Commun. Math. Phys. 174, 409 — 446 (1995) Communications in
Mathematical
Physics

© Springer-Verlag 1995

Transparent Potentials at Fixed Energy in
Dimension Two. Fixed-Energy Dispersion Relations for
the Fast Decaying Potentials

Piotr G. Grinevich"*, Roman G. Novikov?

' Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940, Russia
e-mail:pgg@cpd. landau.free.net

2 CNRS, U.R.A. 758, Département de Mathématiques, Université de Nantes,
F-44072, Nantes Cedex 03, France

e-mail:novikov@math.univ-nantes.fr

Received: 11 October 1994

Abstract: For the two-dimensional Schrodinger equation
(440 =Ep, x€R? E=Esea >0 (*)

at a fixed positive energy with a fast decaying at infinity potential v(x) disper-
sion relations on the scattering data are given. Under “small norm” assumption us-
ing these dispersion relations we give (without a complete proof of sufficiency)
a characterization of scattering data for the potentials from the Schwartz class

§=C )(]Rz). For the potentials with zero scattering amplitude at a fixed en-
ergy Efwq (transparent potentials) we give a complete proof of this characteri-
zation. As a consequence we construct a family (parametrized by a function of
one variable) of two-dimensional spherically-symmetric real potentials from the
Schwartz class S transparent at a given energy. For the two-dimensional case (with-
out assumption that the potential is small) we show that there are no nonzero real
exponentially decreasing, at infinity, potentials transparent at a fixed energy. For
any dimension greater or equal to 1 we prove that there are no nonzero real po-
tentials with zero forward scattering amplitude at an energy interval. We show
that KdV-type equations in dimension 241 related with the scattering problem (x)
(the Novikov-Veselov equations) do not preserve, in general, these dispersion re-
lations starting from the second one. As a corollary these equations do not pre-
serve, in general, the decay rate faster than |x|~> for initial data from the Schwartz
class.

* The main part of this work was fulfilled during the visit of one of the authors (P.G.G.) to the
University of Nantes in June 1994. He is grateful to the University of Nantes for the invitation
and the financial support of this visit. He was also supported by the Soros International Scientific
foundation grant MD 8000 and by the Russian Foundation for Fundamental Studies grant 93-011-
16087.
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1. Introduction

An interesting property of the fixed-energy scattering problem for the Schrodinger
equation in dimension 2,

2 2
% (')02 +o(x), x=(x,x)€R’ EcR (Eis fixed )
X

(0.1)

is its deep connection with the soliton theory, i.e. the following methods can be ef-
fectively applied to this problem: the finite-gap technique, the nonlocal Riemann
problem method, the J-problem method and this problem posesses an infinite-
dimensional algebra of symmetries generated by KdV-type equations in dimension
2 + 1 (Novikov—Veselov hierarchy). Scattering transform for Eq. (0.1) allows us to
integrate these equations. Inverse scattering problem for (0.1) is closely connected
also with the inverse boundary value problem (Calderon problem).

The problems mentioned above were studied in the papers [1-22] and others
(some historical remarks are given in the end of this introduction). In the present
paper we study the scattering transform for Eq. (0.1) for potentials with decay rate
at infinity 1/|x|M+2*¢ ¢ > 0, M = 0,1,2,.... We show that such decay rate results
in M+1 algebraic relations on the scattering data (we shall call them fixed-energy
dispersion relations).

Let us recall the definition of the scattering data for (0.1).

We assume that

Ly=E), L=-

v(x) = i(x), v(x) € L®(R?), |o(x) <q(l+]xD> £>0, ¢>0,

(02)
where |x| = y/x} + x3.
For £ > 0 and any k = (ki,k») € IR?, such that k> = E, there exists an unique
bounded solution ¢*(x,k) of Eq. (0.1) w1th the following asymptotics:

. 1kl |
+ _ ikx Ve + € _
O (x, k) =™ — inv2re < |k || |> e +O(|x|) . (0.3)

The function f(k, ) in (0.3), k € R?, [ € R?, k? = [> = E is called the scattering
amplitude.

Let k € €%, k? = E, Imk +0. Let, in addition 4(k)#0, where 4 is the modified
Fredholm determinant of the integral equation (1.3). Then there exists a unique
solution of (0.1) such that

Y(k,x) =e® (1 +0(1)), Imk=+0, for |x|] — co. (0.4)
It was shown in [12] that there exists a special real function Q(|E|,¢) with the

following properties Q(|E|,¢) > 0 as E=+0, Q(|E|,&) — +oo for fixed ¢ as |E| — oo
such that if a potential v(x) satisfies (0.2) and

q < O(E|,¢), 0.5)
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then

1) Fredholm determinant of Eq. (1.3) 4(k)#0 for all k* = E.

2) The fixed-energy scattering data for the potential v(x) is “small enough” for
unique solvability of the equations of inverse scattering.

The “small norm” condition (0.5) means that the potential v(x) is small being
compared with energy.

The solutions of the Schrodinger equation with asymptotics (0.4) were intro-
duced to the scattering theory by L.D. Faddeev [23] as solutions of the integral
equation (1.3). It can be shown [12] that for £ € R, Imk 0,

W(kx) = & — msgn(Im kof e ( ab) | 4o (i))
—kaxy +hkixa  —kox) + kix) |x|
(0.6)

where the function a(k) and b(k) are expressed through Faddeev’s scattering
data by the formula (1.7). The formula similar to (0.6) can be written for any
complex E.

We consider the functions a(k) and b(k) as additional scattering data to f(k, /)
for £ > 0 and as the main scattering data for other E.

Using the results of [8,9] it was shown in [12] that at fixed energy under con-
ditions (0.2), (0.5) the scattering amplitude f(k, /) and the function b(k) uniquely
determine the potential. From the inverse scattering problem it follows that in the
slow decaying case f(k,/) and b(k) are independent at fixed energy.

For the potentials exponentially decreasing at infinity the uniqueness of the re-
construction via the fixed energy scattering amplitude was proved in [9, 12] for the
two-dimensional case under the conditions (0.2), (0.5) at the fixed energy and for
the three-dimensional case in [24] with and [27] without the “small norm” assump-
tion.

The scattering amplitude at a fixed energy is insufficient, in general, to recon-
struct the potential uniquely.

In the exact formulation it was shown in the series of papers [31-33] and others
started by pioneering work of T. Regge [31]. In the works of this series fixed-energy
inverse scattering problem is studied in the 3-dimensional spherically-symmetrical
case. The existence of nonzero multidimensional potentials with zero scattering am-
plitude at a fixed energy (transparent at fixed energy potentials) was observed by
T. Regge in [31] and with a different method it was shown by R.G. Newton in
[32]. The properties of R.G. Newtons’s transparent potentials were clarified by P.C.
Sabatier in [33], where the one-dimensional family of transparent at a fixed energy
potentials was given and it was shown that nonzero potentials from this family
decrease at infinity as |x| 732

In [8] it was shown that transparent at a fixed energy two-dimensional potentials
with the “small norm” assumption are parametrized by a function of two variables.
From the results of the present paper it follows that constructed in [8] transparent
potentials decrease, in general, as |x|~2. The explicit real nonsingular rational two-
dimensional potentials with zero scattering amplitude at a fixed energy are given in
[10]. They also decrease as |x| 2.

The central point of the present paper is a characterization of the scatter-
ing data at fixed positive energy for the real-valued potentials of the Schwartz
class S = C(° )(]Rz). On the basis of this characterization we construct (Proposi-
tion 1, Theorem 2) real two-dimensional spherically-symmetric potentials from the
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Schwartz class S with zero scattering amplitude at a fixed energy £ > 0. The clas-
sical scattering solution ¢ (x,k) for such potentials has the following asymptotics
at infinity:

ot (k) =™+ 0(1/x|*) for K =E. (0.7)

Further, (Theorem 3) we prove the following statement. Let the fixed energy scat-
tering amplitudes of two exponentially decreasing potentials with the property (0.2)
coincide and one of these potentials posesses, in addition, the property (0.5) at
this fixed energy. Then these two potentials coincide. This statement improves the
corresponding theorem from [9, 12]. In particular, there exists no nonzero two-
dimensional exponentially decreasing real nonsingular potentials transparent at a
fixed energy.

We prove that there are no nonzero real potentials transparent at an energy
interval. Moreover, we prove that if the forward scattering amplitude is equal to
zero at an energy interval then the real potential is equal to zero identically (The-
orem 4). This result is valid without the small norm assumption in any dimension
greater or equal to 1.

The most nontrivial part of our characterization theorem is the existence of
additional algebraic relations on the scattering data — fixed energy dispersion
relations.

Let the potential v(x) satisfy (0.2),(0.5). Then the scattering amplitude f(k,/)
satisfies (1.29) and b satisfies (1.25). Assume now, that, in addition, the poten-
tial v(x) belongs to the Schwartz class S = CS)(R). Then for functions f,b we
have (3.8),(3.9). In the inverse problem we may start from arbitrary functions f,b
satisfying (1.29), (3.8) and (1.25), (3.9) respectively which are “small” enough for
unique solvability of integral equations of the inverse problem but the corresponding
potential may decrease at infinity rather slow. Necessary conditions on the scattering
data for the fast decaying potentials were found in [9, 12] for the positive energy
case. Another set of necessary conditions for the fast decay rate were found in [11]
for the negative energy case. In the present paper we show that analogs of the
necessary conditions from [11] (we call them fixed-energy dispersion relations) are
valid in the positive case too. (For three-dimensional problem an analog of the first
dispersion relation was used in [24].)

