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Abstract: The authors show how to obtain the full asymptotic expansion for
solutions of integrable wave equations to all orders, as f->oo. The method is
rigorous and systematic and does not rely on an a priori ansatz for the form of the
solution.

1. Introduction

In [DZ1], the authors introduced a new nonlinear steepest descent-type method
for analyzing the asymptotics of oscillatory Riemann-Hilbert (RH) problems. This
method has since been used to study rigorously the long-time asymptotics of a wide
variety of integrable systems such as the modified Korteweg de Vries (MKdV)
equation [DZ1], the nonlinear Schrodinger (NLS) equation [DIZ], the doubly
infinite Toda Lattice [K], the autocorrelation function for the transverse Ising
chain at critical magnetic field [DZ2], the collisionless shock region for the
Korteweg de Vries (KdV) equation [DVZ], and also the Painleve II equation
[DZ3]. In these papers only the leading asymptotics is considered. The purpose of
this paper is to show how to obtain the full asymptotic expansion for the solutions
in a rigorous and systematic way.

Full asymptotic expansions have been written down in the form of an ansatz for
a variety of equations. For example, for NLS

iut + uxx-2\u\2u = 0 , u(x,0) = uo(x)eS(ΊR) , (1.1)

Segur and Ablowitz [SA1] introduced the expansion

ψ ή , f-oo, (1.2)
n=l k=0 t

where α, ocnk and v are functions of the "slow" variable x/t. The coefficients ank and
the parameter v can be found explicitly in terms of α via the substitution of (1.2) into
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(1.1). For example
v = 2 | α | 2 . (1.3)

In [ZM], Zakharov and Manakov derived a formula for a in terms of the reflection
coefficient r(z) associated with the initial condition u0 through the inverse scatter-
ing method:

^ ^ | 2 ) , (1.4)
2 4

argα(zo) = -3v log2-- + argΓ(iv)-argr(z0)

+ - J log |z-z 0 | d log( l- |Φ) | 2 )
π -oo

zo= —x/4t, Γ = gamma function .

The expansion (1.2) was also considered by Novokshenov [N]. For the KdV
equation,

ut + uxxx-6uux = 0 , u(x,0) = uo{x)eS(JR) , (1.5)

Ablowitz and Segur [SA2] and later Buslaev and Sukhanov [BSa], [BSb] con-
sidered expansions ί->oo of the form

Uizf^°gt)qzo= Eΐ (1.6)

for suitable functions Φ, B and upqm, and in [BSa, BSb] it is shown that under
certain (nongeneric) assumptions on w0, the solution u(x, t) does indeed have such
an expansion.

As in [DZ1, DIZ] we will consider specific examples to illustrate our method. It
will be clear that our approach is general and systematic and applies to all
integrable systems solvable through a RH problem. We consider, in particular, the
NLS equation (1.1) and the MKdV equation

ut + uxxx — 6u2ux = 0, ιφc,0) = Mo(x)eS(IR) , (1.7)

in the so-called similarity region

-j ύM for NLS, (1.8)

x < 0 , for MKdV, (1.9)

1V1

for some M>1.

Theorem 1.10. (NLS). Let u{x,t) be the solution of(lΛ) with uoeS(TR). Then
(a) For (x, t) in the similarity region (1.8), u(x, t) has an asymptotic expansion of the

form

U (x , ί )~ e £-" l o g ί I ^ β flsί-oo, (1.11)
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where v is given by (1.4) and

up(z0,t) = PΣ upq(z0)(\ogty , (1.12)
q = 0

in the sense that

» < * , » - " " « - ' - ( Σ ^
αnrfα// |zo | = |-x/4ί |^M.

(b) 77i£ asymptotics in (1.11) can fr£ differentiated term by term with respect to x
and t.

