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Abstract: We prove that the number variance for the spectrum of an arithmetic
surface is highly nonrigid in part of the universal range. In fact it is close to having
a Poisson behavior. This fact was discovered numerically by Schmit, Bogomolny,
Georgeot and Giannoni. It has its origin in the high degeneracy of the length spectrum,
first observed by Selberg.

1. Introduction

Let λ0 < λ j < Λ2 . . . be a sequence of numbers satisfying

N(x) = \{j \\j<x}\~x as x -» oo . (1.1)

There are many statistics that may be used to measure the fine structure of the

distribution of the λ's. The one that we will use here is the number variance X]2(λ, L)
defined by

2(λ, L) = ((N(X + L) - AΓ(Λ) - L)2} , (1.2)

where ( ) denotes local averaging in λ. ^(L) measures the variance from the
expected number of "levels λ" lying in intervals of length L. For the local average
we choose

2λ

£2(λ, L) = I ί(N(ξ + L) - N(ξ) - L)2 dξ . (1.3)

λ

Of course, we could replace 2 by c, where c > 1.
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We also define the average ]ζ2 by

(1.4)

The basic models for the distribution of the λ's relevant to spectral problems are
(i) λj 's are random - that is λ j+1 — λ j has a Poisson distribution,

(ii) The λ^'s are the eigenvalues of a random symmetric matrix, that is G.O.E.
(Gaussian orthogonal ensemble) scaled to satisfy (1.1) [Boh].
(iii) The λ^'s are the eigenvalues of a random hermitian matrix, that is G.U.E.
(Gaussian unitary ensemble).

For each of these one can compute the expected values of Σ (-k) [B2, Boh]:
(i) Poisson,

(ii) G.O.E. for L > 1,

(iii) G.U.E. for L » 1,

7

Note that the number variance is much smaller for (ii) and (iii) than for (i). We say
that the spectrum in (ii) and (iii) is rigid.

Consider now the number variance when the λ's are the eigenvalues of a compact
two dimensional Riemannian manifold. In this case after a suitable normalization (1.1)
holds this being WeyΓs Law. Berry has put forth arguments in favor of the following
behavior [B1,B2]:

Fig. 1.

For 1 <C L Lmax ~ \/λ the behavior Σ2(X, ^) *s universal and given by

(i) Σ^(^) = Σpoisson^) if me geodesic flow is integrable,

(ii) Y?(L) = ]ΓQ o E (L) if the geodesic flow is chaotic,
(iii) If in case (ii) we break time reversal symmetry by introducing a magnetic field

(see below) Σ2(L) = ̂ G υ E (L).
There is a lot of numerical confirmation of these conjectures [B2, BOH]. However

a striking violation discovered numerically by [B-G-G-S] and [A-S] concerns the
spectrum of an arithmetic hyperbolic surface.
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Let Γ < SL2(R) be a lattice and Γ\H the corresponding hyperbolic surface
(compact). The following characterization of the arithmeticity of -Γ in terms of the
traces of the members of Γ is due to Takeuchi [T]. (The reader may use these as
definitions.)

Let J5^(Γ) = {trace(7) | 7 G Γ}.
(A) .Γ is arithmetic iff
(a) K = Q(5Z(Γ)) is a finite extension of Q and

of K.
(b) If φ\K ^ C is any embedding such that

bounded, where ^(Γ)2 = {t2 \te J&(Γ)}.
(B) Γ is derived from a quaternion algebra iff (a) 3?(Γ) satisfies A(a) and
(b) If φ is an embedding of K into C and φ ̂  id then φ(5%(Γ)) is bounded in C.

