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Abstract: We consider a relation between the conformal factor in the stationary
axisymmetric (SAS) Einstein—-Maxwell field equations and a central extension of
a formal loop group which is described by a group 2-cocycle on the formal loop
group. The corresponding 2-cocycle on the Lie algebra of the formal loop group is
the one which describes an affine Lie algebra. As a result, we see that the space of
formal solutions with conformal factors is a homogeneous space of a central
extension of the Hauser group.

0. Introduction

In [HS] we have discussed a a-model with values in S(U (1) x U(2))\SU(1, 2) which
is derived from the stationary axisymmetric (SAS) Einstein—-Maxwell field equa-
tions. We formulated the theory of the o-model in the category of formal power
series by using Takasaki’s formal loop group technique [T] and the linearization
procedure investigated by Breitenlohner and Maison [BM]. However, we did not
incorporate the conformal factor into the theory, neither did we state the homo-
geneous structure of the space of solutions of the Einstein—-Maxwell field equations
in stationary axisymmetric space-time.

As to the conformal factor, the second author, in [S], reproduced the results of
[BM] in the category of formal power series and obtained an infinite dimensional
homogeneous space structure of the space of formal solutions in the case of the
Einstein equations.

In the present paper, following [BM, HS, S], we extend the theory of our
o-model to the Finstein-Maxwell field equations with N abelian gauge fields in
stationary axisymmetric space-times involving the conformal factor. We prove that
there is an elegant relation between the conformal factor and a group 2-cocycle on
the formal loop group with values in SU(1, N + 1), and show that the trivial central
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extension of the Hauser group acts transitively on the space of formal solutions of
the Einstein-Maxwell field equations with N abelian gauge fields. The correspond-
ing 2-cocycle on the Lie algebra of the formal loop group is the one which describes
an affine Lie algebra [K]. This relation was first found by [BM].

Now we derive the equations, which are our starting point, from the stationary
axisymmetric Einstein—-Maxwell field equations with N abelian gauge potentials.

Let ds* = g,,dx" ® dx” be a metric on R**3 and A = A,dx" an abelian gauge
potential with values in IRY. Then the Einstein-Maxwell field equations with
N abelian gauge fields are given by

Ruv = 8TCTuv7 VxFuK = 0(#9 V= 0: 1> 23 3) s
where R, is the Ricci curvature and
F,, =0,A, —0,A,,

1 1
Tuv = E <FuKtF‘,K - Z gquK,'F“'> .
We adopt the coordinates (x°, x!, x%, x3) = (t, ¢, z, p) with t being time and (¢, z, p)
the cylindrical coordinates of IR>. Stationary axisymmetric space-times amount to
the assumption that a metric is of the form

hoo  hoy
g = hio  hiy
— 4 0/’
0 —1
deth= —p?,

where A > 0, hoy = hyo and h = (h;;). The field A is called the conformal factor.
For abelian gauge potentials, we fix the gauge so as to A, = A; = 0. Since we
assume that the fields are stationary and axisymmetric, the functions h;;’s, 4 and

A/’s depend only on z and p.
There is still a gauge symmetry that remains after setting 4 and A as above, i.e.

h—> tghg, Ai d Ai + Ci
for ge SL(2,R) and C;e RY (i = 0, 1). Therefore, we fix the gauge as follows:

1 0
hl(z,p)=(o,0)=<0 O>’ A'(z,p)=(0,0)=0' (0-1)

Introducing the Ernst potentials u € IR, v € €V constructed from h and A by the
standard method (cf. [DO][E]), we obtain

Proposition 0.1. The stationary axisymmetric Einstein—-Maxwell field equations with
N abelian gauge fields are equivalent to the following equations:

fd*du+p~tdp A xdu) = (du — 2v*dv) A *du , 0.2)
fd*dv+ p~tdp A *dv) = (du — 20%dv) A *dv , (0.3)
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%k _ _ 0

T o 2f2(0 2f0,f)
2f2 (0p,u — 0, f — 20%8,0) (O,u — 0, f — 2v*3,0)
+ ?(020*8,,0 +0,0%0,0) 0.4)
B Ol L0 - )

4f2 {(0,u — 0, f — 2v*0,v)* — (O,u — 0, f — 2v*,v)*}

- ; (8,0%0,0 — 3,0*3,0) , 0.5)

where v* =0, |v|?> = v*v, f= Reu — |v|? and * is the Hodge operator given by
xdz =dp, xdp = — dz.
The first two equations are called the Ernst equations.