(c) up=0for p even and up can be determined recursively for p odd from uo(zo, t) =
uιo(zo) = aizo) > as follows: for p> 1,

upq = , _ιγ\ ( M - y ~ ) - v ) ( / p ^ ~ ι ' ^ + 1)wA€+i) + 2 ωo(/pq-ϊ('3+1)%q + i) L

(1.13)

Λ.=2 Σ

[u"-2 —{v'Vu -2 -2 — iv"u -2 - i ] (1-14)
16 p 'q p 'q p 'q

(1.15)

Here upq is determined recursively in decreasing order of q starting from
q = p-l D

Definition 1.16. We define an order -< on NxN:(fe',p')<;(ίί,p), 1/ dί
p' —p<k' — k or p' — p = k' — k<0. For a function F = F(ξ, η\ set F' = Fξ, F = Fη.

Theorem 1.17. (MKdV). Let u(x, t) be the solution of (1J) with uoeS(Wi). Then:

(a) for x, t in the similarity region (1.9), u(x, t) has an asymptotic expansion of the
form

ekψ ί sr ukP(
zo,t)\

Γ \p^|/c| Γ //codd

o , ί ) = Σ ukpq(z0)(logt)q,ukpq(z0) = u-kpq{z0) , (1.19)

v = v(z o )=12z o |M 1 1 (zo) | 2 , (1.20)

iw ίn^ sense that

U(Ύ t ) - V ek*ukpq(z0)(\ogty f(\ogt)N

tp/2 + ikv t U I t(N+l)/2

1
for any N and all—Szo=

Szo /j
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(b) The asymptotics in (1.18) can be differentiated term by term with respect to x
and t.

(c) ukp=Qfor P e υ e n and ukP

 c a n be determined recursively for p odd from

γ/2
j ^ J ^ ( 2 o ) = w-n(zo, ί) , (1.21)

where

+ - J l o g | s - z 0 | d l o g ( l - | Φ ) | 2 ) , (1.22)
π

I Φ o ) | 2 ) , (1-23)
zπ

and r(z) is the reflection coefficient associated with u0 through the inverse
scattering method. For k>l, ukp is determined by {uk'P''. (k\ p')-<(&, p)} and the
reality condition ukjPj = u-khPj as follows:

3 3 l

p 2

(k2-l)z0 , , k

2 U

k ,. „

96z o

v

+ 4izok

+ 7Γ- Σ (w^ft-ifclV'OogOMfc^^Mk^Mfcaft (1-24)

Pi + P2 + P3 = P ~ 2

For fc=l> w l p is determined by {uWp>\ (k\pf)<(l,p)} and the reality condition

ukj,Pj = U-kj,Pj as follows: for O^q^p-1, p>ί,

I2izou
2

11(fpq-{q+l)ulptq+1), (1.25)

where

96zo

| (
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p + 2,. p - 4 .

f—2~ + ιv(f ~—T~ ~ιvii \

-TΓ Σ (ur

kiPι-^vf(\ogt)ukίPi)uk2Pluk^ . (1.26)

\kj\^PjJ=ί,2,3

Pl+P2+P3=P

uipq = 0 forq^p. (1.27)

Here ulpq is determined recursively in decreasing order ofq starting with q = p—l.

The assumption in Theorems 1.10 and 1.17 that the initial data lie in Schwartz
space, leads to the full asymptotic expansions (1.11) and (1.18) respectively. If the
initial data has only a finite degree of smoothness and a finite order of decay, then
the above method leads to asymptotic expansions of type (1.11) and (1.18), but only
to a finite order in ί"1.

As opposed to previous authors,

(i) we do not require an ansatz for the asymptotic form of the solution,
(ii) we do not place any generic or nongeneric (cf. [BSa], [BSb]) restrictions on

the Schwartz space initial data,
(iii) our method is general, systematic, and rigorous. We expand the solution u(x, t)

of the Cauchy problem directly by our method and the analytic origin of the
logarithmic terms, as well as the analytic origin of the interaction of modes ekφ

(for MKdV), become transparent.

Parts (a) of the theorems will be proved in Sect. 2, parts (c) in Sect. 3, and parts
(b) in Sect. 4.

