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Abstract: We consider a relation between the conformal factor in the stationary
axisymmetric (SAS) Einstein-Maxwell field equations and a central extension of
a formal loop group which is described by a group 2-cocycle on the formal loop
group. The corresponding 2-cocycle on the Lie algebra of the formal loop group is
the one which describes an affine Lie algebra. As a result, we see that the space of
formal solutions with conformal factors is a homogeneous space of a central
extension of the Hauser group.

0. Introduction

In [HS] we have discussed a σ-model with values in S(U(1) x U(2))\SU(ί9 2) which
is derived from the stationary axisymmetric (SAS) Einstein-Maxwell field equa-
tions. We formulated the theory of the σ-model in the category of formal power
series by using Takasaki's formal loop group technique [T] and the linearization
procedure investigated by Breitenlohner and Maison [BM]. However, we did not
incorporate the conformal factor into the theory, neither did we state the homo-
geneous structure of the space of solutions of the Einstein-Maxwell field equations
in stationary axisymmetric space-time.

As to the conformal factor, the second author, in [S], reproduced the results of
[BM] in the category of formal power series and obtained an infinite dimensional
homogeneous space structure of the space of formal solutions in the case of the
Einstein equations.

In the present paper, following [BM, HS, S], we extend the theory of our
σ-model to the Einstein-Maxwell field equations with N abelian gauge fields in
stationary axisymmetric space-times involving the conformal factor. We prove that
there is an elegant relation between the conformal factor and a group 2-cocycle on
the formal loop group with values in SU(1, N + 1), and show that the trivial central
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extension of the Hauser group acts transitively on the space of formal solutions of
the Einstein-Maxwell field equations with N abelian gauge fields. The correspond-
ing 2-cocycle on the Lie algebra of the formal loop group is the one which describes
an affine Lie algebra [K]. This relation was first found by [BM].

Now we derive the equations, which are our starting point, from the stationary
axisymmetric Einstein-Maxwell field equations with N abelian gauge potentials.

Let ds2 = gμvdxμ (x) dxv be a metric on R 1 + 3 and A = Aμdxμ an abelian gauge
potential with values in 1RΛ Then the Einstein-Maxwell field equations with
N abelian gauge fields are given by

VKF>- = 0 (μ, v = 0,1, 2, 3) ,

- dvAμ,

where Rμv is the Ricci curvature and
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We adopt the coordinates (x°, x1, x2

9 x3) = (£, φ, z, p) with t being time and (φ, z, p)
the cylindrical coordinates of R 3 . Stationary axisymmetric space-times amount to
the assumption that a metric is of the form

9 =

detft =

/^OO ^01

Aio An

\

- P 2 ,

- / ί

0

0

-λ)

where λ > 0, h01 = h10 and h = (fty). The field λ is called the conformal factor.
For abelian gauge potentials, we fix the gauge so as to A2 = A3 = 0. Since we

assume that the fields are stationary and axisymmetric, the functions AfJ 's, λ and
Aj's depend only on z and p.

There is still a gauge symmetry that remains after setting h and A as above, i.e.

h -• 'ghg, Af -> Af + Q

for g e SL(2, R) and Q e R N (i = 0,1). Therefore, we fix the gauge as follows:

Q ) ? M(Z,P)=(O,O) = 0 . (0.1)

Introducing the Ernst potentials w e R, v e (CN constructed from h and A by the
standard method (cf. [DO] [E]), we obtain

Proposition 0.1. The stationary axisymmetric Einstein-Maxwell field equations with
N abelian gauge fields are equivalent to the following equations:

f(d*du + p~γ dp A *du) = (du — 2v*dv) A *du , (0.2)

f(d*dv + ρ~γdρ A *dv) = (du-2v*dυ)A *dv , (0.3)
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where v* = % \v\2 = v*v9f= Rew — \v\2 and * is the Hodge operator given by

*dz = dp, *dp = — dz.

The first two equations are called the Ernst equations.

