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Abstract: We describe the relation between three dimensional topological quan-
tum field theory and two dimensional conformal field theory. Some applications to
quantum knot invariants leading to the equivalence of Chern-Simons—-Witten and
Kohno’s approaches are outlined.
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1. Introduction

After Witten [Wit89] introduced his invariants for 3-manifolds much work has
been done on understanding them from the mathematical point of view. A coun-
terpart to the Feynmann path integral formalism in the Chern—Simons theory has
been given via quantum groups by Reshetikhin and Turaev [RT91]. The SU(2)-
theory has been extensively studied in [RT91, BHMV92,KM91, Koh92]. Recently
the quantum group construction of invariants has been extended to the simple Lie
groups in the series A,B,C,D by Turaev and Wenzl [TW93]. Several generaliza-
tions were given by Crane [Cra91] and Degiovanni [Deg92] which started from
Rational Conformal Field Theories (abbrev. RCFT) in dimension 2 and derived
Topological Quantum Field Theories (abbrev. TQFT) in dimension 2 + 1. Also
Kohno [Koh92] computed the mapping class group representation arising in the
SU(2)-WZW model and show how we can construct topological invariants from
this data, by pointing out that these ideas work more generally for any RCFT.
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The case of Z/kZ-fusion rules which turns out to be the same as the abelian
Witten’s theory, has been discussed in [Koh92], and from a different point of view
in [Deg90, Fun91, Fun93b, Goc92, MOO092]. In fact the Dijgraaf~Witten’s approach
([DW90]) in the case of abelian groups provides the same system of homotopy
invariants. The TQFT based on a finite group was completely described by Freed
and Quinn [FQ93].

In this paper we wish to give an axiomatic treatment of the topological invari-
ants. Our main result can be stated as follows (see for more precise statements
2.5,2.9,4.3):

Main Theorem 1.1. There is an equivalence between:

(i) multiplicative invariants for closed oriented 3-manifolds (rational and uni-
tary).

(ii) TQFT in dimension 3 (rational and unitary).

(iii) RCFT in dimension 2 (unitary).

Some of the implications were previously known:

(i) = (ii) is greatly inspired from [BHMV92] where the SU(2) case is treated.

(iii) = (ii) was sketched first by Kontsevich [Kon88] and by Crane [Cra91],
and detailed proofs in the case of the SU(2)-model were given by Walker [Wal92]
and Kohno [Koh92], and in whole generality by Degiovanni [Deg92] using surgery
presentations of 3-manifolds. Moreover in Witten’s approach his Chern—Simons
invariants are actually based on the WZW-model and he guesses that there is in
fact an equivalence between (ii) and (iii). A proof, more physical than mathe-
matically rigorous and using another definitions than us, was sketched in [LY90].
The definition we used for the RCFT is the combinatorial one due to Moore and
Seiberg [MS89], but its equivalence may be proved with the analytic formula-
tion proposed by Segal [Seg88] (from a mathematical viewpoint). The equivalence
between TQFTs and modular categories (weaker than our assumptions) was proved
by Lyubashenko [Mal94] and by Quinn ([Qui92]), and also by Turaev [Tur94).
Remark also that a result of Ocneanu [Ocn92] describes the RCFTs (and the TQFTs
arising from state sums over triangulations) in terms of systems of bimodules over
II; -factors.

The strategy of our proof goes as follows: in Sect.2 we introduce the ten-
sor representations of mapping class groups. It turns out that all multiplicative
invariants of closed 3-manifolds come from such representations and furthermore
extend canonically to TQFTs. Thereafter if we restrict to the finite dimensional
case we outline in Sect.3 a splitting procedure which permits to decompose
the target spaces of tensor representations according to the sewing rules of con-
formal blocks. Next we extend these representations to the duality groupoid in
Sect. 4 and explain why the representations split in some pieces of data cor-
responding to the RCFTs as axiomatized by Moore and Seiberg. We shall use
here the completeness theorem ([MS89], Appendix A) and their reduction of the
Frenkel-Shenker flat bundles to a system of matrices. In Sect. 5 we get back the
TQFT from the RCFT in case of cobordisms along the ideas outlined by Crane
[Crad1].

To a colored framed link K — S we can furthermore associate a topological
invariant in two ways:

(i) looking at the manifold with boundary S* — T'(K'), where T(K) is a tubular
neighborhood of K and compute the TQFT associated, and
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(i1) writing K as Artin’s closure of some braid and solving inductively the
crossing singularities arising in its plane picture by means of a state sum based on
the braiding matrices of the RCFT (as is done for example in [Deg92)).

Our next theorem states that the two ways give the same invariants for links
(see for a more precise statement Theorem 6.3). We derive:

Corollary 1.2. 4 TQFT is uniquely determined by the matrices S, T (corresponding
to the monodromy in genus 1) and the braiding matrices B (corresponding to the
monodromy on the punctured sphere).

We give an immediate application on Witten’s theory in the SU(2)-case. We
shall make a distinction between the WZW-invariant Iyzy constructed in a rig-
orous manner by Kohno [Koh92] (using mapping class group representations and
Heegaard splittings) and the Chern—-Simons—Witten invariants whose definition we
outline briefly below in an algebro-geometric context, following Witten [Wit89]. He
associates vector spaces W(X,, k) to every Riemann surface of genus g obtained
from the quantization of M(Z,) the space of representations of m;(Z,) into the
gauge group G (modulo conjugation). If G = SU(n) then a theorem of Narasimhan—
Seshadri identifies M(X,) with the moduli space of rank » semi-stable holomorphic
vector bundles of degree 0 over 2. The Picard group Pic(M(2,)) = Z is generated
by an ample line bundle L and W (X, k) = H'(M(Z,),L®*) becomes the fibers of
a projectively flat hermitian vector bundle over the Teichmuller space, by using
the HADW-connection defined in [Hit90, ADW91]. It follows that the monodromy
representation p: .4, — PU(W(2,,k)) of the mapping class group determines the
TQFT. Actually Witten defined the invariants by means of the path integral, but the
axiomatic behind it implies that whenever the functional integration exists it must
be equal to

Iesw(M?) = ¢~ {p(@)wy, Wy) ,

where M3 = T, U, T, is a Heegaard splitting of the 3-manifold into two handlebod-
ies glued together via the homeomorphism ¢ (whose class in .#, we denoted also
by @), w, € W(2,,k) is some weight vector p(/%;)-invariant and c is a normal-
ization constant. If framings are taken into account then a correction term must be
added since the representation p is a projective one. Therefore, away from its orig-
inal definition, the CSW-invariant is described by the above stated formula which
is still valid for any solvable model.

The identification of W(X,, k) with the space of conformal blocks in the Wess—
Zumino Witten model of RCFT (see [Koh92,MS89]) was recently obtained (see
[BL93,Ber92, Fal94, KNR94]). To our knowledge nobody has computed the mon-
odromy representation p and verified that it agrees with the natural representation
coming from the WZW-model (based on the same gauge group). This has been done
in the simplest setting for the abelian case G = U(1) in [Fun91, Fun93, Goc92] in
the case when no punctures occur on the surface X, or else in a simplified model
for a general gauge group G, which we called semi-abelian, in [Fun93d, Fun93b].
We state:

Theorem 1.3. The CSW-invariant is well-defined and coincides with the WZW-
invariant (as defined by Kohno starting from the WZW-model) in the case when
the gauge group is SU(2).
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Proof. We use the degeneration theorem of Daskalopoulos and Wentworth [DW93]
for a family of Riemann surfaces. Their statement may be reformulated as a splitting
formula:

W(Zg.k) = DW (2 k)r ® W(Zg—n k) -

This formula allows us to identify the vector w, as the image of ®W(Zy,k)o,
corresponding to the degeneration of a Riemann surface into a union of projective
lines. It suffices now to compare the matrices S, T, B. The monodromy of 1-loop
functions was computed by Jeffrey via invariant theta functions (see [Jef92]) and
the matrices S and T are the same in the CSW and WZW approaches. Next the
braiding matrices were computed by Kohno in the WZW-model (see [Koh92]) and
by Tsuchyia and Kanie [TK88] for the monodromy of the Kniznik—Zamolodchkikov
connection (which is the analog of the HADW connection) and they coincide. Using
the corollary our claim follows. [

Remark that in the SU(2) case Piunikhin [Piu93] proved that the WZW-invariant
and the invariant defined by Reshetikhin and Turaev [RT91] starting from the quan-
tum SU(2) coincide also. This way we may speak about the (quantum) SU(2)
invariant which does not depend on the various ways we used for its construction.
It seems that this assertion is valid for all gauge groups G (see [TW93, AC92] for
a definition in the case of quasi-quantum groups associated to Lie groups in the
series A,B,C,D).

Observe that our main theorem expresses in fact a certain homogeneity for the
representations of mapping class groups which are yielding to topological invariants.

This completes the axiomatic approach of Wenzl [Wen93] which expressed an
arbitrary multiplicative invariant of a 3-manifold obtained by Dehn surgery on a
link, as the thermodynamic limit of the associated invariant for cablings of the link.
The masterpieces of his construction are the Markov traces on ribbon links. In some
sense our corollary is equivalent to his statement.

In the appendix we discuss the simplest examples of RCFTs which we called
abelian. There the monodromy representations factor through the symplectic group.

This is part of author’s Ph.D. thesis at Univ. Paris-Sud and some of the results
have been announced in [Fun94]. I am indebted to my thesis advisor V. Poenaru,
to P. Vogel, V. Turaev, G. Masbaum, L. Guillou, C. Lescop, V. Sergiescu,
F. Constantinescu and the referee for their careful reading of the different versions
of this paper, for their suggestions and corrections which considerably improved its
accuracy.

2. Multiplicative Invariants for Closed 3-Manifolds

We shall consider in this paper only the case of orientable 3-manifolds. We choose
an oriented Heegaard splitting of the closed 3-manifold M = H, U, H, into two
genus g handlebodies, where ¢ € Homeo(Z,) states for the gluing homeomorphism
and X, is the surface of genus g. The Reidemester—Singer stabilization theorem
([Sie80]) states that the homeomorphism type of M is uniquely determined by the

Heegaard splitting modulo the following (elementary) operations:

1. replacing an Heegaard splitting by an isomorphic one,
2. taking the connected sum with the standard Heegaard splitting of the sphere
S3 into two genus one handlebodies.
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So two 3-manifolds are homeomorphic iff any two Heegaard splittings of them
are stably isomorphic. But the Heegaard splitting consists in the data (g, @), where
@ € My is the class of ¢ in the mapping class group of X;. We wish first to
translate the Reidemester—Singer criterion into a purely algebraic one.

Remark firstly that ¢ is not uniquely defined. In fact different identifications
of 0H, with the genus g surface X, may give distinct classes in .#,. On the
other hand .#, itself is Out*(m Z,) and there are as many self-identifications as
generator systems for m;X,. All these choices correspond to the first type operation:
two Heegaard splittings determined by the pairs (g, ¢) and (g, ¢’) are isomorphic if
and only if ¢’ = cqod, where c,d € ./, where ./ is the subgroup of .#, of the
classes of homeomorphisms y: X, — 2, which extend to homeomorphisms of the
handlebody Hj. A system of generators for .4 was given by Suzuki in [Suz77].

We wish now to obtain the algebraic counterpart of the connected sum of
Heegaard splittings. The interesting feature of the tower of groups .#, is that no
group homeomorphisms .#, X My — M4y, actually exist away from the trivial
one (as was pointed out to me by F. Laudenbach). Nevertheless we dispose of a
multivalued mapping

Giﬂg X My — J%g+h,

which makes the following diagram commutative:

Mgy X My
®
Ty l LR RN
/%g X My < J%g_,_/,,

where we denoted by ./#,; the mapping class group of the genus g surface with a
disk removed, m, is the usual projection and ® is the group morphism induced by
composition of homeomorphisms. Specifically

o(x,y)={a®b;ac ng_’(x),b en (3} C Myin-
We can identify .#, with SL(2,Z). Then the standard Heegaard decomposition of
the sphere S3 has the gluing morphism 7 = {? —Ol} , up to right and left multipli-

cation by an element from
M =SLH2,Z) = {[(1) ’f] e Z} C SL(2,Z).

Set now M(¢) = H,;U, H, for ¢ € #,. We can rephrase the Reidemester—
Singer criterion as follows:

Proposition 2.1. The manifolds M(@) and M(¢’) are homeomorphic if and only
if @, 0" € Mo =UysoMy are equivalent under the equivalence relation generated
by the following elementary moves:

1. @ ~cod, for o € Myc,d e M,
2.9~ forany ¢ € My € (9, 7) C Mgy .

It should be interesting if we can replace ¢ by an univalent mapping such that
the conclusion of the proposition remains valid. If we should look only at the
homological information carried by ¢ (i.e. we consider its image in the symplectic
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group Sp(2g,7)), then a similar question would have an affirmative answer (see
[Fun91, Fun93c, Fun93b, Fun93d}).

