—σo < ?n < n < oo. It is easy to see that the set of singularities for Tn (T~n),
n > 1, is R-n,o(Ro,n) The set R-^^ consists of a countable number of curves that
we call discontinuity curves.

Fig. 3. Structure of discontinuity and of singularity curves for a diamond

The following lemma (see [8,10]) is simple but very important for the understand-
ing of the structure of the set of discontinuity curves.

Lemma 4.1. Let Γ c Rm (R-m), m > 1. Then its endpoints dΓ belong to the set

A point x will be called a multiple point if it belongs to more than one discontinuity
curve. A rank of a multiple point x is min{n : x G R-n,n}. Consider a curve 7 C M
of class C1. A curve 7 is called increasing (decreasing) if it can be defined by
an equation φ = φ(r) such that dφ/dr > 0 (dφ/dr < 0). The property to be an
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increasing (decreasing) curve is preserved under the action of T (T~l). We call a
curve 7 ra-increasing one (m-decreasing), m > 1, if T~m7 (Tm7) is an increasing
(decreasing) smooth curve. All discontinuity curves from the set R\j00 (R-^^]) are
the increasing (decreasing) ones. Let 7 be an increasing (decreasing) curve with the
equation φ = φ(r). We introduce the p-length of 7 via the formula ^(7) = J cos φdr.

All increasing (decreasing) curves are stretched (in the sense of p-length) under
the action of the map T (T~]). This implies the hyperbolicity of the map T.

Hyperbolicity means that for almost every point x G M there exist two Cl -curves
7(n)(x) and 7(s)(x) such that Tn

 Ί(s)(x}(T~n\Ί(U)(x}) is a smooth map for any n > 1 and

limn^00p(Tn-γ(s\x)) = 0, lim^^ p(T-n^(u\x)) = 0. Such curves 7(n)(x), 7(s)(x)
are called respectively, a local unstable manifold and a local stable manifold of the
point x and are denoted LUM and LSM of x. At some point of Sect. 5 we shall use
the notion of homogeneous local manifolds (HLSM and HLUM). These are segments
of LSM and LUM which are partitioned into not "too many" pieces by discontinuity
curves originating from the dynamics (see Definition 3.3 in [8]).

In [7, 9-12] some special Markov approximations of the billiard dynamics were
constructed. These approximations allow one to study the statistical properties of the
corresponding billiards, e.g., to estimate the rate of the decay of correlations, to prove
the central limit theorem, etc.

To get such approximations one needs to construct the special partitions of the
phase space M (Markov partitions [7,9]) or of some subset of the measure 1 — α(n),
where lim^-^ a(n) = 0 and n is a number of collisions (Markov sieves [8-10]).

In this paper we do not need to give the exact (and long) definitions of a Markov
partition or of a Markov sieve. We will formulate here only the conditions that are
needed for their construction and describe how the elements of this partition look in
our case.

Condition A. All regular components of the boundary dQ intersect transversally.
This condition is ensured by choosing R > 1/2 in the two disk fluid.

Condition B. For any m > 1 a number of discontinuity curves of the set β_m;m

which contain any point x e M is bounded from above by K0m, where K0 = K0(Q)
is some constant. This condition will be proven in Sect. 5 for generic domains of
diamond shape.

A parallelogram is a subset U C M such that for any two points x,y £ U the
intersections 7(s)(x) Π ̂ (u\y) and 7(n)(x) Π ̂ s\y) each contain only one point and
these two points belong to U too. Thus a parallelogram is a set with a structure of
a direct product. Indeed to obtain a parallelogram U 3 x one should take 7(s)(x)
and 7(n)(x) and then take all intersections of sufficiently long LUMs and LSMs that
intersect 7(s)(x) and ̂ (u\x) respectively.

Let A be any measurable subset of M. Denote 7^'u)(x) = 7(s'n)(x) Π A. We

shall call a parallelogram U O-homogeneous if for any point x of it the set 7^)(x)

(7^(x)) is contained in HLUM (HLSM). Essentially it means that the coefficients
of expansion (contraction) at different points of such parallelogram do not differ too
strongly from each other.