In the present paper we show that for real potentials from the class S
under the “small norm” assumption the scattering data f(k,/), b(k) satisfy (1.29),
(3.8),(1.25),(3.9) and 2-00 + 2 additional conditions from Sect. 3 corresponding
to M = oo are fulfilled. Let f(k, /), b(k) be arbitrary functions satisfying (1.29),
(3.8),(1.25),(3.9) and 2-00 + 2 additional conditions from Sect. 3. Assume also
that f(k,1), b(k) are sufficiently small, so the integral equations of the inverse
problem are uniquely solvable. Then our hypothesis is that the corresponding po-
tential is from the class S. Some restriction in time gives us no possibility to carry
out in the present paper a complete proof of this hypothesis. In the present paper we
prove this hypothesis (Theorem 1) in the transparent case f(k,/) =0, k> = > =E
at fixed energy E. In this case the “small norm” assumption for b(k) is not
necessary.

Results on inverse scattering at fixed energy for Eq. (0.1) can be applied to
the solution of the Cauchy problem (and to the construction of explicit soliton
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type solutions) for the KdV-type equation in dimension 2 + 1 (Novikov—Veselov
equation)

o(xy,x2,1) 2830 Av Lo (8(Uv) N G(Wv)) Y <6U N 6W>

—22% ¢
ot ox; 0x10x3 Ox 0xy

6x| 0_)62

v=v, E€eR, x,xteR,

3 o), (G = x) = (e —x))
U(Xl,xz,t)—gfmfz 1 -+ (6 —BP) dxdx; ,
6 "X, ] - .
W) = = L g s ©®

R2

and its higher analogs. Equation (0.8) is contained implicitly in the paper of S.V.
Manakov [1] as an equation possessing the following representation:

oL —E)

P [L —E,Al+B(L—E), (0.9)

(Manakov L — A4 — B triple), where L is the Schrodinger operator from (0.1), 4
and B are suitable differential operators of the third and zero order respectively.
Equation (0.8) was written in an explicit form by S.P. Novikov and A.P. Veselov
in [3,4], where higher analogs of (0.8) were also constructed.

The both Kadomtsev—Petviashvily equations can be obtained from (0.8) by con-
sidering an appropriate limit £ — +oo (V.E. Zakharov).

In terms of the scattering data the nonlinear equation (0.8) takes the form

0b(k,t)
ot

=2i[kf+/€f—3k.k§—3/€|/€§]b(k,t), ke, Imk+0, K¥=E,

W =2i [k} —3kik} — [} +305) f(k1,0), kI€R:, K =P=E.
(0.10)

In the present paper (Corollary 1, Theorem 1, Theorem 5) we obtain the following
result.

Let v(x,t) be a solution of (0.8) with the following Cauchy data v(x) = v(x,0):

1) v(x) € C(RY),

2) v(x) satisfies (0.5),

3) v(x) is transparent at the energy E, i.e. f(k,/) =0 at the energy E,

4) v(x) £0.

Then for any t#0 v(x,1) € C{™°'(IR?) and v(x,7) ¢ C3°) (R?) (ie. v(x,1) de-
creases at |x| — oo exactly as |x|73).

In Theorem 5 under the “small norm” assumption we obtain, in particular, the
following result. Let the Cauchy data v(x,0) € c )(]Rz) generate a solution v(x, t)
of (0.8) such that at a fixed 70 v(x,#) decreases at infinity as |x| =, ¢ > 0. Then

J v(x)dx=0. (0.11)
x€R2
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We have, also, the following hypothesis. Under “small norm” assumption the
Cauchy data v(x,0) € C(OEO}(]Rz) for Eq. (0.8) generates a solution v(x,t) €
Céi?(]Rz) in x, 0 <& < 1 for all 7. This solution belongs to Cgf:;)(le) in x if
(0.11) is fulfilled. The faster decay rate for all ¢ results in additional conditions on
the Cauchy data which can be written. We think, also, that this hypothesis is true
without the “small norm” assumption, but it is not clear for us how to prove it in
the latter case.

Let us mention the following. The decay rate of the potentials constructed in
the preceding papers was not studied carefully enough. For example, we correct
Corollary 1 from paper [8] and Proposition 9.4 from [12].

Historical Remarks. The relations between the fixed-energy scattering transform
for the two-dimensional Schrodinger operator and nonlinear integrable equations in
dimension 2 4+ 1 were observed for the first time by S.V. Manakov [1].

The methods of the soliton theory were applied for the first time to the inverse
problem at fixed energy for the two-dimensional Schrodinger operator in 1976 by
B.A. Dubrovin, I.M. Krichever, S.P. Novikov [2] in the quasiperiodic case.

The sufficient conditions on the finite-gap scattering data which guarantee ab-
sence of the magnetic field and reality of the potential were found by S.P. Novikov
and A.P. Veselov in [3,4].

The nonlocal Riemann problem method (Manakov [28]) together with ideas
from [3,4] were applied by the authors in [5, 6] for constructing two-dimensional
Schrodinger operators with decreasing potentials and explicit solutions of the cor-
responding KdV-type equations in dimension 2 + 1.

The connection between the kernel of the nonlocal Riemann problem and the
scattering amplitude at the fixed energy for the corresponding potentials was found
by one of the authors (R.G.N.) in [7]. As a consequence a characterisation of the
fixed-energy scattering amplitude with small norm for real, smooth, decaying at
infinity potentials was obtained in [7].

The scattering transform at a fixed energy for general decaying at infinity two-
dimensional potentials was constructed by Manakov and one of the authors (P.G.G.)
in [8]. In [8] it was shown that in this scattering transform the nonlocal Riemann
problem of the type [28] and the J-problem of the type [29] are presented simulta-
neously. In [8] it was shown that the connection between the fixed-energy scattering
amplitude and the nonlocal Riemann problem data found in [7] is unchanged in the
presence of nontrivial d-problem data. Thus, the 0-problem data parametrizes the
variety of all potentials with the given fixed-energy scattering amplitude. Assuming
the nonlocal Riemann problem data to be identically zero transparent at a fixed
energy potentials were obtained in [8]. The “spectral transform” constructed in [8]
was applied to solve the Cauchy problem for equations from the Novikov—Veselov
KdV-type hierarchy for the decaying at infinity Cauchy data.

In [9] it was shown by one of the authors (R.G.N.) that the scattering data
introduced in [8] can be considered as a restriction of the Faddeev scattering data
[23] to a fixed energy level. The connection between the scattering amplitude at
a fixed energy and the nonlocal Riemann problem data was obtained in [9] once
again from the point of view of the direct problem by the technique developed in
[23]. In [9] the necessary conditions on the fixed-energy scattering data correspond-
ing to the fast decaying at the infinity potentials were found and it was shown
that exponentially decreasing potentials under small norm assumption are uniquely
determined by the fixed-energy scattering amplitude.
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The explicit examples of real nonsingular transparent at a fixed energy potentials
(rational solitons) were constructed by one of the authors (P.G.G.) in [10]. These
potentials decay at infinity rather slowly (as the minus second power of distance).
These potentials are constructed independently by V.E. Zakharov.

The two-dimensional scattering problem at a fixed negative energy was stud-
ied by S.P. Novikov and by one of the authors (P.G.G.) in [I1]. In this case
we have a pure 5-problem. In [11] it was shown that for an arbitrary nonsingular
scattering data (without the small norm assumption) satisfying the reality and the
absence of magnetic field reduction the solution of the inverse problem is unique
and nonsingular and the L? spectrum of the corresponding operator lies above our
fixed energy. If it is not so the O-problem data is singular but rather little about
inverse scattering in this case is known. For the fast decaying at infinity poten-
tials the necessary conditions on the scattering data were found in [11]. These
conditions have a different origin and structure than the necessary conditions from
[91.

The further development and generalization of these papers [5—11] and some
results of [23-26, 18, 30] were given in [12].

In [13] by J.-P. Frangoise and one of the authors (R.G.N.) the hamiltonian
systems describing dynamics of poles of the rational solitons from [10] were found.

In papers [5-12] only the case of nonzero fixed energy was studied. The zero
energy level was examined by M. Boiti, J. Leon, M. Manna, F. Pempinelli [14],
T.Y. Tsai [15], Z. Sun, G. Uhlmann [21], A. Nachman [22].

On the other hand the studies of the inverse problem at fixed energy (E = 0)
for the two-dimensional Schrodinger equation (for the equation div(y(x)grady) = 0)
in a bounded domain were stimulated by the paper [16] of A.P. Calderon. In the
two-dimensional case the studies of the Calderon problem were started by R. Kohn,
M. Vogelius [17], J. Sylvester and G. Uhlmann [18]. The method to apply results of
the two-dimensional inverse scattering at fixed energy to the Calderon problem was
given for the first time by one of the authors (R.G.N.) in [19]. Among subsequent
works on the Calderon problem in dimension 2 let us mention important papers of
Z. Sun, G. Uhlmann [20,21] and A. Nachman [22].