Corresponding to the gauge fixing (0.1), we shall consider the solutions under the
conditions

ul(z,p) — (0,0 =1 and vl(z,p)=(0,0) =0 . (0.6)

It is essential to introduce the function t = f1/2 4 and we shall consider t, instead of
A, throughout the paper.

1. Ernst Equation

Let 6 be Cartan involution of GL(N + 2, C) defined by g + g*~! and G a sub-
group of GL(N + 2, C) defined by

{ge GL(N +2,C); g*Jg = J,detg =1},

i
where J = < 1y > and 1y denotes the N x N identity matrix. Note that
—1i
G is isomorphic to SU(1, N + 1). Let K be the subgroup of G such that each

element of K is fixed by 6. Then K is a maximal subgroup of G.
Let g and T be the Lie algebras of G and K, respectively. Then g decomposes as

g=1®p, (1.1)

where f = {x€g;0X = X} and p = {x e g; X = — X} with 6 the Cartan involu-
tion of g induced from 0 of G.
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We fix subgroups A and N of G as follows:

a
A= 1N ,a>0 B
1/a
1
N= v 1n ;xeR,veCV ),

x+ilv[*2 w* 1

where |v|?> = v*v. Then we have G = KAN (Iwasawa decomposition).

Let R be a ring of formal power series in z and p over Cie. R = C[[z, p]]. We
regard z and p as real variables, which means, z = z and p = p. We denote by * the
anti-involution of gl(N + 2, R) = gl(N + 2, €C) ® ¢ R which is an obvious exten-
sion of the canonical anti-involution * of gl(N + 2, C) and by 6 an involution of
GL(N + 2, R) defined by 0(g) = g*~* for ge GL(N + 2, R). Let Gg be a sub-
group of GL(N + 2, R) defined by

{g€GL(N + 2,R); g*Jg = J,det g = 1} .

Then, corresponding to G = KAN, G decomposes as Gg = Kg Az Ng, where Kg,
Ag and Ny denote subgroups of Gy consisting of matrices with values in K, 4 and
N respectively, each of whose components is an element of R.

Now we parametrize an element of Agx Ny as follows:

2 0 0
P= J2 1y 0 |, (1.2)

W +iloP)f1? JS2ik/f 2 fouz

where f and v are the same ones as in (0.2) and (0.3), and ¥ = Im u.
The following fact is well known.

Proposition 1.1. Under the parametrization of (1.2), we put M = Ox(P ~')P. Then the
Ernst equations (0.2) and (0.3) are equivalent to the following equation:

d(p*dMM 1) =0. (1.3)

Moreover the function t is a solution of (0.4) and (0.5) if and only if it is a solution of
the following equations:

t710,1 = %tr(&zMM‘lapMM") , (1.4)

10,7 = -gtr((a,,MM-l)2 — (0, MM ™)) . (1.5)

The integrability of © follows easily from (1.4) and (1.5). Equation (1.3) is also called
the Ernst equation. We shall consider the solutions satisfying

P|(z,p)=(0,0) =1 s

which corresponds to the gauge fixing condition (0.6).
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We denote by B the real part of the trace form on gl(N + 2, R):
B(X,Y)=Retr(XY) for X, Yegl(N+2,R).

The Lie algebras gg of Gg and ¥z of Ky can be identified with g ® gz R and f ® R,
respectively. Note that fr and pgr = {X e gg; g X = — X} = p ®gR are ortho-
gonal to each other with respect to B, where Oy also denotes the involution of
gr induced from that of Gg.

It is also known that Eq. (1.3) can be rewritten as the integrability condition
of a 1-form with values in g each of whose component is an element of
C(z, p) ®¢ C[[t]], where C(z, p) is the quotient field of R = C[[z, p]] and ¢ an
indeterminate called “spectral parameter.” Namely, let &/ and .# be 1-forms defined
by

1 1
o = E(dPP‘l + 0x(dPP7Y)), £ = -2—(dPP‘1 — Ox(dPP 1))

for any P € Ax Ng, and put

1—1¢? 2t
QP”“(m‘m*)f’

where = is the Hodge operator given by *dz = dp, *dp = — dz. We extend the
canonical exterior derivative d on €(z, p) to that on €C(z, p) ® ¢ C[[¢]] by defining
t
=——(1—1¢2 2tdz) . 1.
dt a +t2)p(( t*)dp + 2tdz) (1.6)

Note then that dt = 0. Now we have
Proposition 1.2. Qp satisfies the integrability condition, i.e.,

dQp — Qp A Qp=0 1.7
if and only if P is a solution of (1.3).

