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Abstract. In the first half of this paper (Sects. 1-4) we generalise the standard
geometric quantization procedure to symplectic supermanifolds. In the second half
(Sects. 5, 6) we apply this to two examples that exhibit classical BRST symmetry,
i.e., we quantize the BRST charge and the ghost number. More precisely, in the first
example we consider the reduced symplectic manifold obtained by symplectic
reduction from a free group action with Ad*-equivariant moment map; in the
second example we consider a foliated configuration space, whose cotangent
bundle admits the construction of a BRST charge associated to this foliation. We
show that the classical BRST symmetry can be described in terms of a hamiltonian
supergroup action on the extended phase space, and that geometric quantization
gives us a super-unitary representation of this supergroup. Finally we point out
how these results are related to reduction at the quantum level, as compared with
the reduction at the classical level.

1. Introduction and Summary

Recently there has been much interest at the classical level in the relation between
reduced/constrained systems and the original (or extended) systems, especially with
regard to the Poisson algebras. One considers a classical physical system described
by a phase space (Mo, ω0) (a symplectic manifold) subject to constraint functions
j a = 6, which we will assume to be first class. In an abstract way the actual phase
space (also called the reduced phase space) is easy to describe. One considers the
constraint set C = {me M0 |Vα Ja{m) = 0} and the restriction of ω 0 to C. The
leaves of the characteristic foliation @char of ωo\c represent gauge equivalent points
of this physical system and the quotient Mr = C/@chaτ gives us the actual phase
space of the system. In favorable circumstances Mr is a (symplectic) manifold. If the
constraint functions are derived from a proper symplectic group action on
(Mo, ω0), this is the well known Marsden Weinstein reduction [MW].
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One of the goals of the classical BRST symmetry approach (see e.g., [BM, He,
HT, FHST, Stal, Sta2, KS, Lo, DET] and references therein) is to give a similar
description of the reduced Poisson algebra C°°(M,.), i.e. to describe it as a quotient
A/1, where A is a subalgebra of a Poisson algebra defined by equations, and where
/ is an ideal in A. Apart from an intrinsic interest, the "why" of this elaborate
attention is the idea that it might be difficult to quantize the reduced system itself.
Hence one would like to quantize before reduction, or in other words to apply the
constraints after the quantization. It follows that one would like to have some kind
of evidence/proof that the results so obtained are in agreement with the direct
quantization of the reduced system (if feasible).

The first idea on how to apply the constraints after quantization, already given
by Dirac, is that if the phase space (M o, ω0) is quantized by the Hubert space J^o

and the constraint functions Ja by self-adjoint operators τ(Jα) on Jf0, then the
quantization of the reduced system is given by the (Hubert) space J*fred =
{ψ e J^0\\faτ(Ja)ιl/ = 0}. One immediate problem with this approach is that it is
not clear how to quantize classical observables of the reduced system. Moreover, it
has been shown (e.g. [DEGT, DEGST]) that in general this approach to the
quantization of the reduced system Mr does not agree with any reasonable direct
quantization of Mr.

The above described procedure of reduction after quantization is based on the
idea that one should compare the classical phase space with the quantum Hubert
space. If we shift our point of view to the idea that the quantum Hubert space is in
some sense a representation space for the Poisson algebra, then we get a whole new
approach to reduction after quantization (note that this viewpoint is carried out in
extrema in the deformation/star-product approach to quantization where one
foregoes the Hubert space altogether). Now the BRST symmetry is essentially
a symmetry at the level of the Poisson algebras rather than of the underlying
symplectic manifolds (although we will show that in our examples it is induced by
a group action on a symplectic manifold). It follows that with our new point of view
the classical BRST symmetry will play an important role in the reduction after
quantization. It is the aim of this paper to investigate how the classical BRST
symmetry is related to a consistent reduction after quantization, where consistent
means that we want to apply quantum constraints in such a way that the results are
equivalent to a direct quantization of the reduced classical system.

Since the classical BRST symmetry involves odd-degrees of freedom (or in other
words supermanifolds), we have to have a well defined procedure to quantize these.
To that extent we take the geometric quantization procedure and we adapt it
(Sects. 2-4) to symplectic supermanifolds in order to have a consistent quantiz-
ation method which applies to all kinds of degrees of freedom in the same way at
the same time. In Sect. 2 we adapt the notions of frame bundles and densities to
supermanifolds; in Sect. 3 we use these notions to adapt the geometric quantization
procedure to supermanifolds, and in Sect. 4 we apply the adapted geometric
quantization procedure to a very simple example containing only odd degrees of
freedom. The, for this summary basic, idea of geometric quantization is that
a phase space M together with a polarization 0> determine (in nice cases) a repres-
entation space Γ(QB)^ for (a part of) the Poisson algebra C™(M) with τ the map
from C™(M) to operators on Γ(QB)^. Usually there exists a natural subspace
ΓC(QB)^ of Γ(QB)^ which carries a scalar product such that the operators τ(/) are
self-adjoint; the Hubert space of quantum mechanics then is supposed to be the
completion of Γc(QBf.
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Although Sects. 2-4 contain essential basic material, the knowledgeable reader
may skip it over initially, referring back as necessary. In Sects. 5 and 6 we then
discuss two applications of the adapted geometric quantization procedure, which
both fit the same basic scheme. At the classical level we assume some regularity
conditions, among which are the conditions that the constraint set C a Mo has
a well-defined codimension n, and that the reduced phase space Mr is a smooth
symplectic manifold. We then extend the phase space Mo to a super phase space
M by adding In odd directions (ghosts and anti-ghosts). On this extended phase
space M we construct a symplectic action Φ of a supergroup S a SGL(l, 1) whose
conserved quantities are called the BRST-charge Ω and the total degree Td.
Basically the action of S can be described by saying that the even parameter in
S rescales the odd-directions (ghosts and anti-ghosts) and the odd-parameter
moves a point of Mo in a nilpotent direction which is given by the odd coordinates.
Thus the action of S on M induces the trivial action on Mo. Since the functions
Ω and Td satisfy the relations {Ω, Ω} = 0 and {Td, Ω) = Ω, one can define the
so-called BRST cohomology,

tfW = {/e C°°(M)|{Td,/} = k f& {ΩJ} = 0} modulo

{/= {Ω,g}\g e C™{M) ά {Ίd,g} = (k - ])-g) . (1.1)

The BRST cohomology in dimension zero, which can be described as equivalence
classes of functions globally invariant under the S action, inherits from C^iM) the
structure of a Poisson algebra and there exists a natural morphism of Poisson
algebras

H ° B R W C°°(Mr). (1.2)

We then apply the adapted geometric quantization procedure to the extended
phase space M and the functions Td and Ω. It turns out that the operators τ(Td)
and τ(Ω) can be integrated to an action U of S on Γ(QB)^ which is super-unitary
when restricted to ΓC(QB)^. In "analogy" with the classical case we define a sub-
space Γred cz Γ(QB)^ by the action of S as

Γred = {ψeT(QBf\VseS: U(s)φ = Ber(5)"/2 ^} , (1.3)

where Ber of a matrix is the Berezinian, also called the superdeterminant. We then
show that functions belonging to the same equivalence class in H°BRST induce the
same operators on Γred and hence that Γred is a representation space for (a part of)
the Poisson algebra #°BRST Finally we show (or quote the literature) that there
exists a polarization &r on Mr with a quantization map τr from C^iM,.) to
operators on Γ(QBr)^r with two nice properties. In the first place Γ(QBr)^r is
(naturally) isomorphic to Γred. In the second place, using this isomorphism, we have
the following commutative diagram

# O B R S T 3 [ / ] • τ(/) operator on Γred

quantization

map (1.2) [ | isomorphism Γred ^ Γ{QBrf
r . (1.4)

quantization

C°(M)X f> τr(fr) operator on Γ(QB,f
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The commutativity of this diagram shows that quantization and reduction "com-
mute," i.e., that we can either quantize the reduced phase space or reduce at the
quantum level using the BRST symmetry, but that the results will be the same.

Besides these common features, the two applications also differ in some aspects.
In the first application (Sect. 5) we assume a proper symplectic action of a con-
nected Lie group G (with Lie algebra g) on M o and we suppose that C is defined as
the zero-level set of an Ad*-equivariant momentum map J for which Oeg* is
a regular value. With these assumptions M = Mo x 9 x g* is a trivial product and
(1.2) is an isomorphism. We refer the reader to the existing literature for the proof
that (with some additional conditions) (1.4) is indeed a commutative diagram. In
this example we are also able to relate Γ r e d to a quantization Γ(QB0)^° of M o :

Γτtd*{φeΓ(QBof
o\VveQ:i τo(J*Ό)ψ= - (l/2) trace(ad(ι;)) ^} . (1.5)

The shift by (1/2) trace (ad (v)) might not have a direct physical interpretation, but
it is a well known shift in the theory of induced representations. It is needed to
"construct" a scalar product on Γ r e d.