1. The Equations of Direct Scattering

The Faddeev scattering data (see [23,24]) h(k, 1), k,1 € €2, k> =1 =E, Imk =
Im/ for Eq. (0.1) are defined by the formula

1

h(k, 1) = GnF [ sz e~ (x, kyo(x)dx) dxy | (1.1)
where
Y k) = ™ pu(x. k), (12)
u(x k) =1+ [ [g(x — y,k)o(»)u(y,k)dyi dy, , (1.3)
|R2
1 e
g(x,k):_(zn)2flkz §2+2k§dfld52, Imk=+0. (1.4)
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For k € R? the following limits exist:

Yy(ok) = Ok +i0y),  p(xk) = p(x,k +i0y) ,

hy(k, 1) = h(k +i0y,1 +i0y), klLy€eR?* kK =P=E, " =1. (15)

In addition,
(p+(x9k)= lﬁk/'k'(x,k), f(k’l):h/\/Ik[(kal)’ (16)

where ¢*, f are functions from (0.3). For k* = E € R, Imk=0 y(x,k) is the
function (0.6). For a(k) and b(k) the following formulas are valid

a(k) = h(k,k), b(k) = h(k.k + (k) , (L.7)
where &(k) is a different from zero root of the equation

E42E=0, ¢eR?. (1.8)

In the two-dimensional fixed-energy scattering theory it is convenient to introduce
new notations

zZ =X + ix29 Z_: X1 — ix2> az = %(axl - ia)(z )9 aZ_ = %(a,\’l + ia,\'z) >

ky + ik, ps L +il,

A:\/E, VE

E=ki+k=0+1. (1.9)

In addition,

E 1 iVE (1 " SR s
ki = g (/1+ ;), k= —“nzr (1 - i>, et = b VEGSED - (110)
In new notations the Schrddinger equation (0.1) takes the form

Ly =E), L=—-40,0:+uv(z), z€C', EceR (1.11)

(in this paper the notation f = f(z) does not mean that d; f = 0).
The functions @* from (0.3), ¥,u from (1.2), (1.3), a,b from (1.7) take the
form

0" =0 @ LE), f=[f0UVE), Y=y@EiLE),
=z AWE), a=a(lE), b=bAE). (1.12)

Further, we shall always assume that the fixed energy
E=1 (1.13)

(the case of an arbitrary fixed positive energy may be reduced to (1.13) by scaling
transformation). We shall also omit £ in the further notations.
Now (1.2) is read as

Wz, ) = e2 Dz, 0 . (1.14)
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For the functions a(4), b(A) we can write

1
a(l) = Wfq[v(z),u(z, Aydzpdz ,

l v L(ra P
[ [e2 TN (2 (2, 2 )dzg dz . (1.15)

b(2) = Qny '}

For |4| = 1 corresponding to Im k£ = 0, formulas (1.3), (1.4) make no sense without
a regularization, but the boundary values

f(z,2) = pu(z, A(1 7 0)), (1.17)

are well-defined. We consider also functions

1

LAY =
hi(4,47) 2n)

ffe_%(;~’5+z/?»')v(z)lp +(z,A)dzrdz; , (1.18)
[

where
A =111=1, he(A2)=hy, (K1), ny=(—k,k)/k|.

Let the potential v(z) satisfy the “small norm” condition (0.5) for £ = 1. Then the
function Y(z, 1) has the following properties (see [8, 12]):

1) For all |A]#1 ¥(z, 1) is uniquely defined by Eq. (1.3).

2) Y(z,2) is continuous in 4 outside the unit circle |4| = 1.

3) There exists a function p(4,A"), |A] = |2/| =1 such that the boundary values
of the function y(4,z) on the unit circle |1| = 1 satisfy

Uz 2) =Y @)+ § p( 2 We(z A |d2] . (1.19)

|#]=1

4) Outside the unit circle the function (z, 1) satisfies the following equation.

(31//(2, )“)

22 = H(AW(z,—1/4) (1.20)
04
where
15— 1
ry = AT Doy (121)
In terms of p(z,4) Eq. (1.19) and (1.20) take the form
iz A) = p(z,2)+ ¢ p(h A, 2)u(z,2)d2], (1.19)
|2/]=1

ou(z, 1) , = /
A :r(/y,Z)/.l(Z,—l/A), (]20)

where

p(A, A, z) = e  2VERHA=LI=2I ) any |

F(hz) = e~ FVFHIAIHDL gy (1.22)
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5)
W(z,A) = e+ (1 4 0(1)) as 4 — 0,00, (1.23)

u(z,A)y—1 as 1 — 0,00. (1.23")

The functions p(4,A"), b(1), Y(z,A) have the following symmetry properties
[5,6,8]:

p(AL )+ p(=A =)+ § p(A, A" )p(=A',—A")dA"| =0 (1.24a)

|27]=1

forall L, X, |4 =4 =1,

oA 1) = p(L Ay, (1.24b)
b(1/2) = b(A) (1.25a)
b(—1) = b(4), (1.25b)
Wz =1/ =), pe—1/4) = u@z2) . (1.26)
Using (1.25) we may rewrite Eq. (1.20),(1.20") as
oz, A oz A -
—‘%——) = r(AWE A, #(6_2/1) = 12z ) . (127)

The scattering amplitude f(4,4’) and the function p(A,A’) are connected with
hi(4,2") by the following equations (see [12]):

1
B i) —mi § ha(hi")0 [t} (% - %)] £ = £,
=1
(128a)

1 /AV A |V )

/ "
p(ALA)+mi § p(4,A4")0 [j:% (% — i—/)] ox(A", ) |dV | = —nmiox (A, 1),
=
(128¢)

(here 6(x) is the standard Heaviside function 8(x) =0, x < 0, 6(x) =1, x = 0).
It is well known that for a real sufficiently fast decreasing at infinity potential
the scattering amplitude has the following properties (see, for example, [35]):
a) Reciprocity
f(=, =)= f(LA). (1.29a)

b) Unitarity

FOXY=FOL A +mi § L A)FOLINdA|=0. (1.29b)

[47]=1
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Due to Egs. (1.28) the property (1.29j) implies (1.24j), where j = a,b and vice
versa [7,12]. In terms of hy(4,4"), h_(4,A") defined by (1.28a) the properties
(1.29) take the form (see [12])

ho( 2y =h_ (=N, =2)+ mih_ (3 2" Yh_ (=2, ="

L) V(AN .
P GE7) GG F) e

he(2,0)) = h_ (=7, =7y, (130)

where (1.28a) is also assumed to be valid.
It is well-known also that under condition (0.2) the scattering amplitude f(4,1’)
is a continuous function. If (0.2) and (0.5) are valid then b(1) is continuous for

H1) = gsgn(;ui — 1)b(J) € Lpx(CT), (131)

where 2 < p < 4 (see [12]).

2. The Equations of the Inverse Scattering

Given scattering data at fixed exergy E =1 f and b, where f = f(4, 1),
|#/] =1 is an arbitrary continuous function satisfying (1.29) and b(1) is an arbitrary
continuous function in the domains Dy = {1 € C| % |A| £ +1} satisfying (1.25)
such that

Const.
b(A _
POl = Ty

(The boundary values of b(4) on the unit circle |[A| =1 in D; and D_ may be
different.) Then the corresponding potential v(z) is constructed in the following
way (see [8,12]).
1) Using Egs. (1.28) we calculate p(4,4") via f(4,1") and define r(4) by (1.21).
2) We construct a function u(z, 1) with the analytic properties (1.19”),(1.20"),
(1.23’) as a solution of the following integral equation:

.1)

Wz, i) =1 +2%M ]gd 4 e H 0 a2
_ _ffr(c )z, z)de der (22)
Here the Cauchy-Green formula was used
fiy=——f [ SOV 4 o ff(C) T (23)

The main case of our paper is f(4,4") = 0. From (1.28) it follows that p(4,1") = 0.
In this case Eq. (2.2) is uniquely solvable in C(C) for all z under condition (2.1)
on the scattering data.
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For the case of negative energy this fact was used in the paper [11] and then
for the case of positive energy in [12]. Another system of integral equations for
solving (1.19"),(1.20"),(1.23"), which is more convenient in the case f(4,4')+0
was suggested in [12].

3) Expanding p(z, 1) as 4 — oo,

Wz2) =1+ “‘;L(z) to G) (2.4)

(from (2.1) it follows that there is no ¢(z)/4 term in (2.4)) we define v(z) by the
formula

u(z) = 2i0: 10— (z) . (2.5)
4) It can be shown (see [8]) that
Ly(z,2) = Y(z, 1), (2.6)
where
Wiz, A) = e2 WDz, 0), L= —40,0: + v(z), (2.7)
0z) = v(z). (28)

Potential v(x) constructed from the scattering data f(4,4’), b(4) with properties
formulated in the beginning of this section may decay rather slowly. The necessary
and sufficient conditions for decay rate at infinity faster than |x|~™, M > 0 will be
discussed in the next sections.

3. Fast Decaying Potentials. Necessary Conditions on the Scattering Data

Later we shall use the following notation:

ny+ny
o(x) € CY(R?) if aa”:a 2 u(x) € C(R?) and
an|+n2 " ,n 0 31
‘a n|a n2 u(x)| < ms Cnyiny > 3.1

for all nonnegative integers n;,n, such that n; +n, < N.
Let the potential v(x) satisfy (0.2), “small norm” assumption (0.5) and

o(x) € C4)yy (R?). (32)

In this section we show that under these assumptions we have 2M + 2 additional
necessary conditions on scattering data.
Let us introduce the following functions:

am(l) = (—271;)—2 f { K(%) e“%[’-f“/“} v(z)W(z, A)dzg dz; | (3.3a)

_ b O\ steran
bu(1) =.any f‘{ [(55) e v(z2)W(z, A)dzg dz; . (3.3b)

(It should be noted that a(1) = ag(4), b(A) = by(1).)
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If (0.2),(0.5),(3.2) are fulfilled then
1) For m =0,1,...,M the integrals (3.3) converge, the functions a,,(4),5,,(1)
are continuous in D_ and D4\0.