This can be proved straightforward, using (1.6).
Moreover, let f = 4 dz + 4,dp. Then Egs. (1.4) and (1.5) can be written in
terms of .% and 4, as
v10,1=pB(£, %) , (18)

t719,7 = £ (B(%,, %) — B(%, ) - (19)

It follows from Proposition 1.2 that if P is a solution of the Ernst equation, then
there exists a potential p =Y, . ,p,t" such that each entry of p, is an element of
C(z, p) and )

dp=Qp-p and p,=P. (1.10)

2. Hauser Group

We introduce formal loop algebras and formal loop groups, following [T].

Put Fo = R = C[[z, p]] and F, = p'"R for a nonzero integer n. We introduce
a topology in R by declaring that {F,},, forms a fundamental neighborhoods
system of 0. Note that F,,F, = F,, for m,n = 0.
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Then we define a formal loop algebra % gl by

Fgl = {X =Y X, X,egl(N +2, F,,)} . @.1)

neZ

Let * be an anti-involution of # gl defined by

X*=Y X¥(— 1/t

neZ

for X =) ,X,t", where the anti-involution * in the right-hand side is the one of
gl(N + 2, R) given in Sect. 1. This is well-defined by the definition of our filtration
{Fn }neZ-

Remark that Qp with P € Ag Ny is not an element of & gl, however, we can
define QF by

S (ETEIT S ST IR

T+ (=18 1+(—1/0)?

where * in the right-hand side is the anti-involution of gI(N + 2, R). Then it follows
immediately that

Qf = —Qp for Pe AxNy. 2.2)

We define a formal loop group & GL, following [T], by

FGL = {g = Z gut™; g€ gl(N + 2, F,), go 18 invertible} . 2.3)

neZ

Since # GL is canonically embedded in #gl, we can define an involution 6 of
FGL by
0 (g) = (g*)~' forge FGL,

which we call Cartan involution of # GL.
Define subgroups of # GL as follows:

97?={g= Y gut"e FGL; g*Jg = J, detg=l}, (2.4)
neZ

FYGy = {g = Z Int"€ FY%; 9ol py=(0,0) = 1}> (2.5)
neZ

9;%:{16: Z k,,t”eﬁg;f?(w)k=k}, (2.6)
neZ

979’={p=Zpnt”efg;poeARNR,p,,=0ifn<O}. 2.7

neZ

Then, using the Birkhoff decomposition ((3.17), [T]), we can decompose uniquely
an element g € 9 as

g=kp keFA,pecFP). (2.8)
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Let s be another indeterminate. Define an infinite dimensional group %‘*),
which we call Hauser group, by

g = {g= Y. 9as"€ GL(N + 2, C[[s]]); g*Jg = J,det g = 1, go = 1},

nz0

where C[[s]] is a ring of formal power series in s over C and g* = ) g¥s".
Let j be a homomorphism of GL(N + 2, C[[s]]) into #GL given by

Jg= Z gus" — jlg) = Z g,,<p<%—t>+22)n.

nz0 nz0

Then it is easy to see that j is injective and that the image of 4 by jisin #%,. We
denote by & s the image of 4 by j. The following equations characterize the
elements of ## in Y.

Lemma 2.1. An element ge % belongs to & # if and only if g satisfies the
following equations:

1

0,9 = —p<6z+?6p>g, (2.9
p 1

0,9 = —5 1+t_2 0,9 . (2.10)

This characterization will play an important role in the proof of our main theorem.
For proof, we refer to [S].

Definition. Let # 2 be as in (2.7). We define 2 to be a subset of # 2 consisting of
elements p =Y, > oPat" Which satisfy the following conditions:

dp=Qp-p and polep=0.00=1. (2.11)
We call #2 the space of potentials.