For any lattice Γ it is well known [A- A] that the geodesic flow on T1*(Γ\H) is
chaotic. Denote by λ0 < \{ < X2 . . . the spectrum of the Laplacian A on functions

on Γ\M and by ]Γ (Γ, λ, L) the corresponding number variance. In order to break
time reversal symmetry and also arithmetic symmetry we consider more generally the
spectral problem

C Oκ the ring of integers

identity then φ(5^(Γ}) is

( Δφ + Xφ = 0
(1-5)

where χ:Γ ^Sl = {z z| = 1} is a unitary character of Γ. This may be thought
of as introducing a magnetic field [B-R]. The spectrum for (1.5) is real and will be
denoted by λ0(χ) < λ j ( % ) . . . . The corresponding number variance is denoted by

The numerical discovery alluded to above is that in the universal range Σ (̂  λ, L)

is highly nonrigid for arithmetic /"-behaving like Σp0isson, white for nonarithmetic

Γ it is rigid behaving like J^G o E (in both cases for desymmetrized problems). See
Figs. 2 and 3 which are taken from Schmit [S]. Figure 4 shows 50 spectral lines (high
in the spectrum and normalized to have constant mean level spacings) for (a) random
numbers (b) the arithmetic group Γ = SL2(L) and (c) the zeros of the Riemann zeta
function. Notice that the spectrum of 5X2(Z) looks a lot like the random number
spectrum while the zeros are rigid, in fact they follow G.U.E. [O]. The Poisson and

o 1

Fig. 2. J]2(L) for an arithmetic triangle
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Fig. 3. Σ2(L) for a non-arithmetic triangle

K«

Fig. 4. Poisson SL Zeros ζ(s)

zeros column come from Mehta [M, p. 13]. The SΊ/2(Z) column was drawn using the
data in Steil [ST].

Our purpose in this paper is to prove a lower bound on the number variance
for arithmetic groups showing that in part of the universal range their spectrum are
nonrigid.

Theorem 1.1 If Γ is arithmetic then

(logλ)2
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for

logλ max

Theorem 1.2 If Γ is derived from a quaternion algebra then

for
λ 1 / 4 «L<λ 1 / 2 /k>gλ:=Z,,

where
//λ 0 (χ)<l/4

t 0 otherwise .

Remarks 13. (1) For L ~ - Theorem 1.1 gives
logλ

^ -''-'~ logL

This is close to establishing and consistent with Poisson behavior in this range.

(2) For x — 1, δ(χ) =1/2 and Theorem 1.2 gives an effective lower bound for Σ
in the range

A 1 / 4 < L < λ 1 / 2 / l o g λ .

It shows that in this range the spectrum is nonrigid and is Poisson like at least for

(3) On introducing x the symmetries are broken and so one expects a decrease in

Σ down to G.U.E. However, according to Theorem 1.2, this change cannot happen
abruptly (as has been suggested in some other situations [B-R]) because λ0(χ), and
hence δ(χ) vary continuously in χ. The parameter space for the χ's is a torus and the
behavior to second order of λ0(χ) for x near 1 is determined in [P-S]. The lower bound

in Theorem 1.2 gives nonrigid behavior for a range L ~ L as long as λ0(χ) < 3/16.
It would be very interesting to investigate the rigidity numerically as a function of
X since it appears that for x varying from x = 1 to x = χ0 with λ0(χ0) > 1/4
the statistics may vary continuously from a Poisson to G.U.E. behavior. Moreover
throughout the deformation the dynamics are chaotic.

We end the introduction with some comments about the proofs of the theorems.
First, the feature of the arithmetic groups that it is at the root of nonrigidity in the
spectrum is the high multiplicity in the length spectrum. This was observed in special
cases by Selberg and Hejhal [H] in their derivation of lower bounds for S(t) (see
(2.2X) for a definition) and again has been pointed out in [A-S] and [B-G-G-S]. For
us the key property of arithmetic groups is the following bounded clustering property
(B-C) see Sect. 2.

For Γ arithmetic there is c(Γ) < oo s.t.

3?(Γ) Π [n, n + 1]| < c(Γ) for all n G Z. (1.7)

If Γ is derived from a quaternion algebra then the stronger property of minimal
spacing holds:

There is δ(Γ) > 0 s.t.