In the second application (Sect. 6) we consider an oriented regular foliation
Q)o on a configuration space Qo, with the idea that the leaves of this foliation
describe gauge equivalent points, i.e. that Qr = β o /^o is the reduced config-
uration space, which we assume to be a smooth manifold. In the phase
space M o = T*Q0 we define the constraint set C as the annihilator of ^ 0 > i e.,
C = {β e Γ * β o | Vx e @0' β(x) = 0}. It turns out that the reduced symplectic mani-
fold Mr = C/^ c h a r is symplectomorphic to T*Qr. We stress that we do not assume
that <30 is trivial, i.e., we do not assume the existence of n global vector fields on Qo

that span 30. On the other hand, the fact that the constraint set C is induced from
a foliation on the configuration on Qo is crucial in the construction of the BRST
charge on the extended phase space M, which is the cotangent bundle of an
extended configuration space Q with dim(β) + dim(Qr) = 2 dim(β0). In this sec-
ond example we do not tackle the question whether (1.2) is injective and/or
surjective; however, we prove the commutativity of (1.4). A comparison with
a quantization of T*Q0 is difficult because we do not assume triviality of Θo. If ® 0

is trivial, a comparison with a quantization of Γ*Q 0 would yield a result similar to
(1.5) (see also [Tu2]).

2. Supermanifolds, Frame Bundles and Densities

We will work with the geometric version of the super/graded manifolds of Kostant.
We begin to establish notations and conventions. For more details on super-
manifolds, we refer the reader to the existing literature (e.g., [Ko2, Ba2, dW] and
references cited therein). Our basic graded commutative algebra si will be the full
exterior algebra of a countably infinite dimensional real vector space, i.e.,
s/ = ΛRN = (®keNΛ2kRN) ® (0fc6ΛrΛ2* + *RN) = J / 0 θ ^ 1 We will use the func-
tion ε to denote the parity of an object; it will only appear in the exponent of — 1. If
Fis a module over s/9 then elements eί9 . . . , ep+q will be called a basis for V if the
following two conditions hold:

(i) Fi s isomorphic to the free ja/-module spanned by el9 . . . , ep+q9

(ii) ε(ej) = 0 for j g /?, ε(ej) = 1 for j > p. ' '
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In such a1 case we will call (p, q) the dimension of V. We will only work with
j/-modules that admit such a basis. By abuse of notation (and when no confusion
is possible) we will call such modules (graded) vector spaces and their elements
vectors. By a subspace W of V we will mean any j/-submodule W of V which is
spanned by a subset of a basis of V. We will consider two groups of endomorphisms
of a graded vector space V; in the first place SGL(V) consisting of all even invertible
^-linear maps F-> V. With respect to a basis el9 . . . , ep+q of V any such map is

determined by a block matrix I I of size (p + q) x (p + q), where A has size
\C DJ

pxp,D size q x q, both A and D are even and invertible, while B and C are odd. We
will denote the group of all such matrices by SGL(p, q). We will also consider the
subgroup SGLπ(p, q) a SGL(p, q) of matrices with Det(D) > 0. The corresponding
subgroup of SGL(V) can be interpreted as those endomorphisms that preserve an
orientation on the subspace spanned by ep+l9 . . . , ep+q.

A supermanifold Q of dimension (p, q) is defined by open sets
U c {^oY x (^i)q and C0 0 transition functions (abuse of notation: C0 0 stands here
for super smooth functions, i.e., smooth functions in the even coordinates and
polynomials in the odd coordinates). Restriction to the even coordinates defines an
ordinary manifold Qo, called the underlying real manifold of Q. The odd-odd part
of the Jacobian matrix (i.e. the submatrix D, which is even!) defines an ordinary
vector bundle VQ -• Qo with typical fibre Rq. Batchelor [Bal] has shown that there
exists a (non-canonical) isomorphism C°°(β) ^ {sections of AVQ -» Qo} If U is
a local chart for Q with coordinates z 1, . . . , zp+q (zj even for) ^ p, odd otherwise)
then the derivations dj := d/dzj are a basis for the tangent space TmQ at each point
meU a Q. We define the cotangent space T*mQ as the left ^/-linear maps
/• TmQ -• J / ; /c-forms at m are elements of AT*mQ.

A distribution ^ of dimension (p', g7) on β is a smooth assignment of a subspace
@m ̂  ^mδ with dim Q)m = (pf ^ p,q' ^ f̂); smooth means that locally there exist
smooth vector fields Xu . . . , X^'+^' on Q such that Xj is even for j ^ pr, odd
otherwise, and such that Xγ |m, . . . , Xp>+q>\m is a basis of Θm. Obviously 2 can be
considered as a vector bundle over Q with structure group SGL(p\ qr). We call
Q) orientable in the odd directions if the structure group can be reduced to
SGLπ(p\ q'). Now define 3FQ} -* Q as the bundle of all frames (bases) for 2, i.e.
a principal SGL(p\ q') bundle over Q. If 3) is orientable in the odd directions, then
the choice of an orientation defines <F3ι+ -• Q as the bundle of ^-frames which are
oriented in the odd directions; it is a principal SGLπ(p\ q') bundle over Q. In the
sequel we will use the abbreviation OOD for Oriented in the Odd Directions. We
will say that the manifold Q is OOD if the full tangent space TQ, seen as
a distribution in Q, is OOD. In the translation to ordinary manifolds, a supermani-
fold is OOD if and only if the vector bundle VQ -» Qo is an oriented vector bundle;
in the terminology of Shander [Sh] an OOD manifold is called (0, 1) semi-oriented.

Now for deR consider the representation ABerd (Absolute value of the
Berezinian, power d) of SGLπ(p\ q') on J / 0 defined by:

ζj) = [|Detμ - B/)-1C)| Det(DΓ1]-ίI . (2.1)

If 2 is an OOD distribution on Q then we can consider the line bundle ΔdS> -> Q
associated to IFΘ + by this representation. Sections of this bundle can be identified
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in the standard way with functions v on 3FQ) + satisfying:

v(m; (ej)g) = A B e r % " X m ; (βj)) , (2.2)

or equivalently

v ( m ; { e j )

where g e SGLπ(p\ q1) and e 1 ? . . . , eP '+β ' an OOD basis for <2ιm. If we consider
functions on J ^ + with values in si satisfying (2.2/3), we will call the line bundle
Δd2 a real line bundle; it is the direct generalization to supermanifolds of the usual
notion of a real line bundle. However, we want to use such a line bundle in the
construction of the quantum Hubert space, which should be a Hubert space over C.
Hence, instead of considering functions on <FQ}* with values in si, we will consider
functions on J ^ + with values in si ® C = si + isi satisfying (2.2/3), and we will
call the line bundle ΔdΘ a complex line bundle. The (complex) line bundle ΔdQ) has
dimension (p + 2, q + 2). A partition of unity argument shows that ΔάQ) is trivial,
i.e., that there exists an even smooth section v0 such that every other section v can
be given as v = / v0 for some function fe C°°(β).

If Q were an ordinary manifold and Y a vector field on Q with flow φt

preserving 3ι, then there would be a canonical lift of φt to a flow φt on J Γ ^ ( + )

defined by φt(m; (e,-)) = (φf(m); (φt*ej)). The infinitesimal generator Ϋ of φf would
be a vector field on # ^ ( + ) , invariant under the GL(p') action and projecting to Y.
Although there does not exist a flow for ^general vector field on a supermanifold,
nevertheless we can define vector fields Ϋ with the desired properties.

Lemma 2.4. For each vector field YonQ preserving Sf, i.e. \Y,Q)~\ c Q), there exists
a vector field Y on # ^ ( + ) with the following properties:

(i) Ifq = 0 then Y is as before;

(ii) n+Ϋ = F(π:#-^ ( + ) ^β);

(iii) Ϋ is invariant under the SGLπ(p\ q') action and

(iv) IfZ also preserves 2 then [%Z] = \Y,Z\

The vector field Γis defined locally by the following procedure. Let Xl9 . . . , XP'+q'
be vector fields which span 2 on U a Q and which are OOD in the case of 3FQ)+,
then there exist functions λ on U such that [Xj9 Y~\ =YjkXk' λkj. Moreover, the Xj
identify &&+\ with U x SGL{π)(p\ q') by:

(ej) basis of @m o e} = Σ ^ L α*,, αfc, e SGLφ\ q') . (2.5)

In this trivialisation 7 is given by:

Y\im,a) =YL + Σ(~ iYiY)iεU)+εik))'λ\ a»j 3 / 3 ^ | β , (2.6)
Mi*

where e(w) is shorthand for ε(Xu). Our claim is that this gives a globally defined
vector field on # ^ ί + ) with the stated properties; the proof is a straightforward
calculation.