2)
as |4 = 00 a,(d)=0(1), (3.4a—)
1
bu(A)=0 (W) . (3.4b—)
as [A| = 0 an(Z)=0 <M‘%m> s (3.4a+)
Y 3
bu(A)=0 (%) . (3.4b+)
From (1.20) and (3.3) it follows that
3)
a;tam()“) = r(/l)bm(/l) > (3.5a)
a}tb’"(i) = bm+l (/ﬂt) + r(i)am()b) s (35b)

where r(l) == sgn(/l): — l)b(/l)/)_u.
In the formulas (3.3) we apply the operators d; and J; to a holomorphic function
and to an antiholomorphic function respectively. Let

PN
~! / /
)v:re"”, A :l"elq’, v,y € IR+.

Then -
A 1 A 1
6; —Za/‘“‘ aaq), a;_Ea/—l_ZaV)

For an arbitrary holomorphic function f(1), 4 € C\0 we have
. 1 n o R 1 N—
i f(2) = <i75(p) S, 2f(A) = (“ltz@fp> f(A), 2€€\0. (3.6)
So we can replace the operators 07 and 6’}’ in (3.3) by (%/16(,,)”’ and (-ILZ@(,,)”'

respectively.
Comparing (1.18) and (3.3) we see that

an (A1 +0)) [jy=1 = (%aw/ mh,(/l, ') L (3.7a—)
b L+ 0)) | y=r = (=i 0,)" (A AD),__, (3.7b—)
an (A1 =0)) [1y= = i/ll’ Oy ! hy(A4,A") L (3.7a+)
b (A1 = 0)) | =1 = (=id0y)" (A 2], (3.7b+)
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If (0.2),(0.5),(3.2) are fulfilled then the functions f(A,4’), h+(4,4") are M times
continuously differentiable on the torus and b(4) € C;M)(D_).
If v(x) € CL°/(R?) then

SO,y e C™(T?), (3.8)
if, in addition, the “small norm” assumption (0.5) is valid then
b(A) € C(Dy). (3.9)

The definitions (3.3) and Egs.(3.5),(3.7), m =0,...,M and the property (3.4),
m =0 were given in [12].

Now we come up to one of the most important points of our paper. From
(34),(3.5),(3.7) m=0,...,M we shall obtain 2M + 2 additional necessary condi-
tions on the scattering data f(4,4’) and b(A) for a potential v(x) with properties
(0.2),(0.5),(3.2). A half of these conditions was given earlier in [9, 12]. Analogs
of the second half of these conditions for the case of negative energy were con-
sidered earlier in [11]. These conditions shall be written in terms of the functions
h_(4,1"), b(A).

We recall that the functions 4_(A,4") and f(4,1") are connected by (1.28a).

Let us introduce new functions

ay (2) = 0(£(1 = 20))an(2),  br(2) = O(£(1 = 22))bu(2) (3.10)

2M + 2 additional conditions on the scattering data will be obtained by induction.
Let M = 0. Equation (3.7b—) with m = 0 takes the form

by (A1 +0)) [ jz1=1 = h-(2—=4), by (2) = B(AZ — 1)bo(2). (3.11)

The relation (3.11) is the first additional condition on the scattering data 4_(4, '),
b(A). Let us calculate the function a, (4) as a solution of the boundary value prob-
lem for Eq.(3.5a) in D_ with the boundary conditions (3.7a—) on the unit circle
|4] =1 and (3.4a—) on A = oco. This boundary problem is solvable if and only if
the following equality is valid

=5  (3.12)
|i]=1-0

! de 1, mb(OBE) dérde
o HEOT T E

for an appropriate constant so. Under condition (3.12) the function a, (4) takes the
form

+5p. (3.13)

- 1 d¢ 1 nb(E)b(E) dirdiy
a (4) = m(i h-(&97 =7 nfD{ Y
The relation (3.12) is the second additional condition on the scattering data
h_(2,2"),b(4).

The step of induction is the following.

Let for a fixed M = n we have found 2n + 2 additional condition on the scatter-
ing data and we have expressed the functions a,, (4), b,,(1), m = 0,...,n via by (1)
and (50,)"h_(2, ")

i2

z,zz,m:O,...,n.
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Assume now that M = n + 1.Then using Egs. (3.4—),(3.5),(3.7—), m=0,...,
n+ 1 and expressions for a, (1), b, (1) obtained at the previous step we shall find
2 conditions more on the scattering data and we shall express a, ,(4),b, (1) via

by (), (R0 Y h_ (3 2, m=0,..,n+ 1 (CO)(R?) € C(R?) so all con-

n+1

ditions found for M = n are fulfilled for M = n + 1).Using (3.5b) we obtain b, (1)
as

)=}

0
by (4) = ‘bn (4) - —b (Dan (4). (3.14)

The relation (3.7b—), m = n + 1 is the 2n + 2 + 1 additional condition on the scat-
tering data

by (M4 0)) |21 = (—id 0 Y ho (A 1)), (3.15)
The function by (1) € CY""(€) so the condition (3.4b—), m = n+ 1 is fulfilled.
Let us calculate the function a, (1) as a solution of the boundary value problem

for Eq. (3.5a) in D_ with the boundary condition (3.7a—) on the unit circle |4] = 1
and (3.4a—) on A = oo. This boundary value problem is solvable if and only if the

following equality is valid:
S
=) =2

1 1 n+l1
At
[2—75«,[;} ((Wad)/) h(&, 27) y

by (é)b,,+.(€)d3§1ed§1
=) e }

for an appropriate constant s, .
Under condition (3.16) the function a, (1) takes the form

1 n+1 , df

Ly G.17)

= —Sp+l (316)
|2]=1-0

A

The relation (3.16) is the (2n + 2 + 2)"! additional condition on the scattering data.
We recall that the function b, (4) is expressed via by (1), (#8(,,/ Y'h_(2, )°/)]/:/:/’
m =0,...,n. The step of induction is done.

Thus an algorithm to write 24/ 4 2 additional conditions on the scattering data
for a potential with the properties (0.2),(0.5),(3.2) is presented.

In the paper [12] from Egs. (3.5),(3.7),m = 0,...,M only ((3.4) was not used)
M + 1 additional necessary conditions on the scattering data were derived. These
conditions can be considered as a method to determine

I g =00 M (3.18)

via the function 4_(4,4"). The first of these conditions coincides with (3.11). In
[12] an algorithm to write all these conditions was suggested.



424 P.G. Grinevich, R.G. Novikov

Remark. Let b(A) be an arbitrary function such that h(1) € CM)(D_). Then the
derivatives (3.18) completely determine all the derivatives

a7 a’,?b(,l)|l;‘|:|+0 (3.19)

for all nonnegative integers, n,n; such that ny +n, < M.

These M + 1 conditions on the scattering data are local for 5(1) and almost
local for 2_(4,2"). We shall call these conditions local. It is rather natural to replace
M + 1 conditions (3.11),(3.15) in the family (3.11)—(3.17) by local conditions. It
can be shown that this new collection of conditions is equivalent to the old one.
The conditions (3.12)—(3.14),(3.16),(3.17) are nonlocal for b, (1), h—_(4,1").

Thus for a potential with properties (0.2),(0.5),(3.2) M + 1 additional lo-
cal conditions and M + 1 additional nonlocal conditions on the scattering data
by (4), h—_(4,4") are constructed.

Remark. Analogs of these nonlocal conditions on the scattering data for a negative
energy were constructed earlier in [11].

We have studied boundary value problems on D_. It is rather natural to consider
analogs of these conditions on D,. Let us show that these new conditions are
equivalent to the old ones.

According to (1.30) we have

B2y = ho (=X, — ). (3.20)

Lemma 1. Let a, (1), b,(1) be defined by the formulas (3.3), where m =0,...,M,
v(x) satisfy (0.2), (3.2). Then

aj(1) = ; B 115 a; (—1/0), (321a)
(=0
by(2) = AZO Bui(—1/ Dby (=172, (321b)
where Bo(A) are defined by
(20,)" = 3 PP (322)
k=0

The functions B.(A) have the following properties
a) Bum(h) = 22", (3.23)
b) Buo(A) =0 for m >0, (3.24)
c) degfu(A)y=m+k for 0 <k <m, (3.25)
d) ﬁm—l—l,k(’l) = izﬁm,k—l(l) + j-Za/lbmk(/“ 5 (326)

where ﬂOO =1, ﬂm,—l =0, ﬁm,m—H = 0.

The proof of Lemma 1 follows from (3.3),(1.26) and the following relations.
Let

Fu(4) =07 exp [—% (lz'—i—z//l):l ,

Gu(2) = 07 exp [% (Az +5/Z)] . (3.27)
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Then

Fin (—l/i) = Zﬂmk(i)Fk(i) >

G (=1/2) = A;)ﬁmk(i)Gk(l). (3.28)

Lemma 2. Let the functions a,, (1), b, (4), m = 0,...,M satisfy the boundary value
problem (3.5), (34—), (3.7—). Let the functions h,(1,1") and h_(A, ") be con-
nected by (3.20). Then the functions a(A), b}(4) defined by (3.21) satisfy the
boundary value problem (3.5), (3.4+), (3.7+).

The proof of this lemma will be given at the end of this section.

Assume now that f(4,4’") =0 (and h_(A, 1) = 0 accordingly). Then the first
M + 1 local conditions simply mean that on the unit circle || = 1 the function
b(/) and all the derivatives 0’/{'8'}%()»), ny 2 0,n =0,n +n <M are equal to
zero. But the nonlocal conditions in this case are rather nontrivial. The first of them
(3.12) takes the form

= -5, (3.29)
where
b(EY(E)dErd
=Ly (ég b(%) fR f’ , (330)
léz1 >
and (3.13) takes the form
ag (A) =I(A)+s0. (3.31)
From (3.3a) it follows that
ay (00) = 6(0), (3.32)

where §(p) is the Fourier transform of the potential v(z).
From (3.29)-(3.32) it follows a rather interesting corollary.