Corresponding to the gauge fixing (0.1), we shall consider the solutions under the
conditions

K|<Z,P) = (0,0) = 1 and v\{z,p)=iOfO) = 0 . (0.6)

It is essential to introduce the function τ =flf2λ and we shall consider τ, instead of
λ, throughout the paper.

1. Ernst Equation

Let θ be Cartan involution of GL(N + 2, C) defined by g ι-> g*'1 and G a sub-
group of GL(N + 2, <C) defined by

{g e GL(N + 2, (C); g*Jg = J, det 0 = 1},

where J = I 1N J and ljv denotes the N x ΛΓ identity matrix. Note that

\ — i )

G is isomorphic to Sl/(1, iV + 1). Let X be the subgroup of G such that each
element of K is fixed by θ. Then X is a maximal subgroup of G.

Let g and ϊ be the Lie algebras of G and K, respectively. Then g decomposes as

g = ϊ θ p , (1.1)

where ϊ = {XEQ ΘX = X} and p = {x e g; ΘX = — X} with 0 the Cartan involu-
tion of g induced from 0 of G.
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We fix subgroups A and N of G as follows:

JV = {| v 1N \;xe^ve£N),

,x + i\v\2β ίv* 1,

where \v\2 = v*v. Then we have G = KAN (Iwasawa decomposition).
Let R be a ring of formal power series in z and p over C i.e. R = <E[[z, p]] . We

regard z and p as real variables, which means, z = z and p = p. We denote by * the
anti-involution of cjl(iV + 2, R) = cjl(JV + 2, <C) ® c .R which is an obvious exten-
sion of the canonical anti-involution * of gI(JV + 2, (C) and by ΘR an involution of
GL(N + 2, R) defined by θΛ(gf) = g*"1 for # e GL(JV + 2, #). Let GΛ be a sub-
group of GL(N + 29R) defined by

{g G GL(N + 2, Λ); g* Jg = J, det 0 = 1 } .

Then, corresponding to G = KAN, GR decomposes as GR = KRARNR, where KR,
AR and NR denote subgroups of GR consisting of matrices with values in K, A and
N respectively, each of whose components is an element of R.

Now we parametrize an element of ARNR as follows:

f1'2 0 0

IN 0 1, (1.2)

where/and v are the same ones as in (0.2) and (0.3), and φ = Im u.
The following fact is well known.

Proposition 1.1. Under the parametrizatίon of (1.2% we put M = ΘR(P ~X)P. Then the
Ernst equations (0.2) and (0.3) are equivalent to the following equation:

d(p*dMM~1) = 0. (1.3)

Moreover the function τ is a solution o/(0.4) and (0.5) if and only if it is a solution of
the following equations:

ix(dMM-1dMM~1), (1.4)

ζ 1) 2) . (1.5)
o

The integrability of τ follows easily from (1.4) and (1.5). Equation (1.3) is also called
the Ernst equation. We shall consider the solutions satisfying

P\(z,p) = (0,0) = 1 5

which corresponds to the gauge fixing condition (0.6).



Conformal Factor in SAS Einstein-Maxwell Field Equations 19

We denote by B the real part of the trace form on gI(iV + 2, R):

B(X, Y) = Retr(XΓ) for X, Ye gI(ΛΓ + 2, R) .

The Lie algebras gΛ of GR and 1̂  of KR can be identified with g ® R .R and ϊ (χ)R #,
respectively. Note that ϊΛ and pR = {X e gΛ; β^X = — X} ^ p 0R.R are ortho-
gonal to each other with respect to B, where ΘR also denotes the involution of
QR induced from that of GR.