As the last definition of this section we introduce the set Qd(β) of smooth
sections of Δd3 and its subspace Qd

c(β) of those sections with compact support in
Qo Depending on the context we will interpret elements of Qd{β) either1 ak sections
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of Aά3) or as functions on J ^ + they will be called d-^-densities on Q (or simply
d-densities if 3ι = TQ). The vector fields Ϋ of (2.4/6) allow us to define a Lie
derivative on Ωd{3>) by:

JSf (y)v = Ϋv , (2.7)

where the left-hand side is in the section mode and the RHS in the function mode.
In this way, the map Y-> J£(Y) from ^-preserving vector fields on Q to operators
on Ωd(β) is left ^/-linear and preserves brackets (N.B. Qd(β) has a natural grading,
so in defining the bracket of operators one has to allow for signs). Now if Xj span
3) on U as above and if v is an element of Qd(β) then we get a function / on
Q defined by/(m) = v(m; (Xj\m)). If Y is a ^-preserving vector field on Q then it is
interesting to know the relation between Yf and J?(Y)v. The following lemma
follows directly from the definition of Ϋ and the properties of the ordinary
determinant.

Lemma 2.8. (Yf)(m) = (^(Y)v)(m;(Xj\m)) - d-Divw(7)(m)-/(m), where Div(J0(Y)
is given in terms of the functions λkj (i.e. [Xj9 Y~\ = ΣkXk' λkj) by

(7) = Σ ( - l ) β ω ^ . (2.9)

The function Div(Λ:) depends only upon the vector fields X which trivialise Q)\ it
is a generalization of the divergence of a vector field on Rn.

It has been shown ([Ro, Le]) that if Q is OOD then Berezin integration gives
a well defined map Ω1

C(TQ)-^R (or C), v->JQv. If we now realise that
Δd3)®Λd'9 = Δd+d'3), or correspondingly Ωd(β)-Ωd'(β) c Ωd+d'(@) (just the
pointwise multiplication of functions on # " ^ + ), then it follows that there exists
a supersesquilinear form <, >: Ω1/2

C(TQ) x Ω1/2

C(TQ) -• C defined by:

<s, t> = J s ί . (2.10)
(2

Remark 2.11. Besides the usual (anti-) linear properties, a supersesquilinear form
satisfies the relation <s, t) = (- l) ε ( s ) ' ε ( ί ) <ί, 5>. It is this additional sign which
makes the scalar product we will obtain by geometric quantization slightly differ-
ent from the one used by Kostant and Sternberg in [KS].

It is not hard to show that this form is non-degenerate and (in the presence of
both even and odd coordinate) indefinite; Ω1/2(TQ) is the natural generalisation of
1/2-densities on ordinary manifolds.

3. Symplectic Supermanifolds and Geometric Quantization

A symplectic supermanifold is a supermanifold M with a closed non-degenerate
even 2-form ω. The generalized Darboux theorem tells us that locally there exist
coordinates x\ yj (j = 1 . . . p) even and SJ' (j = 1 . . . q) odd such that ω is given
by:

ω = Σ ty] Λ dχj + Σ (!/2) * sj d3j
 A ddj, (3.1)

j j

where εj = ± 1; the number of positive signs is an invariant of ω ([Ko2, He]). It
follows that dim M = (2p, q) and that there is a third number s determined by ω; it
is called its signature and defined as s = # positive ε — # negative ε. Note that
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ω induces an ordinary symplectic form ω0 on the underlying real manifold M o . For
fe C^iM) one defines the hamiltonian vector field ξ(f) as usual:

ι(ξ(f))ω + df=0. (3.2)

The resulting Poisson bracket {/, g) = ξ(f)g gives C^iM) the structure of a super-
Poisson algebra, such that the assignment/-• ξ(f) is a morphism of graded Lie
algebras. We finish our remarks on symplectic manifolds with the construction of
the Liouville form εω on M. For this we need that M is OOD, so that is what we will
assume from now on. Since M o itself is oriented by the symplectic form ω 0 , our
assumption implies that VM itself is oriented (and of course oriented as a vector
bundle over Mo). If eί9 . . . , e2p+q is a basis for TmM then ω defines a matrix
ωkj e SGL(2p, q) by:

ωkj=ι(ek)ι(ej)ω (3.3)

and it is easy to check that the sign of the superdeterminant of ωk

j9 sign Ber(ωfe

; ), is
independent of the choice of a basis. On an OOD basis eu . . . , e2p+q, sω e Ω^ίTM)
is defined by:

εω(m;(^ )) = |Ber(ω f c

7.)|1 / 2. (3.4)

Using the local expression (3.1) for ω and Lemma 2.8 it is not hard to check that for
any locally hamiltonian vector field X on M, i.e., such that &(X)ω = 0, one has
£P(X)εω = 0. In particular for al l/e C™{M) we have Jίf (ξ(/))εω = 0.

We will develop geometric quantization for symplectic supermanifolds as
a generalisation of standard geometric quantization. As in standard geometric
quantization we have often to prove that our constructions and definitions are
valid. However, since these proofs are straightforward adaptations of the proofs for
the ordinary case, we will only point out the key ingredients needed for the
adaptation to the super case. For the proofs in the standard case we refer to the
existing literature ([Kol, So, SW, Sn, Wo, Tul]). The first step in this program is
the prequantization construction, which is carried out in detail by Kostant [Ko2].
We recall briefly the necessary details. There exists a complex line bundle L over
M of dimension (2p + 2, q + 2) with hermitian structure (,) and compatible con-
nection Fsuch that curvature(F) = i (2π)~1 ω, if and only if ω 0 is integral. The
bundle L is derived from a principal U(l) bundle Y-> M of dimension (2p + 1, q)
by the (even) identity representation eiφ e SGL(2, 2) = SGL{stf + is/). The choice
of a local potential α for ω, i.e., da = ω, defines a trivialisation of L, identifying local
sections of L with s/ + ̂ -valued functions on M. In such a trivialisation the
connection V is given by:

Vxs = Xs-i'i(X)oc's. (3.5)

With the applications in mind we will restrict our attention to real polarizations
and 1/2-densities, although we will sometimes make brief excursions to complex
polarizations and 1/2-forms. A real polarization $P is an OOD distribution on
M with the following two properties:

(i) & is involutive and
(ii) & is maximal isotropic with respect to ω.
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Note that it follows that the dimension of & is (p, q') with qf = (q + \s\)/2, and that
the even part of & defines an ordinary (real) polarization on (M 0 ,ω 0 ) . The
superversion of Frobenius' lemma implies that there exist local functions (part of
a coordinate system) z1, . . . ,zp+q' such that @> is defined by dz1 = . . .
= dzp+q' = 0. Condition (ii) then implies that Θ> is spanned by the hamiltonian
vector fields ξ{zj). We now make the additional assumption that there exists an
OOD manifold Q and a submersion π: M -• β with connected fibres such that
0* = ker(π*). This manifold Q = M/0P is the generalised configuration space for M.