Consider K a field and Fg the K-algebra of (3-manifold) invariants, i.e. the set
of graded functions f, : .#. — K, which fulfill

folexd) = fy(x), for all x € My,c,d € M), gEN,

for1(x") = fy(x), for all x € My, X' € a(x,7).
We shall say that a set of invariants R C S is complete if the following condition:

@1 = @y if and only if f.(p1) = fu(@y) forall fL €R
holds.

Proposition 2.2. If K is infinite then the whole K-algebra of invariants g is
complete.

Proof. Consider the (1) map x — o(x,t) which enables us to identify .#, with a
subset of .#,.1. This map induces another map between cosets

MNAM ) MY — M

y+l\%!l+1/%;+l .

Then the set of (closed oriented) 3-manifolds (modulo a homeomorphism) may be
identified with the direct limit of the system

Manif = lim_, ]\ M o) M} .

But M \M /M has cardinal at most Ry hence Manif is countable. Thus the
direct limit will admit an injective map into K, from which we can recover an
universal invariant, and we are done. [J

This says that theoretically there is an universal invariant which classifies
3-manifolds, but we don’t know if it is algorithmically computable.
We call f. € Jk a multiplicative invariant if the following condition is fulfilled

Sorn(2) = fo(x) fu(y) forallx € 4y, y€ My z€a(x,y).
The 3-manifold invariant associated to f, is obviously given by
FM(@)) = fylp), if @ € M,.
Then f. is a multiplicative invariant iff
J(MEN) = f(M)f(N)
holds for all closed manifolds M, N, where # denotes the connected sum of the
manifolds. We denote by .##k the set of multiplicative invariants.

Proposition 2.3. For an infinite K the set M Sy is a complete set of invariants.

Proof. Set P, = {¢ € M, such that M(¢) is prime}. The set P, has not a sub-
group structure. Let x € o(Py, #1), so x € a(y, ), and M(x) = M(y)#M(4). Sup-
pose x € P,yy. If we agree that S will be not prime then A = t. Therefore if A is
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not equivalent to 7 then the map a(x,4): Py — .# 44 has image disjoint from P, ;.
Now the direct limit
PManif = tim_, M \Py/ .M}

may be injectively mapped into K. This gives us a collection of maps f,: Py — K
fulfilling the conditions stated in Proposition 2.1, and which classifies prime
3-manifolds. Using the multiplicativity one may extend it to all 3-manifolds. Now a
well-known theorem of Milnor (see [Hem?76]) asserts the uniqueness of the decom-
position of 3-manifolds into prime manifolds (modulo connected sums with S?),
and we are done. [J

From now on we shall consider K = C, and that the multiplicative invariants
are sensitive to the change of orientation, i.e.

(M) = f(M).

M being the manifold M with opposite orientation, and the bar on the right hand
being the complex conjugation. We may restrict again, without loss of generality
to the study of these multiplicative invariants.

We define next the hermitian tensor representations (abbrev. h.t.r.) of .#,: con-
sider an indexed family of complex vector spaces W, endowed with non-degenerate
hermitian forms ( - ). Set

UW,) = {4 € GL(W,) : (Ax,Ay) = (x, y) for all x,y € W,}.
We assume that W, has a tensor structure, i.e. a multiplication map
®: Wy x Wy — Wypy,
which is compatible with the hermitian structures, hence
xex,y®y)=xnK,y), ifxxeW, y yecW,.
We have a family of (“unitary”) group representations
pg: My — UWy)

such that
(Pgn(c)x ® ¥),x" @ y') = (pga)x,x") (pn(b)y, ¥')

for all x,x' € Wy, y, y' € Wy, and a € My, b € My, and ¢ € o(a,b) C My
The h.t.r. is a weight h.t.r. (or a h.t.r. of (A, #})) if we have a weight vector
wy € W, in every level g satisfying

Wyih = Wy @ Wy .
py(c)(wy) = w,, for all c € 4},

and
d = (w1, p1(1)(w1)) #0.

Denote by WHTR the set of weight h.t.r. of .#,.. We associate to every element
(p«, W) € WHTR a function f, = f(p., W.) by the formula:

fo(x) =d 9 (pg(x)wg, w,) if x € .M,.
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Proposition 2.4. The functions f(p., W.) define a multiplicative C-invariant.

Proof. Let a,b € M. Then

folaxb) = d ™9 (py(axb)wy, Wy) = d 9 (p,(ax)w,, w,) .

since py(b)w, = w,. Also

pg(a)(C<W9>L) = C<Wg>l

holds from the unitarity condition. Therefore f,(axb) = f4(x).
Further we have

Forn(@) = d™ M0 n(@)Wosns Woin) = d 9 pgn(2)wy @ Wi, W, ® W)
= fox)fu(»)

for all z € o(x, y). But f1(t) = 1, hence f,11(x ® 1) = f4(x). The unitarity implies
now that f, is sensitive to the orientation, which ends the proof. [J

We obtained a map f: WHTR — .#.4c. We can state now the main result of
this section:

Theorem 2.5. The map [ is surjective hence any multiplicative C-invariant (always
sensitive to the orientation) arise from a weight hermitian tensor representation.

Proof. Consider the set of (compact orientable) 3-manifolds with marked boundary:

MB, = {(M, ¢): M is a 3-manifold with boundary and ¢ : IM — Z,
is an orientation preserving homeomorphism}/modulo homeomorphisms
compatible with the markings ¢’s on the boundary.

Here X, denotes the standard genus g surface. More precisely 2, is a tubular
neighborhood of the graph shown in Fig. 1, hence it inherits a natural cut system
Co«, it bounds the standard handlebody H, and there are two disks 5;, 0, embedded
in X, (see Fig.2). There is a canonical way to fix the marking ¢ in terms of a
combinatorial data on 0M. We choose a cut system c. on 0M having the dual
graph I" isomorphic to the dual graph of ¢y .. We can see the graph I" as the spine
of the surface dM. A framing of the graph I' will be an embedding into oM. We
suppose that the intersection of the framing with each trinion is the neighborhood
of a vertex in the graph (a star configuration). The surface with the cut system and
the framing of the dual graph satisfying the above written condition will be called
a rigid surface. The reason is very simple: once we have two rigid surfaces with
an identification of the dual graphs there is an unique homeomorphism y (up to an
isotopy) between the rigid surfaces extending the combinatorial isomorphism at the
graph level. In fact if a trinion is cut along the framing we obtain a disk (whose
homeomorphisms are all isotopic) which implies our claim. So instead of marking
the boundary we can add a rigid structure on the boundary. This will be useful in
the further sections.

Consider now F, a non-trivial multiplicative invariant. There is a induced map

BY):C(MB,) x C(MB,) — C
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-O0—CO—C—

Fig. 1. The spine of the standard Hj.

Fig. 2. The standard 2.

defined on generators by

B (M, 0), (N, ) = F(M Ui N)

where the manifold on the right is obtained by gluing the boundaries according to

the prescribed homeomorphism. Then B;?)(x, y)= Bg)(x, y), where the bar denotes
the complex conjugation of the coordinates (in the canonical basis) is a hermitian
bilinear form on the huge space C(MB,). Set

W) = C(MB,)/ket B .

Now we may assume that (M, @)= (M, ), where the first bar is the complex
conjugation on coordinates (the complex structure), and the second denotes the
reversal of the orientation. This may be achieved by passing to a quotient which

we shall call ;. Next B}z) induce a hermitian form
Bp:Wyx Wy, — C.
We have a mapping p,: .#, — GL(W,) given by
Pg(¥)IM, @] = [M,X¢]

where [, ] denotes the class of the corresponding element in W, and X € Homeo(Z,,
53,59_) is an arbitrary lift of x € /.

Lemma 2.6. The mapping p, is a well-defined group representation.

Proof. 1t suffices to prove that whenever & € Homeo(Z,,d,,0, ) is isotopic to iden-
tity on 2, (by an isotopy not necessarily trivial on the two disks) the following
identity [M, ¢] = [M, he] holds in W,. Let k; be an isotopy with Ay = 4 and h; = id.
Consider the pseudo-isotopy

H:0M x [0,1] — oM x [0, 1]
given by H(x,1) = (¢~ "k @(x), 1).
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We identify 0M x [0, 1] with a collar ¥V of 0M in M. Define further ¢: M — M
by

Hix) ifxeV
o0 ={
X elsewhere
Then ¢ is a homeomorphism of M and the following diagram is commutative:
M D oM 0
0l o'l LN\
M > M " (2,6%9,8;),

which implies that [M, @] = [M, h¢] getting our claim. Finally every x € .#, has
a lift X € Homeo(Z), which may be isotoped on X, to X € Homeo(Zy,0"g,9; ).

Since the connected component of the identity, Homeo®(Z,), acts trivially on W, it
follows that p, is a representation of .#,. [

It is clear that p,(x) is an isometry with respect to the bilinear form Br. We shall
define now the tensor structure on W,. Let [M, ¢] € W, and [N,y] € W,,. Consider
the tubular neighborhoods (see Fig. 3) in M and N which satisfy:

Vo - 141 - Vv cM

~ | o~ | =~ |
—15t 1 1
e~ (65)x [0,3] C oM x[0,5] C oM x[0,1]

and respectively

To C T, C T CN
[~ > | =
YU, ) x [0,5] C© ONx[0,3] C ONx[0,1]

o Mx{1}
o Mx{1/2}

o Mx{0}

Fig. 3. The tubular neighborhoods Vy, V1, V>.
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We construct the 3-manifold

X =M—int(Vy) |J N—in(Ty),

il

RN
which has the boundary

X = oM — int(”'(67)) U ON —int(p~"(3;)).

<‘-<p*l<o; N/ ‘(o‘; )

Now we have an homeomorphism

X s, im0y | Du—int(3) = S

ANt Ny
Coy ~(()h

of 0X in the standard surface of genus g + /# by simply taking the connected sum
of the homeomorphism ¢ and ¥ (on the respective subsets). The uniqueness of the
tubular neighborhood implies that (X, p#) € MB, does not depend on the various
choices we made but only on (M, ¢) and (N, ). We put therefore

M, @] @ [N.y] = [X, 0],

which may be extended to a tensor structure on W, by linearity. Suppose now
that for another two elements (M’,¢") € MB,,(N', /) € MB), the same construc-
tion yields the marked manifold (X', ¢'#y') € MB,.;. Then we have an homeo-
morphism between the closed 3-manifolds X U, sq(pr5yy-1 X' and M U1 M'#N
Uy —1N'. Since F is a multiplicative invariant we derive the compatibility of the

tensor structure on W, and the bilinear forms Bp.
Set now w, = [H,,id] € W,. We show that w, is the weight vector. Obviously
Wi = Wy © wy. Let @ € Homeo(X,,0;,0, ) representing a class in .7 . Then
pya)[Hy,id]) = [Hy,a]
and )
Br([Hy, id],[M]) = F(Hy Uy M),
Br([Hy,al,[M,]) = F(Hy Uyy—1 M).

But a extends to a homeomorphism A4: H, — H,. Therefore we have an homeo-
morphism between H, U, M and H,U,, 1 M obtained by gluing 4 and id, and
taking a quotient. This gives F(H, U, M) = F(H,U,, -+ M). Since By is non-
degenerate we derive [H,, 1] = [H,,a], hence w, is p (.4 )-invariant. Now

F(M(9)) = Br([Hy. @], [E, 1]) = (py(@Iwy, W) .

Since f is non-trivial and multiplicative F(S*) = 1 so d = 1. This ends the proof
of our theorem. [J

Consider now the set of cobordisms M with boundary éM = o\M U ¢, M, where
we suppose for simplicity that 0;M are connected. Denote

MBy, 4, = {(M, 01, 02),¢0,:0; — Zé,,}/modulo

homeomorphisms compatible with the markings ¢, .



416
We have a multilinear mapping induced by the invariant F
up: C(MB,) x C(MB, ;) x C(MB;,) — C
defined on the generators by
wp (M, ), (N, @1, 92), (P, Y1) = F(M U, oy NU o1 P).
Suppose that [M;, ¢] = [M,,{/]. Then
F(M; U1 Q) = F(M; Uyo—1 Q)
for any (Q,0) € MB,. So u}. induces a map
up: C(MBgy) — Wy @ Wy .

L. Funar

We can identify W, and its dual W, by means of the form Br, so we think of up

as having an image in Hom(W,, W;). We have also a twist composition
ﬂh X C<MBg,h> X C(MBh,k> — C(MBg,k>
extending linearly the composition

((pa(Mal//blpZ)a(Na#bﬂZ))—_)(MU "lN,l//b”Z)'

vaou

We denote & = (M, Y1, yn), & = (N, pi, 4) and their twist composition by &; X, &;.
Observe that ur has a simple expression as element of Hom(W,, W)), given by

ur (€00, 61) = [ Uy M| -
We have also a twisted version of the composition of morphisms:
My x Hom(Wy, Wy) x Hom(Wp, W) — Hom(Wy, Wy),

given by
(¢,a,0) — bxya=bopyp)oa.