It follows from (2.11) that p, is a solution of the Ernst equation (1.3) for
P =), 0Pnt" € SP. Equation (2.11) is equivalent to the following equations:

2t?

azp + ———(1 + t2)p atp = le (2.12.a)
t(1 —t?)
0,p + m‘ 0.p=2,p, (2.12.b)
where we define Q; and Q, by Q, = Q,dz + Q,dp.
Put
2t2 t(1 —t?)
D, = = = ~
1=0, + A+ o) 0, and D, =0, +(1 o,
for brevity.
Theorem 2.2. An element p € P satisfies
1
0i(p*p) = — p<5z +7 ap) (r*p) (2.13.3)

1
0(p*p) = — g-( 1+ ;)az(p*p) . (2131)
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Conversely, if pe FP N F Y, satisfies Egs. (2.13.a) and (2.13.b), then p belongs to
S P, namely, it satisfies Egs. (2.12.a) and (2.12.b).

Proof. 1t can be checked by direct calculation that (2.13.a) and (2.13.b) are equiva-
lent to D, (p*p) = 0 and D,(p*p) = 0. But then, we have, for p e 2,

Di(p*p) = Dyp*p + p*D1p
(2:p)*p + p*(2:p)
= —p*Qyp + p*Q;p
=0,

since QF = — Q. Similarly, we can show that D,(p*p) = 0.
Conversely, let p e # 2 satisfy (2.13.a) and (2.13.b). Then we have

— (@pp~1)* — p((azpp‘l)* + %(ﬁppp'l)*>

_ _ 1 _
= 0,pp 1+p<0zpp 1+;5ppp 1>, (2.14)

_ 1 _ B 1 _
— (0.pp 1)*—§(l+t—2)(8zpp 1)* = d,pp 1+§<1+t—2>@zpp L.o@1y)

In (2.14) the left-hand side contains only the terms of t" (n < 0), while the right-hand
side those of t" (n = — 1), which implies that the coefficients of " (n < — 2) in the
Lh.s. vanish. Therefore, we obtain

1 1
dpp~ " +p<<9zpp‘1 +;6ppp‘1>=p(521 +;Qz>, (2.16)

since the coefficient of t ! in the Lh.s. of (2.14) is equal to pd,popo * ( = coeff. of t 71
in the r.h.s. of (2.14)). Note that, comparing the coefficients of t~* in both sides of
(2.14), we obtain

d,p0P0 * + (0,p0po *)* = coeff. of t ' in (3,pp~1)* . (2.17)

Similarly, the Lh.s. of (2.15) contains only the terms of ¢” (n < 0), while the r.h.s.
those of t" (n = — 2), which implies that the coefficients of t" (n < — 3) in the Lh.s.
vanish. Therefore, we obtain

_ 1 _ 1
0.pp 1+§<1+t—2-)é’zpp 1=§<1+t—2>91, (2.18)

where we used (2.17).
Now it is easy to see that (2.16) and (2.18) are equivalent to (2.12.a) and (2.12.b). |

Let pe 2 and g € 9. By (2.8) there exist k e # 4 and p, e F2 such that
p-j(g)=k""-p,. 2.19)

Then, it follows immediately from Theorem 2.2 that p, is in ¥#. Thus we can
define an action of the Hauser group 4™ on &2 to the right by

FPxG > FP (p,g)—p, (2.20)
where p, is given by (2.19).
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From the fact that an element g = ), . (g,s" € ¥'* such that g* = g and such
that g, is positive definite decomposes as g = h* h for some h e ¥, we have

Corollary 2.3. The action of 4 on F2 given by (2.20) is transitive.

Remark. As we mentioned in [S], our group 4 is too small to obtain all
solutions of the Ernst equation (1.3) through the action (2.20).

3. 2-Cocycle on ¥,

The formal loop algebra gl becomes a Lie algebra with Lie bracket
[X,Y]=XY— YX. The map
exp: gl - FGL
given by
Xn
expX =eX = — (3.1
nzo N

is called the formal exponential map. Note that for any g e %, we can find
a unique element X in # gl such that g = e*, since the logarithm given by

( _ l)n— 1
log(1 + 4) = Z —— A" (3.2)
nx1 n
is well-defined and satisfies
s+ — 1 4 4 (3.3)

for 4 =Y, za,t" € Fgl with ag € gI(N + 2, m), where m < R is the maximal ideal.
For X, Yin Fgl,let c,(X, Y)(n=1,2,...) be the elements in &gl which are
determined by

expvX expvY =exp Y, ¢, (X, Y)v",

nz0

where v is an indeterminate. Furthermore c,’s are uniquely determined by the
following recursion formulas (see [V]):

