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Abstract: For the Ginzburg-Landau equation and similar reaction-diffusion equations
on the line, we show convergence of complex perturbations of front solutions towards
the front solutions, by exhibiting a coercive functional.

1. Introduction and Statement of Results

In this paper, we study partial differential equations of the form

dtu = d2

xu + uF(\u\) , (1.1)

u = u(x, t\ with t > 0, x £ R, and u taking complex values. We assume -F(O) > 0,
F(a) = 0, for a > 0, and without loss of generality we consider only the case a - 1 . A
front solution of (1.1) is a solution u of the form U(XΊ t) = f(x — ct) € R, c > 0, with
linxc-ίoo f ( x ) = 0, limx_+_oo /(#) = 1. The most studied equation of this type is the
Ginzburg-Landau (GL) equation (or Newell-Whitehead equation) where F(ζ) = l—ζ2.

Our aim is to study the stability of such fronts for initial data UQ which are small,
complex perturbations of the front / of the form

o x . (1.2)

We will also write

u(x,t) = f(x - ct)(l+rt(x - ct)}eiφt(χ-ct} , (1.3)

and it is always tacitly assumed that u(x,t) solves Eq. (1.1). Note that both r and
φ are measured in the frame in which the front itself moves. Complex perturbations
of the real front solutions occur naturally in "amplitude equations" such as in the
reduction from the Swift-Hohenberg equation to the Ginzburg-Landau equation, see,
e.g., [CE1].

We will give sufficient conditions on F and c to insure that solutions of Eq. (1.1)
with initial conditions as in Eq. (1.2) converge to the front solution, provided r0



324 Jean-Pierre Eckmann, C. Eugene Wayne

and ψQ are small. Essentially, all that is needed is F'(ζ) < 0 and c > ccrit, the
critical speed, which is the slowest speed for which positive front solutions exist. In
particular, when F(ζ) = 1 — ζ"2, then c > 2 is a sufficient condition, and thus all
positive fronts, including the "marginally stable" one [AW] with c = 2 are stable for
complex perturbations of the form of Eq. (1.2).

There is a vast literature on the non-linear stability of such equations in the case
when UQ is real (i.e., φ(x) = 0 in our notation), starting with the pioneering paper
of Kolmogorov, Petrovski and Piskunov [KPP]. Their work was greatly extended
and generalized by Aronson and Weinberger [AW] who solved this problem for a
wide variety of nonlinear terms F through the use of the maximum principle. Also
of interest is the work of Sattinger [S] who by introducing weighted norms for the
spaces of perturbations was able to prove that perturbations of the front decayed to
zero exponentially fast.

If φ φ 0, the maximum principle is no longer available, and progress has been
much slower. Recently, Kirchgassner [K] addressed the question (for φ = 0) in an
interesting paper without using the maximum principle, and Bricmont and Kupiainen
[BK] finally solved it (for φ φ 0) by adapting renormalization group arguments
developed in [BKL] to these partial differential equations. Both of the papers [K,
BK] concentrate on one specific choice of F. A very detailed analysis of the critical
case is also given in [G].

In this paper we give a different and very elementary proof of convergence by
devising a coercive functional which is naturally related to the front solution. Namely,
we will show that for the natural weight function σ,

/ ΛOO \

σ(x) = f2(x)ecx 1 + / dyΓ2(y)e-cy , (1.4)
\ Jx )

the functionals

Wt = \ I dx σ(x)(r2(x) + φl(x)} , (1-5)

and

Zt = K Wt + \ I dxσ(x)(r'2(x) + φ'2(x)} , (1.6)

are non-increasing functions of time. Here, K is a large positive constant. Note that
σ satisfies the differential equation

σ' -v'σ = -1 , (1.7)

where

However, our proof needs much less, namely

(σ7 - v'σ)' < 0 , and σ(x) > σ > 0 , (1.8)

and some information on the asymptotic behavior of σ(x) as x —> ±00. The first
assertion in Eq. (1.8) is obvious from Eq. (1.7) and we show in Appendix A that the
second follows from the Main Condition stated below.