Corollary 1. Let v(z) be a nonzero transparent (ie. (L, A)=0) at a fixed
energy E =1 potential satisfying (0.2), the “small norm” condition (0.5) and
v(z) € C;i),(le ). Then

#(0) > 0, (3.33)

where
Up) =5 I e 3 P)y(z)dzpdz;, pEC. (3.34)
(2 ) zeC

Proof of Corollary 1. From (3.31), (3.30) it follows that

. 02
dsag (1) = "(—‘— b 1) . (3.35)

Consider the average of a, (4) over the angle

1 2n _
ao(A) = E;tfao (1) do. (3.36)
0
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It has the following properties

nh(ii—1) 1 2=

i 2
d500(4) = — [ b))’ do, (3.37)
0 )» 27.[ Of I I

20(2) = 0 as |2 < 1, ag(c0) = 5(0).
Consider the restriction of «y(4) on the real axis ImA =0, ReA =r > 0. Then

arOCO(r) = Zafo‘O(l)‘lm =0

2n
_ 2r_”0 (P = 1) [ |b(er)| dp 2 0, (3.38)
0

op(1) = 0, ag(c0) = 6(0). Thus, 6(0) > 0.
From formula (3.32) and Corollary 1, Corollary 2 follows.

Corollary 2. Let the assumptions of Corollary 1 be fulfilled. Then there exists no
path connecting the points 0 and oo which has no intersections with the support
of b(2).
Proof of Corollary 2. The function a, (1) is identically equal to 0 as [A| < 1. If
such a path exists then a, (4) is holomorphic in a neighborhood of this path and as
a consequence identically equal to 0 along this path so a; (co) = 0. It contradicts
Corollary 1.

Consider an important particular class of potentials depending only on |z|, v(z) =
v(Jz]). In this case the functions a,(4), b,(1) possess the following
symmetries.

Lemma 3. Let the potential v(z) depend only on |z|, i.e. v(z) = v(|z|). Then
an(e92) = e ™, (1), bu(e'?l)=e"b,(1). (3.39)

In this case all nonlocal conditions are fulfilled automatically.

Proposition 1. Let the scattering data b(A) in the transparent case f(A,A)=0
have the following properties:

(1) b(2) € CN(@),

(2) 070%b(4) =t = 0 for all mn 2 0,

(3) b(e'”1) =b(4),

(4) b(A) =b(R), b(1/A)=b(2) (it follows from property 3 and (1.25)).

Then all local and nonlocal conditions on the scattering data, formulated above,
are fulfilled automatically.

We shall prove Proposition 1 by induction. The function b, (1) = 0(A% — 1)b(1)
is known and satisfies the first additional condition. The step of induction is the
following.

Suppose that under out assumption the first 2n 4 1 additional conditions on
the scattering data are fulfilled, the functions b, (4) and for n = 1 a,_,(4) are

expressed in terms of b(A) and these functions satisty (3.39), b, (1) € cte (T)
and all derivatives of b, (4) vanish as |4] = 1.
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We will show that the two next additional conditions are fulfilled, we will
express b, (1) and a, (1) in terms of b(4) and we will see that these functions

satisfy (3.39), b, (%) € CL)(C) and all derivatives of b, 1(A) vanish as 4] = 1.
We define

1
a, (A) = o [1(2) = L(D)],

An
Iy =07 ”j 027 = 1)b(2)bu(7)
1 n _ b,,
= —;ffng 0(&-1) %a’ékd@. (3.40)
C

The function 7,(4) is well-defined and 1,(1) = I,(|4]) (it follows from (3.39)). Thus,
a,; (A1) =0 as |4 = 1 and it solves the boundary value problem (3.5a), (3.7a—) with
h_(4,A)=0, (3.4a—) and it satisfies (3.39). Now we can define

by (2) = 30, (2) — %b(z)a;(z). (341)

We see that if b, (1) € CL2°)(C) and all derivatives of b, (A) vanish as |A| =1 then
the same is valid for b, ,(4). It is the step of induction.
The proof is completed.

Proof of Lemma 2. From (3.21) and (3.5) in D_ and (3.23), (3.26) we obtain the
following relations in D, \0:

d5at (1) = a,zé’:o B~ 1/2) ap (—1/7)

m

= kgoﬂmk(—l/i) d;a; (=1/2)

- kgo P12 [P35, (0], 7

M ] 1 - = -
= Bu(=1/A) 5 7sgn (—- - 1) (=4)b(=1/)b; (—=1/2)
k=0 A Al

— Mb(l)éﬁmk(_l/i)m

= r(MbE(A), (3.42)
d5bi (1) = akio Bu(—1/2) by (—1/2)
m . — 1 m . —_—
= S B~V D) b (—1/2) = =5 Buser(—1/2) by (—1/0)
k=0 1 k=0

+ Eo Bk (—1/3) (00 (—1/2))
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- kioﬁ k(=1 Db (—1/T) — = éﬁm,k_m—l/i)b;(—l/i)

m

Zﬁml\( l/i)[-Za/tb (,u)]|

= u=—1/i

- éﬁ o~y by (—1/7) — = éﬂm,k_x(—l/z')b,x—l/i)
1

+ VDb (1D

+ 3 b~ 1)~ msgn (i. - 1) (~ D) b(— 1/ Dy (—1/2)
A AA

k=0

_ i B a(—1/ ) by (= l/z)+Wb,;ﬁ(—l/i)w(z)azu)

= b (1) + (D) ah(A). (3.43)
Thus, the functions a(4), b} (1) satisfy (3.5) in D;\0. The relations (3.4+) follow

from (3.4—) and (3.23),(3.24), (3.25).
To prove (3.7+) we use the following identities:

(" = SV =i23, )

m k
(=ikay)" = 3 Bur(2) (%a(p) . (3.44)
k=0 i

The relations (3.44) follow from (3.23),(3.26).
Due to (3.21a), (3.7a—), (3.20), (3.44) we have

m — 1 k
an(1 =0, =3 Bu(—1/4) (7%/) h_(=4,=)|,_,
k=0 I

m

=3 B —1/Z ) (=i 0 (2.2,

1 m
Ta(p,) he ()|, s

Il
T

(3.45)

b;(i(l—O))!l,l,:,zgﬁmL( 1)) (+id' 0 Yeh_ (=2, =),

= 5 ) (ﬁaqf) he i),
= (_M’/aqo’ )m h+(/1a /1/)|/1’:/1 .

Lemma 2 is proved.
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4. The Construction of Potentials with Zero Scattering Amplitude
at Fixed Energy

Now we are ready to formulate one of the main results of our paper.

Theorem 1. Let b(1), i € C be an arbitrary function with the following properties:
1) b(A) € C(T).
2) b(1/%) = b(2), b(—1/1) = b(2).
3) 6}’6}b()t) i =0 for all myn = 0.
4) The function b(1) satisfies the first M + 1 nonlocal conditions on the scat-

tering data formulated in the previous section for the case f(1,1') =0, ie. the
Sollowing M + 1 boundary value problems on D_ = {1 € C||4| =z 1}

070, (1) = r(A)bu (1),
ay (D] ;=0 ay(00) =0(1), m=0,1,....M (4.1)

are resolvable, where the functions b, (1) are defined recurrently by:

by (A) = db,(2) — %9(,12 — Db(D)ap(A), (42)

by () = 0(2h — 1)b(2). (43)

Then the potential v(z) constructed from the scattering data b(1), f(2, ') =0 by
the procedure, described in Sect. 2 for E =1 has the following properties:

1) v(z) is real-valued.
2) v(z) € CyyA(R?).
3) The scattering amplitude for the two-dimensional Schrodinger equation

—40,0:Y(z, ) + vz Wi (z,A) = EY(z, 1), E =1 (44)

is equal to zero (f(A,A)=0, |A| = || = 1) at the energy level E = 1. Moreover,
the classical scattering solutions @*(z, ) of (4.4) have the following asymptotics:

0t (z,4) = e3PV L O(|z|™M72), where |4 =1, (4.5)
or in the standard notation
0T (kx)=e* + O(x|™72), K =E=1. (4.6)

From Theorem 1 and Proposition 1 it follows:

Theorem 2. Let f(1,2') =0, b(A) satisfy the same conditions as in Proposition 1.
Then the corresponding real potential v(z) € CS)(R?) and

0T (kx) =" +0(1/Ix|™), kK =E=1

(i.e. ot (k,x) —e* decays as |x| — oo faster than any degree of |x|™").
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Proof of Theorem 2. If the scattering amplitude f(4,4') =0 (and p(4,4)=0
accordingly) then the function u(z, 1) (see Sect. 2) is defined as a solution of the
equation

07z, A) = r(4,2)u(z 4) , (4.7)
such that
wz,A) — 1 as |A| = o0, 4.8)
where )
r(4,z) = e_é(}“z-+z/;“+;z+z_/z)r(/l), r(A) = TsensAm ) sgn(/l_/l _ l)b(,{) , (4.9)

or equivalently the function u(z, 1) is defined as a solution of the integral equation

Wz A) =14 (4.0 (z 1), (4.10)
where
) () =85 )T = =1 [ A Otpar,, @i
C
or equivalently
Wz, A) =14+ A1+ (A2u)(z,A) . (4.12)

According to the theory of generalized analytic functions (see [34]) Egs. (4.10),
(4.12) have a unique solution for all z.
This solution can be written as

Wz A) = — A1 +4,-1). (4.13)
Equation (4.13) possesses a formal asymptotic expansion
Wz A) =T+ A2 +A4+ 45+ )1 +4,-1). (4.14)

