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Abstract: We describe the relation between three dimensional topological quan-
tum field theory and two dimensional conformal field theory. Some applications to
quantum knot invariants leading to the equivalence of Chern-Simons-Witten and
Kohno's approaches are outlined.
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1. Introduction

After Witten [Wit89] introduced his invariants for 3-manifolds much work has
been done on understanding them from the mathematical point of view. A coun-
terpart to the Feynmann path integral formalism in the Chern-Simons theory has
been given via quantum groups by Reshetikhin and Turaev [RT91]. The SU(2)-
theory has been extensively studied in [RT91,BHMV92,KM91,Koh92]. Recently
the quantum group construction of invariants has been extended to the simple Lie
groups in the series A, B, C,D by Turaev and Wenzl [TW93]. Several generaliza-
tions were given by Crane [Cra91] and Degiovanni [Deg92] which started from
Rational Conformal Field Theories (abbrev. RCFT) in dimension 2 and derived
Topological Quantum Field Theories (abbrev. TQFT) in dimension 2 + 1 . Also
Kohno [Koh92] computed the mapping class group representation arising in the
SU(2)-WZW model and show how we can construct topological invariants from
this data, by pointing out that these ideas work more generally for any RCFT.
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The case of Z/A Z-fusion rules which turns out to be the same as the abelian
Witten's theory, has been discussed in [Koh92], and from a different point of view
in [Deg90,Fun91,Fun93b,Goc92,MOO92]. In fact the Dijgraaf-Witten's approach
([DW90]) in the case of abelian groups provides the same system of homotopy
invariants. The TQFT based on a finite group was completely described by Freed
and Quinn [FQ93].

In this paper we wish to give an axiomatic treatment of the topological invari-
ants. Our main result can be stated as follows (see for more precise statements
2.5,2.9,4.3):

Main Theorem 1.1. There is an equivalence between:

(i) multiplicative invariants for closed oriented 3-manifolds (rational and uni-
tary).

(ii) TQFT in dimension 3 (rational and unitary).
(iii) RCFT in dimension 2 (unitary).

Some of the implications were previously known:
(i) =̂> (ii) is greatly inspired from [BHMV92] where the SU(2) case is treated.
(iϋ) => (ϋ) was sketched first by Kontsevich [Kon88] and by Crane [Cra91],

and detailed proofs in the case of the SU(2)-model were given by Walker [Wal92]
and Kohno [Koh92], and in whole generality by Degiovanni [Deg92] using surgery
presentations of 3-manifolds. Moreover in Witten's approach his Chern-Simons
invariants are actually based on the WZW-model and he guesses that there is in
fact an equivalence between (ii) and (iii). A proof, more physical than mathe-
matically rigorous and using another definitions than us, was sketched in [LY90].
The definition we used for the RCFT is the combinatorial one due to Moore and
Seiberg [MS89], but its equivalence may be proved with the analytic formula-
tion proposed by Segal [Seg88] (from a mathematical viewpoint). The equivalence
between TQFTs and modular categories (weaker than our assumptions) was proved
by Lyubashenko [Mal94] and by Quinn ([Qui92]), and also by Turaev [Tur94].
Remark also that a result of Ocneanu [Ocn92] describes the RCFTs (and the TQFTs
arising from state sums over triangulations) in terms of systems of bimodules over
Hi-factors.

The strategy of our proof goes as follows: in Sect. 2 we introduce the ten-
sor representations of mapping class groups. It turns out that all multiplicative
invariants of closed 3-manifolds come from such representations and furthermore
extend canonically to TQFTs. Thereafter if we restrict to the finite dimensional
case we outline in Sect. 3 a splitting procedure which permits to decompose
the target spaces of tensor representations according to the sewing rules of con-
formal blocks. Next we extend these representations to the duality groupoid in
Sect. 4 and explain why the representations split in some pieces of data cor-
responding to the RCFTs as axiomatized by Moore and Seiberg. We shall use
here the completeness theorem ([MS89], Appendix A) and their reduction of the
Frenkel-Shenker flat bundles to a system of matrices. In Sect. 5 we get back the
TQFT from the RCFT in case of cobordisms along the ideas outlined by Crane
[Cra91].

To a colored framed link K c-> S3 we can furthermore associate a topological
invariant in two ways:

(i) looking at the manifold with boundary S3 — T(K), where T(K) is a tubular
neighborhood of K and compute the TQFT associated, and
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(iί) writing K as Artin's closure of some braid and solving inductively the
crossing singularities arising in its plane picture by means of a state sum based on
the braiding matrices of the RCFT (as is done for example in [Deg92]).

Our next theorem states that the two ways give the same invariants for links
(see for a more precise statement Theorem 6.3). We derive:

Corollary 1.2. A TQFT is uniquely determined by the matrices S, T {corresponding
to the monodromy in genus 1) and the braiding matrices B {corresponding to the
monodromy on the punctured sphere).

We give an immediate application on Witten's theory in the SU(2)-case. We
shall make a distinction between the WZW-invariant Iψzw constructed in a rig-
orous manner by Kohno [Koh92] (using mapping class group representations and
Heegaard splittings) and the Chern-Simons-Witten invariants whose definition we
outline briefly below in an algebro-geometric context, following Witten [Wit89]. He
associates vector spaces W{Σg,k) to every Riemann surface of genus g obtained
from the quantization of M{Σg) the space of representations of π\{Σg) into the
gauge group G (modulo conjugation). If G = SU{n) then a theorem of Narasimhan-
Seshadri identifies M{Σg) with the moduli space of rank n semi-stable holomorphic
vector bundles of degree 0 over Σg. The Picard group Pίc{M{Σg)) = Z is generated
by an ample line bundle L and W(Σg,k) = H*{M{Σg\L®k) becomes the fibers of
a projectively flat hermitian vector bundle over the Teichmuller space, by using
the HADW-connection defined in [Hit90, ADW91]. It follows that the monodromy
representation p\Jίg —> PU{W{Σg,k)) of the mapping class group determines the
TQFT. Actually Witten defined the invariants by means of the path integral, but the
axiomatic behind it implies that whenever the functional integration exists it must
be equal to

where M3 = Tg Uφ Tg is a Heegaard splitting of the 3-manifold into two handlebod-
ies glued together via the homeomorphism φ (whose class in Jίg we denoted also
by φ), wg (Ξ W{Σg,k) is some weight vector p{Jί^)-mvariant and c is a normal-
ization constant. If framings are taken into account then a correction term must be
added since the representation p is a projective one. Therefore, away from its orig-
inal definition, the CSW-invariant is described by the above stated formula which
is still valid for any solvable model.

The identification of W{Σg,k) with the space of conformal blocks in the Wess-
Zumino Witten model of RCFT (see [Koh92,MS89]) was recently obtained (see
[BL93,Ber92,Fal94,KNR94]). To our knowledge nobody has computed the mon-
odromy representation p and verified that it agrees with the natural representation
coming from the WZW-model (based on the same gauge group). This has been done
in the simplest setting for the abelian case G — U{\) in [Fun91,Fun93,Goc92] in
the case when no punctures occur on the surface Σg or else in a simplified model
for a general gauge group G, which we called semi-abelian, in [Fun93d,Fun93b].
We state:

Theorem 1.3. The CSW-invariant is well-defined and coincides with the WZW-
invariant {as defined by Kohno starting from the WZW-model) in the case when
the gauge group is SU{2).
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Proof. We use the degeneration theorem of Daskalopoulos and Wentworth [DW93]
for a family of Riemann surfaces. Their statement may be reformulated as a splitting
formula:

W{Σg9k) = ®W(Σh,k)λ ® W(Σg-h9k)λ .
λ

This formula allows us to identify the vector wg as the image of <8>W(Σo,k)o,
corresponding to the degeneration of a Riemann surface into a union of projective
lines. It suffices now to compare the matrices S, T, B. The monodromy of 1-loop
functions was computed by Jeffrey via invariant theta functions (see [Jef92]) and
the matrices S and T are the same in the CSW and WZW approaches. Next the
braiding matrices were computed by Kohno in the WZW-model (see [Koh92]) and
by Tsuchyia and Kanie [TK88] for the monodromy of the Kniznik-Zamolodchkikov
connection (which is the analog of the HADW connection) and they coincide. Using
the corollary our claim follows. D

Remark that in the SU(2) case Piunikhin [Piu93] proved that the WZW-invariant
and the invariant defined by Reshetikhin and Turaev [RT91] starting from the quan-
tum SU(2) coincide also. This way we may speak about the (quantum) SU(2)
invariant which does not depend on the various ways we used for its construction.
It seems that this assertion is valid for all gauge groups G (see [TW93,AC92] for
a definition in the case of quasi-quantum groups associated to Lie groups in the
series A,B,C,D).

Observe that our main theorem expresses in fact a certain homogeneity for the
representations of mapping class groups which are yielding to topological invariants.

This completes the axiomatic approach of Wenzl [Wen93] which expressed an
arbitrary multiplicative invariant of a 3-manifold obtained by Dehn surgery on a
link, as the thermodynamic limit of the associated invariant for cablings of the link.
The masterpieces of his construction are the Markov traces on ribbon links. In some
sense our corollary is equivalent to his statement.

In the appendix we discuss the simplest examples of RCFTs which we called
abelian. There the monodromy representations factor through the symplectic group.

This is part of author's Ph.D. thesis at Univ. Paris-Sud and some of the results
have been announced in [Fun94]. I am indebted to my thesis advisor V. Poenaru,
to P. Vogel, V. Turaev, G. Masbaum, L. Guillou, C. Lescop, V. Sergiescu,
F. Constantinescu and the referee for their careful reading of the different versions
of this paper, for their suggestions and corrections which considerably improved its
accuracy.

2. Multiplicative Invariants for Closed 3-Manifolds

We shall consider in this paper only the case of orientable 3-manifolds. We choose
an oriented Heegaard splitting of the closed 3-manifold M = Hg Uφ Hg into two
genus g handlebodies, where φ E Homeo(Σg) states for the gluing homeomorphism
and Σg is the surface of genus g. The Reidemester-Singer stabilization theorem
([Sie80]) states that the homeomorphism type of M is uniquely determined by the
Heegaard splitting modulo the following (elementary) operations:

1. replacing an Heegaard splitting by an isomorphic one,
2. taking the connected sum with the standard Heegaard splitting of the sphere

S3 into two genus one handlebodies.
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So two 3-manifolds are homeomoφhic iff any two Heegaard splittings of them
are stably isomoφhic. But the Heegaard splitting consists in the data (#,φ), where
φ G Ji'g is the class of φ in the mapping class group of Σg. We wish first to
translate the Reidemester-Singer criterion into a purely algebraic one.

Remark firstly that φ is not uniquely defined. In fact different identifications
of dHg with the genus g surface Σg may give distinct classes in Jίg. On the
other hand Jig itself is Out+(π\Σg) and there are as many self-identifications as
generator systems for n\Σg. All these choices correspond to the first type operation:
two Heegaard splittings determined by the pairs (g,φ) and (g,φ') are isomoφhic if
and only if φ' — cφd, where c,d G Jί^, where Jί^ is the subgroup of Jίg of the
classes of homeomoφhisms φ'. Σg —> Σg which extend to homeomoφhisms of the
handlebody Hg. A system of generators for Jt+ was given by Suzuki in [Suz77].

We wish now to obtain the algebraic counteφart of the connected sum of
Heegaard splittings. The interesting feature of the tower of groups Jίg is that no
group homeomoφhisms Jίg x Jt^ —> Jig+h actually exist away from the trivial
one (as was pointed out to me by F. Laudenbach). Nevertheless we dispose of a
multivalued mapping

σ: JίgY, Jίh^ sMg+h ,

which makes the following diagram commutative:

8>

where we denoted by JtQ± the mapping class group of the genus g surface with a
disk removed, πg is the usual projection and ® is the group moφhism induced by
composition of homeomoφhisms. Specifically

<r(x,y) = {a®b;ae π~\x),b G n^\y)} C Jig+h -

We can identify Jί\ with SL(2,Z), Then the standard Heegaard decomposition of

the sphere S3 has the gluing moφhism τ = , up to right and left multipli-

cation by an element from

M\ =SL+(2,Z)= j * j 1 , / i G z j CSL(2,Z).

Set now M(φ) = Hg Uφ Hg for φ G Jig. We can rephrase the Reidemester-
Singer criterion as follows:

Proposition 2.1. The manifolds M(φ) and M(φr) are homeomorphic if and only
if φ,φr G ~#oo = Ug>oJig are equivalent under the equivalence relation generated
by the following elementary moves:

1. φ ~ cφd, for φ G Jig,c,d G M^ ,
2. φ ~ ψ far any φ G Jig, ψ G σ(φ, τ) C Jig+\ .