Main Condition. There are constants 6$ > 0 and C < oo such that for 0 < ζ < 1,
and \δ\ < OQ one has
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F(ζ) > 0 for 0 < C < 1 ,

<

< c, ζ F " ( ζ ( l + δ ) )
Ff(ζ)
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(1.9)

< C .

Remark. If F is analytic, then the above conditions are implied by the simpler con-
ditions: F(0) >0, F(l) = 0, and F'(ζ) < 0 for 0 < ζ < 1.

Remark. In the case of the GL equation, we have F(ζ) = 1 -ζ2, and then the condition
(1.9) obviously holds.

The assumptions we have made are stronger than those of [AW], and therefore
their conclusions apply. (See, in particular, their Theorem 4.1.) We now list some
results from their paper which will be useful below. Let ccr lt = lim^_^0 2^/(xF(x))f =
2\ΛF(0) > 0. According to [AW], fronts / exist for c > ccrit, and they are positive
functions. A slight extension of the arguments in [AW] also shows1 that if c > ccrit,
then

f ( x ) « a e " ( c ~ c ~ x / 2 as x -* oo

with a > 0, while for c = ccπt, we have

/(x) « βxe~cx/2 as x -» oc ,

(1.10)

(1.11)

with β > 0. In both cases, /J0 dy f~2(y)e~cy < oo, so that σ(x) is well defined. Note

that the above definitions imply σ(x) = O(x2) in the critical case, and logσ(x)/x =

Jc2 - c2

ήl when c > ccrit, as x —* oo. These weights are particularly well adapted to

the critical case.
From the proof of coercivity of W and Z the convergence of r and φ (to zero)

will follow easily (cf. also [CE2]). Our methods do not provide a rate of convergence
in time, as does the renormalization group approach of [BK]. On the other hand,
the spaces of perturbations defined by σ are larger than those considered by [BK],
and, we believe, very naturally adapted to the problem. Furthermore, the simplicity
of our method allows us to simultaneously treat a wide variety of nonlinear terms and
speeds.

Definition. We define

dxσ(x)\h(x)\p)l/p ,

dx\h(x)\P
l/p

=esssupσ(x)|/ι(x)| ,

=esssup| f t(αO| .

(1.12)

Notation. We shall write throughout / h for J^ dx h(x).

We now state our principal results. Given initial conditions of the form Eq. (1.2),
let rt and φt be defined by Eq. (1.3), where u is the solution of Eq. (1.1) with initial
condition UQ.

We thank Th. Gallay for providing this argument, which is not reproduced here
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Theorem 1.1. Suppose that Eq. (1.9) is satisfied. There are a finite constant K, and
an e > 0 such that if

\\l + \\r't\\l + \\φ't\\l < e2 , (1.13)

for t = 0, then one has, for all t > 0,

dtWt = dt (\\rt\\l + IMll) < -I (Hr ί l l l + \\φ't\\l] , (1.14)

and
dtzt = dt (κ\\τt\\l + κ\\Ψt\\l + \\r't\\\ + ll^H 2)

This obviously implies that the bound Eq. (1.13) holds for all times t > 0, and we
shall tacitly use this in the sequel.

Using techniques from [CE2], we obtain from this the following convergence
results (see Sect. 3 for the proof):

Theorem 1.2. Under the assumptions of Theorem LI one has

Urn (l l f ί lU + Hal loo + |K||2 + \\φ't\\2) = 0 . (1.16)

Theorem 1.3. Under the assumptions of Theorem LI one has convergence:

lim sup ( σ(x) \u(x + cί, t) — f ( x ) } = 0 .
t-*00 x£R\ J

Proof. This is an immediate corollary of Theorem 1.2 and of Eq. (1.3).

Remark. Since σ > σ > 0, the theorem also implies convergence in the usual L°°
norm.

Remark. Although the method of coercive functionals often yields stability under
large perturbations, the estimates on the nonlinearity in the following section limit
the method to small perturbations of the front, in the present case.