It is also known that Eq. (1.3) can be rewritten as the integrability condition
of a 1-form with values in g each of whose component is an element of
€(z9 p) Oc C[[£]], where <C(z, p) is the quotient field of R = <E[_[z, pj] and t an
indeterminate called "spectral parameter." Namely, let s/ and J be 1-forms defined
by

s/ = I (dPP -λ + θR(dPP -% J = )- (dPP ~x - θR(dPP " x ) )

for any P e ARNR, and put

Ί-t1 It
Ωp~~ " \ l + ί2 1 + ί2

where * is the Hodge operator given by *rfz = dp, *dp = — dz. We extend the
canonical exterior derivative d on (C(z, p) to that on <C(z, p) (x)c (C[[ί]] by defining

dt = ( 1 +

r

t 2 ) ^ ( ( l - ί2)rfp + ltdz) . (1.6)

Note then that d2t = 0. Now we have

Proposition 1.2. ΩP satisfies the integrability condition, i.e.,

dΩP -ΩPAΩP = 0 (1.7)

if and only if P is a solution of (13).

This can be proved straightforward, using (1.6).
Moreover, let J' = Jzdz + Jpdp. Then Eqs. (1.4) and (1.5) can be written in

terms of Jz and Jp as
1d ) (1.8)

^ (1.9)

It follows from Proposition 1.2 that if P is a solution of the Ernst equation, then
there exists a potential P = Σn>0Pntn s u c h that each entry of pn is an element of
(C(z, p) and

dp = ΩP-p andpo = P. (1.10)

2. Hauser Group

We introduce formal loop algebras and formal loop groups, following [T].
Put F 0 = ^ = ^ [ b p ] ] and Fn = p^R for a nonzero integer n. We introduce

a topology in R by declaring that {Fn}n^0 forms a fundamental neighborhoods
system of 0. Note that FmFn <= Fm+n for m, n ^ 0.
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Then we define a formal loop algebra J^cjl by

= Σ *»*"; *» e 9l(̂ V + 2, FB) j . (2.1)

Let * be an anti-involution of J*cjl defined by

for X = Σnez^« ί W ' where the anti-involution * in the right-hand side is the one of
gI(JV + 2, JR) given in Sect. 1. This is well-defined by the definition of our filtration

Remark that ΩP with P e ARNR is not an element of J^gl, however, we can

define Ω% by

Ί-(-l/ί)2 2(-l/ί)

where * in the right-hand side is the anti-involution of cjI(Λf + 2, JR). Then it follows
immediately that

Ω$ = -ΩP for P e ARNR . (2.2)

We define a formal loop group ^GL, following [T], by

= \g=Σgnt
n;gne βl(N + 2, Fn\ g0 is invertible 1 . (2.3)

(. neΈ J

Since J^GL is canonically embedded in J^gl, we can define an involution θ(co) of
&GL by

which we call Cartan involution of
Define subgroups of ZFGL as follows:

= \g = Σ ^ ί " e J^GL; ̂ *J^ = J, det g = 1 j , (2.4)

o = \g = Σ ^ « ^ M ; ffol(,.p)=(o.<» = l } , (2.5)
I J

} (2.6)

= \p = Σ P»ί" e ^ ^ Po e 4ΛJVΛ, pB = 0 if n < 0 j . (2.7)
I «eZ J

Then, using the Birkhoff decomposition ((3.17), [ T ] ) , we can decompose uniquely
an element g e ^^ as

g = kp (k e ^Jf, p e &0>) . (2.8)
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Let s be another indeterminate. Define an infinite dimensional group ^ ( o o ) ,
which we call Hauser group, by

^ ( o o ) = \g = Σ 9ns
n e GL(N + 2, C[[s]]); </* J# = J, det g = l9g0 = 1 j ,

where <C[[s]] is a ring of formal power series in s over (C and #* = Σ # * s W

Let; be a homomorphism of GL(N + 2, <C[[s]]) into ^GL given by

7 g= Σ 9nSn^j(g)= Σ 0»

Then it is easy to see that; is injective and that the image of ^ ( o o ) by; is in,
denote by J*Jf the image of ̂ ( o o ) by;. The following equations characterize the
elements of 3F&P in

Lemma 2.1. An element g e ZF^ belongs to 3F2tf if and only if g satisfies the
following equations:

( l Λ , (2.9)

dtg= -"-\l+T2\dzg. (2.10)

This characterization will play an important role in the proof of our main theorem.
For proof, we refer to [S].