The assumption that &> is OOD enables us to define the quantum line bundle
QB -• M of dimension (2p + 2, q + 2) as

QB = L®cA-1/2{0>). (3.6)

On Δ~γίl{0>) we define a partial connection by the following procedure. Let
Xe^m and eu . . . , ep+β ' an OOD basis of 9m9 then there exist functions
z1, . . . , zp+q' in a neighbourhood of m such that the ξ(zj) form a basis of 0> and
such that βj = ξ(zj)\m. Now if v ε Ω~1/2{0>), we will define Vxv e Ω~1/2(0>) by:

(Vxv)(m;(ej)):=X\m(v(-;(ξ(zJ))), (3.7)

where on the RHS we have interpreted v as a function on # ^ + . Standard
techniques show that this is a well defined flat connection, although only for
vectors in 0>. Using Lemma (2.8) and the isotropy of Θ>9 one can show that (as for
ordinary geometric quantization) if X e 0> is a locally hamiltonian vector field, then
Vxv = J£(X)v. The sum connection on QB defined by:

Vx(s® v) = (Vxs)(x) v + ( - \)W^-s®Vxv (3.8)

gives us a partial connection on QB. This allows us to define the set ΓiQISf of
sections φ of QB that are covariant constant in the direction of ^ , i.e.:

φ 6 Γ(QBf o VX G 0>: Vxφ = 0 . (3.9)

As for ordinary geometric quantization we claim that there is a natural
sesquilinear map (,): Γ(QB)^ xΓ(QB)^ -^ Ωί(TQ) which associates to two ele-
ments of Γ(QB)^ a 1-density on Q. Let (ξ) be vectors in TmM such that (π#ξ) is an
OOD basis for Tπ(m)Q, let (£) be a basis for ^ m and {ξ9 ζ) the OOD basis for TmM
formed from the vectors (ξ) and (ζ), then for φj = Sj (x) v7- 6 Γ(QB)^, the scalar
product (φl9 φ2) is defined by the formula:

= ( - l ) ε ( S 2 ) ' ε ( v l ) (S l, s2)(m) vx(m; (0) v2(m; (0) εω(m; (ζ, ξ)) . (3.10)

It is not hard to show that this (φι9φ2) transforms properly as a 1-density on Q; the
only serious problem is to show that it is independent of the choice of m for fixed
π(m). This can be done by choosing locally hamiltonian vector fields for (£), using
Lemma 2.8 and the fact that the φj are covariantly constant in the direction.of ^ .

We continue to mimick ordinary geometric quantization and we define
Γc(QBf as those φ e Γ(QBf such that (φ, φ) e Ω1

C(TQ)9 i.e. those φ for which the
supermeasure {φ,φ) on Q has compact support in Qo. It follows that for
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ψ9 χ e Γc{QBf we have (ψ, χ) e Ω\(TQl hence ΓC(QB)^ carries a "natural" super-
sesquilinear form <, > given by:

) e C . (3.11)

Since this form is in general indefinite, we will not try to "complete" ΓC(QB)^, the
more so because we will find other problems with inner products in the applica-
tions. On the other hand, we will consider Γ(QB)^ and ΓC(QB)^ as "representa-
tion" spaces for the Poisson algebra C^iM).

As the final step in the geometric quantization program we define operators
τ(/) on Γ(QB) for observables/e C^CM) that preserve the polarization 2P9 i.e. that
satisfy [£(/), ^ ] <= ̂ . As for ordinary geometric quantization we define the action
of τ(/) on ψ = s (x) v by:

<f)Φ = ( - i Pi(/)S + / s) ® v - i ( - l)«(/) ^ ) s <g> JίP(ξ(/))v . (3.12)

In view of a previous remark this reduces to τ(f)φ = - i- Vξ{f)\jj +f ψ
when ξ(f)e&>. If / and g both preserve ^ , then one verifies that
[τ(/),τ(/)] = τ(/) τ t o ) - ( - l ) β ^ β ^ τto) τ(/)=-rτ({/ f lf}), i.e., we ob-
tain the following proposition.

Proposition 3.13. The map i τ(f) is a homomorphίsm for the ^-preserving sub-
algebra ofC™(M) to the operators on Γ(QB).

We end this section with the assertion that τ(f) preserves Γ(c)(QB)^ (where
Γ ( c )(QBf denotes both Γc{QBf and Γ(QBf)9 hence that Γ(c)(QBf is indeed
a representation space for (the ^-preserving part of) the Poisson algebra C^CM).
Especially if/not only preserves & but satisfies ξ(f) e &*9 a condition equivalent to
saying that/is the pull-back of a function on the generalized configuration space g,
then (3.12) and the remark following it show that τ(f) on Γ(C)(QB)^ is just
multiplication by /

4. A Simple Example

In this section we will elaborate on a simple example in great detail. For those who
know geometric quantization, this example will not contain any surprise, it will
only show where additional minus signs appear. Consider M = Γ* V of dimension
(0, In) where V=(s/1)

n is the unique supermanifold of dimension (0, ή). Now in
general, if Fis any supermanifold with local coordinates z1, . . . , zn (even and odd)
and (local) associated coordinates ζl9 . . . ,ζn in the fibres of Γ*K, then the
canonical 1-form α on Γ * F i s locally given by:

* = ΣdzJ ζj. (4.1)
j

We use this to equip our M = T*V with its canonical symplectic form ω = da. In
(global) coordinates η1, . . . , ηn on F a n d dual coordinates pl9 . . . , / ? „ in the fibres,
ω is given by

ω = _ £ dηJ Λ dpj = _ £dpj Λ dηJ.
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If w e c h a n g e t o c o o r d i n a t e s βj = 2~1/2-(ηj + p 7 ), βj+n = 2 " 1 / 2 {ηj - pj)9

1 ^j^n, then ω is given as ω = ^(1/2)'dβj A dβj — Σ / l / 2 ) ' dβj+n A dβj+n,
which is the standard form as given in (3.1). In the coordinates (η, p) the hamil-
tonian vector field of a function/is given by

ξ(f) = ( - l ) ε ( / ) + 1 ' Σ (df/dPj-d/dηj + df/dηi-d/dpj) . (4.3)
j

In this case the prequantization line bundle L is trivial: L = M x (srf + is/)
and we can use the section st(m) = (m, 1) to identify sections s with functions φ by
s = φ-st. Using the potential α = Σjdηj' Pj for ω, the connection V is given
globally by (3.5) (replacing of course s by φ). As for all cotangent bundles, there is
a canonical polarization @\ the vertical one spanned by

Remark 4.4. If we consider the case n = 1, one easily verifies that there are only two
possible polarizations: the vertical one spanned by d/dp and the horizontal span-
ned by d/dη; even allowing complex coefficients does not change this fact. Hence
the natural analogue of a holomorphic polarization does not exist for the odd-
degrees of freedom. However, for n > 1 there do exist non-real polarizations in the
odd directions.

The generalized configuration space Q is V with its canonical projection
π: M = Γ*F-> V. Since we are working with vector spaces, it is obvious that
we can satisfy the orientation conditions: we orient TM by declaring the
basis d/dη1, . . . , d/dηn, d/dpί9 . . . , d/dpn to be positive; for 9 the basis
d/dpx, . . . , dldpn is positive and for TQ d/dη1, . . . , d/dη11 is positive. Since the
vector fields d/dpj globally span 0>, J ^ ( + ) is obviously trivial, providing us with
a natural trivialising section vt of A~ll2(g?) by:

vt(η9p;(d/dpj))=l. (4.5)

Hence we can identify sections v of Δ~ll2{0>) with functions χ on M by v = χ vt

and so we can identify sections φ of QB with functions f | on M by
φ = 5 0 v = φ'st (x) χ vt = (φtχ)'st (x) vt. From now on we will confound the
section φ with the function φ χ and write φ for both. If we finally realise that
d/dpj = ξ(ηj), then we find for X e 0>: Vx(χ * vf) = {Xχ) vt and hence

Vxφ = Xφ — i' ι(X)oc' φ . (4.6)

Since ι(d/dpj)oc = 0, it follows that Γ(QB)^ consists of functions φ that do not
depend on p, i.e., functions on V. Since Mo is a single point, all sections are
compactly supported on M o , i.e., Γc{QBf = Γ(QBf ^ C°°(K) and we have to
determine the ingredients of (3.10) to determine the sesquilinear form (3.11) on
Γ(QB)^. The only unknown there is the Liouville form εω, which is readily
determined by (3.4) as

ε ω ( η 9 p ; d / d η 1 , . . . , d/dη11, d/dPl, ..., d/dpn) = 1 , (4.7)

and we find for φj ^ (i/^ st) ®vte Γ(QB)^:

M*7) o W Ί > ^ 2 ) = ^ Γ ^ 2 V O 1 F , (4.8)
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where Vo\veΩι(TV) is the standard Berezin volume on V defined by
Yolv(η;(d/dηj)) = 1. It follows that the supersesquilinear form <,> on
Γ(QB)^ ^ C°°(F) is given as ordinary Berezin integration over V of functions
on V.