Note finaly that as up=0 for p even, the expansion (1.11) for NLS reduces to
(1.2), and as ukp=0 for p even, the expansion (1.18) takes the form

, ^ v ekψ

 v ukp(z0,t)
«(*>0~ Σ TΰΓv Σ tP,2 - 0-18)

podd

Furthermore substituting (1.18)' in the Miura transform u-*ux + u2, we obtain the
asymptotic expansion (1.6) for the KdV equation in the similarity region

B

2. Derivation of Asymptotic Forms

In this section we derive the asymptotic forms (1.11) for NLS and (1.18) for MKdV.
Recursion formulae for the coefficients up and ukp respectively, will be derived in the
next section.
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For the convenience of the reader we recall the solution procedure (see, for
example, [BC]) for a RH problem on an oriented contour Σ. The RH problem on
Σ is to find a v x v matrix-valued function m(z) such that

m(z) is analytic in (CXI1

m+(z) = m-(z)υ(z) , zeΣ ,

ra(z)—•/ as z—>αo ,

(2.1)

for a given jump matrix ί;:Σ->Mv((C), v(z)-+l as z->oo. Here m±(z) refer to the
boundary values of m(z) taken from the left/right sides of Σ, respectively. Let

C±f{z)= lim J
f{s) ds

z'e + side of Σ
Σs — z'2πi

(2.2)

denote the Cauchy operators on Σ. Suppose v(z) has a factorization
υ(z)=(l—ω_)~1(/ + ω+), zeΣ, and introduce the operator Cω on L2(Σ;MV((C)),

(2.3)

Suppose that μeI+L2(Σ; MV(<C)) solves the equation

Then
(l-Ca)μ = I .

" ' ^ ' - " J . s _ z 2πi '

is the solution of the RH problem (2.1). Also

)9zeΣ .

(2.4)

(2.5)

7: NLS. The NLS equation can be solved via a 2 x 2 matrix RH problem on
IR oriented from — oo to -f oo as follows. Let m(z) = m(z; x, ί) be the solution the
RH problem

f m+{z) = m-{z)υXit{z), zelR ,

{ m(z)->7 as z-^oo ,
(2.6)

where
1 0

0 - 1

(2.7)

v =

r(z) = reflection coefficient associated with uo(x) .

Then the solution u(x, t) of the Cauchy problem (1.1) for NLS is given by

u(x, t) = 2 lim (zm12{z))= —2
2πιJl2

where ω ±,χ,f
i(2tz2 + xz)adσ 3f
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In [DIZ] the authors show that in the similarity region | z o | =
1

NLS equation can be solved to any fixed order 0 ( — ], via an associated

deformed RH problem (Σ { 1\ v^]) on a cross Σ{1)

— x
At

181

<M, the

Fig. 2.9.

lΛ
1 0

Γl 1

where

as

J_ 0

2πi^ -°

(!)/

then

for \zo\ =

ua){z,t) = 2 lim (zmi2

j(z)),

. 1 .
K t) = u{1)(x, ί) + 0 — as

4ί

(2.10)

(2.11)

and {^(z)} ?= x are rational functions which decay to zero as z-» oo on Z ( 1 ) . Indeed if

(2.12)

(2.13)

Now note that by the signature of Re(i0(z))) and the upper/lower
triangular shape of v{^u v{

x\](z) — I converges exponentially to zero as ί-»oo, uni-
formly for zeΣ ( 1 ) , outside any neighborhood of z 0 . Using the elementary expansion
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for any JV,

+ O((z-z 0 )" + 1 log(z-z 0 )), (2.14)

we find under the scaling z->(z/%/ί)H-z0

Z \ \2itzo -^-logί }adσ3 m

j + Zo,zo\ = e\ 2 *) C ( z ) (2.15)

for ze Σ(l) — z0, where

L
<2> _<,-2lrJ.dσ3_i»(«o)«d»3 Γf I r ( 2 ) I ̂ O + P l l l θ 8 f

, P^ + P^logf + + ^ ( l o g Z ) Ί
H 7iv72 + f «(z, ί, Z o ) , (2.16)-}

| | e-2ίo1«iσ J(.)ίv<.,).d<,, ι,w) (. > Z o ) | | t l n L . ^ c , uniformly for \zo\^M , (2.17)

and

t + 1 ) / 2

EΌ( ,t9z0)\\LinL~- = θΓ t*+'1)/2 y uniformly for | z o | ^ M . (2.18)

The estimate for Ev follows by a direct extension of the method in [ D Z l , p. 332
et seq.].