It should be interesting if we can replace σ by an univalent mapping such that
the conclusion of the proposition remains valid. If we should look only at the
homological information carried by φ (i.e. we consider its image in the symplectic
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group Sp(2g,ZJ)), then a similar question would have an affirmative answer (see
[Fun91, Fun93c, Fun93b, Fun93d]).

Consider K SL field and J K the Λ>algebra of (3-manifold) invariants, i.e. the set
of graded functions / * : Jί* —> K, which fulfill

fg(cxd) = fg(x), for all x G Jig,c,d G Jt+,g G N ,

x') = fg(x)> X

We shall say that a set of invariants R c JK is complete if the following condition:

φι = ψ2 if and only if / * O i ) = f*(φi) for all /* G Λ

holds.

Proposition 2.2. i/" i^ is infinite then the whole K-algebra of invariants J'K is
complete.

Proof. Consider the (1) map x —• σ(x,τ) which enables us to identify JίQ with a
subset of Mg+\. This map induces another map between cosets

Then the set of (closed oriented) 3-manifolds (modulo a homeomorphism) may be
identified with the direct limit of the system

Manif = l i m _ y / / + \ ^ / ^ + .

But M^\JlgjJi^ has cardinal at most Ho hence Manif is countable. Thus the
direct limit will admit an injective map into K, from which we can recover an
universal invariant, and we are done. D

This says that theoretically there is an universal invariant which classifies
3-manifolds, but we don't know if it is algorithmically computable.

We call / * G J K a multiplicative invariant if the following condition is fulfilled

fg+h(z) = fg{x)fh{y) for all x G Jtg, y G Jίh, z G σ(x,y).

The 3-manifold invariant associated to / * is obviously given by

f(M(φ)) = fg(φ\ iΐφeJtg.

Then /* is a multiplicative invariant iff

= f(M)f(N)
holds for all closed manifolds M,N, where % denotes the connected sum of the
manifolds. We denote by MJK the set of multiplicative invariants.

Proposition 2.3. For an infinite K the set JίJκ is a complete set of invariants.

Proof Set Pg = {φ G JtQ such that M{φ) is prime}. The set Pg has not a sub-
group structure. Let JC G σ(Pg,Jt\), so x G σ(y,λ), and M(x) = M(y)#M(λ). Sup-
pose x G Pg+\. If we agree that S3 will be not prime then λ = τ. Therefore if λ is
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not equivalent to τ then the map σ(*,λ):Pg —* dίg+\ has image disjoint from Pg+\.
Now the direct limit

PManif = lim_ J(+\Pg/Jΐ+ ,

may be injectively mapped into K. This gives us a collection of maps fg:Pg-^K
fulfilling the conditions stated in Proposition 2.1, and which classifies prime
3-manifolds. Using the multiplicativity one may extend it to all 3-manifolds. Now a
well-known theorem of Milnor (see [Hem76]) asserts the uniqueness of the decom-
position of 3-manifolds into prime manifolds (modulo connected sums with S3),
and we are done. D

From now on we shall consider K = C, and that the multiplicative invariants
are sensitive to the change of orientation, i.e.

f(M) = f(M).

M being the manifold M with opposite orientation, and the bar on the right hand
being the complex conjugation. We may restrict again, without loss of generality
to the study of these multiplicative invariants.

We define next the hermitian tensor representations (abbrev. h.t.r.) of M*\ con-
sider an indexed family of complex vector spaces Wg endowed with non-degenerate
hermitian forms ( ). Set

U(Wg) = {Ae GL(Wg) : {Ax,Ay) = (x9y) for all x j G Wg} .

We assume that W* has a tensor structure, i.e. a multiplication map

®: WgxWh-> Wg+h

which is compatible with the hermitian structures, hence

{x®x'9y®y') = (x,y)(x',y')9 if x,x' G Wg, y9 / G Wh .

We have a family of ("unitary") group representations

Pg.Jfg-+U{Wg)

such that
(pg+h(c)(x Θ y\x! 0 / ) = (Pg{a)x,x'){ph(b)y,yr) ,

for all x9x
f e JVg, y9 y' G Wh, and a e Mg9 b G Jih, and c G σ(a9b) C Jig+h.

The h.t.r. is a weight h.t.r. (or a h.t.r. of (J%*,JP+)) if we have a weight vector
wg G Wg in every level g satisfying

pg(c)(wg) = Wg, for all c G M+

and

Denote by WHTR the set of weight h.t.r. of Ji*. We associate to every element
(p*, W*) G WHTR a function / * = /(p*, W*) by the formula:

fg(χ) = d-g(Pg(x)Wg,Wg) if X G
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Proposition 2.4. The functions /(p*,JF*) define a multiplicative C-invariant.

Proof. Let a,beJί+. Then

fg(axb) = d'g{pg(axb)wg,Wg) = d~g(pg(ax)wg9wg) .

since pg(b)wg — wg. Also

holds from the unitarity condition. Therefore fg{axb) =
Further we have

for all z G σ(x, ;/). But / ι ( τ ) = 1, hence /^+i(x 0 τ) = /^(x). The unitarity implies
now that / * is sensitive to the orientation, which ends the proof. D

We obtained a map / : WHTR —» MJQ. We can state now the main result of
this section:

Theorem 2.5. The map f is surjective hence any multiplicative C-invariant (always
sensitive to the orientation) arise from a weight hermίtίan tensor representation.

Proof Consider the set of (compact orientable) 3-manifolds with marked boundary:

MBg = {(M,φ):M is a 3-manifold with boundary and φ : dM —• Σg

is an orientation preserving homeomorphism}/modulo homeomorphisms

compatible with the markings <p's on the boundary.

Here Σg denotes the standard genus g surface. More precisely Σg is a tubular
neighborhood of the graph shown in Fig. 1, hence it inherits a natural cut system
Co,*, it bounds the standard handlebody Hg and there are two disks <5+,<S~ embedded
in Σg (see Fig. 2). There is a canonical way to fix the marking φ in terms of a
combinatorial data on dM. We choose a cut system c* on dM having the dual
graph Γ isomorphic to the dual graph of co,* We can see the graph Γ as the spine
of the surface dM. A framing of the graph Γ will be an embedding into dM. We
suppose that the intersection of the framing with each trinion is the neighborhood
of a vertex in the graph (a star configuration). The surface with the cut system and
the framing of the dual graph satisfying the above written condition will be called
a rigid surface. The reason is very simple: once we have two rigid surfaces with
an identification of the dual graphs there is an unique homeomorphism φ (up to an
isotopy) between the rigid surfaces extending the combinatorial isomorphism at the
graph level. In fact if a trinion is cut along the framing we obtain a disk (whose
homeomorphisms are all isotopic) which implies our claim. So instead of marking
the boundary we can add a rigid structure on the boundary. This will be useful in
the further sections.

Consider now F* a non-trivial multiplicative invariant. There is a induced map

x C(MBg) -> C
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Fig. 1. The spine of the standard Hg.

Fig. 2. The standard Σg.

defined on generators by

B$\(λf,φUN,ψ)) = F(M U^-i N),

where the manifold on the right is obtained by gluing the boundaries according to
the prescribed homeomorphism. Then BF (x,y) = BF (x, y), where the bar denotes
the complex conjugation of the coordinates (in the canonical basis) is a hermitian
bilinear form on the huge space C(MBg). Set

W\ = C{MBg)/kerB{? .

Now we may assume that (M, φ) = (M, φ), where the first bar is the complex
conjugation on coordinates (the complex structure), and the second denotes the
reversal of the orientation. This may be achieved by passing to a quotient which
we shall call Wa. Next Bh induce a hermitian form

We have a mapping pg:«

Bf'.WgX Wg^C.

-» GL(Wg) given by

pg(x)[M,φ] = [M,xφ]

where [, ] denotes the class of the corresponding element in Wg and x G Homeo(Σg,
(5+,(5~) is an arbitrary lift of x G Jig.

Lemma 2.6. The mapping pg is a well-defined group representation.

Proof. It suffices to prove that whenever h G Homeo(Σg,δ^,δg~) is isotopic to iden-
tity on Σg (by an isotopy not necessarily trivial on the two disks) the following
identity [M, φ] — [M,hφ] holds in Wg. Let ht be an isotopy with ho — h and h\ — id.
Consider the pseudo-isotopy

H.dM x [0,1] -+dM x [0,1]

given by H(x,t) = (φ-{h~ιφ(x%t).
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We identify dM x [0,1] with a collar V of dM in M. Define further φ:M ->M
by

φ(x) =
H(x) if x e V

. x elsewhere

Then φ is a homeomoφhism of M and the following diagram is commutative:

M D dM

M dM
hφ

(Σg,δ
+g,δ7),

which implies that [M, φ] = [M, hφ] getting our claim. Finally every x G Jίq has
a lift x G Homeo(Σg), which may be isotoped on Σg to x G Horneo(Σg,δ

+g, δ~).
Since the connected component of the identity, Homeo0(Σg), acts trivially on Wg it
follows that pg is a representation of J(g. D

It is clear that pg{x) is an isometry with respect to the bilinear form Bp. We shall
define now the tensor structure on W*. Let [M,φ] G Wg and [N,φ] G ^ . Consider
the tubular neighborhoods (see Fig. 3) in M and N which satisfy:

c Vι c C M

^ ) x [0, \] C 5M x [0, i] C 3M x [0,1]

and respectively

To C Tλ C T CN

I I I
— 4, — 4, — 4,

δ~) x [0, \] c dN x [0, i ] C dN x [0,1]

Fig. 3. The tubular neighborhoods Vo, Vu V2.
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We construct the 3-manifold

X = M-int(V0) | J N-int(To),

which has the boundary

\δ+)) U dN - mt(φ-\δ~)).

N o w w e have an h o m e o m o r p h i s m

dX ^ί Σ(l - int(δ;)) ( J Σh - int(δ~) = Σg+h

of dX in the standard surface of genus g + h by simply taking the connected sum
of the homeomorphism φ and φ (on the respective subsets). The uniqueness of the
tubular neighborhood implies that (X,φ#φ) £ MBg does not depend on the various
choices we made but only on (M,φ) and (N,φ). We put therefore

[M,φ]®[N,φ] = [X,φ%φ],

which may be extended to a tensor structure on W* by linearity. Suppose now
that for another two elements (M1\φf) e MBg,{N'\φ') £ MBh the same construc-
tion yields the marked manifold (Xf,φf#φf) £ MBg^. Then we have an homeo-
morphism between the closed 3-manifolds X Uφ$φO(φ'ty')-1 X' a R d M U^z-i M'%Ή
Όψψ,-\N'. Since F is a multiplicative invariant we derive the compatibility of the
tensor structure on W* and the bilinear forms Bf.

Set now Wy — [Hg,id] £ Wg. We show that wfJ is the weight vector. Obviously
Wy+/j = Wy (8) w/,. Let a G Homeo(Σg,δ^rδ~) representing a class in ,0^. Then

pfl(a)([H(lJd]) = [Hβi a],

and

BF([H&9al[M^]) = F(Hg U^_, M).

But a extends to a homeomorphism Λ:Hg —> Hg. Therefore we have an homeo-
morphism between Hg U^-i M and Hg Ufl^-i M obtained by gluing A and IUM and
taking a quotient. This gives F(Hg U^-i M) = F(Hg U^-i M). Since 5/r is non-
degenerate we derive [Hg, 1] = [Z/^,^], hence wg is pί;(.#+)-invariant. Now

F(M(φ)) - BF([Hg, φl [7Γy, l]) = ( p ^ φ H , w }̂ .

Since / is non-trivial and multiplicative F(S3) = 1 so ί/ = 1. This ends the proof
of our theorem. D

Consider now the set of cobordisms M with boundary dM — d\M U c^M, where
we suppose for simplicity that djM are connected. Denote

MBgχΛn = {(M,φuφ2\φI:dj -> Σ^j/modulo

homeomorphisms compatible with the markings φ} .
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We have a multilinear mapping induced by the invariant F

uF:C(MBg) x C(MBg,h) x C(MBh) —> C

defined on the generators by

uι

F((M,φ),(N,φu<P2)ΛP,Ψ)) = F(M U ^ - , N U ^ - . P).

Suppose that [M\,φ\ = [M2,φ]. Then

F(Mι U^β-i Q) = F(M2 U^β-j g )

for any (ζ), β) G AίSff. So M]Γ induces a map

We can identify Wh and its dual Wζ by means of the form BF, so we think of up
as having an image in Hom{Wg, W^). We have also a twist composition

Jίh x C ( M i ^ ) x C(MδΛ>i)

extending linearly the composition

We denote ξi = (M,ψ\,\fa),ξ2 = (Kμuμ2) and their twist composition by £1 xφξ2
Observe that Uf has a simple expression as element of Hom{Wg, Wh), given by

UF(ξl)([Q,θ])=[QUθφ-iM,ψ2\ .