Proposition 2.7. We have up(& x4 &) = up(&1) X4 up(&2).
Proof. Consider (Q,0) arbitrary. Then

up(&1 %p&)(10.01) = |Q Upyor M Uy 1 Vo]

and

ur(£1) X pup(E2X1Q,0) = ur(E2) © pa(@) ([ Upyr Mo
=up(&2) 0 ([Q Uour! M,W2¢]>

- [Q Ue‘//]—l M U'/’Z‘P"x_l N,/Jz]

and we are done. [

Remark 2.8. We observe that when we write the morphism ur the dependence on
F is not explicit. In fact from W, and p, we recover all the information on F. In
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the same manner we can get a functor from the category of all cobordisms (so with
not necessarily connected boundaries) into the category of hermitian vector spaces.
This is usually called a topological quantum field theory TQFT (in dimension 2 + 1)
([Ati89, Wit89]).

Corollary 2.9. i) Any multiplicative invariant extends canonically to a TQFT.
ii) The invariants coming from TQFTs form a complete set of invariants.

Remark that the computation of the TQFT extending an invariant is not always
obvious. An example is given in [Fun93c]. The general case will be discussed in
Sect. 5, once we obtain the structure of a WTHR, following the same pattern.

We can make further some easy simplifications. First we consider the orbit of

the weight vector Oy = py(M ,(w,)) and set W, = Span(O,) C W,.

Lemma 2.10. p, restricts to a tensor representation on W,.

Proof. 1t suffices to prove that W, has a tensor structure, so
Wy & Wy C Wypn.
Let us consider
x = Daipy(gwy € Wy and v =5 bipy(giwy € Whyaisbi € C.
Then we can write

X®y = ab,py(gi)w, ® pr(g;)wh.
ij

Now
py(x)wy = [Hy,x] and  pu(y)wp = [Hy, ¥]

for two lifts X, y in the appropriated homeomorphisms groups. The construction of
the tensor structure enables us to obtain

pg(xIwy ® on(yIwy = [Hy+h,fﬂ:)~’] = Pg+h(f#}~))wg+h s
from which we derive our claim. [

Thus we may restrict ourselves to the case when W, is spanned by O, since
f(pxs W) = f(ps, Wy). In this case the h.t.r. will be called a cyclic h.t.r.

We shall make some remarks concerning the irreducibility of h.t.r. The tensor
subspace H. C W, is an invariant tensor subspace if H, is an invariant subspace of
W, for all g and H; ® H, C Hyyy (it is a tensor vector subspace). If equality holds
above we say that H, is fully invariant. An h.tr. is (weakly) irreducible if it does
not contain proper fully invariant tensor subspaces. Set

H ={z €Wy (x,V)=0 forall v € Hy}.

Suppose we have a cyclic but not irreducible h.tr. and H, is an invariant tensor
subspace. Set

i Hy — Z, = Hy/H, N H-

myHt — Vy = H"[Hy N Hy-
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for the cononical projections. We shall decompose
wy =z, + v, with z) € H,,vj € H,".

This decomposition is not necessarily unique. We have induced hermitian forms
(+) on Z; and ¥,. Since p, is unitary we find that H,;- is an invariant subspace,
henceforth Hy N H;" is also invariant. Thus we have two induced representations of
Mg into U(Z,) and U(Vy) respectively. Set z; = m1(z,) and vy = my(v}). Since the
h.tr. is cyclic the vectors z,,v, are nonzero.

Proposition 2.11. Suppose that H, is a fully invariant tensor subspace. Then the
induced representations py 7z and p,y are in WHTR, with weight vectors zq4 and v,
respectively. The associated invariants satisfy

f(p*> W*) = f(p*,Z’Z*) +f(p*,V> V*) .

Proof. Take a € .M. Then py(a)w, = w,, hence
py(@)zy —2'g = py(v)) — v'g € Hy N H," .

Therefore py(a)zy = z,4, py(a)vy, = v, Now we claim that Hl is a tensor vector
space with the induced structure. In fact x € H, y € H;* implies (x ® y,z) =0
for all z € Hy® Hy = Hyj. Thus x® y € Hgﬁ_h. This implies that H, N H;" is a
tensor (vector) subspace, hence ¥, and Z; will be tensor vector spaces. The com-
patibility between the hermitian and the tensor structures is immediate. Finally

{Pg(x)(wg),Wy) = (pg(x)zy),2'g) + (py(x)(¥)), V')

= (pg(x)(24),Zg) + (Pg(x)(09),Ty) »

and this ends the proof of the proposition. [J

Remark 2.12. In the case when the hermitian form ( - ) is positive we may complete
W, to a tensor structure of Hilbert spaces. This will be called the geometric (or
unitary) situation. Then H, r‘ngl = ¢ and we find that we have an induced h.t.r.
on H, for any invariant (not necessary fully invariant) tensor subspace H..

3. Geometric Representations of the Mapping Class Group

We shall restrict now to the geometric situations, and also, we assume that the
representations p, are finite dimensional. The invariants which will be derived are
called rational.

Let us consider ¢, = {c1,¢2,...,c35-3} be a cut system (see [HT82]) on X,. The
Dehn twists around the curves in the cut system generate an abelian subgroup VA
of M 4. Now we know that a finite family of pairwise commuting unitary operators
on W, could be simultaneously diagonalized. We shall carry out this diagonalization
procedure in all genera by taking into account the tensor structure of W,. Then the
decomposition of ¥, into the sum of eigenspaces of a fixed operator will be iterated
and we shall obtain the sewing rules of conformal blocks in a RCFT.
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We wish to derive firstly a comparison result for the blocks W, in different
genera. Consider some curve c lying in the cut system ¢, on X ..

We suppose that ¢ is a separating curve so Xy, —c = 21 U Xy, Set M yp(c)
for the subgroup of .# ., generated by the homeomorphisms ¢ having the property
that ¢(c) is isotopic to c. We put then

Wyinpno = Span(pg+h(x)wg+h;x € %g+h(0)> .

Let d. denote the Dehn twist around ¢ and ¢ = pys(d.). We consider the
eigenspaces of #., namely

Wg—l-h]/". = (x S Wg+h;tcx = /bC) .

Remark that all these subspaces are C[.#,; ® .#);]-modules. In fact .#,; ®
Mpy C My 1s a subgroup contained in the centralizer of d. so

tePgn(WWgih = Pgin(UdIWyin = Apgrn(U)IWgin

for all u € .4,y ® M1, having the property that pys(u)wysn € Wyip;. The algebra
Cltlyy @ Mpyy] is an integral domain hence W,y ;, for A#1 splits into simple
modules:

Woini = @Wyini »
1

where Wy ;;,; are simple cyclic C[.# 41 & M ;]-modules. When 4 = 1 we observe
that Wy p10 C Wypp1 and the above decomposition takes the form

Wornit = Wainn o@Woen,i -
1

Here W, 410 is not necessary simple but all the rest are simple cyclic C[.#,, ®
M 1]-modules. Consider now

Wy = Span{pgn(z)Wyin;z € a(My, 1) = Mgy @ 1 C Myip)
Wiy = Span{pyn(2)Wyin;z € a(1, M) =1 Q@ Mgy C Myip) -
We have natural isomorphisms W, ~ W, and W, >~ W), given respectively by
x—x®w, and x — w;Qx.

Denote for instance by & the tensor structure on W, which a priori has nothing to
do with the natural tensor product of vector spaces.

Lemma 3.1. The natural map

0: Wg“ ® W;,“ ~ Wg & Wthg+hll,O

is an isomorphism.

Proof. Since Wy 410 is a cyclic C[.4) ® My ]-module, w, @wy = Wy4n, and
O(Wy1 ® W) is also a C[M gy @ My ]-module it follows that 0 is onto. It remains
to prove that 6 is injective. Consider

z =) a;z®t, € ker(0),
iLj
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where z; = pgin(0(xi, 1))Wgin and t; = pgin(a(1, y;)IWgin, With x; € My, y, € M.
We can compute now

0(z) = Zpg+h(0(xi,yj'))wg+h =0.
i
Therefore
<0(Z)’u ®U> = 0
holds for all u € W; and v € W,. This implies that

>-aij(pg(xi)wg, ) (pn(y; )W, v) = 0
i

for all u and v. Since the hermitian product (,) is non-degenerate we derive a,; = 0
hence z = 0 and our claim follows. [

As a consequence we derive that the map & : W, ® W), — W,y is injective
hence
dim(Wyq4) > dim(W,)dim(Wy,) .

Suppose now that (A,i)=(1,0). We consider the generators wyis(c;4,i) for the
ClM 4y @ My, ]-modules Wy p,,. We set

Zy15i = Span(pgn(2)wyii(c; A i)z € o( My, 1)) .

Zy)3,i = Span{pgsn(z)Wgin(c; A, i),z € o(1, M g)) .

In an obvious manner Z;; is a C[.#,;]-module which decompose further into
simple (and cyclic) C[.#,]-modules:

st
Zypi = 2 Wonij»
j=1
and in a similar manner
s~ ()
Znjii = 2 Winij >
j=1
We wish to construct a natural mapping
Or sk Wi ® Whpiie = Wornpii

similar to 0. We choose the generators w;+h(c; A, i, j) for the cyclic C[.4,;]-
modules Wy; ; ; and the generators W a(C5 4, i, k) for the C[.# 1, ]-modules Wy, ; ;-
Observe that w;+h(c; Aody )Wy (€5 A i k) € Wyppys Consider z=x®1 € My ®
| CMyspand t =10y € 1R My C Mgpn. We set

01k (Pgn(2IW, (¢35 2 1, 1) @ Pgrn(tIW, (63 458, K)) = pgin(x ® YIWgin(cs 4, 1),

which extends by linearity to W, ;; ® Wy, ;«. This map is well-defined. Indeed
suppose that

Uy = Zaupg+h(zu )W;_h(c; A j)=0.
u
Since w;r+h(c; A i, j) € Wyin,i we find that

Pg+h(s)vo =0
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for all s € My1 @ Mp,. But such s and z commute with each other. On the other
hand the module L defined by

0 C L = Span(pgn(M g1 @ Mui)w, (6320 7)) C Wyiniii s
is a nontrivial C[.#,; ® .#};]-module so we derive

L=W, g+hiia -
Thus wyn(c; A, i) € L so

Yo aupyin(zu)Wein(c; A, i) =0,

u
which implies 0; ; x(vo ® w) = 0 for all w so 0; ;; is well-defined. The same argu-
ment based on simplicity implies that 0; ; is onto.

Lemma 3.2. The map 0, ; is injective.

Proof. Consider sy = Zu’vaquu ® Y, € ker(0;, x), where
X = pgrn(z)wy (e 20, 1)
Yo = pgin(t)wyy(c; 4, 1 k)

are chosen so that {X,;u} and {Y,;v} are bases of Wy, ; and W}, respectively.
We suppose that a,, are not all zero and let

L = Span(X,;u is such that a,,+0 for some v) .

Therefore py4(t)so =0 for all £ € #,) ® 1 hence 0 C L C Wy, ; is a nontrivial
C[.# 4,]-module. The simplicity hypothesis implies that L = W, ; ;. Therefore we
have some unitary matrices L, acting on W, ; ; such that:

i) For any X € Wy, ; ; the elements {L,(X);u} form a basis of W,
i) We have 3, auwLu(X)® ¥, = 0 for all X.

gliij o

A similar reasoning on the Y,’s yields the existence of the unitary matrices S,
satisfying the analog of condition (i) and

S Ly @ Sy (X ® Y) =0
up

for all X, Y. But the matrices {L, ® S,;u,v} are linearly independent in End(#,

gl
® Whisik) 80 @y = 0. Thus our claim follows. [J

As an immediate consequence the spaces W; ;, for arbitrary j are all isomor-
phic. Let us denote by W,; , this isomorphism class if (4, 7)#(1,0) and Wy o = W,
elsewhere. The above two lemmas permit to conclude

Proposition 3.3. To a separating curve c in the cut system there is associated the
Sfollowing splitting of the target space of an unitary weight h.t.r.

J+h @W|/1®Wh|/1'
(1)
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—— | [ >

Fig.4. An extended cut system.

It is clear that for a non-separating curve c the space W, splits into the eigenspaces
of ¢, which are also C[.#,,]-modules. We consider

Wg+1|1;1 = (x € Wg+1;tex = x> ’

where e is the edge associated to the non-separating curve c¢. Denote also by
Syv1 = Span(pg1(AM g2 @ VYwyi1) C Wopi -

Both Sy, and Wi, are C[.#,;]-modules. Now the tensor product with w
establishes an isomorphism between W, and S;,, which will be useful further.
So we obtained upon now some natural inclusions

Wy @ Wi — Wyinjio = Wysn

and
Wy — Sg+l = Wy

depending on the choice of some curve in the cut system. On the other hand we
have the splitting of the block W, according to Proposition 3.3. There is an obvious
one in the non-separating case. We wish to iterate this procedure until all the curves
of the cut system are cut off.