Setting ω(_2) = 0, ω + ̂ ^ - Z , the operator Cω™ in (2.3) on Σ ( 1 ) - z 0 takes the
form

Σ ^ | ^ , z 0 ) / ? (2.19)

w h e r e
Cpqf=C^fe~2i(')2adσ^)iv^ad^vi

p

2

q

)), (2.20)

and
Ec{t,z0)f=C-(fEΌ{ ,t9z0)). (2.21)

It follows from (2.17) and (2.18) that uniformly for | z o | ^ M ,

\\CM\\L^L^L^cm (2.22)

and

(^^\ (2.23)

The computations for the leading order asymptotics in [ D Z l ] show that
(1 — C Q O ) * exists and is uniformly bounded,

II (1 - C o o ) " 1 II L ^ L ^ L ^ S C , \zo\SM, (2.24)

and hence μ< 2 ) = (l — Cωm)~ι I can be expanded in a Neumann series as f-*oo,

μ(2) = I+ Σ [-^~μpq(z,z0) + Eμ(z,t,z0), (2.25)
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where

^ 5 p ^ ^ ^ (2.26)

uniformly for \zo\^M.
Taking into account the scaling and conjugation in (2.15),

= (2to8^log ί)adσ,/ μ™(s)(vZ(s)-I) ds\

V J φ ) ) 2πi)>

we obtain from (2.8)

4iίzΛ (4iίzo-ϊv(z0)logί)

I ^{vZ(s)_I}ds_\ ( 2 2 8 )

2πιJ

Inserting (2.25) we obtain the asymptotic series (1.11).

Part 2. MKdV. The MKdV equation can be solved via a similar RH problem to
NLS. Let m(z) = m(z; x, t) be the solution of the RH problem

f m+(z) = m _ ( φ X f ί ( z ) , zeIR ,

|m(z)->7 as z->oo ,

where

r(z) is the reflection coefϊiicient associated with uo(z) .

Then the solution w(x, ί) of the Cauchy problem (1.5) for MKdV is given by

= ( σ3, J μ(s) (ω + < J C > ί(s) + ω _ i X i f ( s ) ) — ^ ) ,u(x,t) = 2 lim (zm2ί) = ( σ3, J μ(s) (ω + <JC>ί(s) + ω_ i X i f (s))—^ ) , (2.31)

where μ and ω+ X i ί are the analogs for MKdV of the quantities introduced above
for NLS. ' '

In [DZ1] the authors show that in the similarity region M~i^z0= /

/ 1 \ ^
the MKdV equation can be solved to any fixed order O ( — 1, via an associated RH

problem (ΣAKJΣB, VXJ , mΛ^B(z; x, t)) on a union of two small crosses
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Σ' υB _ AuB
' vχ,t — vx,t

Fig. 2.32.

where Vχtt and υ%tt have analogous properties to those of v(

x)
}

t in Fig. 2.9. Let m^4, m β

be the solutions for the RH problem (ΣΛ, v£t), (ΣB, v%tt) respectively. Also let ΓA,
ΓB be oriented, non-intersecting circles centered at z 0, — z 0 respectively,

Fig. 2.33.

From the analogs of (2.25) and (2.27) we obtain

)-I) ds

Σ
where υ£ i ( is the scaled version of ι>£, analogous to (2.15), and

where

z, t, z0) ,

φ = 16ίtz3

0 - iv(z0)\og t,

f(N + 2)/2

(2.34)

(2.35)

(2.36)

(2.37)

uniformly for M ^ z 0 — / 5̂  M.
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Set
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mAκjB(z) , z outside ΓΛ and ΓB ,

m (z) = { mAuB(z)(mA(z)y1 , z inside ΓA ,

m
1 , z inside (2.38)

(Note that m(3)(z) is analytic on the crosses ΣA, ΣB). The matrix m(3)(z)->7 as
z->oo, solves the RH problem on ΓAuΓB,

Let
Fig. 2.39.

mA(z)=mΛ(z;z0,t) for

= / for zeΓB ,

mB(z)=mB(z;z0,t) for z e Γ β

= / for (2.70)

Then the operator C ( 3 ) for the inverse problem on ΓAuΓB is given by (take

ω<_3> = 0, ω (

+

3 W 3 ) - J )

C(3) = A + B, (2.41)

where

and

N

-i+Σ

where

uniformly for M x ^zo^M, by (2.37).