We now turn our attention to the operators τ(/). A short calculation using (4.3)
shows that the ^-preserving functions f(η, p) are of the form

Mp)=fo(η) + ΣPj fJ(Ί) ( 4 9 )
j

Now for general ^-preserving vector fields Y on M we have J?(Y)(χ vt) =
(Yχ) * v, + ( - l)e(y> e(*> χ i f (Y)vt. Using Lemma (2.8) and the definition (4.5) of vt

it follows that &(Y)vt = ( - 1/2) Div(a/5p)(7) v,. Combining this with the general
formula gives:

' vt) = ((Yχ) - (1/2) Όivid/dp)(Y) χ)- vt . (4.10)

Using again (4.3) we find that for the ^-preserving functions/(4.9) we have

Σ Όiv{d/dp)(ξ(f)) = - Σ 8f j/dηj . (4.11)
k j

Combining all the formulas we find for the operator τ(/) the following expression:

τ(f)φ = - i-ξ(f)φ + ( / - i(ξ(f))*) φ + (i/2) Όiγ{d/dp)(ξ(f)) φ

+ (/o - (ί/2) Σ W 3 ^ ) ^ (4.12)

An elementary calculation (but with great attention for signs) shows that for these
operators we have:

(i τ(f)Ψ, X) + ( ~ l ) ε ( / ) - ε W 0A, ί'τ(f)χ) = Σ 8(fj'Φ'χ)/dηj . (4.13)
j

If we now realise that Berezin integration of a term dF/dη always yields zero, then
this formula gives us after integration the following identity for the operators τ(/):

<i τ(f)Ψ, X> + (- l)εif)'εiψ)'<Ψ, i τ(/)χ> = 0 , (4.14)

which tells us that τ(f) is super-hermitian.

5. Application I .The BRST Charge for a Free Group Action

A. The Classical Set-Up. Let (M 0, ω 0) be the phase space (symplectic manifold) of
a classical system and let G be a connected Lie group of dimension n acting on Mo

symplectically and admitting an Ad*-equivariant momentum map J : M 0 - + g *
(with Q the Lie algebra of G). We suppose that 0 e g* is a regular value of J, and that
the reduced phase space Mr = J~x(0)/G is a smooth manifold ([MW]). It follows
that the reduced phase space can be described by equations on the original phase
space Mo and in the end taking equivalence classes (points in J ~λ (0) related by
gauge transformations g e G). In this set-up, the Poisson algebra C^iM,) can be
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described as the G-invariant elements in the quotient C°°(M)//, where / is the ideal
(in C™{M)) of functions vanishing on J " 1 ^ ) , i.e., C™(Mr) ^ (C°°(M)//)G. How-
ever, this description of the reduced Poisson algebra is not given by equations on
the original Poisson algebra and in the end taking equivalence classes, but rather
by equations in equivalence classes. If the group G is compact, an averaging
procedure shows an isomorphism (C°°(M)//)G £ C°°(M)G//G, where the last de-
scription is indeed of the form first equations and then equivalence classes.
However, in the general case ^(M,) is not described (in a natural way) by
equations on C^iM,.) and in the end taking equivalence classes (the reader can find
a thorough discussion of the various ways to define "reduced Poisson algebras"
and their relationships in [AGJ]). It is at this point that the BRST-symmetry
comes in: using it one can describe C™{Mr) by equations on a Poisson algebra and
in the end taking equivalence classes. In the situation described above, it is not hard
to explain how this works; why it works is another question altogether.

One starts by replacing M o by the supermanifold M = M o x g x g* =
M o x Γ*g, where the coordinates on g and g* have to be seen as odd-coordinates.
If bu . . . , bn is a basis for g we denote by η1, . . . , ηn the (odd) coordinates on
g with respect to this basis and by px, . . . , ρn the dual (odd) coordinates on g*. We
can equip this supermanifold M with a natural symplectic structure ω given by:

ω = ω 0 + doc = ω0 — £ dpj A dηj = ω0 — Σ dηj Λ dpj, (5.1)
j j

where α is the canonical 1-form on Γ*g (see (4.1)). Now suppose (xJ\ yj) are
canonical (even) coordinates on Mo such that ω 0 = £,. dyj A dx{ then the hamil-
tonian vector fields and the Poisson bracket on M are given by:

{f, 9} = ξ(f)g = ίdf/δyj δ/dχJ -

- ( - l ) ε < " (δf/δpj• d/dη> + df/dη> d/dpjftg . (5.2)

With this bracket C^iM) becomes a (super) Poisson algebra, and the equivalence
with the usual, more algebraic approach is not hard to indicate. The ordinary
vector bundle VM -> Mo is just the trivial bundle VM = Mo x (g φ g*), which tells
us that C™(M) £ C°°(Mo) <8> Λ(g © g*). Note however that the Poisson bracket
(5.2) differs from the Poisson bracket of [KS] by a factor 2 in the odd terms. This
factor 2 originates in the conventions of Clifford algebras.

On the symplectic manifold (M, ω) one then defines two functions: Ω, called the
"BRST-charge," and Td, called the "total degree" or "ghost number." They are
given by:

η,p) = ΣηJ'Pj, ( 5 3 )
j

Ω(m, η,p) = Σ Jj(m) »,' - (1/2) X c"jk η> ηk p u , (5.4)
j

where J3 — J*bj(o Jj(m) = < J(m), bj}) and where cu

jk are the structure constants
of g with respect to the basis bb i.e., [fey, bk~\ = Σuc

u

jk bu. Note that Ω and Td are
well defined on M, independent of the choice of the basis (b) for g. The important
feature of Ω is that it satisfies {Ω9 Ω} = 0, which implies that for all/e C^iM) one
has {Ω, {Ω,f}} = 0. Using these two functions one then can show:

C™(Mr)^ {feC«(M)\{Ω,f} = {Td,/} - 0} modulo {{Ω, g}\g e C™{M)} (5.5)
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which is exactly the desired form: C^ίM,.) is given by equations on C°°(M) and in
the end taking equivalence classes. Notice that {Td,/} = /c /if and only if in each
additive term of/the number of factors η (ghosts) minus the number of factors
p (anti-ghosts) equals k. This should explain the name ghost number for Td; the
name total degree stems from the cohomological construction used to prove the
isomorphism (5.5). The actual isomorphism is given by the following procedure.
Let/e C^iM) be a representative of an equivalence class [/] on the RHS of (5.5).
Define/o e ^(MQ) by/0(m) =/(m, η = 0, p = 0), then {Ω,/} = 0 guarantees that/0

restricted to J ~x (0) is invariant under gauge transformations and hence defines
a function [jo] on Mr. The map [/] -> \_fo~\ then is the isomorphism of (5.5).

Apart from taking equivalence classes, formula (5.5) tells us that functions on
Mr can be identified with functions on M that are invariant under the hamiltonian
vector fields associated to Ω and Td. Hence it is natural to ask whether these vector
fields can be integrated to the symplectic action of a group on M. The answer is
positive: these vector fields integrate to a symplectic action of the group

)\g > 0 even, χ odd > c SGL(1,1) on M. To avoid cumbersome nota-S =
X 1

tions, we will denote the matrix g simply by (g9χ). If

U c R2fc is a local chart for M o , then we can identify TmU with R2fc and hence
ξo(Jj)\m becomes an element of R2fe. Here ξo{Jj) means the hamiltonian vector field
of Jj G C^iMo) with respect to ω 0 . With these preparations, the flows ψχ of ξ(Ω)
and φt of £(Td) acting on (m, η\ p j ) e ί / x g x g * c M are given by:

φt(m,η,p) = {m,et-η,e * - p) , (5.6)

V
jt

X" J](m)-Σcu

jk'η
k-pu

uk

(5.7)

Here t is an even parameter and χ odd; this reflects the parity of the corresponding
vector fields. It is obvious that φ satisfies φt'φt> = Ψt+tΊ the fact that ψ also
satisfies Φχ'ΦX' = Φχ+X' depends heavily upon the fact that \_ζ{Ω\ ζ{Ω)~\ = 0
(<= {Ω, Ω} = 0), something which is not valid in general for odd-degree vector
fields.

It is easy to verify that ψχ φt = φt ψeχp(t)χ, and hence we obtain the symplectic
left action Φ of the group S (with ex replaced by g) as:

\

1 (pj + X'(jj(m)-Σ<?* 1k Pu)) j
\ \ uk J J I

(5.8)
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Note that the displacement of m is nilpotent, so the action of S on M projects down
to M o (the underlying real manifold) as the trivial action. Note also that the action
associated to the total degree corresponds to scaling of the ghosts and the anti
ghosts. The net result of these computations is that C^iM,.) consists of equivalence
classes of functions on M that are globally invariant under the action of S. This in
contrast to the situation on M o , where C"°{Mr) is represented by equivalence
classes of functions on M o that are invariant under the action of G only on J'1 (0).