A cut system c, defines a dual 3-valent graph I' of genus g which is usually
called by physicists a ¢>-diagram. Its vertices are in one-to-one correspondence with
the connected components of 2, —c; Ucy U...Uc3,—3, which are all isomorphic
to a sphere with 3 holes (g > 1). Two vertices are adjacent if the boundaries
of the closures of the corresponding components contain the same curve c,. It is
convenient to enlarge the notion of cut system such that the case g =1 fits also
in this description. An extended cut system c, = {ci,¢2,...,¢39-3424} (on Zy) is
given by a collection {c3g—244,C3g—144,--.,C3g—3+4} Of h disjoint embedded circles
in 2, which bound the 2-disks 61,6,,...,0, C 2, together with the cut system
on the A-holed surface X,, = X, — UL ,5;. The associated graph I' = I'(c.) has
2g — 2 + h vertices of valence 3 and 4 vertices of valence 1 which we call leaves.
Let V(I') denote the set of 3-valent vertices of I', 0I" be the set of leaves, E(I") be
the set of edges and F(I") be the subset of edges incident to the leaves. The graph
I' is planar. Once we have chosen an orientation of the plane, say the clockwise
one, we have a cyclic order on the set of edges incident to a vertex. If v € V' (I")
let {e;(v),e2(v),e3(v)} be the set of the edges incident to v which are clockwise
ordered. We shall write e also for the curve of the cut system associated to the
edge e when no confusion arises.
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Define
Z(F, U,(i[,il,l})) = <x’ tei(“)x = A‘ix> C Wg ‘

Further the choice of some v € V(I') determines an embedding 23(v) C 2,
hence a morphism #q3 ~ .#o3 ® 1 — M4, (which is an injection if the vertex is
3-valent) corresponding to take the connected sum with the identity outside X 3(v).
This induces on Z(I',v, (A1, 42, 43)) a structure of a C[.#(3]-module since any ¢ €
Moz ® 1 commutes with de,().

We deduce a splitting

Z(I,v,(41, 42, 43)) = DW(I,v, (41, 22, 3))(/)
]

into simple and cyclic C[.#(3]-modules, each of them generated by some
w(I', v, (A1, 42, 43))(j) € W,. This means that

W(I,v, (A1, 22, 23))(J) = Span(py(Mo3)W(I,v, (A1, 42, 23))())) -
On the other hand suppose that a labeling /: E(I') — C is chosen. It will be always
supposed that /(F(I')) = 1. We set
Wy(l) = (x;tex = l(e)x;e € E(I')) C W,
for the eigenspace corresponding to /. It follows that W (/) is a C[.# o3 Q@ Mo3 @
-+ ® Mo3]-module. This structure is induced from the map
Moz Q@ Moz ® - Q Moz — My

which represents the connected sum of homeomorphisms defined on the various
components X3 using the graph I'. Therefore W,(/) splits into simple and cyclic

submodules
Wy(1) = @W,(DG)
J
which are respectively generated by w(/, ). Set also

W)= & W(T,uv,(l(er(v)), lex(v)), Ue3(v)))(v) -

veV(I)
We claim that we have an isomorphism of C[.#(3 ® #o3 @ --- @ M 3]-modules

i b
given by ® 3 ainpyxiw(I, v, (I(er(1)), lea(v)), 1es(2)))in)

- E ( H ai;s) pg(xill D Xiyg ® -+ ®x,,,,,)w(l,j) >
' seV(I)
where r is the cardinal of V(I"). The fact that this application is well-defined follows
as in Lemma 3.2. Also as a morphism between simple modules it is an isomorphism.
We derive that W(I',v(41,42,43))(j) are isomorphic for all j. W,(I/)(j) are also
isomorphic for all j, and we denote by W(I',v,(1,42,43)) and respectively by
W(I',1) these isomorphism classes.
Set

L= {4 € C"; such that A or 7! is an eigenvalue for some ¢,,e € E(I')} .

Then we may restrict ourselves to the set of labelings % taking values in L.
We obtained the following splitting

s(l)
W= DD & W(I,v,(ler(v)),l(exv)), l(e3(v))))

I€Lj=1veV ()
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T

g+1

Fig.5. The inclusion I'y C I'yy;.

into the primary blocks W(I',v,(41,42,43)). A priori these primary blocks may
depend upon the extended cut system c,, the choice of v € I' and of the ordered
set e;(v),ex(v), e3(v).

Extension Lemma 3.4. The primary blocks do not depend upon the extension ¢,
of the cut system c,.

Proof. This is clear since ¢; are bounding for i > 3g -3 sot, =1. O

First Stabilization Lemma 3.5. Assume that there is only one vector w; € W
which is SL*(2,Z)-invariant. Consider c. 4, C X4 and c, 411 C Zyp1 having the
properties:

1. if we identify iy as Z,4S' x S' then ¢, 415, = Cayg -
2. If I'y and T'yyy are the dual graphs then these are positioned as in Fig. 5.
Letve I'y C I'yyy.

Therefore we have an isomorphism
W(I'g,0,(A1,72,73)) = W(Lg41,0,(A1, 42, 43)) .

Proof. We choose the labels of the additional edges to be 1. These outer labels are
irrelevant in the definition of W (I'y,v,(A1,42,43)). We claim that

Wy(l) ~ Wy (1),

where /' is the extension of the labeling / by 1. Consider that e is the new separating
edge (see Fig. 5). Then we have

Wori(I') = (x € Wypyi5t7x = I'(f)x for all f+e)

= (x € Wypostrx = 1’(f)x>@o<x € Wosnpstr(x) =1I'(f)x) .
J>
Further we know from Lemma 3.1. that the first space decompose as a tensor
product

.
(x € Wypapos tyx = () = (x € Wstpx = I(fx) @ WH 7).

On the other hand each space from the second term decompose also in a tensor
product according to Proposition 3.3.

(x e Wypp ntpx =1(f)x) = (x € Wypj3t5(x) = I(f)x) ® (x € Wy j5t.x =x)
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g2

g+1

Fig.6. The inclusion I'y C I'y4;.

where a is the meridian of the torus. We know that W, = @®;>0#y;; and the
assumption of lemma implies

(xe Wy itax=x)=0if j > 0.
This will establish our claim. But now we find that
Z(ng v, (;‘-1712, ;"3)) = Z(Fg+l,va (/11,/12, /13))

as C[.#3]-modules so the lemma follows. [

Second Stabilization Lemma 3.6. Assume that there is only one vector w; € W,
which is SL* (2, Z)-invariant. Consider ¢ 42 C 247 and ¢y g1 C Zgiq having the
properties:

L. if we identify Xgi1 as T4S' x [0,1] then c, g1z, = Cxg2 -

2.0f Ty, and I'yyy are the dual graphs then these are positioned as in Fig. 6.
Let ve I'yy CT'yyy and suppose the leaves of I'yy are labeled by 1. Consider
a simple path p in Iy, between the endpoints of the new attached edge e
and a vertex v not incident to the path p. Therefore we have an isomorphism
W([‘g’z,v, (}"l’)"Z, j'3 )) = W(ry—#l’U’(}VI,)“Z,)B))'

Proof. We use the same method as above but we look this time at the non-separating
curve corresponding to the edge e. We shall use now only the labelings / which
take the value 1 on the edges of the path p, and denote by /' the extension by 1
on e. We claim that

Wg(l) >~ Wg+l(l/)

holds. Remark that
Waii(I') = Wyiipna N (x € Wypistpx = 1(f)x) .

and
Woriin O Sgar -

Then we have an isomorphism
Sgr1N(x € Wypistex = 1(f)x) = Wy(l) .

coming from the identification of S,y and W,. Consider the circuit p Ue which
from the geometric viewpoint represents a great (holed) torus which is attached to
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a surface of genus /# with s holes for obtaining the surface of genus g + 1. Remark
that this torus is attached in s places depending on the combinatorics of the path p
(see Fig. 7).

Now a decomposition principle holds also in the non-separating case as
VV;H—I[!:] = Sg+1 S I/Vg,r )

where Wy, are isomorphic simple C[.#,,]-submodules of W,. The great torus has
the attaching edges f1, f2,..., fs all labeled by 1. We wish now to change the
splitting procedure as follows: we cut first all the edges f1, f2,..., fs and in final
the edge e. This does not matter for the primary blocks we considered. The first
s — 1 edges now are non-separating and the last one is separating. A recurrence on
s permits to obtain

(x€Wypistrx=xsi=1s—1) =Wy oy & Wy_gi1;r,
where W,_s.1, are simple cyclic C[.# 41 s]-submodules of W,_;. But the last
move will separate the genus g + l-surface into a genus g — s surface with s holes
and the great torus. Following the Extension Lemma the space associated to this

torus does not depend upon the number of leaves, being in fact isomorphic to W;.
We have according to the splitting principle

xeWpntyx=xi=18) =W, ;@ W ® Wy_g, @ Wy, ,

hence
(x € Wypistpx =x5i = 1,5 and fx = x)

~ SL*(2,Z) SLT(2,2)
> Wys @W, O Wy @ W1|1,/ :
As in the previous lemma we conclude that

(xeWyntpx=xsi=1,s and tex =x) >~ Wy_; .

This implies our claim and we are done. [J

Fig.7. The attached great torus.
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Homogeneity Lemma 3.7. Let o € Aut(I') be a combinatorial isomorphism pre-
serving the cyclic order on edges incident to a vertex. Then

W(I',v,(A,42,23)) = W(I,a(v),(L1,22,43))
holds.

Proof. Any such ¢ admits a lift ¢ € Homeo(Z,c,). Therefore p,(¢) induces the
wanted isomorphism. [J

Lemma 3.8. The primary blocks do not depend upon the choice of the vertex
vel.

Proof. We claim that for every pair of vertices v,v, € I’ we may use extensions
and stabilizations of I' C I'" such that the images of vy and v, become equivalent
under Aut(I""). Then the homogeneity lemma will conclude.

Also it suffices to check our claim for pairs of adjacent vertices by using a
recurrence on the length of the shortest path between them (I” is arcwise connected).

We may enlarge the stabilization procedure to include also the transformation
from Fig. 8. The conclusion of the stabilization lemmas remains valid for this type
of transformations on the cut system level because we may use a recurrence. Here
A and B stands for 3-valent graphs eventually with leaves.

Now the general situation of v; and v, in I' is depicted in Fig. 9, where some
of the graphs 4,B,...,H may be void and B,D,G,E may be disconnected. We
stabilize this graph using the pattern from Fig. 10.

Now v; and v, are equivalent under the rotation of angle n of the plane. [J

So we can drop the index v from the indices of a primary block.

Lemma 3.9. The cyclic permutations on the labels don’t change the isomorphism
class of primary blocks.

Proof. We use the same method as above. The general position of a 3-valent vertex
in I' is described in Fig. 11. We stabilize I' as in Fig. 12. Then we may perform the
cyclic permutations of the edges ey, e, e3 using the automorphism of the stabilized
graph. The homogeneity lemma proves our claim. [J

Lemma 3.10. The label set L and the spaces W(I',(1,2,73)) do not depend on
the cut system.

Fig.8. The stabilization procedure.
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Fig. 10. The stabilized graph.

Fig.11. The position of a vertex.

Fig. 12. The stabilized graph.
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-5

Fig. 13. The C operation.

L-ES

Fig. 14. The F operation.

Aq 2z
Aq Ay
w .
—> B
As Ay
As A

Fig. 15. The move F on the graph level.

Proof. A theorem of Hatcher and Thurston ([HT82]) states that two cut systems ¢
and c,; on a surface are obtained one from the other by a sequence of operations C
and F and their inverses. The operations C and F are described in Figs. 13 and 14.

The move C does not affect the graph I" and replace « by fi. Now the following
relation

afo = Pafp

holds in .#, ;. Therefore f = afa(af)~! is conjugate to o so the eigenvalues of ¢,
and #p coincide. Further the map

pe(tatp @ 1) W', (41, 42, 23)) — W(CT, (21, 42, 73))

is an isomorphism if the vertex v considered is incident to o in I'.

The move F changes the graph according to picture 15.

Consider now ; the class of the homeomorphism which interchanges e,
and e;+; in the mapping class group .#(4. It is well-known that w;,i =1,2,3 and
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te;; i =1,2,3,4 generate .#o4. We have further

o=l —1.2
ley =15, 1,10,
1, —1.2
ley =115 10,

SO f, = t;‘tqwla)ztc](co)wz)_‘. We wish to realize the primary block W(I', (A,
A3, 1)) in both labeled graphs I and FI'. So in the two labeled graphs from picture
16 we must find a pair of vertices having the same circular labels. From the pre-
vious two lemmas it suffices to check only one case, namely pu = Ay, u’ = A3. Thus
W= /11"[/13/4. So from the relation f.,x = px we shall derive .,p (w12 ® 1)x =
W pg(wiw, ® 1)x. Hence the map py(wyw; @ 1) gives an isomorphism between the
primary blocks W(I',(41,42,43)) and W(FT,(4, A2, A43)) corresponding to the fixed
vertices. This proves also that the label set is invariant. [J

As an immediate consequence of these lemmas we derive

Theorem 3.11. Assume that the cyclic vector generating the h.t.r. is the unique
vector SL*(2,Z)-invariant in genus g = 1. Then the target spaces of a cyclic
geometric h.t.r. of M. have the following decomposition:

i s(1)
W2 @® @ @ Wller), l(er), l(e3))

I€¥ j=1 veV(I)
into primary blocks W (i, j, k).