We will call a rectangle a domain K C M, which is bounded by two LUM and
by two LSM such that the ends of each LUM belong to LSMs and vice versa. The
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corresponding LUMsJLSMs) are called ^-boundaries (s-boundaries) of K. For any
parallelogram U C M one can find the minimal rectangular K(U) D U. We will
call K(U) the support of a parallelogram U. By the ^-boundary (s-boundary) of a
parallelogram U we mean the w-boundary (s-boundary) of K(U).

5. Proof of Theorem 1

In this section we verify that the shape of our billiard is generic, that the components
of the stress tensor are the generic functions and that moreover the full stress tensor is
the generic too. All these notions of genericity will be defined exactly below. Actually
they mean that our generic domain and the functions that we are interested in satisfy
to the conditions under which the central limit theorem was proven in [8].

Lemma 5.1. A generic domain with diamond shape satisfies Condition B.

Proof. As has been explained in Sect. 4 the set β_m;m is formed by the images (under

Tk, —πι< k < m) of the singularities of the boundary dQ and of the trajectories
tangent to dQ.

The set R-\^ consists of a finite number of curves. These curves are represented
in Fig. 3.

Thus Lemma 8.6 of [8] holds for the discontinuity curves of our billiard. To make
the exposition self-contained we repeat here its statement.

Lemma 5.2. For any multiple point x G M\/SΌ and for any integer m > 0 there
exists a neighborhood U(x) such that

(i) The closure U(x) does not contain multiple points, besides x itself, with ranks
that does not exceed m.

(U) There exists the single curve Γ+(x) G Rn(%) (Γ-(%) £ Rn(%)\ among all discon-
tinuity curves which pass through x, such that Γ+(x) (Γ-(x)) divides U(x) into
two semi-neighborhoods U*(x) and U^(x) (U^~(x) and U^(x)).

(Hi) All decreasing (increasing) discontinuity curves, besides Γ-(x) (Γ+(x)), contain-
ing x, intersect only one of the semi-neighborhoods U\(x) or U^x) (U^~(x) or

U'(x))(seePig. 4).

The new feature of diamonds in comparison with the domains studied in [8] is
the presence of the singular part dQ of the boundary. Thus we should take care on
trajectories that intersect dQ. Let π(Tx) C dQ. Consider a neighborhood U(x) 3 x.
Its image TU(x) becomes "broken" into two semi-neighborhoods, each of which has
the boundary that belongs to π~l(dQ).

These semi-neighborhoods then are "glueing" into the "new" neighborhoods. Thus,
in a "bad" case two semi-neighborhoods with many singularity curves can be glued
together. Therefore, in this case a number of singularity curves passing through a
point, in principle, can grow exponentially with a number of iterations.

In a generic case, however, not more than two singularity curves can intersect at
one point. An union of the angles of a diamond, when it is true, form an open and
everywhere dense subset in the interval (0, 180°). In fact, any triple intersection of
singularity curves can be destroyed by a small perturbation of the angle of a diamond.

This implies Lemma 5.1.
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Γ(χ)

Fig. 4. Local structure of discontinuity curves

Remark 5.7. Lemma 5.1 does not provide any concrete examples of diamonds that
satisfy Condition B. It states, however, that it is fulfilled for "almost all" diamonds.
It is easy to check, however, that diamonds with the angles of the form 180°/n or
1800/ (n + ̂ ), where n > 0 is an integer satisfy Condition B.

The proof of Theorem 1 follows the same line of reasoning as given in [8,10],
which is not repeated here except for one assertion where details were not supplied in
[8]. However to make our paper reasonably self-contained we state the main propo-
sitions providing outlines if necessary.

As standard the first step is the reduction of the dynamical system with continuous
time, t, to discrete time counted in number of collisions, n. To make such reduction
one needs to prove the central limit theorem for the function τ(x) - (r), i.e., for
the fluctuations of the time between collisions. Since our class of billiards belong to
dispersing billiards with finite horizon the following statement holds (see e.g., [8]).