We have also a twisted version of the composition of morphisms:

Jίh x Hom{Wg, Wh) x Hom(Wh, Wk) —> Hom(Wg, Wk),

given by

(φ,a,b) —> b xφa = b o ρh(φ) o a .

Proposition 2.7. We have uF(ξ\ xφ ξ2) = uF(ξ\) xφ uF(ξ2).

Proof. Consider (g, θ) arbitrary. Then

and

and we are done. D

Remark 2.8. We observe that when we write the morphism uF the dependence on
F is not explicit. In fact from Wg and pg we recover all the information on F. In
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the same manner we can get a functor from the category of all cobordisms (so with
not necessarily connected boundaries) into the category of hermitian vector spaces.
This is usually called a topological quantum field theory TQFT (in dimension 2 + 1)
([Ati89,Wit89]).

Corollary 2.9. i) Any multiplicative invariant extends canonically to a TQFT.
ii) The invariants coming from TQFTs form a complete set of invariants.

Remark that the computation of the TQFT extending an invariant is not always
obvious. An example is given in [Fun93c]. The general case will be discussed in
Sect. 5, once we obtain the structure of a WTHR, following the same pattern.

We can make further some easy simplifications. First we consider the orbit of

the weight vector Og = Pg(Jtg(wg)) and set Wg = Span(Og) C Wg.

Lemma 2.10. p* restricts to a tensor representation on W*.

Proof. It suffices to prove that W* has a tensor structure, so

Let us consider

x = ΈaiPg(di)wg e Wg a n d y = ΣbiPg(ΰ'i)wg e Wh,aubi € C .
i i

Then we can write

u
Now

Pg(x)wg = [Hg,x] and ph(y)wh = [Hh, y]

for two lifts x, y in the appropriated homeomorphisms groups. The construction of
the tensor structure enables us to obtain

= [Hg+h9x#y] = pg+h(x$y)wg+h ,

from which we derive our claim. D

Thus we may restrict ourselves to the case when Wg is spanned by Og since

/(p*5 W*) = f(p*, W*). In this case the h.t.r. will be called a cyclic h.t.r.
We shall make some remarks concerning the irreducibility of h.t.r. The tensor

subspace H* C W* is an invariant tensor subspace if Hg is an invariant subspace of
Wg for all g and Hg ® Hh C Hg+h (it is a tensor vector subspace). If equality holds
above we say that H* is fully invariant. An h.t.r. is (weakly) irreducible if it does
not contain proper fully invariant tensor subspaces. Set

Hjj- = {ze Wg. (x, F) = 0 for all v e Hg} .

Suppose we have a cyclic but not irreducible h.t.r. and //* is an invariant tensor
subspace. Set

Kl'.Hg > Zg = Hg/HgΠHg ,
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for the cononical projections. We shall decompose

W9=zg + υg vnih z'g e Hg,v'g e Hj-.

This decomposition is not necessarily unique. We have induced hermitian forms
( ) on Zg and Vg. Since p* is unitary we find that H^ is an invariant subspace,
henceforth Hg Π Hj~ is also invariant. Thus we have two induced representations of
JίQ into U(Zg) and U(Vg) respectively. Set zg — π\(z'g) and vg = π2(vg). Since the
h.t.r. is cyclic the vectors zg,υg are nonzero.

Proposition 2.11. Suppose that H* is a fully invariant tensor subspace. Then the
induced representations pg^χ and pgy are in WHTR, with weight vectors zg and vg

respectively. The associated invariants satisfy

Proof Take a G M+. Then pg(a)wg = wg, hence

pg{a)z'g - z'g = pg(v'g) - v'g eHgΠ Hj~ .

Therefore pg(a)zg = zg,pg(a)vg = vg. Now we claim that H^~ is a tensor vector
space with the induced structure. In fact x G H^y G H^ implies (x (8) y,z) = 0
for all z eHg®Hh= Hg+h. Thus x 0 y G H^_h. This implies that H* Π H^ is a
tensor (vector) subspace, hence Vg and Zg will be tensor vector spaces. The com-
patibility between the hermitian and the tensor structures is immediate. Finally

(pg(x)(wg),Wg) = (pg(x)(z'g)9?g) + (Pg(x)(υ'g),¥g)

and this ends the proof of the proposition. D

Remark 2.12. In the case when the hermitian form ( ) is positive we may complete
Wg to a tensor structure of Hubert spaces. This will be called the geometric (or
unitary) situation. Then Hg Π H^ = φ and we find that we have an induced h.t.r.
on H* for any invariant (not necessary fully invariant) tensor subspace H*.

3. Geometric Representations of the Mapping Class Group

We shall restrict now to the geometric situations, and also, we assume that the
representations pg are finite dimensional. The invariants which will be derived are
called rational.

Let us consider c* = { c i , ^ , . . . , ^ ^ } be a cut system (see [HT82]) on Σg. The
Dehn twists around the curves in the cut system generate an abelian subgroup Z3g~3

of Jίg. Now we know that a finite family of pairwise commuting unitary operators
on Wg could be simultaneously diagonalized. We shall carry out this diagonalization
procedure in all genera by taking into account the tensor structure of W*. Then the
decomposition of Wg into the sum of eigenspaces of a fixed operator will be iterated
and we shall obtain the sewing rules of conformal blocks in a RCFT.
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We wish to derive firstly a comparison result for the blocks Wg in different
genera. Consider some curve c lying in the cut system c* on Σg+f,.

We suppose that c is a separating curve so Σg+h — c — Σg^\ U Σ^\. Set Jlg+h(c)
for the subgroup of J(g+h generated by the homeomorphisms φ having the property
that φ(c) is isotopic to c. We put then

Let dc denote the Dehn twist around c and tc — pg+h(dc). We consider the
eigenspaces of tc, namely

Wg+h\λ = (x e Wg+h; tcx = λx) .

Remark that all these subspaces are C[Jίg,\ 0 J%h,\]-modules. In fact Mg,\®
Jίk,\ C J^g+h is a subgroup contained in the centralizer of dc so

tcPg+h(u)Wg+h = pg+h(udc)wg+h = λpg+h(u)wg+h

for all u G Jig± 0 Jίk,\ having the property that pg+h(u)wg+h G Wg+h\λ. The algebra
C ^ i ^ J j i j ] is an integral domain hence Wg+h\;,9 for Aφl splits into simple
modules:

where Wg+h\;.,i a r e simple cyclic Q\Jtgi\ 0 ^/?,i]-modules. When λ = 1 we observe
that J^+/j|i,o C ^ + A | I and the above decomposition takes the form

Here H^+A|I,O is not necessary simple but all the rest are simple cyclic C[JiQi\ 0
^#/j?i]-modules. Consider now

Wg\x = Spm{pg+h(z)wg+h;z e σ(Jίg,l) = Jίgλ Θ 1 C Jig+h) ,

Wh\λ = Spein(pg+h(z)wg+h;z e σ(l,J(h) = 1 0 Jίgλ C Jig+h) .

We have natural isomorphisms Wg ~ Wg\x and Wh ~ PF ĵ! given respectively by

x —>• x 0 WΛ and i - > w ^ x .

Denote for instance by <8> the tensor structure on W* which a priori has nothing to
do with the natural tensor product of vector spaces.

Lemma 3.1. The natural map

is an isomorphism.

Proof. Since Wg+h\\$ is a cyclic C[Jίgt\ 0 Jih,Λ-module, wg®Wh=wg+h > and
θ(Wg\χ ®Wh\\) is also a C[JfQi\ 0 ^ ? i]-module it follows that 0 is onto. It remains
to prove that θ is injective. Consider
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where z, = pg+h(σ(xh\))wg+h and tj = ρg+h(σ(\9yj))wg+h9 with xt G Jig,yj G Jih.
We can compute now

θ(?) = Σ ^ + ^ f e ^ O H ^ = 0 .
U

Therefore
<0(z),κ<g>i>}=O

holds for all u eWg and v G Wh. This implies that

Y^aij(pg(xi)wg,u}(ph(yJ)wh,v) = 0

for all u and tλ Since the hermitian product (,) is non-degenerate we derive atJ- — 0
hence z = 0 and our claim follows. D

As a consequence we derive that the map ® : Wg <8> Wh -> Wg+h is injective
hence

Suppose now that (Λ,,/) + (l,0). We consider the generators wg+h(c\λj) for the

C[Jt9t\ 0 J%h,ι]-modules Wg+h\λ^. We set

h(z)wg+h(c',λ,iy9z G σ(Jtg,l)) .

j h(z)wg+h(c9λ, i)\z G σ ( l , ^ ) ) .

In an obvious manner Zgγλj is a C[^#^i]-module which decompose further into
simple (and cyclic) C[Jίg^\-modules:

s+(i)
Zg\λ,i = Σ ^flf|λ,ij '

7=1
and in a similar manner

5-(i)

Zh\λ,ι = Σ ^Λ|λ,iJ '
7=1

We wish to construct a natural mapping

similar to θ. We choose the generators Wt+h(c; λ, i, j) for the cyclic

modules Wg\λjj and the generators w~+h(c;λ, z, A:) for the C[Jίh,\\-modules Wh\λ

Observe that w++h(c; λ, i,j),w~+h(c; λ, z, A:) G Wg+h\λJ. Consider z = i 0 l G ^ j

1 C Jt9+h a n d / = l ^ j G 1 0 M9± C Jίg+h- We set

; λ9 ij) 0 P ^ + A ( O ^ + A ( C ; A; z, *)) = pg+h(x 0 7)w^+/z(c; A, z),

which extends by linearity to Wgμjj 0 Whμ,i,k- This map is well-defined. Indeed
suppose that

0̂ = ΣauPg+h(Zu)Wg+h(c9 λ9 Uj) = 0 .
u

Since wg+h(c; λ, ίj) G Wg+hχi we find that

ô = 0
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for all s G ̂ g,\ ® ^h,\ But such s and z commute with each other. On the other
hand the module L defined by

0 c L = Spw(pg+h(J(gΛ <g> JίhΛ )w++h(c; λ, ι, j)) C Wg+h\U ,

is a nontrivial Q[Jίgy\ 0 ^h,\\-module so we derive

Thus wg+h(c; λ, i) G L so

YJauρg+h{zu)wg+h{c\ λ, z) = 0,

which implies Θijtk(vo <g) w) — 0 for all w so θ̂  j ^ is well-defined. The same argu-
ment based on simplicity implies that θijj is onto.

Lemma 3.2. The map θhjfk is injective.

Proof Consider s0 = ΣUiΌaUΌXu 0 Yυ € ker(^7^), where

Xu = Pg+h(zu)Wg+h(c; λ, ij),

^ = Pg+h(tv)w-+h(c; λ, U k)

are chosen so that {Xu;u} and {Yv;v} are bases of Wg^tlj and Wh\λ^k respectively.
We suppose that auv are not all zero and let

L = Span(Xw;w is such that auvή=0 for some v) .

Therefore pg+h(t)so — 0 for all t G dtgi\ 0 1 hence O c I C ^g\λ,ιj is a nontrivial
C[^ ?i]-module. The simplicity hypothesis implies that L — Wg\λjj. Therefore we
have some unitary matrices Lu acting on Wg\λJj such that:

i) For any X G Wgγκ ij the elements {LU(X)\ u) form a basis of Wg\) /7 ,
ii) We have Σu,v

aMX) Θ ^ = 0 for all X.

A similar reasoning on the Yv's yields the existence of the unitary matrices Sv

satisfying the analog of condition (i) and

for all X, Y. But the matrices {Lu 0 Sv;u,v} are linearly independent in Έnd(Wg\λij
® Wh\λ,i,k) s o auv — 0 Thus our claim follows. D

As an immediate consequence the spaces Wgμtij for arbitrary j are all isomor-
phic. Let us denote by Wgμjt this isomoφhism class if (λ, z)φ(l,O) and Wg\\to = Wg

elsewhere. The above two lemmas permit to conclude

Proposition 3.3. To a separating curve c in the cut system there is associated the
following splitting of the target space of an unitary weight h.t.r.:
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Fig. 4. An extended cut system.

It is clear that for a non-separating curve c the space Wg splits into the eigenspaces
of tc which are also C[^^2]-modules. We consider

**Vfl|l;l = (X€ Wg+ύteX=X) ,

where e is the edge associated to the non-separating curve c. Denote also by

Sg+ί = Span(p^+i(^,2 ® l ) % i ) C

Both Sg+\ and Wg+\\\;ι are C[Jίgj\-modules. Now the tensor product with w\
establishes an isomorphism between Wg and Sg+\ which will be useful further.