X, Y)=X+ ¥
(0 + Deges(X, V) = 51X — ¥, (X, 1)]

+ Y Ky > [, X, Y),[...,[c,,X, V), X+Y]...l(nz1),
pz1,2p<n ki,...,k2p>0
kit +kap=n

where K,,’s are determined by

x 1
——zx=1+4+ ) K,;x*
l—e™ 2 El 2

We set C(X, Y) =3, c,(X, Y). Then C(X, Y) is a well-defined element of % gl
for X, Y such that X,, Yo € gl(N + 2, m).
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Lemma 3.1. For n = 2, there exists a & gl-valued function L,(- , ) which satisfies
G(X, Y)=[X,L,(X, Y)]+ [Y, L.(—- Y, — X)] (3-4)
for X, Ye Fgl
Proof. 1t is easy to see that c, can be written as
(X, Y)=[X,4,X,Y)]+ [Y,B,(X, Y)] .
Let X, Y e #gl. Then, since ¢, (X, Y)= —c,(— Y, — X), we have

&%, V) = 5 (X, ¥) = e~ ¥, — X))

=%([X, A,(X, Y)]+ [Y,B,(X, Y)]

_[_ YaAn(_ Y’ ~X)]_[_X9Bn(_ Y) _X)])
Therefore

1
Ln(Xa Y) = E(IZXa An(Xs Y)] + [Y’ Bn(X5 Y)])

satisfies (3.4). |
Note that L,’s are not uniquely determined, however, we fix L,’s so that there holds
e ¥ 1 +adx 1

adX(1 —e™2%) 4

where we put L(X,Y)=),.,L,(X,Y) for X,Ye%Fgl such that X,, Yoe
gl(N + 2, m). Thus, we obtain

CX,Y)=X+Y+[X.LX, )]+ [V, L(-Y, —X)].
For a series f= ), , fut"€ R[[t,t~']], we write
Res,f=f_-1€R.

L(X,vY) = ( >vY +0(v?), (3.5)

Let Ry = R[[z, p]] < R, the formal power series in z and p over R. We define
a Ry-valued 2-cocycle w on gl by

(X, Y)=Res;B(X,0,Y)
for X, Ye #gl. Note that
o(X*Y*) = —wlX,Y) (3.6)

for X, Ye #gl

Now we introduce a group 2-cocycle on # %, following [BM ]. Note that, from
(3.3), any element g € %, can be uniquely written as g = e* for X € #gl with
Xoegl(N + 2, m).

Definition. Let Z be a Ry-valued function on %, x %, defined by
B, ") =oX, LIX, Y)) + o(Y, L(~ ¥, — X)).
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Then Z defines a 2-cocycle on F%,, i.e. satisfies the cocycle condition:
E(eX, e¥) + E(eXe?, %) = E(€, &%) + E(e*, eV e?) (3.7
for X, Y,Ze Fgl

Now we collect some basic properties of =. For details we refer to [BM, S]. It
follows from (3.6) that

E(0gy,0°'g;) = — E(g1, 92) (3.8)
for g, g, € #%,. In addition, E satisfies the anti-symmetric conditions:
E(e*, eY) = — E(e %, eXe¥)
= — F(e¥et, e7Y)
= —EFe Y e, (3.9)
Define the mixed form E' of E by
=re X d (X ,vY
B, Y)=— B(e*, e”) .
dv v=0
. 1 _ e—adX .
Then, using (3.7), (3.9) and the formula e *¥de* = v as 0X, we obtain
0E(eX,e") = E'(e Ye X deXe *) — E'(e™ ¥, 0eXe ™ X)
+ Z'(e*e¥, e Yoe') — E'(e¥, e~ YoeY) , (3.10)

where 0 denotes either 0, or 0,
Lemma 3.2. E is trivial on F H# x F K, i.e.
Z(91,92) =0 forallg,,g, € FH .

For proof, we refer to [S].

4. Central Extension

For any p € 2, we can find an element g € # # which sends the identity element
1e #2 to p by Corollary 2.2. Then we have p = kg for some ke F A"

Lemma 4.1. For pe P, let ge F # be as above. If we put
0.pp" ' = 3, qat”

nz0

and
p-gto.g-p =Y at",

neZ

then we have
ao + af = qo + q8 4.1)

and
ap + (— 1)'at, =gq, 4.2)

forn=1,2,3,....
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Proof. By the choice of g, we have
m=g*g =p*p,
which imply that
m=10.m=m""(g"'0.9)*m + g~ 10.g
=m~'(p”'0;p)*m+p10.p.