Lemma 5.3.

lim v
n-^ oo n

where σ2 = ~ (r})(r(Tmx) - (r))) > 0.

Therefore in Theorem 1 we may replace t by < r > n. Let Ti(n, x), i = 1, 2, 3, be
the value of τ^([0, £]) immediately after the nth collision. Using Lemma 5.3 it suffices
then to show that

lim z/({(< r >
—

(τ\(n,x), τ3(n, x)) e A})

where /ι(gι,<?2, #3) is the Gaussian distribution in Theorem 1.
According to (3.13), (3.14) we have

τt(n, x) = Δi(x) + Λ(Tx) + + Λ%(Tn-1 (5.1)

It is easy to see that Δτ(x), ί = 1,2,3, is a piecewise Holder continuous function.
Furthermore by construction (Δτ(x)} - 0. Therefore to prove Theorem 1 one needs
to show that
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Γnx}} > 0.

It is well known (see e.g., [8]) that a degeneracy of the limiting distribution for
Δi, ί = 1, 2, 3 is equivalent to the existence of a function Gτ(x) G L2(M, v),i = 1,2, 3
such that

Δt(x) = Gτ(Tx) - Gτ(x).

The following statement is crucial for the proof of Theorem 1:

Lemma 5.4. For any function Δi(x), ί - 1,2,3, there exist periodic point yτ G M,
i- 1,2,3 such that

S2(yι) = ΔάyJ + Δt(Tyi) + + ACT**-1) ir ̂

where kτ, i = 1, 2, 3 are the periods of the points yτ, i = 1, 2, 3 respectively.

Proof. We only use the two periodic trajectories represented in Fig. 5a),b).

(i)

a) b)

Fig. 5. Periodic trajectories of a diamond billiard

The existence of the period 2 trajectory (Fig. 5a)) is obvious. One checks that
TI and TS integrated over this orbit is strictly positive for all l/2 < R < {/V2> The
existence of the period 4 orbit (Fig. 5b)) follows from continuity: A trajectory parallel
to the 1-axis will cut the 1-axis to the right of 0 after a collision at 45°, whereas it
will cut the 1-axis to the left of 0 after a collision at the cusp. A somewhat more
tedious calculation shows that ΎΊ integrated over this period 4 orbit is strictly positive
for 1/2 < R < l/Vϊ

The proof of the following statement (for the general dispersing billiards) is con-
tained in [8J.

Lemma 5.5. Let i/o be a periodic point of a discrete dynamical system generated by
a dispersing billiard. For any CQ > 0 there exists a O-homogeneous parallelogram
UQ 3 2/0 such that y0 £ dK(U<ΰ and v(Uo)/v(K(U0)) > 1 - e0

We fix now the periodic point y0 considered in Lemma 5.4 and the parallelogram
UQ from Lemma 5.5 for some small CQ. If 60 is sufficiently small then Tfct/o is also
the O-homogeneous parallelogram and TkUo Π UQ is the correct intersection, i.e., it is
bounded by the stable boundary of K(UQ) and by the unstable boundary of K(TkUQ\
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Let Gτ(x) G L2(M, v} be the homology of a function r^(x), ί = 1, 2, 3. That means
r,(x) Ξ Gι(Tx) - Gi(x) almost everywhere in M. The functions Gl(τ), i = 1,2,3
are measurable and integrable ones. Thus the following statement holds (see [8]).

Lemma 5.6. For any e\ > 0 one can find a O -homogeneous parallelogram U\ such
that v(U\}/v(K(U\)} > 1 — 61 and some real number g such that

z/{xG[/ ι : \G(x)-g\ >e ι }

where instead of G(x), g one should substitute Gi(x), gι, i = 1,2, 3 respectively.

The first condition of Lemma 5.6 means that the parallelogram U\ is "sufficiently"
dense and the second one shows that the function G(x) in U\ can be approximated
by a constant.

The following assertion was not proven (and not formulated explicitly in [10]).
Let us define the "almost" first return mapping T\ on U\ via the following procedure.