So we obtained upon now some natural inclusions

and

wa.
depending on the choice of some curve in the cut system. On the other hand we
have the splitting of the block Wg according to Proposition 3.3. There is an obvious
one in the non-separating case. We wish to iterate this procedure until all the curves
of the cut system are cut off.

A cut system c* defines a dual 3-valent graph Γ of genus g which is usually
called by physicists a φ3 -diagram. Its vertices are in one-to-one correspondence with
the connected components of Σg - c\ U c2 U ... U c3^_3, which are all isomorphic
to a sphere with 3 holes (g > 1). Two vertices are adjacent if the boundaries
of the closures of the corresponding components contain the same curve c,. It is
convenient to enlarge the notion of cut system such that the case g — 1 fits also
in this description. An extended cut system c* = {CI,C 2 , . . . ,C 3 ^_3 + 2A} (on Σg) is
given by a collection {c3g-2+h,C3g-\+h, -,C3g-3+h} of h disjoint embedded circles
in Σg which bound the 2-disks <5i,ί>2,...,<5/* C Σg together with the cut system
on the /z-holed surface Σg^h — Σg — ujLjδ/. The associated graph Γ = Γ(c*) has
2g — 2 + h vertices of valence 3 and h vertices of valence 1 which we call leaves.
Let V(Γ) denote the set of 3-valent vertices of Γ, dΓ be the set of leaves, E(Γ) be
the set of edges and F(Γ) be the subset of edges incident to the leaves. The graph
Γ is planar. Once we have chosen an orientation of the plane, say the clockwise
one, we have a cyclic order on the set of edges incident to a vertex. If v £ V(Γ)
let {e\(v),e2(v)9ei(v)} be the set of the edges incident to v which are clockwise
ordered. We shall write e also for the curve of the cut system associated to the
edge e when no confusion arises.
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Define
= (x;tei(v)x = λiX) C Wg .

Further the choice of some v E V(Γ) determines an embedding Σo^(v) C Σg,
hence a morphism ^ 0 , 3 — ̂ 0,3 ® 1 —• ^ , (which is an injection if the vertex is
3-valent) corresponding to take the connected sum with the identity outside ΣQ^(V).
This induces on Z(Γ,v,(λ\,λ2,λ3)) a structure of a C\M^{\-module since any φ E

1 commutes with Je/(ι;)
We deduce a splitting

into simple and cyclic C[^#o,3]-modules, each of them generated by some
w(Γ,v,(λ\,λ2,A3))(/) E FFg. This means that

On the other hand suppose that a labeling l:E(Γ) —> C is chosen. It will be always
supposed that l(F(Γ)) = 1. We set

Wβ(l) = (x; tex = l(e)x; e e E(Γ)) C Wg

for the eigenspace corresponding to /. It follows that Wg{l) is a
o,3]-module. This structure is induced from the map

which represents the connected sum of homeomorphisms defined on the various
components Σo,3 using the graph Γ. Therefore Wg(l) splits into simple and cyclic
submodules

j
which are respectively generated by w(lj). Set also

W(Γ,I)= ® W(Γ9υ,(Kei(υ)),l(e2(v))9l(e3(υ)))Uv).

We claim that we have an isomorphism of C[y#o,3 ® ̂ 0,3 0 0 ^0,3] -modules
given by

V I

where r is the cardinal of V(Γ). The fact that this application is well-defined follows
as in Lemma 3.2. Also as a morphism between simple modules it is an isomorphism.
We derive that W(Γ,υ{λ\,λ2,λ3))(j) are isomorphic for all j . Wg(l)(j) are also
isomorphic for all j , and we denote by W(Γ,v9(λ\,λ2,λ3)) and respectively by
W(Γ, I) these isomoφhism classes.

Set

L = {λ E C*; such that λ or λ~ι is an eigenvalue for some te,e E E(Γ)} .

Then we may restrict ourselves to the set of labelings ££ taking values in L.
We obtained the following splitting
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Fig. 5, The inclusion Γg c Γg+\.

into the primary blocks W(Γ,v,(λ\,λ2,λ3)). A priori these primary blocks may
depend upon the extended cut system c*, the choice of v G Γ and of the ordered
set eι(v),e2(v),e3(v).

Extension Lemma 3.4. The primary blocks do not depend upon the extension c*
of the cut system c*.

Proof. This is clear since cz are bounding for / > 3# — 3 so tCι = 1. D

First Stabilization Lemma 3.5. Assume that there is only one vector w\ e W\
which is SL+(2,Z)-invariant. Consider c*>g c Σg and c*,0+i C Σg+\ having the
properties:

1. if we identify Σg+ι as Σg#Sι x Sι then c^g+χ\Σg = c%g .
2. If Γg and Γg+\ are the dual graphs then these are positioned as in Fig. 5.

Let v e Γg C Γg+\.

Therefore we have an isomorphism

Proof We choose the labels of the additional edges to be 1. These outer labels are
irrelevant in the definition of W(Γg,v,(λι,λ2,λ3)). We claim that

Wg(I)~Wg+ι(l')9

where /; is the extension of the labeling / by 1. Consider that e is the new separating
edge (see Fig. 5). Then we have

Wg+ι(lf) =(xe Wg+ιιι;tfx = / ' ( / > for all f + e)

= (xe Wg+lllt0;tfx = l\f)x)@{x e Wg+l{lJ;tf(x) = l\f)x) .

Further we know from Lemma 3.1. that the first space decompose as a tensor
product

<* e Wβ+ιnfi;tfX = l'(f)x) = (xe Wβ;tfx = l(f)x) ® wfL+(2'Z) .

On the other hand each space from the second term decompose also in a tensor
product according to Proposition 3.3.

(x e Wg+lllJ; tfx = l'(f)χ) = {xe WgllJ- tf(x) = l(f)x) 0 (x e Whj; tax = x) ,
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Fig. 6. The inclusion Γg^ C Γg+\

where a is the meridian of the torus. We know that W\\
assumption of lemma implies

(x e Wφj; tax = x) = 0 if j > 0 .

This will establish our claim. But now we find that

the

as Cl^o^J-modules so the lemma follows. D

Second Stabilization Lemma 3.6. Assume that there is only one vector w\ £ W\
which is SL+(2,Z)-invariant. Consider c*i9>2 C Σ9t2 and c*i9+\ C Σg+{ having the
properties:

1. if we identify Σg+\ as Σg#Sι x [0,1] then c*,0+i|rί2 — c*t9i2 .
2. if Γgy2 and Γg+\ are the dual graphs then these are positioned as in Fig. 6.

Let v £ Γg2 C Γg+\ and suppose the leaves of Γg^2 are labeled by 1. Consider
a simple path p in Γg^2 between the endpoίnts of the new attached edge e
and a vertex v not incident to the path p. Therefore we have an isomorphism

Proof We use the same method as above but we look this time at the non-separating
curve corresponding to the edge e. We shall use now only the labelings / which
take the value 1 on the edges of the path /?, and denote by /' the extension by 1
on e. We claim that

Wg(!)~Wg+ι(l')

holds. Remark that

- wg+m n{χe wg+x-tfx = l(f)x)

and

Then we have an isomorphism

sg+ι n(xe - wg{i)

coming from the identification of Sg+\ and Wg. Consider the circuit pΌe which
from the geometric viewpoint represents a great (holed) torus which is attached to
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a surface of genus h with s holes for obtaining the surface of genus g+\. Remark
that this torus is attached in s places depending on the combinatorics of the path p
(see Fig. 7).

Now a decomposition principle holds also in the non-separating case as

=S
g+l

where Wg-r are isomorphic simple Cly/Z^-submodules of Wg. The great torus has
the attaching edges / i , /2 , 5/s all labeled by 1. We wish now to change the
splitting procedure as follows: we cut first all the edges / i , /2 , . . ,/s and in final
the edge e. This does not matter for the primary blocks we considered. The first
5—1 edges now are non-separating and the last one is separating. A recurrence on
s permits to obtain

= x\i= 1,5- 1) ~<xG

where Wg-s+\ir are simple cyclic Ct^^-^+i^J-submodules of Wg-S. But the last
move will separate the genus g + 1-surface into a genus g — s surface with s holes
and the great torus. Following the Extension Lemma the space associated to this
torus does not depend upon the number of leaves, being in fact isomorphic to W\.
We have according to the splitting principle

<x G Wx Θr Wg_s]r

hence

(x G = x; i = 1,5 and tex = x)

— vy g—s { w\
SL+(2,Z)

w\
SL+(2,Z)

As in the previous lemma we conclude that

(x G Wg+ΰtfX =x;i= 1,5 and tex = x) ~ Wg-S .

This implies our claim and we are done. D

Fig. 7. The attached great torus.
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Homogeneity Lemma 3.7. Let σ G Aut(Γ) be a combinatorial isomorphism pre-
serving the cyclic order on edges incident to a vertex. Then

,v,(λuλ2,λ3)) ~ W(Γ,σ(v\(λuλ2,λ3))

holds.

Proof. Any such σ admits a lift φ e Homeo(Σg,c*). Therefore pg(φ) induces the
wanted isomorphism. D

Lemma 3.8. The primary blocks do not depend upon the choice of the vertex

ver.

Proof We claim that for every pair of vertices ϋ | , i ) 2 G Γ w e may use extensions
and stabilizations of Γ C Γ1 such that the images of v\ and V2 become equivalent
under Aut(Γι). Then the homogeneity lemma will conclude.

Also it suffices to check our claim for pairs of adjacent vertices by using a
recurrence on the length of the shortest path between them (Γ is arcwise connected).

We may enlarge the stabilization procedure to include also the transformation
from Fig. 8. The conclusion of the stabilization lemmas remains valid for this type
of transformations on the cut system level because we may use a recurrence. Here
A and B stands for 3-valent graphs eventually with leaves.

Now the general situation of υ\ and V2 in Γ is depicted in Fig. 9, where some
of the graphs A,B,...,H may be void and B,D,G,E may be disconnected. We
stabilize this graph using the pattern from Fig. 10.

Now v\ and vι are equivalent under the rotation of angle π of the plane. D

So we can drop the index υ from the indices of a primary block.

Lemma 3.9. The cyclic permutations on the labels don't change the isomorphism
class of primary blocks.

Proof. We use the same method as above. The general position of a 3-valent vertex
in Γ is described in Fig. 11. We stabilize Γ as in Fig. 12. Then we may perform the
cyclic permutations of the edges e\,e2,ei) using the automorphism of the stabilized
graph. The homogeneity lemma proves our claim. •

Lemma 3.10. The label set L and the spaces W(Γ, (^1,^2,^3)) do not depend on
the cut system.

A

1

B

Fig. 8. The stabilization procedure.
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Fig. 9. The relative position of vertices.

Fig. 10. The stabilized graph.

Fig. 11. The position of a vertex.

/
c

/ V

\

a

Fig. 12. The stabilized graph.
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Fig. 13. The C operation.

Fig. 14. The F operation.

Fig. 15. The move F on the graph level.

Proof. A theorem of Hatcher and Thurston ([HT82]) states that two cut systems c*to
and c*,i on a surface are obtained one from the other by a sequence of operations C
and F and their inverses. The operations C and F are described in Figs. 13 and 14.

The move C does not affect the graph Γ and replace α by β. Now the following
relation

αjSα = βaβ

holds in Jί\^\. Therefore β = otβ(x(aβ)~ι is conjugate to α so the eigenvalues of ta

and tβ coincide. Further the map

pg(tΛtβ®l):W(Γ,(λl9λ2,λ3))-+W(CΓ9(λuλ2,λ3))

is an isomorphism if the vertex v considered is incident to α in Γ.
The move F changes the graph according to picture 15.
Consider now ωt the class of the homeomorphism which interchanges eι

and ez+i in the mapping class group ^#o,4 It is well-known that ω, , / = 1,2,3 and
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tepi = 1,2,3,4 generate ^#0,4 We have further

tc2=t-lt~lii

ωι,

so tC2 = t~ιte3ω\ω2tCι(ω\ω2)~{. We wish to realize the primary block W(Γ,(λ\,
A3,μ)) in both labeled graphs Γ and FΓ. So in the two labeled graphs from picture
16 we must find a pair of vertices having the same circular labels. From the pre-
vious two lemmas it suffices to check only one case, namely μ — λ\,μ' = A3. Thus
μ! — Aj~ιλiμ. So from the relation tCχx — μx we shall derive tC2pg(ω\ω2 ® l)x =
μ!'pg(ω\0)2 0 l)x. Hence the map pg(ω\(θ2 0 1) gives an isomorphism between the
primary blocks W(Γ,(λ\, A2, A3)) and W(FΓ,(λ\, A2, A3)) corresponding to the fixed
vertices. This proves also that the label set is invariant. D

As an immediate consequence of these lemmas we derive

Theorem 3.11. Assume that the cyclic vector generating the h.t.r. is the unique
vector SL^(2,Z)-invariant in genus g = I. Then the target spaces of a cyclic
geometric h.t.r. of Jί* have the following decomposition'.

j=\ v

into primary blocks W(i,j,k).