Definition. Let && be as in (2.7). We define <f0> to be a subset of && consisting of
elements p = ]ΓΠ> opnt

n which satisfy the following conditions:

dp^Ωpc p and po|(2,P)=(o,o) = 1 . (2.11)

We call 9*0* the space of potentials.

It follows from (2.11) that p0 is a solution of the Ernst equation (1.3) for
p = Σn^ opnt

n £ SfSP. Equation (2.11) is equivalent to the following equations:

2t2

 Λ

+ t2)p Utί ( 2 1 2 a )

"PV ^ (1 + t2)p »ti

where we define Ω± and Ω2 by ΩPo = Ω1dz + Ω2dp.
Put

It2 .

for brevity.

Theorem 2.2. 4̂rc element p e 5^^ satisfies

3t{p*p) = ~ P [ dz + 7 δp ) (p*p), (2.13.a)

*p) . (2.13.b)
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Conversely, if p e ϊFΘ* n &<S^ satisfies Eqs. (2.13.a) and (2.13.b), then p belongs to
, namely, it satisfies Eqs. (2.12.a) and (2.12.b).

Proof. It can be checked by direct calculation that (2.13.a) and (2.13.b) are equiva-
lent to Di(p*p) = 0 and D2{p*p) = 0. But then, we have, for p e

= -p*i2ip-

= 0 ,

since Ωf = — Ω1. Similarly, we can show that D2(p*p) = 0.
Conversely, let p e ^0> satisfy (2.13.a) and (2.13.b). Then we have

t

(2.14)

= dtpp-1+^( 1 + - 2 )dzpp-1 . (2.15)

In (2.14) the left-hand side contains only the terms off" (n ^ 0), while the right-hand
side those of tn (n^ — 1), which implies that the coefficients of tn (n ^ — 2) in the
l.h.s. vanish. Therefore, we obtain

1 \ / 1 \

(2.16)

since the coefficient of t~x in the l.h.s. of (2.14) is equal to pdppopo *( = coeff. of ί"1

in the r.h.s. of (2.14)). Note that, comparing the coefficients of ί"1 in both sides of
(2.14), we obtain

SpPoPo1 + (dpPoPό1)* = coeff of Γ1 in (d^pp"1)* . (2.17)

Similarly, the l.h.s. of (2.15) contains only the terms of tn (n ^ 0), while the r.h.s.
those of tn (n ^ — 2), which implies that the coefficients of tn (n ^ — 3) in the l.h.s.
vanish. Therefore, we obtain

( 1 \ / i \

1 \ -, O ( 1 \
•j i I Λ — 1 i 1 j_ lO (0 1 Q̂

where we used (2.17).
Now it is easy to see that (2.16) and (2.18) are equivalent to (2.12.a) and (2.12.b). |

Let p e ¥0> and g e ^ ( o o ) . By (2.8) there exist k e ^X and pg e && such that

k-1 pg. (2.19)

Then, it follows immediately from Theorem 2.2 that pg is in £f0>. Thus we can
define an action of the Hauser group ^ ( o o ) on ^0* to the right by

x 4?(co) _^ y>g> ( p ? g)^pg , (2.20)

where pg is given by (2.19).
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From the fact that an element g = ΣM > o # « 5 " e ^ ( o o ) suc^ ^ a t #* = 9 a n c *
that ^o is positive definite decomposes as~# = ft * ft for some ft e ^ ( o o ) , we have

Corollary 2.3. Γfte action of&(co) on Sf0> given by (2.20) is transitive.

Remark. As we mentioned in [S], our group ^ ( c 0 ) is too small to obtain all
solutions of the Ernst equation (1.3) through the action (2.20).

3. 2-Cocycle on

The formal loop algebra J^gl becomes a Lie algebra with Lie bracket
- YX. The map

exp:

given by

cxpX = ex= Σ ^ (3.1)
«^ o n

is called the formal exponential map. Note that for any g e J ^ o we can find
a unique element X in J^gl such that g = ex, since the logarithm given by

A ) = Σ ( ~ 1)W A" (3.2)
n

is well-defined and satisfies

elog(l+A)=

for A = ΣneΈant
n E J^gl with a0 e Q\(N + 2, m), where m c i ^ i s the maximal ideal.