B. Quantization. In view of all previous discussions, we have to quantize the
symplectic supermanifold (M, ω) and at least the observables Ω and Td. The aim of
this subsection is to apply the geometric quantization procedure of Sect. 3 to
(M, ω) and the observables Ω and Td. Because Ω contains the original constraint
functions Jj and because we want to compare our results to a quantization of the
original symplectic manifold (M o, ω0), we assume that (ordinary) geometric quant-
ization produces a nice quantization of (Af0, ω0) and the Jj. In our context of real
polarizations this means more precisely that we assume the existence of a G-
invariant polarization ^ 0 for ( M 0 , ω 0 ) (with generalised configuration space
ρ 0 = M o /^o) such that Γ(c)(QB0)^° is different from {0} (i.e. no Bohr Sommerfeld
conditions). The G-invariance of ^ 0 implies that the Jj leave ^ 0 invariant and
hence that we obtain by Proposition 3.13 a representation τ 0 of g as hermitian
operators on ΓC(QBO)^° (actually, it is r τ 0 which is the representation as skew
hermitian operators).

With these data we now proceed to quantize the manifold (M, ω), bearing in
mind the example as described in Sect. 4. First of all, there exists a natural
polarization 0> on M obtained from ^ 0 by adding the vertical polarization in the
odd directions:

j | (5.9)

where we have extended ^ 0 *n the obvious way to an ^-module. One easily verifies
that & is indeed involutive and maximal isotropic with respect to ω if ^ 0 is with
respect to ω 0 . If δo = M o/^ o> it follows immediately that M/0* = go x 9> so there
exists a generalised configuration space. Moreover, by orienting the odd directions
as in Sect. 4, we can satisfy all our orientability assumptions. Before we go on with
the line bundles L, A ~ lS2(0>) and QB, we introduce a useful splitting of vector fields
on M: each vector field Y on M splits uniquely as Y = Y+ + 7_, where Y+ is
tangent to the fibres of px: M = Mo x Γ*cj -• M o and where F_ is tangent to the
fibres of p2- M -* T*§, i.e. Y+ can be seen as a vector field on M o parametrized by
(η, p) e Γ*g and 7_ as a vector field o n Γ * g parametrized by m e M o .

Now let Lo be a prequantum bundle for (Mo, ω0), then L = Lo x Γ*g is
a prequantum bundle for (M, ω) and it follows naturally that sections of L can be
interpreted as (η, p)-parametrized sections of Lo. A local analysis of the construc-
tion for Lo and L, using the potential α for the odd-part of ω, shows that the
connection on L is given by

Vxs= Vx+s + X-s- ί ί ( I _ ) α 5, (5.10)

where we interpret 5 as a section of Lo depending on (η9 p) and where X-s is the
differentiation of s with respect to these parameters. For the connection on

ιl2 we can give a similar interpretation. Each v e Ω " 1 / 2 ( ^ ) , interpreted
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as a function v: 3F3P -» s i + is/, defines in a natural way a function
v: J ^ o -+ £# + isi depending on parameters (η, p) by:

v(m, */, p; (βj)) = v(m, η, p; (βj, d/dpk)) = v(m, η, p; (ejf δ/dpk))/vt(η, p; (d/dpk)),

(5.11)

where (βj) is a basis for ^ 0 . In this way we obtain a bijection between Ω~ 1/2(0>) and
(η, p)-parametrized elements of Ω~ 1 / 2 ( ^ 0 ) Another way of stating the same bijec-
tion is the equality v = vt ® v, where vt is the trivialisation of A ~1/2((d/dpj)) defined
in (4.5). From now on we will drop the hat and interpret v e Ω " 1 / 2 ( ^ ) as an
(η, p)-parametrized section of A ~1/2(0>

o). In this interpretation the partial connec-
tion F o n A~1/2(^) is given as:

Vxv= F* + v + X_v, (5.12)

where we have used that Vd/dPvt = 0 (see Sect. 4). If we now consider the quantum
bundle QB = L ® A~1/2(&\ we see that sections of QB can be interpreted as
(η, p)-parametrized sections of QB 0 = Lo ® A ~ 1 / 2 ( ^ 0 ) Moreover, since for X e 0>
we have ι(X-)a = 0, the partial connection F o n QB is given by:

Vx(s ® v) = (Vxs) ® v + ( - l ) ε ( X ) ' ε ( s ) s ® Vxv

= Vx + (s(g)v) +X-(s®v) o Vxψ = Vx + φ + X-ψ . (5.13)

It follows immediately that a ψ in Γ(QB)^ does not depend on the parameters
p (just choose X = d/dpj). If we now realise that the η are odd coordinates and
hence that smooth functions in η are necessarily polynomials of degree g n (i.e.
C°°(g) is finite dimensional), we can deduce from (5.13) that

Γ ( c )(QBf = Γ ( c ) (QB o f - ® C°°(g) = C°°(g, Γ ( C ) (QB O )^), (5.14)

i.e. Γ(C)(QB)^ consists of Γ(c)(QB0)^°-valued smooth functions on g (as odd degree
manifold).

Finally we turn our attention to the sesquilinear form on Γ(c)(QB)^ for which,
as in Sect. 4, we have to know the Liouville volume εω. Since M is a direct product
of two symplectic manifolds, one can write εω in the obvious way as a tensor
product εω = ε0 ® ε_, where ε0 is the Liouville volume of (M o, ω 0) and ε_ the
(odd-directions) Liouville volume defined in (4.7). The interpretation of
v G Ω~ί/2(0>) as a (9, p)-parametrized element of Ω~1/2(^0) via (5.11) and formula
(3.10) gives us for ψ, χ e Γ ( c )(QBf:

(^X) = (^X)o Volf l, (5.15)

where (ψ, χ)0 is the (^)-parametrized density on Qo associated to the (^-paramet-
rized elements ψ, χ e Γ(C)(QB)^ and where Volg is the standard Berezin volume on
g (see (4.8)). The supersesquilinear form on ΓC(QB)^ is then given by integration of
(ψ, χ) over Q = Qo x g. In the interpretation Γc(QBf = Γc(QBof° ® C°°(g) we
then have that the supersesquilinear form on ΓC(QB)^ equals the tensor product of
the (ordinary) sesquilinear form on ΓC(QBO)^° and the super-sesquilinear form on
C°°(g) as obtained in Sect. 4. Note that this representation space is exactly the same
as the one used in [KS] because C°°(g) = Λg*.

Now that we know the spaces ΓC(QB)^, we turn our attention to the operators
τ(f) for ^-preserving functions/ For this we need the Lie derivative JS?(F)v,
v G Ω~1/2(0>), so it is worthwhile to know how this looks in the interpretation of
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v as parametrized sections of A " 1 / 2 ( ^ 0 ) . So let 7be a ̂ -preserving vector field on
M and let Xk be local vector fields on M o spanning ^ 0 > s e e n a s vector fields on
M independent of (η, p). It follows that (Xk, d/dpj) span 0> and moreover one can
easily show the following properties:

LY+9XkllY+,d/dpj]eP+&lY-,Xk]9lY-,d/dpj]eP-, (5.16)

from which one immediately deduces that Y± preserve ^ , that Y+ is a (η, p)-
parametrized vector field on Mo preserving ^ 0 > and that Y- is a (m)-parametrized
vector field on Γ*g preserving the vertical polarization. Moreover, these properties
also show that Όiv{Xtd/dp){Y+) = Ό\\(X){Y+) and Όi\{χ9e/dP)(Y-) = Vw(d/dP)(Y-) If
we now apply Lemma 2.8 we find the following equality:

&{Y)v = £eo(Y+)v + Y-V - (l/2)-Όivmp)(Y-) v9 (5.17)

where on the RHS <£fo(Y+)v means the parametrized Lie derivative of v as
parametrized section of J ~ 1 / 2 ( ^ 0 ) Applied to a ̂ -preserving function/e C^CM)
we find:

) s ® v . (5.18)

Remark 5.19. The above computations which relate the quantization of
M = Mo x Γ*g to the quantization of M o carries over nearly word for word to an
extension from M o to M = M o xΓ*FF, where fF is any (additional) (super)
configuration space and where we extend the polarization ^ 0 with the vertical
polarization on Γ* W. The only delicate point is the identification of A ~ιιl(Θ>) as
parametrized elements of A ~ 1 / 2 ( ^ 0 ) For this we observe that a partition of unity
argument shows that any (super) manifold W admits an everywhere invertible (i.e.,
trivialising) section (VoV)1 / 2 of A1/2(TW). This section can be "lifted" to a trivialis-
ing section vf of J ~ 1 / 2 ( ^ v e r t ) which is covariantly constant in the direction of the
vertical polarization ^ v e r t on T*W(it is the generalisation of (4.5)). With this vt in
(5.11), the formulas (5.12—18) are valid, only Volg in (5.15) has to be replaced by

Remark 5.20. We have developed and used geometric quantization for symplectic
supermanifolds with real polarizations and (l/2)-densities. The generalization to
complex polarizations and (l/2)-forms is rather straightforward, but technical. One
can easily imagine that the results of this sub-section (i.e., the density (ψ, χ) on the
generalized configuration space and the operators τ(/)) remain valid in the context
of complex polarizations and (l/2)-forms, just because geometric quantization of
the cotangent bundle of a vector space together with the vertical polarization does
not change when we complexify the polarization and/or use (l/2)-forms instead of
(l/2)-densities.