From (4.22) it follows that (4.14) uniformly converges for sufficiently large |z|.
To study (4.14) we need some estimates on 42, 4,.It is convenient to write 42

as
(A1) @2 = %ffK(z,i,n)f(n)andm, where (4.15)
C
K(z,A,n) = I(A,n,z) exp [% nZ +z/n + iz + z'/ﬁ)} r(n), (4.16)
1(2,1,2) ffL exp {—Q&'H/@ +{z +z‘/€)] dlgd(; .
c (=M= 2
(4.17)
Lemma 4. Let b(A) satisfy the conditions 1), 2), 3) of Theorem 1. Then
1)
(1 _
(e 2 < 2 I+ o2 —n) ’ 4.18)

— (4D

Inr
in7y Jor all m,n 2 0.

where o(r) =
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2) For an arbitrary testing function f(1) € C(C) we have (A.f) e C(T),
(4%f) € C(C) and the following estimates are valid

a)
(A2f)(2) = C-;(Z) +0 (#) for 4 — oo, where (4.19)
ey = —%ffff”(_{lf’—)exp [—1(55+z/c+c‘z+z‘/c‘)

et ¢ 2

X exp [% (nz +z/n+nz +Z_/ﬁ)} Smdlrdlidnrdn, (420)
i
|07 05| < (1+—’]z|)”f”C for all m,n =2 0. (421)
2 Yo

b) @) le T e for all mn 2 0, (422)
c) H(@;"@’}Az)f(/l)”c < emllfllc for all myn = 0. (4.23)

Equation (4.14) may be written as

Wz A) =1+ AL+ A2 4 A5 Ry, (4.24)
where
RM=< > A3‘>(1+Az-1). (4.25)
k=M+3

From Lemma 4 we get the following estimates on Ry,.

Lemma 5. Let b(2) satisfy conditions 1), 2), 3) of Theorem 1. Then

(2)
1) |07 Ry | < ﬁm for all myn = 0. (4.26)
1
2) Ry = @ +0 (Tz) , as A — oo, where (4.27)
(2)
|07 0%q(2)| < W for all m,n = 0. (4.28)

From (2.4),(2.5),(4.28) we see that the term Ry, gives a contribution to the potential
v(z) and to the function u(z, 1) from the functional class C}Moj’r;(]R2 ).

Lemma 6. To calculate the potential v(z) and the function u(z, 1) up to terms of
the order O(1/|z|M*3Y it is sufficient to consider only the first 2M + 6 terms in
the formula (4.24).

Let
gz A) =14+ A, « T4 A5 1 (4.29)

Now we give some estimates of py(z, 4).
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Lemma 7. Let the conditions 1)-3) of Theorem 1 be valid, f(z,A) be a smooth
function of A, z such that all the derivatives o 6;02{’8} f(z,2) are bounded on the

A-plane uniformly in z, i.e.

08050702 f (2, 4)| < ot Sor all z, . (4.30)
Then
1)
A * f(z,1) = L—z exp [—i(iz'—i— Jz +z/A +z'/i)]
(—2/7) 2
) 2i ‘ S 1
X S~ (8;0 i _2> *(r(/l)f(z,/l))+0<—£>} .
k=0 z —z/,{ IZI
(4.31)

Here o denotes the product of operators and x means that we apply a differential
operator to the function.
2) Consider the asymptotical expansion of A, x f(z,1) as 1 — oo,

a_1(z)  a_z(z)
1 T e

A4; * f(z,4) = 4 (4.32)
(r(L) vanishes as || — oo, so we have no nonholomorphic terms in (4.32).) Then
all a_y(z) € CS(R?).

3) Let |A| = 1. Then the function A, x f(z, 1) decreases as z — oo faster than
any degree of |z| together with all her derivatives.

4) A%« f(z,1) is a smooth function of z,A such that |z|l(6§"8:-20’/‘{‘ 8'/‘?/'(2,2))|
are bounded in z, . (For A, * f(z,A) it is not true.) L

5)
A% f(z, 1) = =07 {r(/l)—l— [fi (a~ o l)k] * (r(A) f(L z))} +0 (—l—)
Z ’ 4 wR | Zowk " R ’ lz]> )’
(433)
where
w=2/2i, R=(1—-v/1?), v=z/z. (4.34)

Lemma 8. Consider the function A%+ x 1, where k € NUO. Then
1) For |A] =1,
AFH 51 € CCN(R?) in z.

2) Consider the asymptotic expansion of this function as A — oo,

2%k+1 _ X—12k11(2) 1
A; *1 = 1 + 0 (ﬁ .

Then y_ia441(z) € C(R?) in z.

So, all the terms A%**! %1, k € NUO in expansion (4.24) give a contribution
to the function pu(z,4) for |[4| = 1 and to the potential v(z) defined by (2.5) from
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the functional class C$° )(]Rz) in z and in the asymptotical calculations these terms
can be neglected.

This statement directly follows from statements 2-4 of Lemma 7.

We have proved that if we want to calculate the potential v(z) up to terms of
the order O(1/]z|M*3) it is sufficient to approximate the function u(z,1) by

Wz, A) ~ P (2, ) =14+ A2 1A L a2 (4.35)

To calculate the asymptotic expansion of iy (z, 1) for large |z| let us apply the

formula (4.33) from Lemma 7.
The direct calculation with help of the formula (4.33) shows that

Appr Co(4,v) | €i(/4V) Cn(Av) | Cupi(4v)
" (@A) = = e e = i T um(@ ),
(4.36)
where w, R, v are defined by (4.34),
um(z, 1) € C};i;(IRz\D) in z for all 4, (4.37)

up(2.2) = uy 1 (2)/2 + O(1/|Af) as A — 00, uy_i(z) € Cj75% € (R\D),

(4.38)
D is the unit disc |z| < 1, the functions €;(4,v) are defined reccurently by

n k
Cu(2yv) = =07 {5(1)2 (a;.oi) $ [F(DCus 1 G|, E1(hv)=1.
YR D R

(4.39)

Really, we have
Wz, ) = 1+ A% % 1P (2,4) . (4.40)
Substituting (4.33) to (4.40) and comparing expansion coefficients at 1/w"*!, n =

0,...,M + 1 in both sides we get (4.39).
Let us introduce some additional notations. Consider the differential operator
#(0; 0 %)". It can be written as

% <6;~ o %) = ifnk&',{, where f = fu(4,v), R=R(A,v)=1— v//12. (4.41)
k=0

The functions f,x = fuk(4,v) have the following properties:

a)
1 1
Jun = Rrt+1 = (1 — v/A2)yrtl ’ (4.42)
b)
fk = 0w + O(1/|A" 42y as 4 — o0 . (4.43)
c)

Jox = O(|A"***) as 1 — 0. (4.44)
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d)
Forrk = Oufok + fasr)s fow = = = —
n+lk — R +Jnk nk—1)s 00 — R - 1 — V/j,z El (4.45)
fi1 =0, fixkr1=0.

e) For a fixed v f(4,v) is meromorphic in A with poles only in points A> = v.

In these points
1 2n—k+1

Now we can formulate the main algebraic lemma of our article.

Lemma 9. Let the scattering data b(1) satisfy conditions of Theorem 1. Then for
n=1,....M we have

Guldv) = I_iofn,clu), (447)

where functions c;(A) satisfy the following equation:
Oei(A) = — [rDL A (Dea—i—1(A)], e =1, A0, (448)
k=0

(It can be obtained by a formal substitution v =0 in Eq. (4.39).) These functions
do not depend on v and are defined by

en(A) = —msgn(Al — 1)3 e (L)a(A) , (449)
k=0

where o, (1) are defined by

n ,,kn 1

- =I§)ank(}t)06/j, (1) = (—1) T T (4.50)
and functions a,(1) have the form
am(2) = 002 — Da; (A) + 0(1 — iD)at (1), (4.51)

where a,, (1) are defined by the boundary value problems (4.1) and a}(A) are
defined by (3.21a).

The proofs of Lemmas 4,5,7,9 will be given at the end of this section.

Using Lemmas 4,5,8,9 we can complete the proof of Theorem 1.

The fact that the reconstruction procedure from the scattering data described in
Sect. 2 gives real smooth nonsingular potentials was proved in the previous papers.

Using (4.36),(4.47),(4.49),(4.43),(4.50),(4.34) we obtain the following esti-

mate on "™ (z,4) as 4 — oo,

k+1 M2
Ly = 1 ;f(2'> ar(ooy 1 PP Eun () 1

—M +2 )L

up—1(z) 1
4 +0<l7|—2)' (452)
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Here,

3 (v 1
Crr1(A,v) = M*‘f'() +0 (|7|7> . (4.53)

From (4.52),(2.5),(4.34) and Lemmas 6,8 it follows that

(2i)M+3 0Cms1,—1(v)
U(Z) = Z-M+3 ov

+ 2i<72uM,_ 1 (Z) + 5M (Z) 5 (454)

where 0y(z) € C}jﬁ;(]Rz\D), all the terms in (4.54) are from the functional class

C,(t;i;(llU\D). The function v(z) is smooth, so the statement 2 is proved.
From (4.1) and property 3) of the function (1) in the formulation of Theorem 1
it follows that
0;{‘8'}251,;(/1) e =0 for all n;,n; =2 0. (4.55)
Using (4.36),(4.47),(4.49), property e) of the function fy, (4.50),(4.55) and
Lemma 8 we see that

GV, =0 k=0, M (4.56)
and
p _ 4 Bunhy) )+ iy (2,2 457
1z M) jpyey = 14 — 2 (@A)t (= 4), (4.57)
where

un(z,2) € COLRA\D), iy (z,4) € COL(RP\D).
From (4.57) it follows that the function

Pz, 4) = 3V (z, 2) y (4.58)
£l=1
has asymptotics (4.5). Now using rather standard arguments we show that ¢(z, 1)
coincides with the physical solution ¢*(z, 1). Theorem 2 is proved.