For X, 7 in #"$1, let cπ(X, 7) (n = 1, 2, . . . ) be the elements in J^gl which are
determined by

expi Xexpi y = exp £ cn(X, Y)vn,
«^ o

where i; is an indeterminate. Furthermore cw's are uniquely determined by the
following recursion formulas (see [V]):

Cl(X9 Y) = X+Y

(n + l)cH + 1(X, Y) = ^IX-Y, cn(X, Γ) ]

+ Σ K2P Σ Lck^ n [. ., ick2P(χ, n ^ + I Ί . ] (π ̂  i),
p ^ l ,2p^n fei,...,k2j,>0

where X2p's are determined by

We set C(X, 7) = £ n i , l C l I (Z, 7). Then C(X, Y) is a well-defined element
for X, Y such that Xo> ^o e ^ ( ^ + 2, m).
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Lemma 3.1. For n ̂  2, there exists a ̂  φvalued function Ln( , •) w/uc/z satisfies

cH(X9 Y) = [X, Ln(X, 7)] + [ 7, Ln( - 7, - X)] (3.4)

Proof. It is easy to see that cn can be written as

cn(X, 7) = [X, AΛ(X, 7)] + [7, £Π(X, 7)] .

Let X, YE J^gl. Then, since cπ(X, 7) = - cn( - 7, - X), we have

cM(X, 7) = 1 (cH(X, 7) - cB( - 7, - X))

\ , AH(X, 7)] + [7, Bn(X9 7)]

-[-7,^(-7, -X)]-[-X?JBπ(-7, -X)]).

Therefore

n(X, 7) = i ( [ Z , ^(X, 7)] + [7, βw(X, 7)])

satisfies (3.4). |

Note that LM's are not uniquely determined, however, we fix LM's so that there holds

, 0.5)

where we put L(X, ^) = Z^ 2LM(X, 7) for X, 7e#"gl such that Xo, Yoe
$l(N + 2, m). Thus, we obtain

C(X9 Y) = X+Y+ IX,L(X, 7)] + IY,L(-Z - X)] .

For a series/= Σπ e Z/wί n e«[[ ί , r 1 ] ] , we write

R e s ί / = / _ 1 e K .

Let Ro = R[[z, p]] cz K, the formal power series in z and p over R. We define
a .Ro-valued 2-cocycle ω on J^gl by

ω(X, 7) = Resr£(X, dt Y)

for X, Ye&Ql Note that

ω(X*, 7*) = - ω(X, 7) (3.6)

forX, 7
Now we introduce a group 2-cocycle on «^"^OJ following [BM]. Note that, from

(3.3), any element g e # ^ 0 can be uniquely written as g = ex for X e J^gl with

Definition. Let Ξ be a i^0-valued function on ̂ ^0 x ̂ ^0 defined by

Ξ(ex, eγ) = ω(X, L(X, 7)) + ω(7, L( - 7, - X)) .
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Then Ξ defines a 2-cocycle on # ^ 0 > i.e. satisfies the cocycle condition:

Ξ(ex, eγ) + Ξ(exe\ ez) = Ξ(e\ ez) + Ξ(ex, eγez) (3.7)

for X, Y, Z e

Now we collect some basic properties of Ξ. For details we refer to [BM, S]. It
follows from (3.6) that

>= ~Ξ(gug2) (3.8)

for gl9g2e J ^ o I n addition, Ξ satisfies the anti-symmetric conditions:

Ξ(ex,eγ)= -Ξ(e-χ,exeγ)

= -Ξ(exeγ,e-γ)

= -Ξ(e-γ,e-χ). (3.9)

Define the mixed form Ξ' of Ξ by

Ξ'(ex,Y) = - Ξ(ex,evY).