2. Proof of Theorem 1.1

We begin by writing the relevant equations. Rewriting Eq. (1.1) in the new variables
r and </?, as defined in Eq. (1.3), we find for the amplitude:

dtr = r// + (c + 2/7/)r/+M = £r+M , (2.1)

and for the phase:

dtφ = φ" + (c + 2/7/V + M ΞΞ Cr + λf2 , (2.2)
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where
C = dl + v'dx , with v = log(/2ecx) ,

M = -φl2(\ + r) + (1 + r) (F((l + r) -

Λ/"2 = 2-^-V .
1 + r

It is useful to introduce the abbreviation

i/ ~~

I σhCh = f σhti' + ί σhv'ti = - j* σti2 - \ ίV(ft2)'' + \ ( σvr(h2)'
j j j j j j

so that Λ/Ί = -<p/2(l + r) + rg. Note that limr_>00 = f F ' ( f ) . When F(C) = 1 - C2,
then g = -(1 + r) - (2 + r) f2 = -(2 + 3r + r2) /2.

Remark. The only facts we really need to know about g are

\g'(x)\2 + Cg(x) < 0 , and [̂  < oo , (2.5)

for some positive constant C.

We begin by studying the functional Wt, defined in Eq. (1.5). (We will omit the
subscripts t in the sequel, whenever no confusion can arise.) The following identity
will be useful: For any (smooth) h, one has

(2.6)

by the construction Eq. (1.8) of σ. Thus,

idt I σr2 = I σr(£r+M) = - f σr'2 + ί σrtfi , (2.7)
J J J J

/

( ί ί

σφ2 = I σφ(Cφ+N2} = - / σφ'2 + / σφλΓ2 . (2.8)
«/ J J

Combining these two identities, we find

dtW = - I σr/2+ /σrΛ/Ί - ί σφ'2 + f σφλΓ2 . (2.9)
j j J j

Now we bound the terms involving Λ/Ί and Λ/2 in (2.9), under the assumption
Eq. (1.13), which will hold for all times. First note that (1.13) implies

ήoo + Moo < Ce ,

since σ(x) > σ > 0, and

σ\rr'\ < σ~l \\r\\2\\r>\\2 .

Here, and below, C denotes a finite constant, which may vary from one equation to
the next. Therefore, using the Schwarz inequality and the inequality \ab\ < a2 + fr2,
we can bound
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(2.10)
/

σφλί2 < | y>/( l+F) |OO / σ\φ'r'\ < Ce σ(φ'2 + r'2) .
J J

The term Λ/Ί is sightly more complicated:

/ σrM = - ί σφ'2r(\ + r) + ί σ/F'(/)r2 + / σr\g - /F'(/))

< |r(l+r)|oo ίσφ'2+ ί σ f F ' ( f ) τ 2 + ί σr2\g - fFf(f)\ .
j j j

Our assumptions Eq. (1.9) and Taylor's theorem imply that for sufficiently small e,

\9~ f F \ f ) \ < \\fF'(f)\ = -|/F'(/) , (2.12)

(2.11)

as we verify in Appendix A (for GL, this is obvious from g = —(2 + 3r + r2) /2).
Therefore, combining the bounds Eqs. (2.9), (2.10)-(2.12), we get the assertion of
Eq. (1.14) in the stronger form

9tW < - ί σrf2 + / σ/F7(/)r2 + ί στ2\g - fF'(f)\

- σφa+ σφN2
(2.13)

Remark. The term — ^ Jσ|/F'(/)|r2 will be crucial to cancel certain positive terms
in the bound on dtZt.

We next bound the integrals occurring in Zt, cf. Eq. (1.6). We first note the iden-
tities, valid for any (smooth) /ι,

- f(σtiyh" = - fσh"2 - i fσf(h'2y = - f σh"2 + \ f σ"ti2 , (2.14)

and

- ί(σti)'vfti = - f σti'v'ti - I σ'h'2vl

= -\ fσv'(hf2y- ( σ'h'2vr = 1 [(σv'Yti2- ί σ'v'ti2 .

From Eq. (1.8), we get

\(σv'}' - σ'v' + \σ" = \ (σ'vf + σv" - 2σ'vf + σ")

< σv" < σ\v"

Thus, the differential operator is bounded as

σh"2 + \v"
J ~ J

This leads to

- [(σh'yCh < - ί σh"2 + \v" ^ ί σh'2 .