With these preparations we are now able to quantize the functions Ω and Td
(5.3/4). We first compute their hamiltonian vector fields using (5.2):

{(Td) = Σ W S/dηj - Pj 3/δpj) , (5.21)

- Σ cu

Jk ((1/2) ηJ ηk d/dη" + ηk-pu δ/dpj), (5.22)
ujk
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where ξo(Jj) is the hamiltonian vector field of J, of M o . We observe that they are
^-preserving (because the J) are ^0-pi"e s e rving), that ξ(Ω)+ = Σj^' £o(Jj\ and
that ξ(Ύd)+ = 0. Careful computations then show that:

Div(a/aP)(ξ(Td)-) = Ώiv{d/dp)(ξ(Ύd)) = n , (5.23)

, (5.24)
jk k

and hence we obtain from (5.18) the operators τ(Ω) and τ(Td) on Γ(c)(QB)^ as

τ(Ίd)ψ = - i Σ ^ # / δ ^ ' + (i n/2) <A , (5.25)
j

τ(Ω)φ = Σ ϊ lτoiJJΨ ~ (i/2) trace(ad(&,)W]
j

+ (i/2) Σcu

Jk ηJ ηk dψ/dηu

9 (5.26)

where we have interpreted φ as a (?y, p)-parametrized section of QB which is
independent of p because it is covariantly constant in the direction of 0>. In terms of
the identification Γ(C)(QB)^ ^ Γ(C)(QBO)^° ® C°°(g) these operators are given as:

τ(Td) = - i t ® Σ W ^/^J" - 1/2) , (5.27)

τ(«)^ = Σ Cτo( /;) - 072) trace(ad(^.))] ® ^'

+ (i/2) l ® Σ c "^ »?' »/* 5/5 ί?" (5 2 8 )
ujk

Using these expressions and the fact that τ 0 («/,•) is supposed to be hermitian, one
can prove, as at the end of Sect. 4, that τ(Ω) and τ(Td) are super-hermitian. As in
the classical case, we can integrate the Schrόdinger equations — ί dψ/dt = τ(Td)^
and — i dψ/δχ = τ(Ω)\jj for these operators to bracket preserving 1-parameter
supergroups Φt for τ(Td) and Ψχ for τ(Ω) on Γ(c)(QBf:

) , (5.29)

(5.30)

where we interpret ^ 0 ®f a s a Γ(C)(QBO)^°-valued function on g, with
ι^ oGΓ ( c )(QB of° and/eC°°(g). Φt obviously is a 1-parameter group; that it
preserves brackets follows from the fact that the Berezin volume Volg transforms
with the inverse of the Jacobian. The parameter χ is odd and hence the fact that Ψχ

is bracket preserving follows from the fact that τ(Ω) is super-hermitian (N.B.
ε(τ(Ω)) = 1 and hence ε(χ τ(Ω)) = 0). That Ψχ is a 1-parameter group follows from
the observation (using Proposition 3.13):

- 2 τ(Ω)2 = [i τ(Ω), i τ(Ω)] = i τ({Q, O}) = 0 . (5.31)
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One verifies the equality Φt ψχ= Ψexp(t)χ Φt and hence we obtain a bracket
preserving super-unitary action U of S on Γ(C)(QB)^ by:

ίU(g,χMo®/)]fo) = I/Ό®g "2 f(g-ι η)

ujk

race(ad(6 y))^o]®0" / 2~ 1 Z »/J /(ff"1 »ί) (5-32)

So far we have said nothing about the spectrum of in particular τ(Td). An
elementary calculation shows that the eigenvectors of τ(Td) are of the form φ0 (x)/,
where / is a homogeneous polynomial in η of fixed degree d\ the corresponding
eigenvalue is —i (d — n/2). One should not be surprised that we have imaginary
eigenvalues for super-hermitian operators, because the "scalar product" is
not positive definite. On the other hand, if we think of Td as the ghost number,
then the quantum mechanical ghost number operator gh is usually given as
gh = Σjηj d/dηj, which has the same eigenvectors as τ(Td), but with correspond-
ing eigenvalue d. The BRST philosophy now tells us that the reduced Poisson
representation space Γ r e d is obtained as the subspace of the extended Poisson
representation space Γ(QB)^ defined by τ(Ω)φ = 0 and gh(φ) = 0, i.e. quantum
BRST-charge and quantum ghost number zero. In terms of the super-unitary
action U of S on Γ(QB)^ this is given as:

Γred = L e Γ(QBf\τ(Ω)φ = 0 = £ ηj'dφ/dη^ EE gh(φ)\

= {φe Γ(QBf IVs eS: U(x)φ = Ber(s)"/2 φ} , (5.33)

where Ber(s) is the superdeterminant of 5 (i.e. Ber(#, χ) = g). One obtains this result
by observing that the infinitesimal generator of ent/2 Φt is exactly the quantum
ghost number.

Let us now investigate how Γ r e d relates to the original quantization Γ(QB0)^.
In the first place, quantum ghost number zero implies that φ e Γ(QB)^ is indepen-
dent of the parameters η, i.e. φ = φ0 (x) 1. If we substitute this in τ(Ω)φ = 0, we
obtain:

Γ r e d s {φoeΓ(QBofo|Y/: τo(Jj)φo = (ί/2)-trace(ad(bj)) φ0}

= {ψoeΓ{QBof°\VυeQ: Λ(v)φ0 + (l/2) trace(ad(t>)) ^ 0 = 0} , (5.34)

where A: υ = ^ vj bj -• i Σj vj τo(Jj) is the algebra representation of g as skew .
hermitian operators on Γ(c)(QB0)^°. Now suppose that the algebra representation
can be integrated to a (unitary) representation Uo of G on Γ(c)(QB0)^° then (5.34)
translates as

Γred*{φoeΓ(QBof°\VgeG: U0(g)φ0 = ΌQt(Aά(g)y1/2'φ0} . (5.35)

N.B. The function g -> Det(Ad(gf)) is usually called the modular function on G and
G is called unimodular if this function is constant (e.g. all compact groups and
groups whose algebra are semi-simple are unimodular).
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Remark 536. The appearance of the term (1/2) trace(ad(t>)) (or in other words of
the modular function) might seem strange from a physical point of view. However,
it is a well known term in the theory of induced representations. Now induced
representations and reduction are not exactly inverse operations, but in both cases
one is faced with the question of defining a suitable scalar product on the subspace
of invariant elements in a representation space (Hubert space). It turns out that this
does not exist unless one shifts to quasi invariant elements by the squareroot of the
modular function (the reader is referred to [DEGST] for a discussion connecting
reduction, induced representations and geometric quantization in the context of
this example).

We now turn our attention to operators on Γ(QB)^, and we note that,
according to Sect. 4 formula (4.9), ^-preserving functions are at most linear in the
coordinates p. (This is a common feature of geometric quantization using the
vertical polarization: quantizable observables are linear in momenta.) Since we are
especially interested in functions on M associated to the reduced Poisson algebra
C™(Mr) of (5.5), we first note that C^iM?) consists of equivalence classes. Hence if
we want to associate to such an equivalence class an operator on Γ r e d, we have to
check that (i) a representative leaves Γ r e d invariant and (ii) equivalent functions
induce the same operator on Γ r e d . We start with (ii): two functions are equivalent if
they differ by a function/of the form/ = {Ω, g). Such a function automatically
satisfies the condition {Ω,/} = 0, and it satisfies the condition {Td,/} = 0 if and
only if {Td, g) = — g. We start focussing attention on the quantization of g. The
function g is quantizable only if it is linear in p. This condition together with the
condition {Td, g) = — g implies that g(m, η, p) = Σjgj(m) pj.A further analysis of
the condition that g preserves SP shows that the gj must satisfy ξo(gj)e&o.
Substituting this in (5.18) and using the remark at the end of Sect. 3 we find
τ(g) = - i'Σjgj d/dηJ

9 which implies that τ(g) induces the zero operator on Γ r e d.
Finally we infer from Proposition 3.13 that τ({Ω, g}) induces the zero operator on
Γ r e d, "proving" that equivalent functions induce the same operator on Γ r e d . (We
put quotes around proving, because we did not prove anything: we did not, and
cannot, show for all functions/of the f o r m / = {Ω, g) that τ(/) induces the zero
operator on Γred.)