Remark now that the tensor structure Wg <S> Wh —> Wg+h is given by the usual
tensor product of vector spaces according to Lemma 3.1. Now once we have chosen
an embedding of graphs Γg U Γh °^ ^g+h we have a corresponding multiplication
rule for labelings 5£g x i f h ^ £?g+h by extending the product labeling by 1 on the
new edge and preserving the labels of an edge after we introduced a new vertex
on it (so defining two adjacent edges). This induces the tensor structure on the
decomposed blocks in an obvious manner.

Remark 3.12. In the infinite dimensional unitary context the h.t.r. of Jί* into
U(W*) has a Hubert completion to a h.t.r. into U(W*). Then the set of labels may
be infinite and the direct sum replaced by an integral but the same decomposition
principle holds for the completed blocks. The proof is essentially the same.

Observe finally that we have chosen an orientation of each circle of the cut
system, without any restriction because we must distinguish between te and t~ι.
The change of the orientation of a curve corresponds to change the eigenvalue A
into j . But we may restrict to some almost canonical choices. We look at the
standard surface of genus g without the two disks bounded by δ^,δ~ as being an
oriented cobordism between the two circles. Each trinion lying will be therefore
an oriented cobordism between its positive boundary and its negative boundary.
Suppose we have 2 circles labeled j and k in the positive boundary and one circle
labeled by / as the negative boundary. Therefore we specify in the primary block
associated to the vertex-trinion W(ij\k) by putting the indices differently as Wι

k.

So we shall encounter 4 types of (oriented) primary blocks WiJ'k, Wιj*k*, Wk*, W(*j*k*
which are all isomorphic. But when we write the decomposition of the block Wg

this notational convention specifies the orientation of all circles in the cut system.
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Fig. 16. Another stabilization.

Lemma 3.13. We have the symmetries

Proof. The proof is similar to that of the invariance of the primary blocks to cyclic
permutations. Specifically we stabilize the graph from Fig. 11 to arrive at the graph
depicted in Fig. 16. In the first case, when the edges e\ and 2̂ correspond to oriented
circles lying on the positive boundary of the trinion. We can interchange e\ and
β2 using a homeomorphism φ G Homeo(Σg,c*) preserving the orientation. In the
second case the homeomorphism φ interchanges e\ and e^\ hence the change of
the labeling. D

This permits to start with a cut system and to obtain the decomposition specifying
the orientation of each circle.

4. The Structure of Rational Geometric Invariants

Our aim now is to get a similar decomposition for the representation p* which
follows the decomposition of target spaces.

We shall consider a groupoid which is closely related to the mapping class
group having a tensor structure itself, and which is called the Teichmuller groupoid
in [Dri91] or the duality groupoid in physical literature [MS89]. If Tg denotes the
Teichmuller space [Abi77, Gro84] then JίQ acts properly discontinuous on Tg and
the quotient Jίg — TQjJig is the moduli space of genus g non-singular algebraic
curves. Due to the presence of curves with automorphisms Mg is not smooth but a
V-manifold (see [Sat75, Wol83]) or a Q-manifold [Mat72, Mum74]. The set of its
non-singular points M™ is an open manifold, and we shall consider its (fundamental)
path groupoid Πi(M^5). This is the duality groupoid Dg. It will become clear that
it has a tensor structure when we derive another description of Dg.

We remember that an alternative description of Mg is as the moduli space of
hyperbolic structures on Σg (or conformal structures). For c G c* we set l{c) for the
hyperbolic length of the geodesic lying in the isotopy class of c, for an hyperbolic
structure on Σg. But now the hyperbolic trinions up to conformal or anticonformal
equivalence are determined by the lengths of boundary circles (which we suppose to
be geodesic). Consider now the geodesic connecting two boundary circles and which
are orthogonal to them. Fix the order of the loops in the cut system. There are two
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orthogonal geodesies which intersect a boundary circle c. Set AI for the oriented-
distance between their endpoints and consider the angles θ(c) — Arcsin(zl / / l(c)) e
[0,2π). Now the (3g - 3) pairs (/(c),0(c)) give a function fc^Tg-*R39~2 x
(Sι)30-3. j t j s a r e s u j t o f β e r s which says that fc^ is a Z3gί~3-covering and the
Galois group is the subgroup of Jir

g, generated by the Dehn twists around the cut
circles. These are the so-called Fenchel-Nielsen coordinates on Teichmuller space;
notice they are real analytic coordinates (see [Abi77]).

To an unitary representation ρg:Jig —• U(Wg) there is associated an holomor-
phic flat hermitian and Jίg -invariant vector bundle over Tg, such that the mon-
odromy of the mapping class group is precisely pg. Further this bundle descends
to a flat holomorphic V-bundle Eg on Mg. Equivalently the pull-back of Eg on a
smooth finite covering of Mg is a flat holomorphic bundle. Such a smooth cov-
ering is well-known to be the moduli space of algebraic curves with a level /
structure.

Now there is a canonical identification of Wg with the space of flat sec-

tions of the V-bundle Eg \Mg. The set / ^ ( ( O , e) 3 *" 3 x (0, π) 3 *" 3 )) is a disjoint
union of contractible open sets in Tg (for little ε) on which 7?9~3 acts freely.
The flat and Jig -invariant sections over one such contractible set ί/Cj|c may be
analytically continued at all of Tg (modulo the path groupoid action). The mon-
odromy representation we get this way is nothing but the initial pg from the begin-
ning. Taking another cut system c^ or another coordinate chart, (i.e. we consider

f7j(Uj=\,3g-3((/> h + ε ) x Π/=i,3g-3(vJ> υJ + π ) ) ) W e s h a 1 1 S e t a m a t r i x w h i c h

relates the two basis of flat sections ^-invariant obtained by analytic continua-
tion. Therefore we have a representation of the groupoid Gg acting on the set of
cut systems, so in particular on labeled 3-valent graphs (with leaves). In our case
the particular labelings are the Fenchel-Nielsen coordinates and some extra mark-
ing from the identification of 7?9~3 as a subgroup of Jig. We can get a covering
for Tg by taking a sufficiently large family of points (//, Vj). Now we project on
Mg and we find that we can extract an open covering with contractible sets of
M™ — {a neighborhood of the variety of singular points}. Since the path groupoid
is a homotopy invariant and the singular locus is triangulable we derive Gg ^Dg.
Hence we may describe Dg by looking only at its action on labeled 3-valent graphs.
It is a result of Moore and Seiberg [MS89] (which in particular settles a question
raised by Grothendieck) which asserts that Dg is generated by finitely many moves
and relations among them. Specifically the five duality moves can be described
geometrically as in Pictures 17-21. There is another operation called braiding which
can be described as the composition of F and Ω moves (see Picture 22) or alterna-
tively, by a change in the pants decomposition (the cut system is changed but the
dual graph remains the same), as in Picture 23.

The fact that these five moves suffice to generate Dg is easy to prove: in fact S
and F act transitively on the set of 3-valent graphs (with a fixed number of leaves)
with fixed labels. T ensures the Z?g~3 marking, and Ω, Θ acts transitively on the
set of Fenchel-Nielsen labels.

Another way to look at these moves is the following: observe that S and T are
classes in Ji\, i, Ω and Θ are lying in ^#o,3 and F G ~#o,4 The original statement
of the Grothendieck conjecture states that Jf\,uJ?o,3,^o,4 generate the whole
tower of groups ^#* ? *. What it means to generate is clear: to every decomposition
of a /z-holed surface ΣQyh into pieces homeomorphic to a 1-holed torus, a trinion or
a 4-holed sphere we get a subgroup of Jίg, h by gluing the homeomorphisms defined
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Fig. 17. T — Dehn twist around α.

Fig. 18. S corresponding to the C-move on cut systems.

Fig. 19. Ω interchanges two boundary circles.

Fig. 20. Θ interchanges two boundary circles differently oriented.

on each piece. When we carry out this procedure for all possible decompositions
we obtain a family of subgroups which together generate JtQ^.

Proposition 4.1. The representation p* extends naturally to a h.t.r. of the whole
duality groupoid D*.
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Fig. 21. F coming from the F move on cut systems.

F-1

Fig. 22. The braiding move B.

Fig. 23. Changing the cut system for braiding.

We have seen that pg extends naturally to a representation of Dg. Consider Σ\y\
a 1-holed torus embedded in Σg. Then there exists a cut system c* on Σg containing
the boundary of Σ\^. Actually when looking at Wg as being identified to ir{c*)(Wg)
we see that l i j ^ l c Jίg acts only on the primary blocks corresponding to the
vertex associated to Σi, i. So we have a family of transformations

which together give a representation oϊ Ji\,\ for each j . But the map T(j) acts
by multiplication by / on Wji9 hence T(J) = T is a diagonal matrix which does not
depend upon the external index j . A priori all these representations depend upon
the choice of the particular embedding of the 1-holed torus in Σg. Fortunately this
is not the case due to

Lemma 4.2. The primary blocks W(i, j , k) are Q\Jί^^~\-modules, not only vector
spaces, which depend only on the labels not on the particular choices we made in
the previous section.
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Proof. All the isomorphism we get in Lemmas 3.1-3.9 are module isomor-
phisms. D

Since 'Jί\^\ c—> ̂ #0,3 we derive that S(J) and T are independent on the particular
embedding chosen.

For the moves Θ and Ω we obtain in the same manner the family of isomor-
phisms

Ω;*(-): W)k - Wjk, ffJk(+) = Ω)k(-γ ,

&)k(-γ w'Jk - wpu Θ k(+) = &jk(-r.
Geometrically these arise as follows: we identify the trinion with a domain in the
plane D — D\ UD2, where A c D are equal 2-disks. Consider another disk Do C D
containing D/ and an homeomorphism of D which is identity outside DQ, and the
rotation by π which interchanges the disks D\ and D2 on a smaller disk contained
in D o .

This time it is not a representation of ^#0,3 which is obtained but of an object
related to it. Let ε : {1, 2, 3} —> Z/2Z be the signature of the boundary where the
circle numbered j = 1, 2, 3 lies on. Here we adopt the previous convention by
looking at the 3-holed sphere as to an oriented cobordism. A homeomorphism h of
Γ0,3 which preserves globally the boundary (but not necessarily pointwise) induces
a permutation of the boundary circles leading to another marking A*(ε) G (Z/2Z)3.
We consider the triples (ε, h(modulo ίsotopy), A*(ε)). Their set is the mapping class
groupoid Jio^(2) of the 2-colored (or oriented) 3-holed sphere. In the same manner
the mapping class groupoid of c-colored A-holed surface of genus g could be defined.
So actually the mappings Θ and Ω (together with S and T) define a representation
of this groupoid ^0,3(2). Again this structure is uniquely defined from the previous
considerations and Lemma 3.13.

Finally the move F (called also the fusion move) define the isomorphisms

\i j] k k
l k l \ r£L Jl seL Sl lJ

Its action is induced from that of tωχtω2. But ωz are both lying in a ^#0,3-factor
(for two different cut systems). So each of them is canonically defined henceforth
the mappings F do not depend on the particular 4-holed sphere used. Otherwise it
is simple to check that the spaces on which F acts are ^0,4-modules intrinsically
defined.

On the other hand these isomorphisms must define a representation of the map-
ping class group. Using the identities from [MS89] we derive that the following
conditions must be verified:

F(Ω(ε) <8> 1)F = (1 <g> Ω(ε))F(\ 0 O(β)), (1)

F23F12F23 = ^23^13^12 , (2)

-ι

9 (4)

- FPF~\\ 0 Ω(-)) (5)
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with the usual convention: Fzy acts on the ith and j t h factors of a tensor product,
and Pij interchanges these factors.