We say that a matrix a = a(φ) = \

I, is of a-type, respectively b-type, if

) , (2.43)

(2.44)

respectively b =

αi<7 (φ) = const. e ( ι " J ) 0 , bij(φ) = const.
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respectively. Note first that the a-type, respectively b-type, matrices form an
algebra. Hence an arbitrary product of a-type and b-type matrices reduces to an
alternating product . . . abab . . . . A simple computation shows that for such an
alternating product,

(...abab...)01=
NΣ Cjei2J+1>*9 (2.45)

J=-Nb

where Na (respectively Nb) is the number of a-type (respectively) b-type matrices in
the product.

From (2.34)-(2.37),

A= Σ
B= Σ

{\θgt)q

+ EB(t9z0)9
(2.46)

where

(N + 2)/2

uniformly for M-^ZoSM. As ω(_3) = 0, μ(3)(z) = m(_3)(z) by (2.5), and hence by

(2.31) and (2.38), for any fixed (and large) n^

= 2 J

= 2
ΓAKJΓB

= - 2 f

= - 2 £ J
j=lΓΛvΓB \

(2.48)

where we have used (2.44). The asymptotic expansion (1.18) now follows easily by
using (2.45) and (2.46). The condition ukpq(zo) = u-kpq(zo) in (1.19) follows from the
reality of u(x, t).

Remark 2.49. It is clear how to extend the above analysis to oscillatory RH
problems with more than two points of stationary phase - simply solve the
problem one point at a time, and then add in one circle for each point.

Remark 2.50. We see that analytically the (logί)^ terms arise in the asymptotic
expansions from the factor δ{z\ which is needed to control the decomposition of
vXJ(z) into triangular factors (see [DZ1], pp. 300-301).
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3. Determination of Coefficients

In this section we prove parts (c) of the theorems, assuming parts (b).

Part Γ. NLS. Inserting (1.1) (and its x and t derivatives) into the NLS equation

(1.1), we obtain for | z o | =

P = l

vu
vup

4ί

... i(p-l)
u 1 t

(p+2}12

+17 Σ {K-iv'\\ogt)up-MV{\ogt)up-v'{\ogt)2up)lt^+^2

= 2 Y ( i n

where w^(zo,ί) = ^— u(zo,t), ύp(z0,t) = —
ίfixed Vt

up(z0, t) etc. Collecting

terms of order t (P + 2 " 2

? we obtain for p = 1,

vu1=2uι\u1\
2, or v = 2|w1 |

2 as in (1.3), and for p> 1 ,

vup+itύp-i({p-l)/2)up+— (w;_ 2-fv' /(log0^_ 2-4iv'(logί)w;_ 2

(3.2)

uPιuP2ΰP3 + 2(u2up+2up\uί\
2) . (3.3)

Substituting (1.12) for up, we obtain the recursion relations (1.13), (1.14) by simple
linear algebra.

Part 2: MKdV. Substituting (1.18) (and its x and t derivates) into the MKdV
equation (1.7), and collecting terms of order eΨt~(p+2)/2, we obtain for p= 1,

\Ull\
2 = v/l2z0, which agrees with (1.20) ,

and for

( l o g ί ) β ,

(3.4)

(3.5)
q=0

where fpq are given in (1.26). Inserting (1.19) for « l p, we obtain the recursion formula
(1.25) for ulpq.

To determine ukpϊor k> 1, we collect terms of order eWt-(p+2)/2

 a n ( j w e obtain
(1.24).
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4. Differentiation of the Asymptotic Series

In this section we show that the asymptotic series (1.11) and (1.18) are differentiable
term by term with respect to x and t.