For a point x G U\ we take on its positive semi-trajectory the first point Tnx G UQ.
Now we take the first point Tn+kx on the positive semi- trajectory of the point Tnx
such that Tn+k G U\ . Moreover we demand that Tlx 0 U\ for I = 1 , 2, . . . , n - 1.

We define now T\x = Tn+kx. Thus the map T\ : U\ — > U\ is defined on the subset
of all such points of U\ which return to U\ and besides do visit the neighborhood UQ
before that.

Lemma 5.7. One can choose U\ so small that the map T\ : U\ — >• U\ would be
invertible and preserves the measure v.

Proof . Strictly speaking a map T\ (and U\) depends on the function (Gτ(x), i =
1,2,3. We'll give the proof for an abstract function G(x) G L2(M, z/). We take a
parallelogram U\ that satisfies the conditions of Lemma 5.6. Let n\(x) > 0, x G f/i,
be a minimal number such that Tnι(x) G U\. Define

U{ = {x : x G [/i , niGr) > 0, 3 n0(x) < nι(x) such that Γn°(x)x G f/0}

From the ergodicity of T it follows that μ(U{) > 0 if U\ has been chosen sufficiently
small.

We choose now a density point z G U{ such that z is nonperiodic and moreover
its trajectory {Tmz}, — oo < m < oo, never hits the singularity set of a dynamical
system under consideration.

Let n > 0 be the minimal integer such that Tnz G t/oo» where [/oo C f/o is the
subset that contains all such points x G t/o tnat t/oΠ7(n)(x) (f/0Π7(s)(x)) is the dense
subset of 7(w)(x) (7^(:r)). (More precisely a point y G t/o belongs to [/oo iff for the
unstable fiber ^(u\y} through y the intersection UQ n 7(n)(y) has a density point at ?/
and the same is true for the stable fiber through y.)

Take now a very small parallelogram U centered at the point z such that Tn u is
continuous. Besides since z is aperiodic, the first n iterates of U do not send U back
to U because U was chosen to be small enough.

Consider now TnU '. It is a parallelogram and its center Tnz C UQ. Moreover UQ
is very dense around that point Tnz.

We take the intersection TnUΠUQ. It's also a parallelogram. If U is small enough,
then TnU is also small so that the intersection is a very dense parallelogram at Tnz.
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By taking it k iterations backward in time, we obtain the parallelogram U which we
need. Thus Lemma 5.7 is proven.

The end of the proof of Theorem 1 proceeds in completely analogy to [10].
Let us define now two maps, φ and φ\ on U\. Take x e U\ and let Γn°x G UQ

be the first point of its trajectory in UQ, and let TU{x = T\x, where n\ > ΠQ. Denote
x = ̂ (τn^+kx) Π 7(s)(Tnoχ) and define φx = T~n^~kx and φ\χ- Tn^n^x.

It is easy to see that φx is a point which belongs to the same HLUM as x and
φι x belongs to the same HLSM as T\x. Moreover, Tnι+k(φx) = φ\x.

We put
Sl(x) = Al(x} + >. + Δl(T^-lx}

and

S((Φx) = Δ,(φx) + Λτ(T(φx)) + - - + Δτ(T^+k-l(φx)), i =1,2,3.

Lemma 5.8. \S'(φx) - S(x)\ > SQ - e2, where e2 — > 0 as diam UQ — » 0.

In fact the trajectories of x and φx are close during the first no iterations. Further,
the trajectories of Tn°x and Tn°+k(φx) = x are close during n\ — n iterations. The
piecewise Holder continuity of Λτ(x) on the continuity set of T implies that the
corresponding sums, occurring in the sums Sτ(x) and S((φx) are close to each other.

There remain exactly k terms in the sum S'^φx) not accounted for, coming from
the images of Tn°(φx) = T~kx. But these images approximate the periodic orbit of
ΐ/o Hence the corresponding sum of values of ΔI is close to 5o and the lemma has
been proven for any ί = 1, 2, 3. Lemma 5.8 implies the inequality

\G(Tιx) - G(x)\ + \G(φ{x) - G(φx)\ > S0 - e2. (5.2)

It remains to prove that for the majority (with respect to the measure v) of points
x E U\ their images φx and φ\x coincide in C/i, and that the sets of these images
{φx} and {φ\x}, have relatively large measure (> const V(U\)}. Then for such points
φ\x = T\(φx) and together with (5.2) this leads to a contradiction with the second
estimate in Lemma 5.6.