Then, using (3.7), (3.9) and the formula e~xdex = dX, we obtain

ad A

dΞ(ex, eγ) = Ξ'(e-γe-χ, dexe'x) - E'{e~x, dexe~x)

+ Ξ'(exeγ, e~γdeγ) - Ξ\eγ, e~γdeγ), (3.10)

where d denotes either dz or δp,

Lemma 3.2. Ξ is trivial on 3F#? x J^Jf, i.e.

S(fifi,fif2) = O for all gug2e&r3>? .

For proof, we refer to [S].

4. Central Extension

For any p e . 5 ^ , we can find an element g e 3F& which sends the identity element
1 G y ^ to p by Corollary 2.2. Then we have p = kg for some k

Lemma 4.1. For p e <9^, /eί ̂  e ^Jίf be as above. If we put

and

then we have
ao + aξ = qo + qt (4.1)

and
an + (- l)"α*_π = qn (4.2)

f o r n = 1 , 2 , 3 , ....
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Proof

which

By the choice

imply that

of 0, we

m~ιdzm

have

m = g*g = P*P »

g-^.gfm + i

T.T. Hashimoto and R. Sawae

Therefore we obtain

P'Hpg'^gp-'rp + g-%g = p'Hd.PP'Ύp + P~XSZP . (4.3)

Multiplying (4.3) by p to the left and by p~γ to the right, we have

Hence

Σ{an + (- Wain}? = Σ Qnt" + qo + «ί + Σ ( ~
neZ n>0 «<0

Comparing the coefficient of t" in both sides, we obtain (4.1) and (4.2). |

Proposition 4.2. For p e £f0>, let # e J^Jf and fc ε J ^ X such that p = %. Let Ξ be
the 2-cocycle on # " ^ 0 given in Sect. 3. Then we have the following identities:

(4.4)

^jtz,pg-1dzgp-iy (4.5)

We shall use the following identity:

1dP,g-1δtg)} , (4.6)

which follows from (3.5) and (3.10), where d denotes either dz or dp.
Since p e £f0>, we have

(4.7)

On the other hand, by Lemma 2.1, we have

θ-1dtθ=-^P)g-1Spβ. (4.8)
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From (4.6) with d = dp, (4.7) and (4.8), we obtain

-ix 1 p(l + t 2 ) / 1 - 1 2 It _Λ Λ _Λ

dpΞ(kg,g *) = - Res, _ ^2 B 1 sίp + 1 ^2 ̂  - χ ^ Jz, pg ιdpgp

1-t2 It 1-t2 _

= (the right-hand side of (4.5)) ,

1 - t2

where we used dpg = — - — δẑ f. Similarly, we can prove (4.4). |

By (1.1), each element l e g decomposes uniquely as X = Xx + X2 with
Xx e lR and X2 e p κ . We shall denote .X̂  and X 2 by (X)t and (X)p, respectively.

Now we can prove the following proposition.

Proposition 4.3. For p = £ n ̂  opMίw e 5 ^ , /βί ̂  e J^^f and k e &X be such that
p = kg. Let τ be a solution o/(1.8) and (1.9) corresponding to P = p0. Then we have
the following relations:

τ-1dzτ = dzΞ(kg,g-1), (4.9)

τ-1dpτ = dpΞ{kg,g-1). (4.10)

Proof First, expanding (2.12.a) in a series of ί, we have

^ p / Γ 1 = (Λfz + 4 ) + 2Spt + O(ί2)

= Σ In?

Thus, taking the coefficients of ί° and ί1, we obtain

Qo = ̂ z + Λ and ^ = 2 ^ . (4.11)

In the right-hand side of (4.4), since lR and pR are orthogonal to each other with
respect to B, we have

Resfίl + i
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where we put pg'^.gp'1 = Σw e ZαnίM. Then, by Lemma 4.1 and (4.11), we have

(fli + a-1)t = -(a1 + α_! -af - α * i )

:-(<*! -a-x + αf - α * i )

: 2 (

1

Therefore, recalling (1.8), we see that (4.9) holds.
Similarly, we can prove (4.10). This completes the proof. |

Now we define a central extension of J ^ o in terms of the cocycle Ξ.