But once these conditions are satisfied we know from [MS89] that the five
moves define a representation of whole duality groupoid Dg which respect to the
tensor structure. D

Several comments are necessary now. We know that the h.t.r. admits also a
weight vector wg, which is uniquely defined by the weight condition at level 1. We
say that the vacuum is irreducible if this condition is fulfilled in each genus. We
have the splitting

where we denoted

)= <g) W(Γg,υ, l(ex\ I(e2\

Since w\ is uniquely determined we derive

and w\ = WQ ^ wo. In particular

where we used for Γg the simplest 3-valent graph of genus g with 2 leaves. Above
1 stands for the labeling identical 1. In particular if the vacuum is irreducible it
follows that s(l) = 1. Because the theory is a cyclic one generated by wg and the
representation of Dg is defined on the primary blocks directly (and not on sums of
primary blocks) we obtain s(l) = 1 for all labelings /. So the splitting principles
has the canonical form

We use now this expression to compute W\ in the case of two graphs which may
be seen in Fig. 24. Suppose all the representations pg are finite dimensional and
denote by ng = d i m ^ ^ and nι

k — dim^F^. It follows n\ — Σinu — Σj< j(n\j)2-
Therefore

where δυ states for the Kronecker symbol.

Fig. 24. Two graphs of genus 1.



Topological and Conformal Field Theory 437

Remark also that wg = wo

g is in fact a weight vector for our representation.
For the group of Dehn twists around curves which bound in the handlebody this is
already clear. But from the description given by Suzuki (see also [Cra91, Koh92])
we derive that wg is in fact J(+ -invariant.

As a notational convenience we denote by exp(2π\/—Ϊ4/) t n e eigenvalue cor-
responding to j , this time j being a natural number. This is possible since all the
matrices are unitary.

Using the relations in ^#0,3 w e derive that Ω(ε)2 can be expressed in terms of
the Dehn twists around the boundary circles as

This implies that

Ω'k(-)2 = exp(2πv

/ΓT(^/ + Δk - Δt))\j ,

Θ'jk(-f = exp(2πv^ϊ(4 + Δk - Aj))ln, ,
jk

where ln stands for the identity matrix of rank n. From the geometric interpretation
we shall have natural identifications of the bases on the spaces W*k, W

ι

k and Wjj*
which we call σ^, σπ and 023 respectively. These will produce a representation of
the symmetric group S3 and we are able to get the following form for the matrices
Ω and Θ (in this bases):

Ωι

jk(-) = exp(πV^Ϊ(Δj + Δk

where the indices a run in a basis for Wι

]k.

Now from this data we can recover the representation p* as follows: Suppose
we take Γg be again the simplest 3-valent graph with 2-leaves (see Fig. 25). Then
Wg is identified with

We consider as generators of the mapping class group the Dehn twists around the
curves {αi,...,α^, β\,...,βg, δ2} as in Picture 26 (see [MS89, Bir74]). Then

pg(zλ) = T-\ (6)

T

for / > 1.
Pg(βι) = TkιSkli/(Jι-\,jι)Tkι, (7)

= V (8)
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Fig. 25. The graph Γg.

Fig. 26. Generators for Jtg.

Above we used the braiding matrix B given by

B = F~\\ ® Ω(-))F .

Also the indices on the linear transformations tell us on which of the subspaces it
acts on. Remark that what we have obtained as data for the h.t.r. is exactly the
axiomatic definition of a unitary RCFT (see [MS89, Deg92]) having the central
charge c = 0(modulo 24). This is due to the fact that we have a representation of
the mapping class group not one of a central extension of it.

Theorem 4.3. A geometric h.t.r. of Jί* with irreducible vacuum is equivalent to
a RCFT of central charge 0 {modulo 24).

We suppose from now on that we are working with rational unitary invariants
given by a h.t.r. with irreducible vacuum so the theorem above applies.

5. Reconstruction of the TQFT for Cobordisms

We obtained in the previous section the combinatorial data of a RCFT having the
central charge c — 0(modulo 24). This allowed us to reobtain the initial representa-
tion pg in terms of (F, S, T, Ω, Θ). Our invariant is therefore given by the formula

where

= S(0)u

We wish to obtain a similar description for the TQFT extending the invariant
F. We start with an oriented cobordism M3 having the positive boundary 3+M3

and the negative boundary <3_M3. We have an analog of the Heegaard splitting for
cobordisms by using instead of handlebodies the compression bodies (see [Cra91]).
A compression body C may be obtained as follows: consider c\, C2, . . . , c s C Σg

disjointly embedded circles (which we suppose to be pairwise non-isotopic) which
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bound in Hg. Then consider

C\ = Σg x [0, 1] U 2-handles attached on c\, c 2 , . . . ,cs.

A general compression body has the form

C = C\ U 3-handles,

permitting thus capping off the S2 components of the boundary. We assume that
d+C = Σg. Now a Heegaard splitting of M is a decomposition into compression
bodies

M 3 - C+ U C_ ,

where the boundaries are identified as

<9_C_ ~ d+Cl ~ d+M3 .

The compression bodies C+ and C_ are glued together along their boundary com-
ponents d+C+ and <3_C_ ~ d+C- using some homeomoφhism of Σg whose class
in the mapping class group is φ. In order to find F(M3) it suffices to know the
value of invariants on compression bodies (see [Ati89]).

We construct first the functor F on surfaces. Set

F(Σg) = Wg with its hermitian structure,

F(Σg) — Wg if the orientation changes,

F(φ) = C.

Further for a disjoint union of surfaces we have

F(()Σg)=®F{Σgι).
\ί=l / i=l

Next we have the morphisms

F(C+) : F(d+C+)

F(Cl): JΪ

The second morphism is the transposed of F(C_). Using Proposition 2.7 we derive
that

On the other hand F is defined for cobordisms with marked boundaries, i.e. some
fixed homeomorphisms

ψ. : θ_M 3

i

Suppose we choose once and for all the cut systems c^ C Σg. For the compres-
sion body C we have d+C = Σg, d-C ~ U/Σ^, where Σt ^i — 9 ~ s- Once we have
chosen a cut system yj C d+C we have the natural marking

φ\γΐ):d+C->Σ
β.
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Let Γ + be the dual graph of 7*. The surface Σg could be identified with the boundary
of a tubular neighborhood of the 3-valent graph Γ embedded trivially into R3. Since
the graph is actually planar the blackboard framing / provides the surface of a rigid
structure. Then φ°(y^) is the homeomorphism of Σg respecting the rigid structure.
A similar canonical marking may be defined on δ_C if a cut system y~ and a
framing are chosen. Set Γ + , Γ~ for the corresponding dual graphs of 7+ and y~
respectively. We may suppose, for simplicity, that d-C is connected so it is a
surface of genus h — g — s. We start with the (eventually extended) cut system
7* C Σg which contains the attaching circles of the 2-handles, hence yt = ct for
/ = \, s. Each curve Q has a natural framing given by cz x [—ε, ε] c Σg. For small
ε these tubular neighborhoods remain disjoint. Consider

X = Σg- LM x [-ε, ε]U dιX Udι2 ,
ι = l z = l

where da are 2-disks (disjointly embedded in Hg) bounding cz x {—ε}, and respec-
tively da are 2-disks capping off cz x {ε}. Therefore

X = Σh[jS2

j

We shall identify the negative boundary of C with the surface Σh which is a
boundary component of X. Consider the curves γl9 for i > s, which remain drawn
on this surface Z1/,. We add those curves c, x {H— ε} which also lie on Σh. Their
set represents an extended cut system on Σh = d-C which we denote by [C]y* and
we call the transport by C of y*. The pieces of the framing which remain on Σh
give the transport of the framing, hence a rigid structure on the negative boundary.
Let Γ~ be its dual graph. A labeling / of [C]y* is admissible if

l(x) = 1 if x is not in {y, , ί > s}.

Any such labeling extends to a labeling le of 7* (or, equivalently Γ+) by 1. Further
we have a canonical isomorphism (by the stabilization lemmas) between W(Γ~, /)
and W(Γ+, le). We obtain a natural injective mapping

Wh

 lf~ ®W(Γ~, /) ~ 0 * F ( Γ \ le) C φW(Γ+, /) ~+ W
g ,

/ / /
where in the first two direct sum the I's run over all admissible labelings of Γ~,
while the third sum is taken over all labelings of Γ+.

Now we can get the expression of F(C) for some special markings of the bound-

ary. This is sufficient since Mg x Mh acts transitively on the markings. Namely we

choose φ+ — φ°(y*)> a n d ψ~ = φ°([C]y*) We can state now

Proposition 5.1. The morphism

is the projection dual to the above described inclusion mapping.

Proof. Observe first that for a handlebody F has the wanted description because
F(Hg, id) — wg. This equality follows from the proof of Theorem 2.5.



Topological and Conformal Field Theory 441

On the other hand it suffices to check the result for a particular cut system
since Jtg acts transitively on the set of cut systems, and in a compatible manner
on F(C, φ + , φ~) as given above. So we consider

where after we take the union we identify the 2-disks bι leaving in Σh x 1 and
dHg^h Let us consider some φ G Jtg> φ = (p\%id, with φ\ G Homeo(Σ^ b\,...,br).

Therefore
Y j i z/ y Y m 11 I l

^*-g, h ^~Jφ **g — ^h ^ L^? A J ψ\

Next for any ι/r G ̂ #/j we have

F(//A IVX g , h U φ π g ) = F{Hh Uφ-

since the two considered manifolds are homeomorphic. We wish to replace the
quotient space on the right by an usual connected sum. Choose a null homotopic
curve which passes through the centers of the 2-disks bi in both manifolds. Then
Dehn's lemma gives us two embedded disks (in M(φ~[x\j/) and S3 respectively) D\
and D2. The usual connected sum may be carried out by identifying some collars
of these two disks. This says that replacing the quotient space with the connected
sum has the effect of a connected sum with the S3. Thus the homeomorphism type
does not change. It follows from the multiplicativity of F that

F(Hh UφXg,h Uφ ΊΓg)

Let Z = Span (pg(J?h 0 l)wg) c ^V The above formula reads

F(Xgth,id,id)\z = l.

On the other hand Z ~ Wh which implies that we have a cross section of F : Wg —»
Wh given by x —> x 0 wg-h> Then the position of Z in Wg is that arising from the
inclusion of graphs Γ~ c Γ + . This establishes our claim. D

Remark 5.2. The value of F on compression bodies is universal because it does
not depend upon the particular invariant chosen but only on the primary blocks. As
a direct consequence this value (for compression bodies only) is the same in the
classical RCFT associated to a compact group and for the quantum RCFT obtained
from the associated quantum group (for a parameter value not a root of unity).

In the abelian TQFT (the gauge group U(l)) coming from the Chern-Simons-
Witten theory the extension to cobordisms was described in [Fun93c].

Remark that
F(M Uφ N) - F{M) o pg(φ) o F(N)

from Proposition 1.4, so the twist factor from the middle does not depend upon the
choice of the splitting (not necessary a Heegaard splitting).

We shall give an example. If V A S1 is a Σg-bundle over the circle having the
monodromy mapping φ G Jίg we decompose

, 1]).
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Both components in the right are two cylinders over Σg. But the positive boundary of
π - 1 ([0, 1/2]) consists into two copies of Σg and the other one is void. The marking
may be chosen to be (1 ® 1). The negative boundary of π~1([l/2, 1]) consists also
into two copies of Σg and we can consider the marking (1 (g) φ). Since

F(Σgx[0,l], 1, 1 ) = 1

we derive

F(Σgx[0,l],l®l)= Σ*i®*ΐ>
i=l,k

where {e\, e2,...,ek} is a basis for Wg. Thus

F(Σg x [0, 1], 1 <g> φ) = Σ *« ® p^(φ)(β/)* ,

and we can compute

F(V) = Σ (et ® **, *y 0 pg(φ)(ejT) = Σ (
ij=\,k i=\,k

which agrees with Atiyah's formula (see [Ati89]).

Corollary 5.3. Suppose we have a Hubert h.t.r. yielding unitary invariants for
3-manίfolds. Then pg(Jίg) consists in trace class operators on Wg.

We wish to make a little digression on Hubert TQFTs. The simplest example is
the universal TQFT used in Theorem 2.5 in the case when a complete topological
invariant F (which might exist) is chosen. This does not give however any pertinent
information on the topology of 3-manifolds. Another way is to consider quasi-
rational CFTs, where all spaces of intertwiners are finite dimensional but the label
set L is infinite and the right hand of every fusion rule is finite. If we start with
the RCFT defined by a quasi-quantum Lie group (as for example the quantum E%
since no central charge occur) and we consider the level of the theory goes to the
infinity we obtain a quasi-rational CFT. No explicit computations were done for the
invariants associated to these models on our knowledge.