The scheme of the proof of Lemma 4. We prove the estimate (4.18) only. The
estimate (4.22) follows directly from (4.18) and conditions 1),2),3) of Theorem 1.
The estimates (4.19),(4.21),(4.23) are rather simple.

For the sake of definiteness let us assume that m = n = 0. (The proof for general
m,n = 0 is very similar.)

The denominator in (4.17) can be transformed in the following way:

1 1 n-0

C=-nE-0)  C=DC-m@-D

_ 1 (1_1)(:7—4)
n—A\C—-2 (—n)@G-0

1 ﬂ—C)
-+ =) . 4.59
- {—=Aqg- 59

|
=
| | —
~
N
=
—_
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According to (4.59) we have

1Gnz) = n—iiulw,z) + h(in2)). (4.60)
where -
Rl T T
B HO) =0 sea
L = W) s de,
) f{(f—i)(ﬁ—C)e Lrdl;
where

iS(Lz) = (—i/20E +2/{ + Lz +2/0) .
Applying the formula (4.64) from the proof of Lemma 7 we get

I = nT’?)e‘iS(n,z) N e—iS(C,z)a— m
-z e (- e 2T

mr(4)e'S0-) ( n- z) St < n-— C) ( r(0) )
I, = — — -] + = = ) 07 = dC dC
’ (i/2)(z — 270y \TT— 4 fa[C—/l -0\ )z -7 R
(9

+
¢ Ay —-5T

) dirdl;,

ag<g:g> dlrdl; =ho+ 1+ 15y (4.61)

The following estimate is valid

const
Ih| + ol + [221] < ER (4.62)
where the constant depends only on b({).
It remains to estimate 53,
by = o ff( : : )F(c )dlrdl
= T - N,z s
2T L=t \L=a [—g) R

where

oy
F(C; 7[,2) — elS(LZ) IZIF(C) - (1/_, C_)z
(i/2)(z —z/E)y (M =0)
and F({,n,z) is a bounded rapidly decaying function of { uniformly in #,z. From
these properties of F it follows that
const [In(jn — AD |
|zl (1+|n—2AIn(ln —2])°

where the constant depends only on b({).
The estimate (4.18) for m = 0, n = 0 follows from (4.60)—(4.63).

|[22| <

(4.63)
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Proof of Lemma 7. Let us start from the following formula:

, S N=1 1\
01 (e F(4,2)) = — Z(—l) (a;o E) F(4,2)
y S: 5 -

/.

N
INENTE [e,s <a;oisi_> F(l,z)} . (4.64)

A

where

dCr dC’ (4.65)

(7' /)A) = ——fff(o

This formula is formal, in general, however if all functions (J; o ISL_)"'F (4z), k=

0,...,N are continuous in A and vanishes as 4 — oo sufficiently fast, then formula
(4.64) is an exact identity. Applying (4.64) to A4, * f(z,4) we get

A * f(z,4) = % exp [—f(iz +Jz +z/A+ z‘//i)]
(z—2/7) 2

z—z[

N—1 ' 2i k .
X AZ(—I)A dr0 ——— « (r(A)f(z,2)) + Ry(z, 1),
—
(4.66)

Ry(z,2) = (=1)"07" |exp [—%(iz_ + Az +z/i+ z'/i)]

N
2i [
x ( ’:2> « (r(2) (2 7))

z—z/A

_ _iNa;' exp [—é(zﬂ iz +z/2 +z‘/;i)]
—;

N
1 -
X<5z° _2> * (r(A)f(zA)| . (4.67)
1 — /7

N
The function <8;o I_'_’/ﬂ) x (r(A)f(z,4)) and all their derivatives are bounded

on the A-plane uniformly in z. Thus,

1
a’;lafza;'ra?RN(z,z) =0 (—) . |z| — oo for all ky,ky,n,ny = 0.

2|V ki —k2
(4.68)
It proves (4.31). Here we used the following property. Let ¢(z, 1) be an infinitely
smooth function of z,4, z+0 and all the derivatives 0:' 022 ¢(z, 1), ni,ny = 0 are
from the Schwartz class in 4. Then

MR 205" x @z, h) = 07 AN AR 0P x p(z,0) (4.69)

where 07" is defined by (4.65).
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To calculate (4.32) consider (4.66) as |A| — co. We see that nontrivial contri-
bution arises only from the term Ry(4,z),

a_i(z) = L (%) J [ exp [—%(lz'-l— Jz+z/A+7/2)
C

WN

N
x (azo l _2) « (r(A) f(z, )X ddgdly (4.70)
L — /1

N can be chosen arbitrary large. It proves the statement 2.
Assume that |4] = 1. Then
A, x f(z,2) = Ry(z, 1) “4.71)

for any N = 0. It proves the statement 3.
Applying 4. to the both sides of (4.66) we get

N—1 k _
A fad) = =07 {ru)# [ e <5z 0 }2) } . (r(/l)f(/l,Z))} + 0.
(4.72)
where w, R(v, A1) are defined by (4.34),
On(z,2) = 0} {r(/l) exp [%(Az + Az +z/A+ z‘/i] Ry (z, /1)} , (4.73)

Ry(z,4) is defined by (4.67). Let N > ky + k. Let us apply the operator D =
1928, 0% to (4.72). Using (4.68), (4.69) we get

) A i S A p—
DAZ x f(z,4) = =07 ¢ D* /(Z::O Rkl <8/10§) *x (r(1)f(4,z))

+ 3;' {D * (r()t)exp B(/{Z'+ Jz+z/) + Z'/Z} RN(z,/l)) } )
(4.74)

Taking into account (4.30) and the properties 1)-3) from Theorem 3 we obtain
that the k-term, 0 < k < N —1in (4.74) is O (m;'r,> as |z| — oo uniformly in

A. Combining it with (4.67) we complete the proof of the statement 4. Using that
the number N in (4.72),(4.74),(4.68) can be taken arbitrary we prove (4.33).

Proof of Lemma 9. Let us observe that functions %,(4,v), n =0,...,M satisfy
(4.39) if and only if these functions satisfy the following system;

06 m(2,v) = %r(l)@m(l,v), m=0,... .M
TN (4.75)
@m(l,v)= (8,;0§>@m_|(/1,v)—r(l)(gm_l(/l,v), m = 19"'M,
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where
Do(A,v) = —r(L), (4.76)
the functions %,,(4,v) are continuous in 4 for fixed v and
Cm(lv) =0 as 1 — oo. (4.77)

Let us observe also, that functions ¢, (1) satisfy (4.48) if and only if they satisfy
the following system:

Osem(2) = r(A)du(A), 2£0, m=0,....M 478)
dn(A) = 0:dp_1(A) = r(A)cm1(2), A%0, m=1,...M, '
where
do(2) = —r(2). (4.79)

The system (4.78) coincides with (3.5) but with a different starting function do(1)
instead of by(4).
Let us prove that functions c,(4) from (4.49), m = 0,...,M and functions

dp(3) = —msign(ii— 1)> oms(2) bi(4) (4.80)
k=0

solve (4.78). The direct calculation with help of (3.5) shows that

a,‘tcm()b) = —n'sgn()j - l)ia}t(amk(l)ak(z))
k=0

m

= —msgn(Ad — 1) o (2)3;ar(2)
k=0

= —7msgn(Ad — l)iamk(/’»)r(l) bk (1)
k=0

i“:;rk(}v)bk(;t)> =r(A)dn(2), (481)

=r(4) <—TC sgn(AL — 1)
k=0

05 d(2) = —msgn(2] — 1)5°05(am(2) bi(2)
k=0

= —msgn(4 — 1) [é(azam/{(i))bﬁ-(i) + I(Xm:amk(i)(bkﬂ(l) + r(i)ak(i))]
= =0

m

= —msgn(Ad— 1) [éanm,k(l)bk(i) - AZ Uk —1(4) bi(4)
(= (=1

+ iamk(l)bk+l(}‘) +r(i)§:dmk(}°)ak(;”):|

k=0 k=0
m+1

= —msgn(AL — 1) st 2 (4) bi(2)
k=0

n rm(—nsgn(ﬂ»ﬂ? - l)ia,,mak(x))
k=0

= dm1(2) + r(A)em(2) . (4.82)
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In these calculations and later we use the fact that the functions a;(4), bi(4), k =
0,...,M vanish on the unit circle |4| = | with all derivatives. (This property follows
from conditions 1), 3), 4) of Theorem 1.) Due to this property the functions c¢,(4)
defined by (4.49) and d,(4) defined by (4.80) are smooth in the neighborhood of
the unit circle |A| = 1.

Let us prove now that functions %,(4,v) defined by (4.47) and Z,(4,v)
defined by

Du(y) = R TurCiv) di(1) (4.83)
=0

satisfy (4.75).
The direct calculation with help of (4.78),(4.45) shows that

0;Cm(4,v) = 5;mek(ﬂ»,V)0k(/’~)

MET

fml»(/1 v)a iCk (’1)

=~
I

0

= 2 k(%) ()

3

R(/I )(ZR(} V)fmlx(/"’v)dl\(ﬂ))

(A
~ R(A,v)

=r(4)

Du(A,v), (4.84)

__—1— X . m
(a/l o R(_/l,v—))@m(/b, V) - ag;)fnl(l’v)dl(l)

- ém,v)fﬁ.,l(z,v)d,u) - I_i]fn,,_,u, Ddi(2)

! é}f V) din (@) + [_iof GV )r(Re(Z)

m+1

= ZR(/1 V) 104, V)dz(/t)+r(/’)(2fn/(/1 V)C/(A)>

= Dy 1(Av) + 1(2)E(2,V) . (4.85)

Using the estimates (4.44),(4.50),(3.4) it is easy to show that the function €,,(4,v),
Dw(A,v), m=0,...,M are bound in 4 and %,,(4,v) — 0 as 1 — co.
Lemma 9 is proved.