I trace(7) - trace(7])|
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if

trace 7 7^ trace 71 .1 (1.8)

In deducing Theorem 1.1 we can only appeal to the weaker B-C property (1.7) and
as a result have to face a number of technical problems. To overcome these, we prove
some new lower bounds for mean-squares for Dirichlet polynomials (see Lemma 2.3).
The reason we only get lower bounds in the theorems is that using the trace formula,
one can derive useful expressions for smoothed versions of N(x) - see formula (2.3).

A lower bound for the smoothed ̂ 2 gives a lower bound for ]ζ2. Upper bounds for

J^ seem unapproachable by these methods.

2. Proofs of Theorems

We begin with proofs of a few useful lemmas, which are of independent interest.

Lemma 2.1. // Γ is an arithmetic Fuchsian group, then 2?(Γ) satisfies the B-C
property. Moreover ifΓ is derived from a quaternion algebra then the stronger property
of minimal spacing holds.

Proof. We will use the characterization of arithmetic lattices due to Takeuchi (see
Sect. 1). Given [n,n + 1], arrange all embeddings of K = Q(«5?(Γ)) into C as
σl = id, σ2, . . . , σ fe, σfc+1, . . . , σn, n = [K:Q], such that σ l 5 . . . , σk are all the

embeddings satisfying σ $ 2̂ = id. Suppose there are more than 2k~l(M+1) points

of Jz^(Γ) in [n, n+ 1], M being a positive integer, then by Dirichlet's principle, there

are at least two different elements in J^(Γ), α, β, say, such that 0 < |α — β\ < —,

and σ α = ε-α, σβ = εβ, 1 < i < k, ετ = ±1. Thus 0 φ a - β e Oκ and
1

σ,(α - jS)| < —, 1 < i < k, \σ (a - β)\ <2A,i> k. (We assume σ?(^(Γ)) is
M i

bounded by A for i > k.) Hence 1 < \N^(a - β)\ < —^ (2A)n~k, where N^ is the

norm from k to Q. When M is sufficiently large the above is impossible. The proof
of the second assertion is similar and easier.

Lemma 2.2. Let aj > 0, λ - G R. Then there exists Cm > 0, such that for R > 1,

2R i 3

Proof. Since α^ > 0, we may assume λ^ , 1 < j < m are all different, and satisfy

0 = Λ 1 < λ 2 < . . . < Λ m ;

ra

moreover we may assume Σ α^ = 1.
.7 = 1

1 An example of an arithmetic group not satisfying (1.8) is the Hecke group Γ generated by

contains 2Z as well as \/2Z
-i o r L O i
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We have, after change of variable r —» Rr,

425

R

3R\\
dr = R

We will conclude the proof if we can prove that

•-f | )dr>C m for 0 - μ{ < μ2 < ... <

(2.1)

We will use the elementary fact

(2.2)

and proceed by induction.
When m = 1, (2.1) is trivial. Suppose (2.1) holds for m < fc, then when m = fc+1,

we have, for 1 < υ < fc,

υ

> α
/ ^ 3

.7 = 1

/ v

ϊ \^

Oiμ3r (- -
\2

fc+1
Y^ aιa

3

3 (

J

ft/Ti

V α e^r

Z_/ J

L

(- -
\2

1 ^

\

^
By induction hypothesis, (2.1) is true unless μv+l - μv < Δ(k), 1 < v < k, where
Δ(k) is some function of k. So we are left with case:

fc+l

Σ α^
-

The left-hand side of (2.1) is a positive continuous function in α and /^, and the
above set is compact, hence (2.1) is still true in this case. This completes the proof.

Theorem 2.3. Let 0 < tλ < t2 < ... satisfy

HXK>ι Π[n 2,(n+ 1)2]| < C

for all non-negative integers n; a > 0, then there exists D > 0 such that, for R > 1,

2R

I Σ r > DR V α^ + θΛ/ΛΓ V α^ .
~ / j J \ / J 3 I

V t3<N
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Proof. We can assume \/rN <C R, since otherwise, Lemma 3 is vacuous.
We define

where 7fc's are chosen such that Ik C (A:2, (fc + I)2 + <5/c), Ik Π Ik2

and dist(/fc, /fe+1) > 5fe. Here <5 is some positive constant depending
Then by Lemma 2.2 and (2.2), we infer that

= φ if
on C.