We outline below another example related to the Casson invariant. If M{Σg)
is the spaces of representations of π\(Σg) into G we may consider the Lagrangian
Chow space Ch(M(Σg)) which is the space generated by all Lagrangian submani-
folds (eventually with prescribed singularities) in the middle dimension up to iso-
topy. We fix wg as the class of the submanifold Hom{π\{Hg), G)/G. As the group
of outer automorphisms of n\{Σg) the mapping class group acts on Ch{M{Σg)). We
consider Wg to be the span of the orbit of wg under the Torelli group. Therefore
the lagrangian intersection index provides Wg with a bilinear form and a represen-
tation of the Torelli group. This way the Casson invariant for homology spheres
is expressed via Theorem 2.5. It seems to be clear that the spaces Wg are infinite
dimensional. However the extension of Casson invariant to all 3-manifolds is not
multiplicative (as is done by Lescop [Les92]) and the associated TQFT must be
a TQFT for a larger category of 3-manifolds with additional structure (see also
[Fuk94]). In a sense this theory, for fixed G, is the limit of the CSW theories when
the level goes to the infinity and encodes all topological information therein.
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6. Colored Link Invariants

Consider K C M3 to be a link with k components having the framing / . The
framing is equivalent to the choice of k longitudes on the tori bounding the tubular
neighborhood T(K) C M 3 . Choose some circle on each torus which bounds a small
2-disk embedded in Sι x Sι disjoint from the framing. This gives an extended cut
system c*(/) on δM3. We have further canonical identifications

F(δ(M - T(K)) = W

F(M - T{K\ f) = F{M - T(K), φ°(c*(/))) = v G

The second one comes from the choice of the rigid structure on 3T(K) given by
the framing / . Also we know that

W^φWi and Wu~Cet
i

with fixed unitary e\ (defined up to a modulus 1 scalar).
Suppose we have a coloring of the components of the link K, say c : {1, 2,..., k}

—> L. We have then a naturally associated invariant for framed colored links
given by

F(M\ K, / , c) = (v, ecii) 0 ec{k) ® -® ec{k)) G C .

Proposition 6.1. Consider M3 obtained by Dehn surgery on the framed link
(K, f) c S3. Then the following formula

F(M) = £ S(0)c(l)lS(0)c(2)ι • 5 ( 0 ) ^ ) 1 ^ , K, f, c)
c coloring

holds.

Proof We may decompose M3 = S3 - T(K) Uφ T(K), where φ = τ Θ τ Θ Θ
τ G SL(2, Z)k, under the framing identification. On the other hand T(K) is a union
of solid tori (with their canonical markings of their boundaries dH\ — Σ\) hence

F(T(K)) = wfk G Wfk ,

if we use the standard marking of the boundary. Therefore

F(M) = 3 rk

= Σ s(0)CO)ls(0)c(2)i---s(0)c(k)lF(s\κ,f,c). a
c coloring

This formula permits to recover the invariant for closed 3-manifolds once we know
its values for colored links. This way was used in [Deg92, KM91, KT93] to define
3-manifold invariants.

There is another approach to obtain link invariants directly from the data of
RCFT. Start with a braid representative for the link K having the strands colored
(this coloring is induced from a coloring of the link components) (see Fig. 27).

Define now the spaces W^n(c) where c is a strand coloration compatible with
respect to the Artin's closure. Consider Γo,« to be the sphere with w-holes, having
the boundary circles c/, / = 1, n. Extend the set of Q'S to an extended cut system
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Ί >2 '3

Po KJPiJ P2 Pa Pπ

q 0

Fig. 27. A colored braid representative.

c* on I"0,n having the dual graph Γ0,n. A labeling / : £I(Γ0,«) —> £ is admissible if
/ ( Q ) = c(/), where c(z) is the color of the ith strand. We set further

I admissible

This definition may be done more generally for a h-holeά surface Σg^ of genus
g having a fixed coloring c of the boundary components. The corresponding
spaces are

the sum being taken over all the labelings extending the boundary one. Remark
that whenever Σfy>Λ U Σgtihr = Σg+grf h+ht _2s under the identification of s boundary
circles we have a splitting

Wtg+g',h+h'-2

where c0 is the coloring of the h—s circles of Σg^ h induced by c and cod is the
extension of CQ by an arbitrary labeling d of the remaining circles (and similar for
c\ and c\d).

Observe that

PU->Pn-\

ι\ι\ ι2f

Ki - i'i,..., W ) •

We have a natural representation of the groupoid of c-colored braids Bn(c) (see
[Fun93a]) on ^0,«+i0'i, ii,...JnJ) given by

Po,n,j(bs) =

We set

h h+\
Ps Ps+\

Pθ,n =
j

1, with pn=j

We can compute po,n(x) using (a recurrence on) the graphical resolution of cross-
ings from Fig. 28. Finally we obtain an identity as in Fig. 29.
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mj

k P m k q m

Fig. 28. The resolution of a crossing.

P i P 2 P 3 . . . P n . i J [ χ ]

q lq2q3...qn_1j

q 2 |q3

Fig. 29. The expression for po,

We derive that the trace of the representation

Ί

0

I

0

'2

Pi

Qi

ι:

P2

q2

P3

q3

j

j

Σ nP\P2-Pn-\J/Ύ.\
-, -.. βPlP2 .Pn-lλX>>

where the Z?* are certain products of braiding matrices, depending on x. Define

Proposition 6.2. Let x be a braid representative for the colored link (K, c). Then
J(K, c) = J(x, c) defines an invariant for colored links.

Proof It is clear that J(x, c) is constant on conjugation classes. It remains to com-
pute J(xbn, c) for x G Bn(c). Since the last two strands belong to the same com-
ponent of the link (after the closure) the induced color in+\ of the n -f 1-strand is in.

We have the graphical identity from Fig. 30. We derive that

Σ i
P\,-,Pn

Observe that
P\-Pn-\PnJ, _ τ>P\~Pn-\Pn( ^

~ DP\-Pn-\Pn\X)
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i «2 «3 «n «n 1 «2 «3 «n L

Pi P2 P3 'Pn1 J 0 p j p2l p3 IpJ j

Fig. 30. The resolution for xbn.

because the last strand is not touched in the resolution process. From the Moore-
Seiberg equations we derive the identity:

_ι \ p
Jβ

1 P
p 1

Bn

1 1

q j

Bpp
1 1

B- l

P i

S(0)pl .1 1

u l 1

This implies that
J(x,c) =J(xbn,c),

proving that J is in fact an invariant for colored links. D

Let /o be the blackboard framing of K induced from a braid representative of
it. We set

An arbitrary framing / differs from /o by a sequence of integers ri,r2,...,r^. We
define then

J(K9f9c)=J(K9fθ9c)U&φ(2πV-lΔcU)rj).

Observe that if we alter the framing / 0 by the same sequence of integers in the
first definition of the link invariant then pi(τ) changes to p\(τ)TrJ, hence

F(K9f9c) =
7 = 1

This says that the framing dependence is the same in the two approaches. Now we
can state the main result of this section:

Theorem 6.3. The invariants F(K,f,c) and J(K,f,c) coincide.
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Proof. There is perhaps an explicit description which allows us to pass from x G Bn

to its Artin closure x, to change the Dehn surgery presentation on x into a Heegaard
splitting and to recover some xr G JiQ but it seems to be a complicated one. Our
strategy is simpler: we show that these invariants extend to invariants of colored
framed 3-valent graphs. Further an analog of Dehn surgery could be defined for
such framed graphs. The analog Kirby moves may be described and we derive that
the formula of Proposition 6.1 gives actually 3-manifold invariants in both cases.
Now the corresponding h.t.r. corresponding to the two TQFT are coming from the
same RCFT hence the 3-manifold invariants must be the same and our claim will
follow.

First step: Let Γ be a connected 3-valent framed graph of genus g embedded
in the manifold M 3 . A tubular neighborhood T(Γ) C M 3 of Γ bounds a genus g
surface dT(Γ). We have a natural cut system on dT(Γ) obtained in the following
manner: over each edge e of the graph there is a cylinder sitting in T(Γ) which is
a trivial Sι-bundle over e. We consider the meridian y(e) of this cylinders. Their
set give a cut system y* on δT(Γ).

Now a coloring of Γ consists in

i) a coloring of its edges c:E(Γ) —> L,
ii) a labeling c of its vertices: assume we have chosen once and for all the basis

Bφ for the primary block Wψ. Then a vertex v G V(Γ) has three incident edges
eι. We consider that c(υ) G i ^

Consider now the colored graph Γ having r connected components Tui — l,r.
Assume that the framing gives a rigid structure on dT(Γ). Then

F(M - T(Γ),φ\y.,f)) = v e ®F(dT{Γi))
i=\

and

F(dT(Γ))= 0 W(ΓJ) = φφ^XΓ,,/;).
/ labeling i //

We define

F(M9Γ,f,c)= (υ9 ® φ ) \ GC.

We wish to define now the Dehn surgery on a framed graph (Γ,f) C S3. As
in the classical case we remove a tubular neighborhood of Γ and glue it back
differently

D(ΓJ) = S3-T(Γ)Uφif)T(Γ),

where φ(f) is a homeomorphism depending on the framing / . We have the cut
system y* on dT(Γ). Consider an irreducible cycle z (of length s) in the graph Γ.
The part of dT(Γ) sitting over z is a s-holed torus T(z) (see Fig. 30). The framing
of the loop z describes a longitude f(z) of the torus T(z) (avoiding the holes). If
we cut the holed torus along f(z) we get a s -\- 2-holed torus. We identify again the
two new circles but changing the orientation of one of them. We obtain again a s-
holed torus (see Fig. 31). This transformation may be described on a fixed (holed)
torus by a change in the cut system preserving the dual graph. Each curve γ(e)
with e an edge in z is sliding over the 1-handle (see Fig. 32). This change on
the cut system (see Picture 33), once it was done for all irreducible cycles, define
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Fig. 31. The s-holed torus.

Fig. 32. Reidentification of the s-holed torus.

Fig. 33. The change of the cut system.

a homeomorphism φ(f) of dT(Γ). In fact it corresponds to the homeomorphism
between the two adjacent rigid surfaces determined by the framings.

We obtain as in 6.1, a decomposition

F(D(Γ,f))= Σ [c,Γ]F(S\Γ,f,c),
c coloring

where [c, Γ] are certain universal constants. The computation of these constants may
be done as follows: At the graph level we perform a transformation S(z) for each
irreducible cycle which preserves the dual graph hence we have a mapping

\®S(z)®l:W(Γ9l)-+ 0 W(ΓJ).
l(e),eCz

If we have two disjoint cycles the associated transformations commute in an obvious
manner. But even if the cycles z\,Z2 are not disjoint the associated transformations
commute. It suffices to look at the images of each curve in the cut system. If e is
not a common edge of z\ and z2 then only one of the transformations 5(zz ) changes
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S [ Z 1 ] S [ Z 1 ]

Fig. 34. Commutativity of cycle transformations.

Fig. 35. Getting S(z) from elementary moves.

y(e). If e is a common edge then S(z\)S(z2)y(e) is the curve surrounding both 1-
handles of the holed genus 2 surface sitting over z\ U z2 (the cycles are irreducible)
as can be seen on Fig. 34. Further we restrict to a cycle z and look for the expression
of S(z). We may perform s fusion moves to change the initial cut system into a
cut system having the dual graph with a length 1 loop as in Fig. 35. Therefore we
perform an usual S-move on the 1-loop and we come back using the inverses of
the s fusion moves used above. We obtained

z=l

where F(et) is the fusion moves which contracts the edge
However there is not a local formula for

g9 (g)

because the labeling change at each cycle transformation.
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m

Fig. 36. The vertex elements.

= ΣF; n m

j k

= ΣFpk
I J

n p m

n p m

Fig. 37. The resolution of vertices.

Second step: Also J{K,f,c) extends to 3-valent graphs using the RCFT data.
We represent Γ as Artin's closure of a singular braid (as Birman described in the
case of 4-valent graphs). A singular braid is the composition of

1) usual braid elements giving a crossing in a generic plane projection,
2) vertex elements as in Fig. 36.

Now the resolution of crossings must take into account the vertices. The two
graphical rules from Fig. 37 give the resolution of vertices. One caution is needed.
When we pass from the space associated to the upper line (indexed by pu , pn-ι)
to the bottom line, when we encounter a vertex the vector space changes at this
level. The change consists of a tensor product with Wι

jk (i,j,k are the labels of the

three edges incident to the vertex v). We shall identify then the element x G Wfm

with x <g> φ ) £ W\m 0 Wjk.