Remark now that the tensor structure W, ® Wy — W, is given by the usual
tensor product of vector spaces according to Lemma 3.1. Now once we have chosen
an embedding of graphs I'y U I’y < I'y; we have a corresponding multiplication
rule for labelings ¥, x &), — £ 444 by extending the product labeling by 1 on the
new edge and preserving the labels of an edge after we introduced a new vertex
on it (so defining two adjacent edges). This induces the tensor structure on the
decomposed blocks in an obvious manner.

Remark 3.12. In the infinite dimensional unitary context the h.tr. of .#Z. into
U(W,) has a Hilbert completion to a h.t.r. into U(W,). Then the set of labels may
be infinite and the direct sum replaced by an integral but the same decomposition
principle holds for the completed blocks. The proof is essentially the same.

Observe finally that we have chosen an orientation of each circle of the cut
system, without any restriction because we must distinguish between ¢, and #,!.
The change of the orientation of a curve corresponds to change the eigenvalue A
into } But we may restrict to some almost canonical choices. We look at the
standard surface of genus g without the two disks bounded by J,J," as being an
oriented cobordism between the two circles. Each trinion lying will be therefore
an oriented cobordism between its positive boundary and its negative boundary.
Suppose we have 2 circles labeled j and k in the positive boundary and one circle
labeled by i as the negative boundary. Therefore we specify in the primary block

associated to the vertex-trinion W(i,j,k) by putting the indices differently as Vlek
So we shall encounter 4 types of (oriented) primary blocks W7, Wi, ., WY, Wes ey
which are all isomorphic. But when we write the decomposition of the block W,
this notational convention specifies the orientation of all circles in the cut system.
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Fig.16. Another stabilization.

Lemma 3.13. We have the symmetries
W'~ Wk, ,
-1
W;k o~ W;‘, .

Proof. The proof is similar to that of the invariance of the primary blocks to cyclic
permutations. Specifically we stabilize the graph from Fig. 11 to arrive at the graph
depicted in Fig. 16. In the first case, when the edges e; and e, correspond to oriented
circles lying on the positive boundary of the trinion. We can interchange e; and
e, using a homeomorphism ¢ € Homeo(Zy,c,) preserving the orientation. In the
second case the homeomorphism ¢ interchanges e; and e, !, hence the change of
the labeling. [

This permits to start with a cut system and to obtain the decomposition specifying
the orientation of each circle.

4. The Structure of Rational Geometric Invariants

Our aim now is to get a similar decomposition for the representation p, which
follows the decomposition of target spaces.

We shall consider a groupoid which is closely related to the mapping class
group having a tensor structure itself, and which is called the Teichmuller groupoid
in [Dri91] or the duality groupoid in physical literature [MS89]. If T, denotes the
Teichmuller space [Abi77, Gro84] then .#, acts properly discontinuous on T, and
the quotient .#, = T,/.#, is the moduli space of genus g non-singular algebraic
curves. Due to the presence of curves with automorphisms M, is not smooth but a
V-manifold (see [Sat75, Wol83]) or a Q-manifold [Mat72, Mum74] The set of its
non-singular points M, is an open manifold, and we shall consider its (fundamental)
path groupoid IT;(M;"). This is the duality groupoid D,. It will become clear that
it has a tensor structure when we derive another description of D,.

We remember that an alternative description of M, is as the moduh space of
hyperbolic structures on X, (or conformal structures). For ¢ € ¢, we set [(¢) for the
hyperbolic length of the geodesm lying in the isotopy class of ¢, for an hyperbolic
structure on X,. But now the hyperbolic trinions up to conformal or anticonformal
equivalence are determined by the lengths of boundary circles (which we suppose to
be geodesic). Consider now the geodesic connecting two boundary circles and which
are orthogonal to them. Fix the order of the loops in the cut system. There are two
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orthogonal geodesics which intersect a boundary circle c¢. Set A/ for the oriented-
distance between their endpoints and consider the angles 0(c) = Arcsin(4 1/ 1(c)) €
[0,27). Now the (3g —3) pairs (I(c),0(c)) give a function f,,:T, — R¥73 x
(81?73 1t is a result of Bers which says that f., is a Z* 3-covering and the
Galois group is the subgroup of .#,, generated by the Dehn twists around the cut
circles. These are the so-called Fenchel-Nielsen coordinates on Teichmuller space;
notice they are real analytic coordinates (see [Abi77]).

To an unitary representation p,:.#, — U(W,) there is associated an holomor-
phic flat hermitian and .#-invariant vector bundle over T, such that the mon-
odromy of the mapping class group is precisely p,. Further this bundle descends
to a flat holomorphic V-bundle E, on M,. Equivalently the pull-back of E, on a
smooth finite covering of M, is a flat holomorphic bundle. Such a smooth cov-
ering is well-known to be the moduli space of algebraic curves with a level /
structure.

Now there is a canonical identification of W, with the space of flat sec-
tions of the V-bundle E, |y,. The set f..'((0, £)*** x (0, n)*~?)) is a disjoint
union of contractible open sets in 7, (for little &) on which 7373 acts freely.
The flat and .#4-invariant sections over one such contractible set U, may be
analytically continued at all of 7, (modulo the path groupoid action). The mon-
odromy representation we get this way is nothing but the initial p, from the begin-
ning. Taking another cut system ¢, or another coordinate chart, (i.e. we consider
f;‘(l_[jzl’3g_3(lj, [; +e)x Hj:l,3g—3(vj’ v; + m))). We shall get a matrix which
relates the two basis of flat sections .#,-invariant obtained by analytic continua-
tion. Therefore we have a representation of the groupoid G, acting on the set of
cut systems, so in particular on labeled 3-valent graphs (with leaves). In our case
the particular labelings are the Fenchel-Nielsen coordinates and some extra mark-
ing from the identification of Z**~3 as a subgroup of M 4. We can get a covering
for T, by taking a sufficiently large family of points (/;, v;). Now we project on
M, and we find that we can extract an open covering with contractible sets of
M;* — {a neighborhood of the variety of singular points}. Since the path groupoid
is a homotopy invariant and the singular locus is triangulable we derive G, ~ D,.
Hence we may describe D, by looking only at its action on labeled 3-valent graphs.
It is a result of Moore and Seiberg [MS89] (which in particular settles a question
raised by Grothendieck) which asserts that D, is generated by finitely many moves
and relations among them. Specifically the five duality moves can be described
geometrically as in Pictures 17-21. There is another operation called braiding which
can be described as the composition of F and 2 moves (see Picture 22) or alterna-
tively, by a change in the pants decomposition (the cut system is changed but the
dual graph remains the same), as in Picture 23.

The fact that these five moves suffice to generate D, is easy to prove: in fact S
and F act transitively on the set of 3-valent graphs (with a fixed number of leaves)
with fixed labels. T ensures the Z*9~> marking, and Q, @ acts transitively on the
set of Fenchel-Nielsen labels.

Another way to look at these moves is the following: observe that S and T are
classes in .#;,1, Q2 and O are lying in .# 3 and F € .# 4. The original statement
of the Grothendieck conjecture states that .#; i, .#, 3, #o 4 generate the whole
tower of groups .#. .. What it means to generate is clear: to every decomposition
of a h-holed surface X, , into pieces homeomorphic to a 1-holed torus, a trinion or
a 4-holed sphere we get a subgroup of .#, ; by gluing the homeomorphisms defined
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Fig.17. T = Dehn twist around «.

Fig. 18. S corresponding to the C-move on cut systems.

Fig. 19. Q interchanges two boundary circles.

)

Fig.20. O interchanges two boundary circles differently oriented.

on each piece. When we carry out this procedure for all possible decompositions
we obtain a family of subgroups which together generate .4, ;.

Proposition 4.1. The representation p. extends naturally to a h.t.r. of the whole
duality groupoid D,.
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=

Fig.21. F coming from the F move on cut systems.

Fig.22. The braiding move B.

gy S>waS
—>
> D N -
Fig. 23. Changing the cut system for braiding.

We have seen that p, extends naturally to a representation of D,. Consider X
a 1-holed torus embedded in X;. Then there exists a cut system c, on X, containing
the boundary of X ;. Actually when looking at ¥, as being identified to i, (%)
we see that .#, 1 ® 1 C ., acts only on the primary blocks corresponding to the
vertex associated to 2 ;. So we have a family of transformations

SG): DWW — B jEL,

TQG): @W;z —@W;.jeL,

which together give a representation of .4, for each j. But the map T(j) acts
by multiplication by i on W;'l-, hence T(j) = T is a diagonal matrix which does not
depend upon the external index j. A priori all these representations depend upon
the choice of the particular embedding of the 1-holed torus in X,. Fortunately this

is not the case due to

Lemma 4.2. The primary blocks W (i, j, k) are C[.#,3]-modules, not only vector
spaces, which depend only on the labels not on the particular choices we made in
the previous section.
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Proof. All the isomorphism we get in Lemmas 3.1-3.9 are module isomor-
phisms.

Since M\, — My,3 we derive that S(j) and T are independent on the particular
embedding chosen.
For the moves © and 2 we obtain in the same manner the family of isomor-
phisms ' _ o .
Qu(=): Wi — Wi, Qu(+) = Qu(—)",

. . —1 . .
O (=) Wy — VV;;-I: O (+) = O%(—)".
Geometrically these arise as follows: we identify the trinion with a domain in the
plane D — Dy U D,, where D; C D are equal 2-disks. Consider another disk Dy C D
containing D; and an homeomorphism of D which is identity outside Dy, and the
rotation by n which interchanges the disks D; and D, on a smaller disk contained
in D().

This time it is not a representation of .#, 3 which is obtained but of an object
related to it. Let ¢: {1, 2, 3} — Z/2Z be the signature of the boundary where the
circle numbered j =1, 2,3 lies on. Here we adopt the previous convention by
looking at the 3-holed sphere as to an oriented cobordism. A homeomorphism 4 of
20,3 which preserves globally the boundary (but not necessarily pointwise) induces
a permutation of the boundary circles leading to another marking 4*(¢) € (Z/2Z.)°.
We consider the triples (¢, h(modulo isotopy), h*(¢)). Their set is the mapping class
groupoid .# 3(2) of the 2-colored (or oriented) 3-holed sphere. In the same manner
the mapping class groupoid of c-colored A-holed surface of genus g could be defined.
So actually the mappings @ and Q (together with S and T') define a representation
of this groupoid .# 3(2). Again this structure is uniquely defined from the previous
considerations and Lemma 3.13.

Finally the move F (called also the fusion move) define the isomorphisms

i ,
Fli ] emeow—emon.
rel seL

Its action is induced from that of ¢, t,,. But w; are both lying in a .#, 3-factor
(for two different cut systems). So each of them is canonically defined henceforth
the mappings ' do not depend on the particular 4-holed sphere used. Otherwise it
is simple to check that the spaces on which F acts are .#( 4-modules intrinsically
defined.

On the other hand these isomorphisms must define a representation of the map-
ping class group. Using the identities from [MS89] we derive that the following
conditions must be verified:

F(Qe)® DHF = (1@ Qe))F(1 ® Qe)), (O
FFpFos = PuFisFy,, 2)
§*(j) = POL(-), 3)
iel
SHTSG) =T~ 'S(HT!, (4)

S NFA®O(=)O+)F YS'e1)=FPF'(1®Q(-)) (5)
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with the usual convention: F,; acts on the i and j” factors of a tensor product,
and P;, interchanges these factors.

But once these conditions are satisfied we know from [MS89] that the five
moves define a representation of whole duality groupoid D, which respect to the
tensor structure. [J

Several comments are necessary now. We know that the h.t.r. admits also a
weight vector wy, which is uniquely defined by the weight condition at level 1. We
say that the vacuum is irreducible if this condition is fulfilled in each genus. We
have the splitting

s(1)
Wy~ @ @WTy 1),

1eZ j=1

where we denoted

Wy, 1) = e(%g()r)W(Fg, v, l(e1), l(ez), I(e3)) .

Since w; is uniquely determined we derive
W) ~ Cwy
and w; = wy ® wy. In particular
wy =W e Wl @ @ Wl = W(T, 1),

where we used for I', the simplest 3-valent graph of genus g with 2 leaves. Above
1 stands for the labeling identical 1. In particular if the vacuum is irreducible it
follows that s(1) = 1. Because the theory is a cyclic one generated by w, and the
representation of D, is defined on the primary blocks directly (and not on sums of
primary blocks) we obtain s(/) = 1 for all labelings /. So the splitting principles
has the canonical form

W~ @ Q W(ler), l(er), l(e3)).

leLvely

We use now this expression to compute W; in the case of two graphs which may
be seen in Fig.24. Suppose all the representations p, are finite dimensional and
denote by n, = dim W, and n', = dimcV}. It follows ny = Y-, nf, = 3, (n},)*.
Therefore '

Wll j ~ 6,'}(: 5

where J,; states for the Kronecker symbol.