5. Two Uniqueness Theorems

Definition. A4 measurable potential v(z) will be called exponentially decreasing if
there exist « > 0 and f > 0 such that |v(x)| < pe=*M!.
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Theorem 3. Let the fixed energy scattering amplitude of two exponentially
decreasing potentials with the property (0.2) coincide and one of these poten-
tials possesses, in addition, the “small norm” property (0.5) at this fixed energy.
Then these two potentials coincide.

Corollary 3. There exist no nonzero two-dimensional exponentially decreasing real
non-singular potentials transparent at a fixed energy. (There is no “small norm”
assumption in Corollary 3).

Remark. The result of Theorem 3 improves the corresponding result from [9, 12].
The proof uses, in particular, the ideas from [27].

Proof of Theorem 3. We shall use (see [12,27]) the fact that for an exponentially
decreasing potential with property (0.2) each of functions a(4),b(4) in the domains
Dy and D_ can be written as a ratio of two real analytic functions; the Fredholm
determinant A(4) of Eq.(1.3) is real analytic in D; and D_ and all these three
functions are uniquely determined by the scattering amplitude at fixed energy. One
of the potentials satisfies the “small norm” assumption (0.5), thus A(4)=0 for all
AeDy,D_.

Thus for both potentials v,(z), v,(z) the corresponding functions u;(z, 4), pa(z, 1)
satisfy Egs. (1.19"), (1.20"), where p(4,A") is defined by (1.28). But one of the
potentials satisfies the “small norm” assumption (0.5) and it is shown in [12]
that Egs. (1.19"), (1.20") have unique solution, i.e. p;(z,4) = pa(z, A). Thus, v1(z) =
v2(2).

Theorem 4. Let the potential v(z) satisfy (0.2) and its forward scattering amplitude
f(k,k) is identically zero at an energy interval Eg, — 6 < k* < Egy + 6. Then
the potential v(z) is equal to zero identically. (In this theorem we do not use the
“small norm” assumption). This theorem and its proof given below are valid in any
dimension dim = 1,2,3....

Proof of Theorem 4. As a consequence of the unitarity property (1.29) of the
scattering operator we have the well known “optical theorem”

J fDf(kDdl. (52)

=k2

T
Im f(k, k) M,
From (5.2) it follows that Imf(k,k) =0 if and only if f(k,/)=0 for all /
such that /2 = k2. So, if at the energy level E the forward scattering amplitude
f(k,k) =0, k? = E, then the whole fixed-energy scattering amplitude f(k, 1), k* =
> = E is equal to zero. It is well known that the forward scattering amplitude
f(sy,s7), 7€ R2, |y =1, s € R, admit a meromorphic continuation in s to the
upper half plane. Thus, if the forward scattering amplitude is equal to zero on an
energy interval it is equal to zero for all energies. Thus, the whole scattering am-
plitude at all energies is equal to zero and as a consequence the potential v(z) is
identically zero.

Remark. The result of Theorem 4 is valid also for the equation
—AY — FPu(xw =k, xeRY d=1,23..., (5.3)

where u(x) is a real measurable function such that |u(x)| < g/(1 + |x|)¢** and for
the equation

Ay + (v(x) — Fu(x) Y =k, xeRY d=234,..., (54)
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where v(x), u(x) are real measurable functions such that

qi 92
(1 + |x|)d+”’ (1 + |xl)d+:: .
For Eq. (5.4) the result that both potentials v(x) and u(x) are equal identically to
zero if the scattering amplitude f(k,/)=0 for all K, /e R, d =2, k*=1%is a
corollary of results obtained in [25].

lo(x)| < |u(x)] <

6. Nonlinear Integrable Equations

In this section we discuss if the additional conditions on the scattering data studied
in Sect. 3.4 are invariant under deformations, generated by nonlinear equation (0.8)
and its higher analogs.

In terms of the scattering data these equations (Novikov—Veselov equations)
take the form

M:i<ﬂ+l+ ! +;}’+‘+L>bu,z),

o J21+1 Fan

YGED _, (Aﬂ“ T (%)ml) S A1),
1) _, (,12’“ by — (P (%)M) o0, 1,0,
Q”_i%"f) =i (AZ’“ + ,12}+1 — @y - (%)Ml) he(4,2,6)  (6.1)

(Eq. (0.8) corresponds to / = 1).

It is known that the symmetry conditions (1.25),(1.29),(1.24) (and, as a corol-
lary, (3.20)) are invariant under the flows (6.1). For the additional conditions from
Sect. 3 the situation is more interesting.

Theorem 5. (1) Let the scattering data b(2,t), f(4,2,t) satisfy (6.1), where
at t =0 b(4,0) € C§°°)(D_ ), f (A, A,0) € C®NT?) and b(1,0), f (1, 7,0) satisfy
(1.25), (1.29) and the first two additional conditions (3.11), (3.12) from Sect. 3
corresponding to M = 0. Then these conditions are fulfilled for all t.

(2) Let the scattering data b(2,t), f(4,A,t) satisfy (6.1) with 1 =1, where
at t =0 b(4,0) € CUD_), f(4,4,0) € C)(T?) and b(4,0), f(4,4,0) satisfy
(1.25), (1.29) and the first 4 additional conditions (3.11), (3.12) and (3.15), (3.16)
for n =0 (corresponding to M = 1). Then these conditions are fulfilled for all t if
and only if a; (00) = 0. (Let us recall that for the potential v(z) with the property

(0.2) a, (00) = 9(0), where 9( p) is the Fourier transform (3.34) of v(z).)
Proof of Theorem 5. Let || =1, ' = —A. Then

by (h1) = 027 i 0y (62)

ho (2 0) = 2F gy a0y (63)
and (3.11) is fulfilled identically for all ¢ if it is fulfilled for ¢ = 0.
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We have

ho (LA t)=h_(A1,0) for

A=1i=1,

b(A, 1)b(A,t) = b(4,0)b(4,0) for A€ D_ (6.4)
and (3.12) does not depend on ¢ and it is fulfilled identically for all ¢ if it is fulfilled
for t = 0. (The first part of Theorem 5 is proved.)

Thus, for a, (4,t) defined by (3.13) we have
ay (A4,t) = ay (4,0). (6.5)

From (3.13) using the symmetries h_(4,4) = h_(—4,—A4) (it is a consequence of
(1.30)) and (1.25) we get that

ay (= 1) =ay (A1). (6.6)

From (3.14) it follows that

—a — T, _ . T N
b| (/L,t)||).|:l = a;fb() (/Lt) - 7[70 (/v,t)ao (/]wt)
v |4]=1

s =2[+1 -
= 2 (2,0 + 21+ V(= 21y (A1),

(6.7)
(=i (il D)y, = 2 Oyh (A 2 0],
|2]=1 l]=1
= G g b (4,70
@1+ it = 2y (X0,
(6.8)

Comparing (6.7) and (6.8) and using the fact that (3.11) is fulfilled for all ¢
we get that if under conditions of the first part of Theorem 5 (3.15) with n =0 is
fulfilled for # = 0 then it is fulfilled for all .

From (3.5), (6.1), (6.5) it follows that

- - 2
%bo'(/l,t)bl‘(/l,t) - %bo‘(/{,z)@ by (Jn1) — %bg(z,t)bg(z,t)ag(z,t)

= —Q21+ it (}?’ - ) bo(4,0) bo(2,0) + 0za; (4,0)

J20+2
= 0sa; (,0) — (21 + 1)itd;A7 (), (6.9)

where

_ ) 1 —1
0547 (A) = <,12’ _ /12“2) dsay (4,0). (6.10)
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From (6.1) it follows that

Oyh_ (A, 2,t)

J21+2

=y (W 2,0) — 2L+ Dt (,12’— ! )h_(/l,/l’,O)‘ .
i1 =1
(6.11)

Let / =1. Using (6.9)—(6.11) we can transform the boundary value problem
(3.5a2),(3.4a—),(3.9a—) with m =1 to the following form:

3;47 (1) = (/12 - %) 0:a;(4,0), AeD_, (6.12)
- _ 2 _1_ /

A7 (M) = (i /14>h_(/1,/1,0)'|‘/}|_:4|, (6.13)

A7 (M) =0(1), 1 — 0. (6.14)

If b, (A1) is expressed via b(A,1),h_(4,4’,t) then this boundary value problem is
equivalent to (3.16), n = 0.
From (6.12), (6.14), (6.6) it follows that

1
47 () = (/12 - F) ay (1) = 2ay (00) + 9(A) (6.15)

for some () such that ¢(4) is a bounded holomorphic function on D.
Substituting (6.15) to (6.13) and using (3.4a) with m = 0 we get

1
(/12 — F) ay (00) + @(A) " =0. (6.16)
The problem of finding a bounded holomorphic function @(4) on D_ with the
boundary value (6.16) is solvable if and only if a; (co) = 0. Under these conditions
¢(A) = 0. So, under conditions of the second part of Theorem 5 the 4" additional
condition is fulfilled identically in ¢ if and only if a; (c0) = 0.
Theorem 5 is proved.
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