(2-15)

(2.16)

(2.17)
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\dt j σr12 = - ί(σr')'dtr = - j (σr')'(Cr + Λ/Ί)

< - ίσr"2 + \v" oo (σr12- /(σr'/M ,
J J J

and similarly,

& J σψ'2 <-j σψ"2 + |t/'U J σψ'2 - ί(σφ')'M2 .

In Lemma A.I, we prove the inequality

329

(2.18)

Kloo < c.

(2.19)

(2.20)

It remains to bound the terms involving Λ/Ί and Λ/2- We start with a bound on
f(σφ')'λf2 by first decomposing it after integration by parts as

We bound |1/(1 + r)| by 2. The following inequality will be used throughout:

< \ti\l

2

/2\h"\y2 < σ- 'n/i 'n h <"\\\'2

Using the Schwarz inequality, the first term in (2.21) is bounded by

σφ'2r"

<Ce(\\φ'\\2 + \\φ"\\2)\\r"\\2

The second integral is bounded by

< \φ' co / σ\φ"r'σφ"r'φ'

Ίlz) (\\ψ"\\2\\r'\\

The third term is bounded by Ce(||r'|β + \\ψ'\\\) Thus, we finally get,

(σφ')'λf2
f

We next look at

- /(σr / ) / Λ/Ί= /(σr')V2(l +r) - / ( σ r f ) f r g .

Integrating by parts, we bound the first term:

(2.22)

(2.23)
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l(σr')'φ'2(\+r) < 2 I σr' φ' φ" (\ +r) + Iσr'φf2rf

The first integral in (2.24) is bounded by

\\φ" \\2\\r' \\2 < 4C0(\\φ'\\2 + \\φ" Mφ" \\2\\r' \\2

The second integral in (2.24) is bounded by

The second term in (2.23) is equal to

/
[ ί

(σr')'rg = \ σr'2g + / σr'rg' .
j j

By the Schwarz inequality, we find

[(σr'ϊrg < (1 + |#|oc) j σr'2 + ί σr2g/:

Thus,

' <Ce(||^||M|^Ί|^)+(l + Moo)||rΊl^

From the assumptions Eq. (1.9) and Taylor's formula, it follows that

\9\oo < C , \g'(x)\2 < D\f(x)F'(f(x))\(l + \r'(x)\2) ,

as we will show in Appendix A. We will thus bound

Jσr2g'2 < D j σ \ f F ' ( f ) \ r 2 +D|r|200|/F'(/)|00 j σ\r'\2

We can now combine these estimates and bound dtZ. We get for

Z = I ίσ(Kr2 + r'2

the bounds

(2.24)

(2.25)

σr2g'2 . (2.26)

(2.27)

(2.28)
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3tZ < KdtW- ί σr"2 + \v" vo far'2- /(σr')'M

"2 '2- / σφ"* + v oo / σψ ~
J J

< - (1 - Ce) / σr"2 - / σ(Jif/2 - KU - 1 - |<?|oo)r'2

J J

- Jσ(KfF'(f)/2-\g'2)r2

- (1 - Ce) /"σy"2 - I σ(K - It/V - Ce)ψ'2 .
J J

If e < 1 then we can choose /ί sufficiently large, but independent of r and φ so that
for sufficiently small e, one has

dtZ <-\ /σr"2 - i /σr'2 - I f σ\fF'(f)\r2

J' J J (2.29)

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We now prove convergence. Note that Wt > 0, and dtWt < 0. Thus, limt-^oo Wt =
WOQ exists. Similarly, limt_»oo Zt = Z^ exists. This implies that limt-^oodl^ίlli +

l l r ^ l l 2 ) exists. We claim

Proposition 3.1. Perturbations of front solutions of the Eq. (1.1) go to zero in the
sense that

' i + lk ί l l i ) = o . (3.i)

Proof. From the estimate on dtZt we see that

dtZt < - i l k ί l l i - i l l r ί H

Reversing inequalities, this implies

ΛO

\
Jo

But since ZQ is finite, this implies that the limits in Eq. (3.1) must be zero. This proves
Proposition 3.1. From this we conclude

Theorem 3.2. Perturbations of front solutions of the Eq. (I. I) go to zero in the sense
that

+ II^IU) = 0 . (3.2)

Proof. We just consider the case of ψt. We first write
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/