Fig.24. Two graphs of genus 1.



Topological and Conformal Field Theory 437

Remark also that w, = w(z)g is in fact a weight vector for our representation.
For the group of Dehn twists around curves which bound in the handlebody this is
already clear. But from the description given by Suzuki (see also [Cra91, Koh92])
we derive that wy is in fact ./ -invariant.

As a notational convenience we denote by exp(2m\/—14;) the eigenvalue cor-
responding to j, this time j being a natural number. This is possible since all the
matrices are unitary.

Using the relations in .#, 3 we derive that Q(¢)? can be expressed in terms of
the Dehn twists around the boundary circles as

Q- =t"n4.

This implies that
Q;k(—~)2 = exp(2n\/:T(A, + Ak - Ai))lnik )
. J
04 (=) = exp2ny/~1(4; + A — AJ))ln;k )

where 1, stands for the identity matrix of rank #. From the geometric interpretation
we shall have natural identifications of the bases on the spaces Wfk’ W, and W,’J‘:
which we call o1,, 013 and 0,3 respectively. These will produce a representation of
the symmetric group S3 and we are able to get the following form for the matrices

Q and @ (in this bases):
(=) = exp(nv —1(4; + Ak — 4))(04,015a) »
@;k(—) = exp(n v —I(Al + Ak - Al))(aa,o'lg,a) B

where the indices @ run in a basis for W};.

Now from this data we can recover the representation p, as follows: Suppose
we take I'y be again the simplest 3-valent graph with 2-leaves (see Fig. 25). Then
W, is identified with

1
oW, i1

nn

R - ® WJ”" ® Wf"l,

k) igly ig

We consider as generators of the mapping class group the Dehn twists around the
curves {ai,..., %, Bi,..., Py, 62} as in Picture 26 (see [MS89, Bir74]). Then

pylay) =T,", (6)

poa) =T, (B, Lir i ki k1B [kzlz—l e ] )T,
o -1 ) —1 I I
—FJI—I {kl_] kl] T//—IFjl—l [kl kl—l]

pg(B1) = Ti, Sk, i1, J)Tk, (7)
pe(62) =T . (8)

for [ > 1.
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OO0

Fig. 25. The graph I',.

Fig. 26. Generators for ./ .

Above we used the braiding matrix B given by
B=F1(1®Q(-))F.

Also the indices on the linear transformations tell us on which of the subspaces it
acts on. Remark that what we have obtained as data for the h.tr. is exactly the
axiomatic definition of a unitary RCFT (see [MS89, Deg92]) having the central
charge ¢ = O(modulo 24). This is due to the fact that we have a representation of
the mapping class group not one of a central extension of it.

Theorem 4.3. A geometric h.t.r. of M. with irreducible vacuum is equivalent to
a RCFT of central charge 0 (modulo 24).

We suppose from now on that we are working with rational unitary invariants
given by a h.t.r. with irreducible vacuum so the theorem above applies.

5. Reconstruction of the TQFT for Cobordisms

We obtained in the previous section the combinatorial data of a RCFT having the
central charge ¢ = O(modulo 24). This allowed us to reobtain the initial representa-
tion p, in terms of (F, S, T, 2, ®). Our invariant is therefore given by the formula

F(M(@)) = d™%(py(@)wg, Wg) »

where
d=2S80).

We wish to obtain a similar description for the TQFT extending the invariant
F. We start with an oriented cobordism M? having the positive boundary 0, M>
and the negative boundary d_M>. We have an analog of the Heegaard splitting for
cobordisms by using instead of handlebodies the compression bodies (see [Cra9l]).
A compression body C may be obtained as follows: consider ci, ¢,...,¢s C 2y
disjointly embedded circles (which we suppose to be pairwise non-isotopic) which
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bound in H,. Then consider
Cy =2, x [0, 17U 2-handles attached on cy, cs,...,c; .
A general compression body has the form
C = C; U 3-handles,

permitting thus capping off the S?> components of the boundary. We assume that

0,C = 2%,. Now a Heegaard splitting of M is a decomposition into compression
bodies

M3 - C+ U a 5
where the boundaries are identified as
0_C, ~0_M?,

a_C_ >~ 6+-61__ >~ 6+M3 .

The compression bodies C; and C_ are glued together along their boundary com-
ponents 0, C and 0_C_ ~ 0, C_ using some homeomorphism of X, whose class
in the mapping class group is ¢. In order to find F(M?>) it suffices to know the
value of invariants on compression bodies (see [Ati89]).

We construct first the functor F on surfaces. Set

F(X4) = W, with its hermitian structure,
F(X,) = W if the orientation changes,

F(¢)=C.

Further for a disjoint union of surfaces we have

F (iL:rJlZg) = gF(Zg,).
Next we have the morphisms
F(Cy): F(0,Cy) = F(0-Cy) = F(0-M?),
F(C-): F(0-Cy) — F(0+Cy).

The second morphism is the transposed of F(C_). Using Proposition 2.7 we derive
that
F(M*) = F(Cy) o py(p)oF(C-).
On the other hand F is defined for cobordisms with marked boundaries, i.e. some
fixed homeomorphisms
e o M — Uz, ,

o_0_M> — UZs, ,
i

Suppose we choose once and for all the cut systems ¢? C Z,. For the compres-
sion body C we have 0,C = X, 0_C ~ U; 2}, where ) h; = g — 5. Once we have
chosen a cut system y; C 0. C we have the natural marking

P’ 0,C— Z,.
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Let I'" be the dual graph of y,. The surface X, could be identified with the boundary
of a tubular neighborhood of the 3-valent graph I" embedded trivially into R3. Since
the graph is actually planar the blackboard framing f provides the surface of a rigid
structure. Then @°(y}) is the homeomorphism of 24 respecting the rigid structure.
A similar canonical marking may be defined on 0_C if a cut system y, and a
framing are chosen. Set I't, '™ for the corresponding dual graphs of y} and y;
respectively. We may suppose, for simplicity, that _C is connected so it is a
surface of genus 4 = g —s. We start with the (eventually extended) cut system
yx« C 2, which contains the attaching circles of the 2-handles, hence y, = ¢; for
i =1, s. Each curve ¢; has a natural framing given by ¢; x [—¢, ¢] C 2,. For small
¢ these tubular neighborhoods remain disjoint. Consider

S s
X=%,—Uc x[-&eUdyUds,

1=1 =1

where d;; are 2-disks (disjointly embedded in H,) bounding ¢; x {—&}, and respec-
tively d;; are 2-disks capping off ¢; x {¢}. Therefore

X =Z,Us?.
J

We shall identify the negative boundary of C with the surface X;, which is a
boundary component of X. Consider the curves y,, for i > s, which remain drawn
on this surface X;. We add those curves ¢; x {+ — ¢} which also lie on Xj. Their
set represents an extended cut system on X, = 0_C which we denote by [C]y,. and
we call the transport by C of y.. The pieces of the framing which remain on X
give the transport of the framing, hence a rigid structure on the negative boundary.
Let I'~ be its dual graph. A labeling / of [C],, is admissible if

I(x)=1if x is not in {y;, i > s}.

Any such labeling extends to a labeling /¢ of 7y, (or, equivalently I'") by 1. Further
we have a canonical isomorphism (by the stabilization lemmas) between W(I'~, [)
and W(I't, [¢). We obtain a natural injective mapping

ir— it
Wy ~ @W(I~, 1)~ @W(I", 1) c@WT, 1) ~ W,,
1 ) 1

where in the first two direct sum the /s run over all admissible labelings of I'",
while the third sum is taken over all labelings of I'".

Now we can get the expression of F(C) for some special markings of the bound-
ary. This is sufficient since .#, x .# acts transitively on the markings. Namely we

choose ¢t = ¢%y,), and ¢~ = @°([C]y*). We can state now

Proposition 5.1. The morphism
F(C’ (P+7 (P_): Wg - Wh
is the projection dual to the above described inclusion mapping.

Proof. Observe first that for a handlebody F has the wanted description because
F(H,, id) = w,. This equality follows from the proof of Theorem 2.5.
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On the other hand it suffices to check the result for a particular cut system
since .#, acts transitively on the set of cut systems, and in a compatible manner
on F(C, ¢*, ¢~ ) as given above. So we consider

Xgn =25 x [0, 1] U Hy_y,
Zpx1Db,

where after we take the union we identify the 2-disks b, leaving in X; x 1 and
OH,_,. Let us consider some ¢ € #,, ¢ = @ ¥id, with ¢ € Homeo(Zy, by,...,b,).
Therefore

Xy Up Hy = 23y X [0, 1] Up, Hh#b,Hy—h UHy_p.

Next for any € ) we have

F(Hy Uy Xy, 1 Uy Hy) = F(H) Yoty Hy#s,Hyn U Hyp) ,

since the two considered manifolds are homeomorphic. We wish to replace the
quotient space on the right by an usual connected sum. Choose a null homotopic
curve which passes through the centers of the 2-disks b; in both manifolds. Then
Dehn’s lemma gives us two embedded disks (in M (<pl_ltﬁ) and S* respectively) D,
and D,. The usual connected sum may be carried out by identifying some collars
of these two disks. This says that replacing the quotient space with the connected
sum has the effect of a connected sum with the S°. Thus the homeomorphism type
does not change. It follows from the multiplicativity of F' that

F(Hy Uy Xy 4 Up Hy) = F(M(@7 "W)F(S®) = F(M (97 ') .
Let Z = Span (p,(#} ® 1)w,) C W,. The above formula reads
F(Xy n, id, id)|; = 1.

On the other hand Z ~ W), which implies that we have a cross section of F': W, —
W) given by x — x ® wy_. Then the position of Z in W, is that arising from the
inclusion of graphs I'™ C I'*. This establishes our claim. [

Remark 5.2. The value of F on compression bodies is universal because it does
not depend upon the particular invariant chosen but only on the primary blocks. As
a direct consequence this value (for compression bodies only) is the same in the
classical RCFT associated to a compact group and for the quantum RCFT obtained
from the associated quantum group (for a parameter value not a root of unity).

In the abelian TQFT (the gauge group U(1)) coming from the Chern—Simons—
Witten theory the extension to cobordisms was described in [Fun93c].
Remark that

F(M U, N)=F(M)o py(¢)oF(N)

from Proposition 1.4, so the twist factor from the middle does not depend upon the
choice of the splitting (not necessary a Heegaard splitting).

We shall give an example. If ¥ 5 S! is a 2 ,-bundle over the circle having the
monodromy mapping ¢ € .#, we decompose

Vv =n"1([0, 12D U n~!([1/2, 1]).



442 L. Funar

Both components in the right are two cylinders over ;. But the positive boundary of
7~ '([0, 1/2]) consists into two copies of X, and the other one is void. The marking
may be chosen to be (1 ® 1). The negative boundary of 7~!([1/2, 1]) consists also
into two copies of X, and we can consider the marking (1 ® ¢). Since

F(Z,x[0,1],1,1)=1

we derive

F(Z,x[0,1L,101)= Y e®e,
i=1,k

where {ey, es,...,ek} is a basis for W,. Thus

F(Z,x[0, 1, 1@ ¢) =

i=1

K ® pg(@)e:)”,

and we can compute

FON= 5 le@e, 6@ po)e)) = 3 (e pylo)en)
i, j=1, =1,

= tr(py(®)) »

which agrees with Atiyah’s formula (see [Ati89]).

Corollary 5.3. Suppose we have a Hilbert h.t.r. yielding unitary invariants for
3-manifolds. Then py(My) consists in trace class operators on Wy.

We wish to make a little digression on Hilbert TQFTs. The simplest example is
the universal TQFT used in Theorem 2.5 in the case when a complete topological
invariant ' (which might exist) is chosen. This does not give however any pertinent
information on the topology of 3-manifolds. Another way is to consider quasi-
rational CFTs, where all spaces of intertwiners are finite dimensional but the label
set L is infinite and the right hand of every fusion rule is finite. If we start with
the RCFT defined by a quasi-quantum Lie group (as for example the quantum Eg
since no central charge occur) and we consider the level of the theory goes to the
infinity we obtain a quasi-rational CFT. No explicit computations were done for the
invariants associated to these models on our knowledge.