After all singularities are inductively solved we obtain a matrix B^"^"'^ (x)

analog to B^ ^ J (x). The formula

i i S(0),s

Σ
Pl,-,Pn

nP\P2-Pn-\J
P\P2-Pn-\J

gives a topological invariant for the colored graph Γ (the closure of the singu-
lar braid JC). This can be derived immediately from the Reidemester's moves for
3-valent graphs. Alternatively the method of Degiovanni ([Deg92] Appendix B.I)
gives essentially the same invariant. The change of the framing is the same as in
the case of links. In fact it will be clear from below that we may always replace a
graph surgery by a link surgery.
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±1

Fig. 38. The /vΓ-move.

Set now

J{D(Γ,f))=
c coloring

[c,Γ\I{Γ,f,c).

We claim that J defines a topological invariant for 3-manifolds. We need the analog
of Kirby moves for graph surgery. Away from the usual K-movz given in Fig. 38
we have another move which permits the reduction of the number of loops in the
graph. We choose an irreducible cycle z in Γ having the length s > 1. If we have
an edge between two distinct vertices we can push one vertex along e in order to
get an unknotted edge e in S3. This may be done for all but one edge of the cycle
z. Let βo be the edge which remains knotted. Eventually changing the cut system
(hence the framing) we perform fusion moves at the graph level which kill the
unknotted edges one by one. We arrive at a graph with the cycle z replaced by a
single loop e$. Moreover this loop is disjoint from the rest of the graph.

Consider now (Γ,/) a 3-valent (framed) graph and (K,fκ) a disjoint framed
link. Choose two points x e Γ, and y G K and an unknotted arc a between x and y.
Then Γ' = Γ U K U a is again a 3-valent graph with a natural framing / ' = / U /%.
We claim that

where on the right-hand side we have a disjoint union. This is clear from the
definition of the graph surgery. So when we try to kill all the loops in the graph
Γ we arrive at a ^-component link. So the second allowed move is that from
Picture 39. If we apply directly the theorem of Kirby [Kir78] it follows that two
surgery presentations are equivalent under the equivalence relation given by these
two moves, because we may restrict to the link presentations.

Now the same reasoning as in [Deg92] permits to obtain the invariance of J
under this generalized Kirby moves.

Third step: We prove that F(M) = J(M) for closed 3-manifolds M. Both are
multiplicative invariants which are therefore determined by some h.t.r. p* and pj^
respectively.

1) In the definition of J(M) the conformal blocks Wjt9 — W(dT(Γ)) for a genus
g graph may be identified with φ / ^ ί Γ , / ) , hence with Wg, or eventually with a
quotient if the representation pj splits. Also the label set coincides with L and the
primary blocks must be the same.

2) The change of framing is given in both cases by some function on the colors,
Γ and the conformal weights. Therefore Aj are the same.

3) The fusion matrix corresponds to a change on the cut system of d(M - T(Γ))
as in Fig. 40. This is the same to allow a move on the graph level Γ —• Γ1\ where
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we assumed that the edge labeled k is unknotted. From the definition of J(Γ,/o,c)
we derive that

J(Γ,/0,c) = Σ<Ffa ί\ A {cλ®c2),c[®c'2)J{FΓ,f,c').

This proves that the fusion matrices are identically in both approaches.
4) The S-matrix comes from the constants [c,Γ], hence it must coincide.
5) Finally the weight vector is unique.

Therefore F(M) — J{M) for closed 3-manifolds. But F extends canonically
to manifolds with boundary hence F(M — T(Γ)) = J(M — T(Γ)) and our claim
follows. D

Corollary 6.4. A TQFT is determined by the matrices S,T and the braid matrices
B. Equivalently the associated invariants for colored links determine uniquely the
TQFT.

Remark that if the primary blocks Wι-k have dimension 0 or 1 for all labels then
we can drop the coloring of vertices. This is the case for example in the quantum
(or classical) S£/(2)-theory. In particular the invariant

-T(K))=
c coloring

'{,c)<8ecU),
7=1

where the terms on the right-hand side are the values of Jones polynomial at certain
roots of unity for colored links. These are expressed in terms of cablings (see
[KM91]) of the link K.

Γi

\

>

Ϊ2

\
N

N
N.

Γi

s
ψ

Ϊ2

unknotted arc e v e n t u a l l i n k i n 9

Fig. 39. Stabilization-Destruction move.

\/ \ m

Fig. 40. The fusion move on the surface.
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We wish finally to derive a general property fulfilled by the unitary link
invariants coming from the RCFT. When all colors to the components are the
same j G L we get an usual Markov trace tfC^Boo] —> C. But this Markov trace
factors through a filtered quotient Pk of the group algebra of Bk (for each k) which
is a finite dimensional matrix algebra. In fact we can take for Pk the endomor-
phism algebra £«d(0 / G l^o,£+iO>7> ••>./>0) Now this Pk is a C*-algebra since
the representation po,« is unitary. We claim that

tr(xx*) ^ 0,

so the trace is positive. This may be proved directly, but the simplest way is to use
the formalism of [Fun93a]. Any link invariant is expressed as

for a plat representative x of .the Artin closure of x. However the representation
p02n is the same as that described above and the weight vector wo,2« is e®ln. It
corresponds to the standard semi-link with In endpoints (see [Fun93a] for details).
Now the positivity of the trace is straightforward.

Define generally the definition quotient D(t) of a Markov trace t to be the
endomorphism algebra of the smallest nontrivial homogeneous quotient on which t
factors.

Proposition 6.5. Let t be a Markov trace coming from an unitary RCFT. Since
t is positive it defines an hermitian product on D(t). Let D(t) be the completion
of D(t) with respect to the hermitian product. Then D(t) is isomorphίc to the
hyper finite Π\-factor.

The proof is straightforward: D(t) is a von Neumann algebra by construction which
has a Markov trace (unique). Since it is an hyperfinite factor (a quotient of P^) it
is the hyperfinite II i-factor. D

We wish to express now the dependence of invariants regardless of the orien-
tation or mirror symmetry. For a link K we denote by K its inverse (obtained by
reversing all component orientations) and by K* its mirror image.

Proposition 6.6. For any RCFT (not necessarily unitary) we have

j(K,c)=J(K,c*).

Moreover if the RCFT is unitary then the following identities

) = J(Kc)J(K\c) = J(K,c)

are fulfilled.

Proof. Remark that F ^ 3 - T(K)) and F(S3 - T(K)) are the same vector (the
framings are the canonical ones) and both belong to W®1 (where / is the number
of components) but the canonical basis {(3)/=i ιeΦ)}c(i)eL are in fact not the same.
Every component of the boundary dT(K) is a torus having a canonical basis in
homology, say {a, b}. The corresponding basis for a component of dT(K) will be
therefore {— a, — b}. We can write then
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We obtain

J(K9c) = (F(S3 - T(K))9eCtΈ) = (p(\ ~Q ^ 1 ) F(s" ~ T(K)),eCtK) .

Write J(K) for the vector (J(K,c)ceL) G C We derived that

J(K) = S(0)2J(K).

Notice that in general there is not a canonical isomorphism between the lines and
columns of the S matrix. Anyway we know that

where σ\3 is the (non-canonical) isomoφhism between Wι

u and J¥{**. Specifically
we have on(ec?#) = ec*^χ and our first claim follows.

We come back now to the formula for J via traces. We have

hence

because t φ l * ) = tr(A) for an unitary A. Further we know (see [MS89] pg 203) that

1 ),-*_,•* = (S(0)*)/*/* (again from unitarity).

This means that -^(O)^ = 5(0)z*y* and replacing in the formula for / we obtain

hence our second claim. For the last equality we denote by K the inverse of the
mirror image of K. If K is the Artin's closure of the braid x then K is the Artin
closure of x~ι. But in any unitary representation p

which implies that

Combined with the above identities this gives our last equality. D

Let's comment on the case of the TQFTs coming from a finite gauge group G.
In the untwisted theories (where the cocycle α G//3(G,C*) is zero) the link

invariants could be obtained from a ribbon Hopf algebra by the usual procedure of
Reshetikhin and Turaev (see [Fer93]). We put

G)

with the composition law

where δ is the Kronecker delta. The morphism
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given by

is the right multiplication by the /^-matrix

R = ΣιtkeG(l,e) ® (k9 Γ
1),e being the identity of G .

Put v = Σk^Gy{Kl-χ)(le\ where y(g,h) = (hg~xh-\h~x). Therefore (A,R,v) is
a ribbon Hopf algebra. The elements of L are indexed by the irreducible represen-
tations of G and the S-matrix is computed by Freed and Quinn as being

S(0),
— = dim

5(0),

where Rt states for the representation corresponding to /. Viewing R in a speci-
fied basis of A® A the formula above written shows that its entries are all real.
We derive that J(K,c) is a real number for any coloring c. Furthermore the non-
invertibility of links cannot be detected this way.

In the case of the twisted theories the iS-matrix has the same expression and
all we need is to know whenever the trace of po.nOO is r e a l o r not. If G = Z/A Z
then //3(G,C*) = Z/&Z and it suffices to consider the case when α is a generator.
According to ([MS89], p. 251) the fusion matrix F may be considered (after a
gauge transformation) to equal 1. Therefore

B = Ώ* ® Ω ,

and B = B* which implies that tr(po,nOO) ^s r e a ^ f° r anY x Alternatively we could
derive the same invariants using again a ribbon Hopf algebra model (see [MOO92]).
It follows that the abelian case does not give any information on the invertibility
of links. We don't know however what happens for general G.

There are of course RCFT models having non-symmetric braid matrices as for
example the Ising model whose fusion rule algebra is

ψ x ψ = l,φ x φ = φ,φ x φ = 1 -h ψ.

We can compute S which is real and

[Ψ Ψ\ y/ϊ FV 8 Vexp(^Ξί) 1

This model however presents a non-zero central charge and when the correction term
is added, the associated invariant is again invariant when passing to the inverse link.

Notice that for the Jones polynomial (or the G-quantum invariants) valued at
certain roots of unity the associated RCFT presents a central charge and several
normalizations are done. The non-invertibility is not detected but the last formula
translates into a J(K}\ c\ q) = J(K, c; - ), where q is the deformation parameter, this
way permitting us to exhibit examples of non-amphicheiral links.

Therefore in order to have another behaviour of link invariants with respect to
the change of orientation we may allow non-unitary RCFT. For example the RCFT
derived from a quantum super-group yield indefinite bilinear forms.
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A. Appendix

We say that a RCFT is abelian if we have the isomorphisms of vector spaces

Wg ~ Wf9 .
Proposition A.I. An abelian RCFT is determined by a finite abelian group struc-
ture on L such that W^k — C iff g — h + k, and otherwise it vanishes. The unity
is 0 and the involution * corresponds to taking the inverse.

Proof. In genus one we have n\ = card(L). Further n2 = Σijknβnjk' This i m P u e s

Πβ = 0 if j φ 0. This proves also that 0 is a unit. From the expression of n^ we

derive nι

jΊc G {0,1} and for fixed j , k there is an unique / with nι

jk = 1. We denote

it by j + k. Since nι

jk = n\- this law is commutative. The associativity follows from

the fact that F is an isomorphism. Also n^k — n^ so k* = —k. D

The RCFT determined by a finite group were treated by Dijkgraaf and Witten
in [DW90], the abelian theories were classified by Moore and Seiberg in Appendix
E of [MS89], and the general case was settled by Freed and Quinn [FQ93].

In particular it follows that the h.t.r. associated factors through the symplectic
groups

The basic data is (*S(0), Γ) since S(J) = 0 for j > 0 and the fusion matrix is 1.
If we allow protective unitary representations, or unitary invariants for framed

3-manifolds there are some very interesting examples. The general form of these
representations (we normalize them to be true representations but allowing that the
weight vector be invariant up to a character) is

0 τA~ι ) = ^δτAλ,μ^^μ^J,cί e GL(g9Z),

* f j =diag(exp(2πv/i:T^(5x,x)))^Lί/

for a symmetric matrix B with integer entries, with Δx = 5Zf=1 ΔXi, the scalar product
being the natural one on Lg and Ajcarά(L) e Z for all y,

0 ~ι

where S and T = diag(exp(2π\/:^Tzlx))xe// give a SL(2,Z) representation.
In particular we get the abelian Witten's theory for the gauge group G — U{\)

(or equivalently the Z/A:Z-theory) and the family of theories obtained by the semi-
abelian quantization in [Fun93a, Fun93c].

The invariants for 3-manifolds we get in the canonical framing are no longer
multiplicative invariants. Their modulus corresponds to a multiplicative invariant and
therefore is an homotopic invariant determined by the first Betti number and the
torsion pairing on Tors(Hι(M,Z)). When also the phase factor is taken into account
we obtain in particular Witten's invariants for torus bundles and lens spaces (see
[Fun93b, Jef92], hence even in the abelian setting we can obtain non-homotopic
invariants.
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