Consider now the sets φU\ and φγU\. Since Tn°x G UQ the set 70 = ΊκluQ )(TnQ x)

is an HLUM stretched on K(Uo). Its inverse image T~n°7o is a subsegment of the
HLUM 7^\/ )(x). Since for typical x the parallelogram U\ is dense, the set Tn°U\ has

a high density on 70. The map transforming Tn°x to Tkx is a contraction of the HLUM
70 with a coefficient close to Λ\ = Λ%(yo), where Λ^(yo) is the coefficient of expansion
of the LUM 7n(?/o) at yo under Tk . Indeed Λ\ is the coefficient of contraction of the
LUM 7(n)(yo) at the point yQ under T~k. Since UQ and U\ are the O-homogeneous
parallelograms, the conditional measures of U\ and φU\ on T~n°7o are in the ratio
1 : (const /If1). This gives the required estimate v(φU\) > const Λ^lv(U\). Similarly,

v(φ\U\) > const ^^(ί/i), where AΊ = Λs

k(yo) is the coefficient of contraction of

the LSM 7s(ΐ/0) at y0 under Γ fc.
This completes the proof of Theorem 1 .
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6. Conclusions

We have proven that for a periodic two disk fluid in two dimensions the transport
coefficients of shear and bulk viscosity exist provided the disk diameter is sufficiently
large. This geometrical condition allows us to reduce the problem to the study of a
two-dimensional billiard with finite horizon. In the case of an infinite horizon one
would have to estimate the decay of correlations for the billiard flow rather than for
the corresponding dynamical system with discrete time.

Amongst the possible generalizations the most immediate one is to prove the same
result for a ^-dimensional (d > 2) periodic two particle fluid with finite horizon.
Some techniques to deal with such a problem are provided in [11], which however
covers smooth boundaries only. A further generalization of interest refers to the heat
conductivity. Here at least three particles per unit cell have to be considered. Thus
first a Markov sieve (or a Markov partition) has to be constructed for a system of
three disks on a torus. At the moment such a construction is not available, but the
problem is under investigation.

As to be explained in the Appendix below, the shear viscosity of the N = 2
periodic hard disk fluid compares surprisingly well with the Enskog theory and with
numerical results for the N = 108, 500,4000 periodic hard sphere fluids. Such little TV-
dependence must mean that to a good approximation small subsystems are statistically
independent. The stress-stress correlation of a large system decays on the same time
scale as the one of the N = 2 system. Dissipation is essentially local.

7. Appendix: Viscosity from Molecular Dynamics

by Martin FlieBer

Theoretische Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany

The proof of Theorem 1 gives, if at all, very little information on the actual value
of the viscosity. For this one has to determine numerically the averages {^([0, t ] 2 ) ,
j = 1, 2, 3. By Monte-Carlo we generate 105 initial phase points distributed according
to v, i.e. uniformly on the available phase space. For a given initial condition we
follow the dynamical trajectory. Since the Lyapunov exponent is positive, numerical
accuracy is lost after 9—30 collisions depending on the value of R. For R very close to
l/^/2 times up to even 100 collisions can be reached. (We refer to [14] for an extensive
discussion on numerical issues and on error estimates for billiards.) The viscosity is
determined from a linear least square fit over the last 5 — 10 collision times. Since
the fit turns out to be essentially perfect, we expect to be in the asymptotic regime
already. This could be checked only by following the trajectories over even longer
times which is not feasible with accuracy. In Fig. 6 we show the viscosities for the
parameters given in Sect. 3. Note the different scales.