Definition. Let ( ^ ^ 0 ) ~ be the set given by

{P90)~ = {(g, e*); g e 3F<$^ μeR0}

Define a product of any two elements of ( # ^ 0 ) ~ by

^+'>>+s<'>>n>) (4.12)

for {gue
μ% (g2ie

μ2)e{^^0y. Since Ξ satisfies the cocycle condition (3.7),
( J ^ o ) " forms a group with group multiplication given by (4.12). Namely,
is a central extension

Let θ(co) be an involution of ( J ^ o ) ~ given by

If we denote by (J^Jf)~ the subgroup of (^^0)^ consisting of elements which are
fixed by θ(co\ then we have

= {(/c,

Let {JF&Y be a subgroup of (^90y given by

= {(p, ̂ )

It follows immediately from the decomposition (2.8) of J ^ that ( J ^ o ) ~ has
a unique decomposition:

(4.13)

Furthermore, we put

) - {( y) ( # - ^ ) ~ &r, 7 e
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It follows from Lemma 3.2 that ZFffl can be regarded as a subgroup of {!F3tf)~ by

Let {&&Y be the subset of (&&)~ given by

τ = e " μ satisfies (1.8) and (1.9) with P = pΛ. (4.14)

We call (Jίf&y the space of potentials with conformal factor.

Proposition 4.4. For p e ¥0*, let k e #" J f and g e ̂ Jtf be as above, i.e. p = kg. Then
we have

Ξ(p*,p) = 2Ξ(kgfg-1). (4.15)

Therefore, any element of' (Sf&y can be written as (p, e~*Ξ(p*'p) + y) for p e ^ ,
yelR.

Proof. Using the anti-symmetric condition (3.9) and the cocycle condition (3.7), we
have

Ξ(p*,p) = -Ξ(p-\θ^p)= -Ξ(p-\kθ^g)

= - Ξ(p-\ k) - Ξip-'K θ^g) + Ξ{K θ^g). (4.16)

For the first and the last terms in the r.h.s. of (4.16), it follows from (3.9) and (3.8)
that

Ξ(p~\k)= -Ξ(k,θ^g) = Ξ(k,g).

The middle term in the r.h.s. of (4.16) vanishes by Lemma 3.2.
Now using (3.9) again, we obtain

Ξ(k9g) = Ξ(pg-\g)= -Ξ{g~\gp~1)

= Ξ(g,p-1)= -Ξip^g-1). (4.17)

Thus (4.15) follows.

For any (p, eμ) e (£f&)~, put p = Σn> 0Pntn By definition and Proposition 4.3,
both τ = e~μ and τ' = e^Ξ{p^p) satisfies (Γ.8) and (1.9) with P = p0. Therefore they
must be equal to each other, up to constant multiple. This completes the proof of
the proposition. |

Define an action of (J^Jf)~ on the space of potentials with conformal factor
to the right through the decomposition (4.13):

, ((P, eμ), (g, e*)) ^ (pg, e«) . (4.18)

Namely, we can find a unique element (fc, 1) e (3Fctif)~ and (pg, e
a) e (^^Y such

that

where k and pg are the elements given in (2.19). Since we have

( ) y)Y1 .(p, e*)(g9 e
y) = (g*p*pg,
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and

0<°°>(p,, eT1 •(/>„ e«) = (p*pg9 e

2*+*<&*>),

we obtain

= /--Ξ(p*,/g

for some / e R, where we used Proposition 4.4. Thus (pg9 ea) belongs to (J?Θ>)~, i.e.

the action (4.18) of (#\?f)~ is well-defined.

Now we state our main theorem:

Theorem 4.5. The group (βF ffl)~ acts transitively on the space of potentials with

conformal factor (Sf&Y by (4.18).

Proof What remains to be proved is transitivity of the action. By Proposition 4.4,

any element oΐ(£f&>)~ can be written as (p, e~
iΞ(p*p)+y). Moreover, by Corollary

2.3, p E ίfSP can be written as p — kg for k e SFc/f and g e J^J f. Then we have, by

(4.17),

This shows that any element of (Sf&Y is on the oribit of the identity element
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