OO rOO fΌO

dx\(σφ2

ty < σ\φt\\ψ't\ + i σ'\φ\ . (3.3)
-oo J — oo J—oo

Using the Schwarz inequality, we see that the first term goes to zero, since \\φ't\\2
goes to zero. If σ' were positive, we could drop the modulus in the second term, and
then integrate by parts and get again a bound H ^ t l b l l ^ t l b However, we know a little
less. In Appendix A, we prove that lim^^-oo σ (x) = 0. We have already seen after
Eq. (1.11) that σ'(x) > 0 for x > x+ and behaves like ^x2 or eΊX, 7 > 0. Therefore2

there are a constant S > 0 and a function p such that

Sσ(x) < p(x) < σ(x) ,

and p'(x) > 0 for all x G R. The norm defined by p is equivalent to that defined
by σ, and we denote, e.g., | J pφ2\ = \\φ\\2

p2- Thus, applying Eq. (3.3) to the norm
implying p, we get

S\\ΨΪ\\oo < H^IUoo

Since \\φ't\\2 — > 0, the proof of Theorem 3.2 is complete.

Appendix A. Bounds on v9 g, and σ

We prove here miscellaneous estimates which are related to properties of the function
F and of the front solution /.

Bound on υ: Proof of Eq. (2.20). Recall part of the Main Assumption: The function
ψ(ζ) = ζF(ζ) satisfies ^(0) = ̂ (1) = 0, ̂ (0 > 0 for C G (0, 1). Then if v' = 2/'//+c,
we have

Lemma 3.1. There exists a constant k such that \v'(x)\ + υ/f(x)\ < k for all x E R.

Proof. If we set q = /, and p = /', then

\υ' = (p/q) + Ic , \v" = -c(p/q) - (p/q)2 - F(q) .

Here we used that q' = p and p' = — cp — qF(q). Clearly, \F(q)\ is bounded along the
front solution. Thus we need only show that (p/q) is bounded. However, by Propo-
sition 4.1 of Aronson and Weinberger, if we parametrize the phase plane trajectory
corresponding to the front by p = pc(q\ then 0 > pc(q) > —2cq. Thus, \p/q\ < 2c.

Properties of g: Proof of Eqs. (2.12), (2.27). When bounding the function g, defined
in Eq. (2.4), we use the representation:

2 The following argument is due to C.A. Fillet
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g =

= f F ' ( f ) + r/

(3-1)
From the last equality and the Main Assumption, we get immediately Eq. (2.12), for
sufficiently small e. The first inequality in Eq. (2.27) is obvious. Finally, we prove the
second inequality in Eq. (2.27). Since /(— oo) > 0, we only have to prove something
near x = +00. We use the first identity in Eq. (3.1), and differentiate term by term
to compute gf ' . Then all derivatives F' , F" are bounded using the assumptions (1.9).
The factors /' are bounded by /|/'//|oo, using Lemma A.I. Therefore it suffices to
show (\f'(x)\ + \f (x) |)2 < const. f ( x ) near x = oo. But this follows at once from the
asymptotics of /, Eqs. (1.10), (1.11).

Properties of σ. We consider the function σ defined by Eq. (1.4). We note first that
the asymptotics of /, Eqs. (1.10), (1.11) and c > ccrit imply liminf^oo σ(x) > 0.
(This is not true for examples like ζF(ζ) = ζ2 — C3, since in this case the front decays
like /(x) « e~cx for x — > oo.) Note that, by construction

σ' = v'σ - 1 . (3.2)

We next claim that
lim σ(x) = c"1 . (3.3)

— oo

It is only the second term in σ which contributes to this limit. Since ecx goes to
zero and f ( x ) « 1 — e7X, as x — > — oo, with 7 > 0, the assertion (3.3) follows by
LΉόpitaΓs rule. This calculation also shows that σ'(x) — > 0 as x — >> -oo. We finally
show σ(x) > σ > 0. Since σ(x) is strictly positive at x = ±00 it suffices to show
that σ > 0 on a compact set. Assume the contrary. By Eq. (3.2), it is not possible that
a - σ1 - 0, and so if σ - 0 is must also attain a negative value. But since it is positive
at infinity, it would have to satisfy somewhere σ = 0, σ' > 0, which contradicts (3.2).
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