The shear viscosity increases with R, the denser the fluid the stronger the internal

friction, and diverges as (l/^2 - R)~^2 for R —» l/^/ϊ, as can be seen from the insert
in Fig. 6a. We understand this behavior by arguing as follows. Let δ = l/^/2 - R and
let us divide [0, t] into small intervals of length to with to of the order of one collision
time. Then
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Fig.6a,b. (a) Shear viscosity η (D) against hard disk diameter R. The insert is a logarithmic plot at
R = ( l/\/2) — 6. (b) Bulk viscosity ζ (D) and viscosity ή (Δ) against hard disk radius R.

7(τ3(LO,t])2} = 7

i=0 j=0

I
(7.1)

We assume that

= {r3([0,to])2)exp[-|j|λto]. (7.2)

Here λt0 is the Lyapunov exponent measured in number of collisions. Now t0 — δ,

(r3([0, to])2} — 1 independent of ό, and λto — \/ό t2J. This yields the scaling exponent
3/2 Presumably, the bulk viscosity diverges also as R —> y^. However for R close
to l/^/2, the quantity (τι([0,t])2} starts to oscillate and ζ can no longer be determined
meaningfully. A similar problem arises at R - 0.5.

It is tempting to compare the TV = 2 results with those for larger systems [1,13].
To do so we first have to write the viscosity in dimensionless form. Let us return to
(2.8) in case of N hard (hyper-) spheres with mass ra and diameter α on a d—torus
of linear dimension /, volume V = ld. Their kinetic energy, E, is identified with the
temperature by E = N | kβ T. The physical viscosity tensor, ty, is then

(7.3)

compare with (2.13). As usual we define the reduced density by

(7.4)

where pcp is the density of close packing. Clearly, ί# depends nontrivially only on
p* and TV. By scaling space, time, and mass we obtain
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By symmetry, the term in the square bracket depends only on the dimensionless
viscosities 77*, ζ"*, 77*, which are functions of the reduced density p* and the number TV
of particles. The dimensionless viscosities should have a limit as TV -» oo, provided
d > 3, and r/* = ή* in the limit, as explained before. For d = 2 one expects an
anomalous volume dependence and £^, as defined, should diverge for (very) large
TV.

Fig.7a,b. (a) Sheai viscosity η (D) and (b) bulk viscosity ( (D) against reduced density p*. — is the
Enskog approximation and Δ are the data from Ref.l. The value ( = 1.2 db 0.3 at p* - OΛ33(R = 0.5)
has been omitted. The vertical scale is in units of the d = 2 Boltzmann shear viscosity ηβ

In Fig. 7 we compare our data (TV = 2,d = 2) with molecular dynamics for d = 3,
TV = 108,500,4000 [1,13]. (No numerical results for d = 2 seem to be available.) We
also plot the predictions of the d = 2 Enskog theory. It is based on the assumption
that the stress correlation is an exact exponential, which can be determined then from
its value and its derivative at t = 0. It is convenient to plot 77, ζ in units of the

d = 2 Boltzmann shear viscosity η^ = (2^/πa)~{^/kβTrn = (2γ/πα)~1 ^/πιE/N. A
comparison with (7.5) shows that η/ηs and ζ/ηs are dimensionless and depend only
on p* and TV. We emphasize that Fig. 7 contains no fit parameters.

There is one sublety. Theorem 1 covers only reduced densities 0.433 < p* <
0.866. For the shear viscosity the 45° channels open up at p* = 0.217. Thus for the
bulk viscosity (* with p* < 0.433 and the shear viscosity η* with p* < 0.217 we
expect for the variance an intermediate regime linear in t which eventually crosses
over to a tlogt behaviour. The length of this linear regime should increase with
p*. Because of the restricted time span available the logarithmic correction cannot
be seen numerically. Note that the Lyapunov exponent is decreasing with p*, which
even further restricts the available time span. E.g. at p* = 0.108 (R = 0.25) we
can follow the trajectories only up to 9 collisions. The fraction of trajectories with 0
collision is then 0.018 whereas the fraction with 0,1 collisions is 0.026. At p* = 0.351
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(R = 0.45) we can follow the trajectories already up to 16 collisions. The fraction
with 0 collisions is then 2.8 10~3 and with 0,1 collisions 4.1 10~3. On this basis
we hope that the numerical viscosities remain meaningful even for p* < 0.433.
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