We outline below another example related to the Casson invariant. If M(Z,)
is the spaces of representations of 7;(X,) into G we may consider the Lagrangian
Chow space Ch(M(Z,)) which is the space generated by all Lagrangian submani-
folds (eventually with prescribed singularities) in the middle dimension up to iso-
topy. We fix w, as the class of the submanifold Hom(m,(H,), G)/G. As the group
of outer automorphisms of 7;(2,) the mapping class group acts on CA(M(Z,)). We
consider W, to be the span of the orbit of w, under the Torelli group. Therefore
the lagrangian intersection index provides W, with a bilinear form and a represen-
tation of the Torelli group. This way the Casson invariant for homology spheres
is expressed via Theorem 2.5. It seems to be clear that the spaces W, are infinite
dimensional. However the extension of Casson invariant to all 3-manifolds is not
multiplicative (as is done by Lescop [Les92]) and the associated TQFT must be
a TQFT for a larger category of 3-manifolds with additional structure (see also
[Fuk94]). In a sense this theory, for fixed G, is the limit of the CSW theories when
the level goes to the infinity and encodes all topological information therein.
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6. Colored Link Invariants

Consider K C M? to be a link with & components having the framing f. The
framing is equivalent to the choice of k longitudes on the tori bounding the tubular
neighborhood T(K) C M?>. Choose some circle on each torus which bounds a small
2-disk embedded in S' x S! disjoint from the framing. This gives an extended cut
system c,(f) on OM>. We have further canonical identifications

F(o(M — T(K)) = W&,
F(M ~T(K), f)=F(M — T(K), ¢°(c.(f))) = v e W,

The second one comes from the choice of the rigid structure on 07(K) given by
the framing f. Also we know that

W, =@W,, and W|, ~Ce
i

with fixed unitary e; (defined up to a modulus 1 scalar).
Suppose we have a coloring of the components of the link K, say ¢ : {1, 2,...,k}
— L. We have then a naturally associated invariant for framed colored links
given by
F(M3, K, f,c)= (v, ey ® ey ® -+ ®ec(k)> eC.

Proposition 6.1. Consider M? obtained by Dehn surgery on the framed link
(K, ) C S>. Then the following formula

FM)= 3 S(0)13180)e2) - - - S(0)ety F(S*, K, [, €)

¢ coloring

holds.

Proof. We may decompose M> =S* — T(K)U, T(K), where ¢ =1®T1® - D
t € SL(2, Z)F, under the framing identification. On the other hand T'(K) is a union
of solid tori (with their canonical markings of their boundaries 0H, = X) hence

F(T(K)) = with e WP,
if we use the standard marking of the boundary. Therefore

F(M) = (F(S$* — T(K)), (pi(x)w)®)

= Y S0)1uSO)y - SO)eunF(S* K, f,0). O
¢ coloring
This formula permits to recover the invariant for closed 3-manifolds once we know
its values for colored links. This way was used in [Deg92, KM91, KT93] to define
3-manifold invariants.

There is another approach to obtain link invariants directly from the data of
RCFT. Start with a braid representative for the link K having the strands colored
(this coloring is induced from a coloring of the link components) (see Fig. 27).

Define now the spaces W ,(c) where c is a strand coloration compatible with
respect to the Artin’s closure. Consider 2y , to be the sphere with n-holes, having
the boundary circles ¢;, i = 1, n. Extend the set of ¢;’s to an extended cut system
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Fig.27. A colored braid representative.

c. on X , having the dual graph Iy ,. A labeling /: E(Ig ,) — L is admissible if
I(c;) = c(i), where (i) is the color of the i strand. We set further

Wo,n(c) = @ W(To,n ).

| admissible

This definition may be done more generally for a h-holed surface X, , of genus
g having a fixed coloring ¢ of the boundary components. The corresponding
spaces are

Wg,h(C)=EPW(Fg,h, ),

the sum being taken over all the labelings extending the boundary one. Remark
that whenever X, , UZXy » = X,y 41w —2s under the identification of s boundary
circles we have a splitting

Worg han —25(c) = ?Wg,h(cod) Q Wy p(cid),

where ¢y is the coloring of the # — s circles of X, ; induced by ¢ and cod is the
extension of ¢y by an arbitrary labeling d of the remaining circles (and similar for
C1 and C]d )

Observe that

. . . 0 i 1
Wo,n(ll)""ln)— @ VVilil®VVi2pl®“'®VVi:0
P1sPn—1
0 i) i . ..
—s @ VV[lil®VV,-2p1®"’®VVil,,njZ@Wo,n+l(ll,---71na])‘
PlsesPn—1>J J

We have a natural representation of the groupoid of c-colored braids B,(c) (see
[Fun93a]) on Wy ,41(i1, i2,...,in,j) given by

pon (b)) =1®B,, [;;S ;:1} ®1, with p,=j.

We set
Po,n = @po,n,j-
J

We can compute pg ,(x) using (a recurrence on) the graphical resolution of cross-
ings from Fig. 28. Finally we obtain an identity as in Fig. 29.
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Fig. 29. The expression for pg ,(x).

We derive that the trace of the representation

P1P2-Pn—1J
tr(po n(x)'Wo n-H(’l ,,,,, in, /)) - z Bplpz...p:_lj(x)
PisPn

where the B: are certain products of braiding matrices, depending on x. Define

T S0 | &S0
S <I:II S(o)m) 2501, TP 010

j=1

Proposition 6.2. Let x be a braid representative for the colored link (K, c). Then
J(K, ¢) = J(x, ¢) defines an invariant for colored links.

Proof. 1t is clear that J(x, ¢) is constant on conjugation classes. It remains to com-
pute J(xb,, ¢) for x € B,(c). Since the last two strands belong to the same com-
ponent of the link (after the closure) the induced color i, of the n + 1-strand is i,.

We have the graphical identity from Fig. 30. We derive that

. . . . i i+] P1--Pn—1PnJ
te(Po, n1cbn) Wy, iy Qs slns Bns J) = 32 B, Lfs pxm] B o i)
PissPn

Observe that

P1Pn—1Pnj P1 -Pn—1Pn
leP:—lI’nj( ) Pl P: an( )



446 L. Funar

[P P A R T N
. L1 Ll
0 | Pi|PfPs [Pofi 0 |py|PPs [Pqi

0lp,lp,lpy Ip) i 01p,lp,l p; IpJ j

Fig. 30. The resolution for xb,.

because the last strand is not touched in the resolution process. From the Moore—
Seiberg equations we derive the identity:

S(0), i
250, Brr [q ,-}

— S(O) 1 — p 1 _ 1 P 11
= 5o, ;B‘fl [P 1}3”1 [p I]B”"[q j]exp(h\/—_l(A,—Ap))

- ST, - ayse |0 ey | 3 e ) 7]
J

S(0)1 q J p
S(0) 1 L1 1] S0,
- %)_lplexp(zn\/—_lmp — 4)Q, ()24, (-)BY! [1 1] = WO)% oo -

This implies that
J(x,¢) = J(xby,c),

proving that J is in fact an invariant for colored links. [

Let f be the blackboard framing of K induced from a braid representative of
it. We set
J(K, fo,c)=J(K,c).

An arbitrary framing f differs from f by a sequence of integers r,r2,...,7. We
define then

k
J(K,f,C) :J(K7f0ac)nexp(2nV —IAC(])rj)
J=1

Observe that if we alter the framing f by the same sequence of integers in the
first definition of the link invariant then p;(t) changes to p;(t)7", hence

k
F(K, f,c) = [lexpnv —14.,yr))F(K, fo,c).
J=1

This says that the framing dependence is the same in the two approaches. Now we
can state the main result of this section:

Theorem 6.3. The invariants F(K, f,c) and J(K, f,c) coincide.
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Proof. There is perhaps an explicit description which allows us to pass from x € B,
to its Artin closure X, to change the Dehn surgery presentation on X into a Heegaard
splitting and to recover some x’ € .#, but it seems to be a complicated one. Our
strategy is simpler: we show that these invariants extend to invariants of colored
framed 3-valent graphs. Further an analog of Dehn surgery could be defined for
such framed graphs. The analog Kirby moves may be described and we derive that
the formula of Proposition 6.1 gives actually 3-manifold invariants in both cases.
Now the corresponding h.t.r. corresponding to the two TQFT are coming from the
same RCFT hence the 3-manifold invariants must be the same and our claim will
follow.

First step: Let I" be a connected 3-valent framed graph of genus g embedded
in the manifold M>. A tubular neighborhood T(I') C M? of I" bounds a genus g
surface 0T(I'). We have a natural cut system on 07 (I") obtained in the following
manner: over each edge e of the graph there is a cylinder sitting in 7(I") which is
a trivial S'-bundle over e. We consider the meridian y(e) of this cylinders. Their
set give a cut system y, on 07 (I).

Now a coloring of I" consists in

i) a coloring of its edges c: E(I') — L,

i1) a labeling c of its vertices: assume we have chosen once and for all the basis
B, for the primary block W;. Then a vertex v € V(I') has three incident edges
e,. We consider that c(v) € Be(e, )e(es)e(es)-

Consider now the colored graph I' having » connected components I',,i = 1,r.
Assume that the framing gives a rigid structure on 67(I"). Then

F(M — T(F), ¢°(a, f)) = v € @F(ar(ri»

and

FTI)= €@ W(F,l)=€B§>W(F,,1i)-

! labeling
We define

FOMT, f,c)= <v, ® c(v)> eC.

veV(I)

We wish to define now the Dehn surgery on a framed graph (I, f) C S°. As
in the classical case we remove a tubular neighborhood of I' and glue it back
differently

DI, )= 8%~ T(I') Uys) T(T).

where ¢(f) is a homeomorphism depending on the framing f. We have the cut
system 7y, on 0T(I"). Consider an irreducible cycle z (of length s) in the graph I.
The part of 0T(I") sitting over z is a s-holed torus 7(z) (see Fig. 30). The framing
of the loop z describes a longitude f(z) of the torus 7(z) (avoiding the holes). If
we cut the holed torus along f(z) we get a s 4+ 2-holed torus. We identify again the
two new circles but changing the orientation of one of them. We obtain again a s-
holed torus (see Fig.31). This transformation may be described on a fixed (holed)
torus by a change in the cut system preserving the dual graph. Each curve y(e)
with e an edge in z is sliding over the 1-handle (see Fig.32). This change on
the cut system (see Picture 33), once it was done for all irreducible cycles, define
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Fig. 31. The s-holed torus.

Fig. 32. Reidentification of the s-holed torus.

(D (O
0-50

Fig. 33. The change of the cut system.

a homeomorphism ¢(f) of 0T(I'). In fact it corresponds to the homeomorphism
between the two adjacent rigid surfaces determined by the framings.
We obtain as in 6.1, a decomposition

FII, /)= Y [&TIFES,T, fre),

¢ coloring

where [c, '] are certain universal constants. The computation of these constants may
be done as follows: At the graph level we perform a transformation S(z) for each
irreducible cycle which preserves the dual graph hence we have a mapping

1S LW, )— @ W,I).
l(e)eCz
If we have two disjoint cycles the associated transformations commute in an obvious
manner. But even if the cycles z;,z, are not disjoint the associated transformations
commute. It suffices to look at the images of each curve in the cut system. If e is
not a common edge of z; and z, then only one of the transformations S(z;) changes
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Siz1S1(z]
o .

Fig. 34. Commutativity of cycle transformations.

<>$\7:
ReET

Fig. 35. Getting S(z) from elementary moves.

y(e). If e is a common edge then S(z;)S(z2)y(e) is the curve surrounding both 1-
handles of the holed genus 2 surface sitting over z; Uz, (the cycles are irreducible)
as can be seen on Fig. 34. Further we restrict to a cycle z and look for the expression
of S(z). We may perform s fusion moves to change the initial cut system into a
cut system having the dual graph with a length 1 loop as in Fig. 35. Therefore we
perform an usual S-move on the 1-loop and we come back using the inverses of
the s fusion moves used above. We obtained

s—1 s
S(z) = HF(ez)S(es)HF—l(ei):

where F(e,) is the fusion moves which contracts the edge e;.
However there is not a local formula for

[e, 1] (HS(Z)Wg, & )

veV(I')

because the labeling change at each cycle transformation.
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Fig.36. The vertex elements.

n p m
-1 n m
=3 F, ‘
ik .
j k
, )
=TF, 'j’ ' r
=3 F,
nm

Fig. 37. The resolution of vertices.

Second step: Also J(K, f,c) extends to 3-valent graphs using the RCFT data.
We represent I as Artin’s closure of a singular braid (as Birman described in the
case of 4-valent graphs). A singular braid is the composition of

1) usual braid elements giving a crossing in a generic plane projection,
2) vertex elements as in Fig. 36.

Now the resolution of crossings must take into account the vertices. The two
graphical rules from Fig. 37 give the resolution of vertices. One caution is needed.
When we pass from the space associated to the upper line (indexed by pi,..., pn—1)
to the bottom line, when we encounter a vertex the vector space changes at this
level. The change consists of a tensor product with W;k (i, ],k are the labels of the

three edges incident to the vertex v). We shall identify then the element x € W}
with x ® c(v) € Wj, ® W.

After all singularities are inductively solved we obtain a matrix 3511;;:1"__1';(x)

analog to B, """ !/(x). The formula
2S(0)i ) & S(0) RP1P2Pr—1)
J(r = > >, B i(x).
(S0 (g S(oxsl),-:l SO iy, Per )

gives a topological invariant for the colored graph I' (the closure of the singu-
lar braid x). This can be derived immediately from the Reidemester’s moves for
3-valent graphs. Alternatively the method of Degiovanni ([Deg92] Appendix B.1)
gives essentially the same invariant. The change of the framing is the same as in
the case of links. In fact it will be clear from below that we may always replace a
graph surgery by a link surgery.
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=1 . : +1
twist

Fig. 38. The K-move.