Therefore we obtain

P~ (pg~'0:9p™ P+ g 0.9 =p 1 (@.pp™ ) p+p T 0p . 43)
Multiplying (4.3) by p to the left and by p~? to the right, we have

(pg™"0:9p™")* + pg~'0.gp™" = (6.pp™ )* + O.pp™" .

Hence

Y{an+(—1at,}i"= Y " +4qgo+qs+ Y, (— 1)"q*,t".

neZ n>0 n<o0

Comparing the coefficient of ¢ in both sides, we obtain (4.1) and (4.2). ||

Proposition 4.2. For pe PP, let ge FH and ke F A such that p = kg. Let E be
the 2-cocycle on %, given in Sect. 3. Then we have the following identities:

0:E(kg, g™ ")
_Pp 1 1 1 i 1 -1 -1
= 2Res,B<2<1 + t2)d,+ 2< 1+ 2 £+ " 4,091 0.9p
4.4)
0,E(kg, g™ ")

0 1 1 1 1 1 _ _
4 “(1+= el (I L 1), @45
2Res,B<2< +t2)d,,+2< + 3 ) S =S pg ugp 4.5)

Proof. We shall use the following identity:
- 1 - _ _ -
0Z(kg,g™") =S Res, {B(p~'0,p,g""29) — B(p~'0p,g""09)} ,  (46)

which follows from (3.5) and (3.10), where 0 denotes either 9, or d,.
Since p € 2, we have

. p(l +t%) p1 p(1+t2) o 1—1¢2 e
p 0,p+t(1 t2) TP D) ) +1+tsz 1+t2j’ b
4.7
On the other hand, by Lemma 2.1, we have
2
-1 pAFE) 438)

g g = t(l ) Y
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From (4.6) with 0 = 9,, (4.7) and (4.8), we obtain

_ _ p(1 +t?) 1—1¢? 2t _ _
0,&(k —R ,————B _ 1 1
kg, g7 1) = T %+1+t2% 1+t2fz,pg 0,9p

"t(l —t?) 1+1¢2 1+27% 2t

= (the right-hand side of (4.5)),

1 1+ ¢2 1—¢? 2t 1—1¢?
—R p( + )B<M,,+ tff,— £ pg'lazgp_1>

2

1—t
where we used 0,9 = ST 0,9. Similarly, we can prove (4.4). |

By (1.1), each element X € g decomposes uniquely as X = X; + X, with
X, efr and X, € pg. We shall denote X; and X, by (X); and (X),, respectively.
Now we can prove the following proposition.
Proposition 4.3. For p=Y,. (Put"€ S P, let g€ FH and ke FA" be such that

p = kg. Let 7 be a solution of (1.8) and (1.9) corresponding to P = po. Then we have
the following relations:

17 19,1=0,8(kg,g" "), 4.9)
t7 10,1 =0,E(kg, g7 ") . (4.10)
Proof. First, expanding (2.12.a) in a series of ¢, we have
0.pp~! = (. + £) + 25,1 + O(t?)

=Y gu.t".

nz0
Thus, taking. the coefficients of t° and ¢!, we obtain
Go=,+% and q,=24. (4.11)

In the right-hand side of (4.4), since fz and pg are orthogonal to each other with
respect to B, we have

1
Rest<1 + t_2> B(%za Pg_lazgl’_l) = B('Mz, (al + a—l)l)
Res,( -1+ )B(J"z,pg 10,9p™") = B(4, (a1 — a-1),)

1 _ _
Res, — B(4, g 10.9p™") = B(S,, (a0),)
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where we put pg ~'0,gp~' =), za,t". Then, by Lemma 4.1 and (4.11), we have

1
(a +a—1)r=§(01 +a_y —atf —a*,)

1
=5 —qi)=0

1
(@ —a-1),=5(a—a-y +af—a*,)

2

1
=3 +41) =2

1
(a0), = 5 (a0 + af)

1
=§(¢Io+qg)=2fz~

Therefore, recalling (1.8), we see that (4.9) holds.
Similarly, we can prove (4.10). This completes the proof. |

Now we define a central extension of #%, in terms of the cocycle Z.
Definition. Let (%)~ be the set given by
(F%0)" ={(g:¢"),9€ F%o, e Ro} .
Define a product of any two elements of (#%,)"~ by
(91, €") (g2, €"?) = (g1 g, et TH2750192)) (4.12)

~

for (gi,e"'), (g2,e"?)e(F%,)~. Since E satisfies the cocycle condition (3.7),
(#%,)"~ forms a group with group multiplication given by (4.12). Namely, (¥ %)~
is a central extension of #%,.