2R

I Σ
t<N

Σ

R
dr

2R

R

2R

Σ

R

\r~2R\

dr

R

Σ

dr

k<3 t

We will distinguish two cases.

Case 1. j — k > 2. The contribution of terms with j — k > 2 in the last sum

Σ Σ
= fc H- 1. These terms contribute at most

Σ
This completes the proof.

Lemma 2.4. Lei δ > 0,

X j <C 3?2 \ . \ ^j? ? ^τ-_)_j %r _ ^ 5

/6>r 1 < r < R— I. Then for any complex numbers br, we have

/. The proof is straightforward using (2.2).

Let Γ be a cocompact discrete subgroup of SL(2, E), and χ: Γ —» C be an unitary
character. The hyperbolic Laplacian acts on a dense subspace of the Hubert space
L2(Γ I H,χ) = {t/(z) I t/(7^) - x(7)f/U), 7 ^ Γ, and f \U(z)\2dμ(z) < oo},
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where F is the fundamental domain for Γ and μ is the invariant measure, and it has
discrete spectrum:

where λ0(χ) = 0 iff χ = 1. Write λ .(x) = ̂  = \ + 1] = Sj(l - Sj), s3 = \+ itj9

tj > 0 or it3 > 0.
Define

and

S(T) = JV,(Γ) - ί21_v±ί T2. (2.2')
4ττ

The prime geodesic theorem [H] asserts that

- ~ J I logs'

as x —» -foe, where P0 runs over the primitive hyperbolic conjugacy classes of Γ
and JVP0 the corresponding norm [H].

If {P0} has trace /, then

I2 . ,
- I2 ~ 2 -f 0 .

^
Define μ(/):= £ χ(P0) =

The following lemma shows in particular that μ(l) is large for arithmetic subgroups
and x = 1, a fact first observed by Selberg for quaternion groups (see [H]).

Lemma 2.5. Let Γ be an arithmetic subgroup of 'SX(2,R), x z's α/t unitary character
of Γ such that δ(χ) > 0. Then for any X > 1, 6 > 1 we

Proof. Let i^x) be a nonnegative smooth function such that supptt(x) C [1,6], and

_

Applying the Selberg trace formula [H] to g(x) = f(ex)e2 + f(e~x)e ΐ and
oo oo

observing #Λ(t) = h(t) = / f(r)rs~ldr + / f(r)r§~{dr with s = i -Ht, we have
o o

CX5

> h(t,.) / rtanh(πr)h(r)dr
£-< 3 4τr J

J —00

^ ̂  Xk(E) +f e-a'*Λ»
- > > : r-;— / o — f ι ( r ) d r .

Λ T^ msιn(πk/m) J 1 ' -9""
{£} fc—1 _00

0—2τr r
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Here {P} runs over the hyperbolic conjugacy classes and {E} the elliptic classes.
vσ

Since, by partial integration, h(t) <C -j — for any p > θ(σ = Res = Re ^ + it) and
]Γ) is a finite sum, we infer that \s

{E}

Thus, if δ(χ) > 0, then

« Σ

Σ
where we have used Cauchy's inequality and the B-C property which is valid for
arithmetic Γ by Lemma 2.1. This completes the proof.

The following lemma is related to Proposition 18.11 in Hejhal [H]. It expresses
the smoothed mean value of S(t + u) — S(t\ u fixed, by a finite Dirichlet polynomial.
We have kept our test functions to be quite general and also work directly with the
trace formula rather than use the Selberg Zeta function. Note that

N}(T) =
4π

ί vimhπvdv + S(T) + 0(1) .
J
o

(2.3)

Let g(x) > 0 be a smooth even function such that g(x) > 1, x E [— |, |] and support

g C [— 1, 1] and define h = g, the Fourier transform.