First we consider NLS. The calculations in [DIZ] show that the RH problem
(2.6), (2.7) is equivalent to a RH problem (Γ(4), t#>),

Fig. 4.1.

as
(4.2)

Carrying the calculation in [DIZ] to higher order (see [DZl]), one sees that for
any /?, L one can ensure that as £->oo, | z o | ^ M ,

—^Kβ 2)( ,z0,ί) (4.3)

for a = I or II, ξ = xort, 1 ̂ i^4andO^/^L. The associated operator C{4) { = Cω,
see (2.3)) acts on the space L2(Σ(4)), which clearly depends on z 0. In order
to differentiate the operator we reduce the space to the fixed space
L2(Σ ( 5 )) = L 2 (Z ( 4 ) -z 0 ) . It turns out that the associated operator C ( 5 )

((C(5)/)(z) = (C ( 4 )/( + z 0))(z-z 0)) on L2(Σ{5)) is not differentiable with respect
to x and t from L2(Σ ( 5 ))->L2(Γ ( 5 )) because of the singularity of
δ = eiv<x°)lo*iz-χ°)+ "(see (2.14)) as z->z0 on Σ(4\ or as C = z-zo-*0 on Σ(5\ so that

l C ζ = z-z0, which is not bounded on £ ( 5 ) . f Foτ—η{ha iδ±2) in (4.3) this
\ dξιdt η

dξι
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logarithmic divergence of δ is cancelled by the behavior of haJ(z) as z-^z0 (see

[DIZ, DZ1]. j To avoid this difficulty, we consider the following equivalent RH

problem (Σ{6\ v{

x

6)

t)

( 5 )

Σ ( 6 )

vls)

Fig. 4.4.

where the circle has fixed radius p, say p = 1. The RH problem is obtained from
(Γ ( 4 ) , υ(

x

4)

t), or more properly (£<5), DI5/), by setting m(6)(z) = m{5)(z) = mw(z + z0)
for | z | > l , m ( 6 )(z) = (w ( 5 )(z)^(z)σ 3 for | z | < l . The singularity of δ at z = 0 is

now absent. For example, for ze(0,l)e i π / 4,t)i6

(

)(z) = e- ί r θ a d
1

?
and for ze(-l,0), as

δ+ =(5_(l-|r(z)2). The method in [DIZ, DZ1], together with (4.3), now implies
that as ί->oo,

for any given 0^l^llfq, and again ξ = x or ί. Here u(Ί)(x,t) is the potential
associated with m ( 7 ) (z; x, ί),

(4.5)u{7)(x, ί) = 2 lim
Z~* 00

where m(7)(z; x, t) solves the RH problem (Σ ( 7 ) , t ; ^ ) ,
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cad (r3g-it0ad

Fig. 4.6.

This RH problem is equivalent to the RH (Σ(ί\ vx]]) in the sense that

m ( 7 ) r

, \z\>l ,

, \z\<ί ,
(4.7)

and hence, using the analyticity of δ, is equivalent to a RH problem {Σ{8\ vx

8)

t) on
a contour Σ(8) of the same shape as before except the circle now has radius t~1/2,

m
(8)/

f-1/2 .
(4.8)

Scaling z-+z/^/t, we

m(9){z; x, ί) = m ( 8 )(
( 9 )

obtain a RH problem on

ί; x, ί), with i /

) = Σ ( 7 ),ι;i,;) for
. Observe that the RH prob-

9 (9)

{ ) ( / v ) i^) ^i/y/) p
lem for m ( 9 ) is given on a fixed contour and that δ occurs in (Σ(9\ υ(

x

9)

t) only on the
fixed circle, \z\ = 1, which is away from the singularity of δ at zero. It follows that
m ( 9 ) can be differentiated arbitrarily often with respect to x and t. Moreover, if one
examines the analog for m ( 9 ) of the error term Ev(z, t, z 0) in (2.16), for example, one
sees easily that differentiation with respect to x or t cannot decrease the rate of
decay with respect to t in the estimate (2.18). The same is then true for the analog of
the operator bound in (2.23). Similar considerations also show that analog of the
coefficients v™ in (2.16) and the operators Cpq in (2.19), can also be differentiated
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with respect to zo>
 e t c This proves that the asymptotic series (1.11) can be

differentiated term by term.
In the case of MKdV, δ has two singularities, at — z 0 and z 0 respectively. For

each of these points we add in one circle, and proceed as in the case of NLS above.
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