Set now

JOT, =3 [eIVT, f.c).

¢ coloring

We claim that J defines a topological invariant for 3-manifolds. We need the analog
of Kirby moves for graph surgery. Away from the usual K-move given in Fig. 38
we have another move which permits the reduction of the number of loops in the
graph. We choose an irreducible cycle z in I" having the length s > 1. If we have
an edge between two distinct vertices we can push one vertex along e in order to
get an unknotted edge e in S®. This may be done for all but one edge of the cycle
z. Let ¢y be the edge which remains knotted. Eventually changing the cut system
(hence the framing) we perform fusion moves at the graph level which kill the
unknotted edges one by one. We arrive at a graph with the cycle z replaced by a
single loop eg. Moreover this loop is disjoint from the rest of the graph.

Consider now (I, /) a 3-valent (framed) graph and (K, fx) a disjoint framed
link. Choose two points x € I', and y € K and an unknotted arc a between x and y.
Then I'" = I' UK U a is again a 3-valent graph with a natural framing /" = f U fk.
We claim that

DI, )= D(I' UK, f U fx),

where on the right-hand side we have a disjoint union. This is clear from the
definition of the graph surgery. So when we try to kill all the loops in the graph
I' we arrive at a g-component link. So the second allowed move is that from
Picture 39. If we apply directly the theorem of Kirby [Kir78] it follows that two
surgery presentations are equivalent under the equivalence relation given by these
two moves, because we may restrict to the link presentations.

Now the same reasoning as in [Deg92] permits to obtain the invariance of J
under this generalized Kirby moves.

Third step: We prove that F(M) = J(M) for closed 3-manifolds M. Both are
multiplicative invariants which are therefore determined by some h.t.r. p, and p;.
respectively.

1) In the definition of J(M ) the conformal blocks W, = W(JT(I")) for a genus
g graph may be identified with @,W(I,), hence with W,, or eventually with a
quotient if the representation p; splits. Also the label set coincides with L and the
primary blocks must be the same.

2) The change of framing is given in both cases by some function on the colors,
I' and the conformal weights. Therefore 4; are the same.

3) The fusion matrix corresponds to a change on the cut system of d(M — T(I"))
as in Fig. 40. This is the same to allow a move on the graph level I' — I'’, where
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we assumed that the edge labeled & is unknotted. From the definition of J(I', f¢,c)
we derive that

i

J(L, fo.¢) = ¥ (Fi [1 ’fn] (€1 ® )i ® G)I(FT, f.c).

This proves that the fusion matrices are identically in both approaches.
4) The S-matrix comes from the constants [c, '], hence it must coincide.
5) Finally the weight vector is unique.

Therefore F(M)=J(M) for closed 3-manifolds. But F extends canonically
to manifolds with boundary hence F(M — T'(I')) =J(M — T(I')) and our claim
follows. 0O

Corollary 6.4. A TQFT is determined by the matrices S,T and the braid matrices

B. Equivalently the associated invariants for colored links determine uniquely the
TQFT.

Remark that if the primary blocks W}k have dimension 0 or 1 for all labels then
we can drop the coloring of vertices. This is the case for example in the quantum
(or classical) SU(2)-theory. In particular the invariant

k
Fsu)(S* —T(K) = ¥ JSU(z)(K,C)Qeco) ,
j:

¢ coloring

where the terms on the right-hand side are the values of Jones polynomial at certain
roots of unity for colored links. These are expressed in terms of cablings (see
[KM91]) of the link XK.

M 2 M 2

7
N 4
v . -
unknotted arc eventual linking

Fig. 39. Stabilization-Destruction move.

Fig. 40. The fusion move on the surface.
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We wish finally to derive a general property fulfilled by the unitary link
invariants coming from the RCFT. When all colors to the components are the
same j € L we get an usual Markov trace ¢;: C[B] — C. But this Markov trace
factors through a filtered quotient Pj of the group algebra of By (for each k) which
is a finite dimensional matrix algebra. In fact we can take for P, the endomor-
phism algebra End(D,;.; Wo,k+10sJs---,J,i)). Now this Py is a C*-algebra since
the representation p , is unitary. We claim that

tr(xx*) = 0,

so the trace is positive. This may be proved directly, but the simplest way is to use
the formalism of [Fun93a]. Any link invariant is expressed as

1(x) = (Wo2n, Po.2, (X)W, 20)

for a plat representative X of .the Artin closure of x. However the representation
~ . . . . ®2n
Pon is the same as that described above and the weight vector wop, is €. It
corresponds to the standard semi-link with 2rn endpoints (see [Fun93a] for details).
Now the positivity of the trace is straightforward.

Define generally the definition quotient D(¢) of a Markov trace ¢ to be the
endomorphism algebra of the smallest nontrivial homogeneous quotient on which ¢
factors.

Proposition 6.5. Let t be a Markov trace coming from an unitary RCFT. Since
t is positive it defines an hermitian product on D(t). Let D(t) be the completion
of D(t) with respect to the hermitian product. Then D(t) is isomorphic to the
hyperfinite II,-factor.

The proof is straightforward: D(¢) is a von Neumann algebra by construction which
has a Markov trace (unique). Since it is an hyperfinite factor (a quotient of P) it
is the hyperfinite 1I;-factor. [J

We wish to express now the dependence of invariants regardless of the orien-
tation or mirror symmetry. For a link K we denote by K its inverse (obtained by
reversing all component orientations) and by K* its mirror image.

Proposition 6.6. For any RCFT (not necessarily unitary) we have
J(K,c)=J(K,c").
Moreover if the RCFT is unitary then the following identities
J(K,c) =J(K,c),J(K*,c) = J(K,c)

are fulfilled.
Proof. Remark that F(S3 — T(K)) and F(S® — T(K)) are the same vector (the
framings are the canonical ones) and both belong to W1®' (where [ is the number
of components) but the canonical basis {Q);_; ec(i) }i)er are in fact not the same.
Every component of the boundary 07(K) is a torus having a canonical basis in

homology, say {a,b}. The corresponding basis for a component of 0T(K) will be
therefore {—a, —b}. We can write then

e.z=2p -1 0 e
C,K—P 0 —1 c, K -
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We obtain
J(K,e) = (F(S* = T(K)), e, z) = (p ([—01 ° D F(S® = T(K)),ecx) -

Write J(K) for the vector (J(K,c).cr) € C". We derived that
J(K) = S(0)2J(K).

Notice that in general there is not a canonical isomorphism between the lines and
columns of the S matrix. Anyway we know that

S(0)? = @0}, = ®ays3,

where 013 is the (non-canonical) isomorphism between W/, and Wf:*. Specifically
we have o3(e; k) = e+ x and our first claim follows.
We come back now to the formula for J via traces. We have

Pon o g3 = BLEE7 1) = (Bize) " o).
hence _
tr(po, ()| Wojieiz .z i) = 1B 2715 (x)
because tr(4*) = tr(4) for an unitary 4. Further we know (see [MS89] pg 203) that
(S(0)*); = (S(O)_l)i*j* = m* )i*j* (again from unitarity) .

This means that S(0);; = S(0);»,« and replacing in the formula for J we obtain
J(K,c*)=J(K,c),

hence our second claim. For the last equality we denote by K the inverse of the
mirror image of K. If K is the Artin’s closure of the braid x then K is the Artin
closure of x~!. But in any unitary representation p

tr(p(x™")) = tr(p(x")) = tr(p(x)),

which implies that _
J(K,c)=J(K,c).

Combined with the above identities this gives our last equality. O

Let’s comment on the case of the TQFTs coming from a finite gauge group G.

In the untwisted theories (where the cocycle a € H3*(G,C") is zero) the link
invariants could be obtained from a ribbon Hopf algebra by the usual procedure of
Reshetikhin and Turaev (see [Fer93]). We put

4=C(G x G)
with the composition law
(9. 1)’ W) = 5g,h_lg’h(g’ H'h),
where J is the Kronecker delta. The morphism
RA®A—A®A4
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given by
R((g. M) ® (g, 1)) = (9. ) ® (g, hg™ " h™'H)
is the right multiplication by the R-matrix

R=3, rcc(le)® (k,I7"),e being the identity of G .

Put v = 3, o7k I71)(L ), where y(g,h) = (hg™'h™!,h™"). Therefore (4,R,v) is
a ribbon Hopf algebra. The elements of L are indexed by the irreducible represen-
tations of G and the S-matrix is computed by Freed and Quinn as being

SO0) .
———— =dim R;,
NN

where R, states for the representation corresponding to i. Viewing R in a speci-
fied basis of 4 ® A the formula above written shows that its entries are all real.
We derive that J(K,c) is a real number for any coloring ¢. Furthermore the non-
invertibility of links cannot be detected this way.

In the case of the twisted theories the S-matrix has the same expression and
all we need is to know whenever the trace of pg ,(x) is real or not. If G = Z/kZ
then H3(G,C") = Z/kZ and it suffices to consider the case when o is a generator.
According to ([MS89], p. 251) the fusion matrix F may be considered (after a
gauge transformation) to equal 1. Therefore

B=Q0"®Q,

and B = B* which implies that tr(pg,(x)) is real for any x. Alternatively we could
derive the same invariants using again a ribbon Hopf algebra model (see {[MOQO92]).
It follows that the abelian case does not give any information on the invertibility
of links. We don’t know however what happens for general G.

There are of course RCFT models having non-symmetric braid matrices as for
example the Ising model whose fusion rule algebra is

WXW:U//XCU:%(PXq’:l‘H//'

We can compute S which is real and

o o _ 1 _(n/-1 1 exp(“*“‘_‘)>
B[‘p (p]—ﬁexp< 8 )(exp(i’z—@) 12 '

This model however presents a non-zero central charge and when the correction term
is added, the associated invariant is again invariant when passing to the inverse link.

Notice that for the Jones polynomial (or the G-quantum invariants) valued at
certain roots of unity the associated RCFT presents a central charge and several
normalizations are done. The non-invertibility is not detected but the last formula
translates into a J(K*,¢;q) = J(K,c; 5‘), where ¢ is the deformation parameter, this
way permitting us to exhibit examples of non-amphicheiral links.

Therefore in order to have another behaviour of link invariants with respect to
the change of orientation we may allow non-unitary RCFT. For example the RCFT
derived from a quantum super-group yield indefinite bilinear forms.



456 L. Funar

A. Appendix

We say that a RCFT is abelian if we have the isomorphisms of vector spaces
Wy~ W

Proposition A.1. An abelian RCFT is determined by a finite abelian group struc-
ture on L such that W}, = C iff g = h+k, and otherwise it vanishes. The unity
is 0 and the involution * corresponds to taking the inverse.

Rroof. In genus one we have n; = card(L). Further n; = Zi’ ik n;,-nfk. This implies
nj; =0 if j=+0. This proves also that 0 is a unit. From the expression of n3; we
derive n%, € {0,1} and for fixed j,k there is an unique / with nf, = 1. We denote
it by j + k. Since nj = nj; this law is commutative. The associativity follows from

the fact that F is an isomorphism. Also 7/, = nj‘; so k* =—k. O

The RCFT determined by a finite group were treated by Dijkgraaf and Witten
in [DW90], the abelian theories were classified by Moore and Seiberg in Appendix
E of [MS89], and the general case was settled by Freed and Quinn [FQ93].

In particular it follows that the h.t.r. associated factors through the symplectic
groups

pg: Mg — Sp(2g, L) — U(W,) .

The basic data is (S(0),7) since S(j) =0 for j > 0 and the fusion matrix is 1.

If we allow projective unitary representations, or unitary invariants for framed
3-manifolds there are some very interesting examples. The general form of these
representations (we normalize them to be true representations but allowing that the
weight vector be invariant up to a character) is

A 0
pg (0 TA—! ) = (6TA;‘,#)/Z,u€Lg’a € GL(g>Z) s
oy (15’ B ) — diag(exp(2ny/"TAu(Br, ¥)))eers
g

for a symmetric matrix B with integer entries, with 4, = Zle 4y, the scalar product
being the natural one on LY and 4;card(L) € Z for all j,

0 _lg — ¢®g
pg<lg O >_S >

where S and T = diag(exp(2nv/—14,)).c; give a SL(2,Z) representation.

In particular we get the abelian Witten’s theory for the gauge group G = U(1)
(or equivalently the Z/kZ-theory) and the family of theories obtained by the semi-
abelian quantization in [Fun93a, Fun93c].

The invariants for 3-manifolds we get in the canonical framing are no longer
multiplicative invariants. Their modulus corresponds to a multiplicative invariant and
therefore is an homotopic invariant determined by the first Betti number and the
torsion pairing on Tors(H(M,Z)). When also the phase factor is taken into account
we obtain in particular Witten’s invariants for torus bundles and lens spaces (see
[Fun93b, Jef92], hence even in the abelian setting we can obtain non-homotopic
invariants.
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