Lemma 2.6. // 10 < β < 21ogT, 0 < u < t and t is sufficiently large, then

(S(v + u)- S(v)) h(v - t) eiβ(v't}dv

\v-t\<t/2

= -i

X

Σ
μ(l)g(β-\ogxl)

it log Xl _ i(t+u) log

Proof. Consider

'= I(S(v + u) - S(v))h(v - >

o

The trivial bound
) = 0(x)



Number Variance for Arithmetic Hyperbolic Surfaces 429

allows us to conclude that

(S(υ + u) - S(v))h(v - t}elβ(v~t}dv + ON(t~N)

\v-t\<t/2

for all TV > 0, since h is rapidly decreasing.
On the other hand

oo / v+u \ oo / ζ~t <.

1= ίh(v- t)elβ(v-σ) ί / dS(ξ) J dv= ί I ί h(y)eί^dy} dS(ξ)

0 \ « / 0 \-u-t '

00

= J H ( ξ ) d S ( ξ ) ,

0

where

ξ-u-t

Hence

- H(-ξ)dS(ξ)

0

using again the rapid decrease of h.
A calculation yields

(H(ξ) + H(-ξ))Λ(x)

= g(β - x)e~itx l~G mX - g(β + x)eitx * Λ = G(x).
IX IX

Applying Selberg's trace formula to the test function H(ξ) + H(—ξ), we have

+ 00

i + g(-O) - M(^H) f ( H ( r )3 4π J
-oo

oo

~) + H(-r))dS(r)

o
logTVP0χ(P)

-̂̂  I _I
{P} JVP2 _ JYp 2

m-1

G(\ogNP)

+00

Σ V X ,,— / ^—(H(r) + H(-r))dr.
^ m sm(πfe/m) J 1 + e~27rr

_00
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Hence, since H(±tj) = ON(eβ/2t~N), tj φ R, and there are only a finite number of
elliptic conjugacy classes in Γ, we infer that

β~\<\ogNP<β+l NP2 - Np

g — itlogNp _ g—i(t+u) \ogNp

ι

X
i log NP
y-Λ μ(l)g(β-logxl)

- log NP) + 0N(eP'2t-N)

χ (e

This finishes the proof of Lemma 2.6.

We are now ready to prove the main theorems. Let β = 21nT — C, where C is a
sufficiently large constant.

Proof of Theorem 1. We have χ = 1.
Define

where

Σ means summation over I e < (̂Γ), eβ~l <%ι< eβ+l. Consider

2T-/a-
T

2T

T

2T

T

2T/ α - t- |τ
- 2Re / - S ( f ) T ( f ) d t

T

= Jj + /2 + /3, say.

Evidently I{J2 > 0.
By Lemmas 2.1-2.3, we infer that

2T
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The same method used in proving Lemma 2.3 leads to
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Σ Σ
* 2 <χ Z l ,χz 2 <0

T

' , say.

Trivially we have
2U

2U / i \

Hence Γ Idu > Π7 -- - Lά > C7A
i/ V lnT/

By Lemma 2. 6, and Cauchy's inequality,

2U 2T 2

f ( \S(v + u)- S(v}\ h(v - t)dv\ at an

u τ - '

+ 00

O(UT[+2ε) .

Since J h(v)dv = O(l), we have, using Cauchy's inequality,

\S(v + u)- S(v)\2dυdu ^>UΔ + O(UTWε).

2U 3T

iτ

Finally,

Σ

by Lemma 2.5.
Thus, we have proved that

2U 6T

// u) - S(t)fdtdu

[/ T

for Γ > 4 ,

uτ2

(InT)2 '

.
mi

(2.

(Here 6 can be replaced by any constant larger than 1).
Theorem 1.1 follows from (2.8) using (2.2X) and changing variable.
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Proof of Theorem 2. By Lemma 2.4, (1.8) and (2.2), we infer that

> T4<5(xV , by Lemma 2.5,

provided that δ(χ) > 0 and u <C ——.
InT

Thus, as before, we obtain

2U 6T

(S(t + u)- S(t))2dtdu > T4δ(χ]U3,

u T

for T > 4, (InT)-1 > f7, and δ(χ) > 0. (2.9)

Theorem 1.2 follows from (2.9), (2.3) and a change of variable as before.
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