Let 0 be an involution of (F%,)~ given by
(g, &) = (0)(g), ™) .

If we denote by (# #")~ the subgroup of (#%,)" consisting of elements which are
fixed by '), then we have

(FA) ={(k,)e(F%) ke FX}.
Let (F2)~ be a subgroup of (¥%,)~ given by
(FP)" ={(p.e")e(F%o)";pe FP, ue R} .

It follows immediately from the decomposition (2.8) of #¥ that (#%,)~ has
a unique decomposition:

(FYGo)" =(FAH) -(FP)" . (4.13)
Furthermore, we put
(FH) ={(g.¢)e(F%) ;9 FH,yeR} .
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It follows from Lemma 3.2 that & # can be regarded as a subgroup of (% #)~ by
FH > (FH), g—(g1).

Let (¥2)"~ be the subset of (#£)~ given by
(FP)” = {(p, ee(FP);p= ) Pt"€SP,

nxz0
T = e~ * satisfies (1.8) and (1.9) with P = po} . 4.14)

We call (#2)~ the space of potentials with conformal factor.

Proposition4.4. Forpe S P, let ke F A and g € F H be as above, i.e. p = kg. Then
we have

E(p*, p)=28(kg,g7") . (4.15)

Therefore, any element of (¥2P)~ can be written as (p, e ¥*7-P*Y) for pe P,
yeR.

Proof. Using the anti-symmetric condition (3.9) and the cocycle condition (3.7), we
have

E(p*,p)= —E( 1, 0p) = —E@p ', k6yg)
= —EB(p Lk —E(p” 'k 0%9) + E(k, 6°g) . (4.16)

For the first and the last terms in the r.h.s. of (4.16), it follows from (3.9) and (3.8)
that
E(p~ k)= — Bk, 0g) = E(k, g) .

The middle term in the r.h.s. of (4.16) vanishes by Lemma 3.2.
Now using (3.9) again, we obtain

Ek,g=Epg ' 9)= —E@ Lgp™")
=Z@,p™ )= —-E(pg™"). (4.17)

Thus (4.15) follows.

For any (p, e*) e (#2)~, put p = Y, o Pxt". By definition and Proposition 4.3,
both 7 = e # and 7' = e**@"P satisfies (1.8) and (1.9) with P = p,. Therefore they
must be equal to each other, up to constant multiple. This completes the proof of
the proposition. ||

Define an action of (# #°)~ on the space of potentials with conformal factor
(L2)~ to the right through the decomposition (4.13):

(F2) x(FH)” > (LP)7, (b, €), (9, €") = (py, €7) - (4.18)

Namely, we can find a unique element (k, 1) e (FA#")™ and (p,, e*) € (F2)"~ such
that

(p, e")(g, ") = (k, )" '(py, €) ,
where k and p, are the elements given in (2.19). Since we have

0((p, ") (g, €))L (D, €*) (g, €') = (g*p*pyg, 2N *3"p)
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and
0 (pg, €71+ (pyr €%) = (p¥pyr €247 505 79)

we obtain

1 -
a=pu+y+ E(E(p*, p) — E@F,p,))

’ 1r-v
=y — Ea(p;*,pg)

for some y’ € R, where we used Proposition 4.4. Thus (p,, e*) belongs to (¥2)", i.e.
the action (4.18) of (F#)~ is well-defined.
Now we state our main theorem:

Theorem 4.5. The group (¥ #)~ acts transitively on the space of potentials with
conformal factor (#2)~ by (4.18).

Proof. What remains to be proved is transitivity of the action. By Proposition 4.4,
any element of (¥2)~ can be written as (p, e~ #**®'P*?) Moreover, by Corollary
2.3, pe #P can be written as p = kg for ke F A and g € # #. Then we have, by
4.17),

(k, 1)(g, €") = (kg, e’ *=*?)

= (p, ey—%E(p‘,p)) .

This shows that any element of (¥2)"~ is on the oribit of the identity element
Lhew)". 1
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