Next we turn our attention to representations/for C™(Mr) for which we want
to show that their quantization preserves Γ r e d . Quantizable and representing an
element in C™{Mr) means in particular at most linear in p and {Td,/} = 0 ,
implying in turn that/must be of the form

/(m, η9 p) =/0(m) + Σ / / M V ' P * (5.37)
jk

Instead of analysing in full detail the consequences of the remaining conditions
{Ω,/} = 0 and/^-preserving, we only consider some special cases. If the repres-
entative function / does not depend on η and p, i.e., / / == 0, the conditions
{Ω,f} = 0 and / ^-preserving imply that f0 must be a globally G-invariant,
^-preserving function on M o . Finally (5.18) then shows that τ(/) = τo(fo) (x) 1.
The G-invariance off0 implies that {Jj,fo} = 0 and hence Proposition 3.13 shows
that τ(/) leaves Γ r e d invariant.

To find representatives of the form (5.37) for which t h e / / are not identically
zero, we note that the constraint functions J, induce the zero function on Mr. In
general the functions J 7 are not G-invariant (unless G is abelian), i.e., on their own
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they do not form a representative for the zero function on Mr. However, they admit
the following representatives/} on M (see the discussion following formula (5.5)):

fj(m, η, p) = Jj(m) - £ cu

jk ηh p u . (5.38)
uk

We leave it to the reader to check that these fj actually satisfy {Ω9J}} = 0 and are
^-preserving. Since they are of the general form (5.37) they are quantizable;
formula (5.18) then gives us for the operators:

τ(j5) = τo(Jj) - (i/2) trace(ad(fe, )) + i £ c\ ηk d/dη" . (5.39)
uk

In view of its definition (5.34) the τ(jζ ) induce, as expected, the zero operators on

Γred

We can summarise the above discussion by saying that if we stay within the
(very restricted) domain of ^-preserving functions, then Γ r e d is a representation
space for the reduced Poisson algebra Cco(Mr) as given in (5.5). However, there is
another representation space Γr for Cco(Mr): the one obtained by geometric
quantization of Mr itself. The crucial question obviously is: what is the relation
between these two representations Γ r e d and ΓrΊ The answer one would like to have
is: "these two representations are isomorphic," i.e., there exists an isomorphism
between Γr and Γ r e d that intertwines the quantization of polarization preserving
operators. Using additional hypotheses one can indeed prove this result: in [GS] it
has been shown using compact groups and Kahler polarizations, in [Go] and
[DEGST] it has been shown using compatible real polarizations. We thus may
conclude that, under one of these hypotheses, the quantization of reduced systems
via quantization of an extended system, using the BRST philosophy, provides us
with a "correct" quantization of such a reduced system. It is still an open question
what the necessary conditions are under which Γ r e d and Γr are isomorphic repres-
entations spaces.

6. Application II: The BRST-Charge for a Foliation

A. The Classical Set-Up. Consider a configuration space go of dimension d with
a regular foliation Q)o of rank n < d and suppose we are in a nice situation in which
the set of leaves Qr = βo/ ̂ o is a manifold and such that π: Qo -• Qr is a submer-
sion. We think of points on a leaf as gauge equivalent points in Qo and we call Qr

the reduced configuration space. The associated phase spaces are their cotangent
bundles equipped with their canonical symplectic forms: (T*Q0,da0) and
(T*Qr,dar\ where α0 and αr are the respective canonical 1-forms (4.1). One can
obtain T*Qr by symplectic reduction from Γ*Q 0 in the following way. Let X be
any vector field on g 0 , then we associate to X a function Jx: Γ * g 0 -• R by

Jx{β) = β{X\q\ βeT*qQ0. (6.1)

We then define a constraint set C = {β e T*Q0\VX e 90: Jx(β) = 0} and one
notes the equalities

C = < V = {βeT*Q0\VXe®0: β(X) = 0} = π*(Γ*β r ), (6.2)
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where π*(Γ*<2r) is the pull-back bundle over Qo by π. We then invoke Frobenius'
lemma to obtain local coordinates q1, . . . , qd on Qo such that ^ 0 is spanned by
d/dq1, . . . , d/dqn. Since Je/dqj = Pj> where the Pj are the momentum coordinates in
T*Q0 associated to the coordinates qj, we see that C = &)0

L is given by the
equations px = . . . = pn = 0. It follows that the push-forward π * : @0

L -• T*Qr is
given by (q\ . . . , q\ pn+u . . . , pd) -+ (qn + \ . . . , qd, pn + 1, . . . , pd), from which we
deduce that (π#)*α r = α o | c Hence π # : C -> r * Q r is exactly the symplectic reduc-
tion of C by its characteristic foliation ker(dαo |c) We conclude that the reduced
phase space associated to the system in Γ * Q 0 described by the constraints Jx,
X e @0 is exactly the cotangent bundle Γ*Q r . Such a situation has been studied by
many authors (e.g. [Ku, MP]). What we intend to do now is to make a construc-
tion analogous to the construction in Sect. 5 (see also [MP]), defining a BRST-
charge and a total degree on a symplectic supermanifold, constructing the ana-
logue of (5.5) and finally performing geometric quantization. At the end we will
discuss the relation with (geometric) quantization of the reduced phase space T*Qr.

The essential idea of our construction is the following: @0 is a sub-vector
bundle of TQ0 over Qo which we will view as a supermanifold Q in which the fibres
of <30 -> δo a r e considered as the odd-degrees of freedom, i.e., @0 = VQ in the
language of Sect. 2. We can also describe the supermanifold Qina more down to
earth way. Let U a Rd be a local chart of Qo with coordinates q\ and let
Xu . . . ,Xn be independent vector fields on U which span 3fQ. To each such
couple we associate a chart (U9 X) = U x {sί^f a (s/0)

d x (J&IY (extend U in the
obvious way to the nilpotent parts) with coordinates (qj, ηk). If (£/', X') with
coordinates (q'J\ η'k) is another couple with U n V Φ 0, there exists a coordinate
transformation q'j = q'j(q) and there exist functions λkj on Ur\Uf such that
Xj = ΣkX'k λkj. With these ingredients we define a coordinate transformation
(q{ηk)-+(q'{η'k)by:

(63)

The collection of all such couples (U, X) with the transition functions (6.3) defines
an atlas for the supermanifold Q of dimension (d, n). We then define the extended
symplectic supermanifold M as M = (T*Q, doc); it is the equivalent of the extended
phase space as defined in Sect. 5A. If (q, η) are local coordinates for Q with
associated momenta (p, p), and if (q'9 η') is another set of local coordinates for
Q with their momenta (p\ p'\ the coordinate transformation in Γ * β between
(q9 η9 p9 p) and (q'9 η\ p\ p') is given by (6.3) and:

Pj = Σp'k-λkj(<l) Pj = Σ Pi Sq/k/dqj -^Pu' dλu

k/dqJ ηk . (6.4)

In these coordinates the Poisson bracket is given by formula (5.2) (replacing x by
q and y by p).

As in Sect. 5 we can define two global functions Td ("total degree" or "ghost
number") and Ω ("BRST charge") on T*Q. Let ([/, X) be a local coordinate chart
for Q with coordinates (q9 η) and associated momentum coordinates (/), p) in Γ*<2,
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then there exist functions cu

jk on U such that [X,-, Xk~] = Σu cu

jk Xu just because
@0 is involutive. In these local coordinates Td and Ω are given by:

) = ΣηJ pj9 (6.5)
j

Ω(q, η9 p,p) = Σ JχM> P) * n* ~ ( V 2 ) ' Σ c V < ? ) ' ^ m1kmPu> (6-6)

and an elementary but tedious calculation using the formulas (6.1), (6.3) and (6.4)
shows that these local expressions indeed define global functions on Γ*g. Now we
note that by Frobenius' lemma we can always find local coordinates q on Qo such
that Θo is spanned by d/dq1, . . . , d/dqn. Stated differently, each point in the
super-manifold Q admits a local chart (£/, X) for which [Xh Xj] = 0, just by
choosing Xt = d/dqι on a local coordinate chart U for -Qo given by Frobenius'
lemma. It follows that there exist everywhere on Γ*g local coordinates in which
Ω is given by Ω = ΣjPίrf- These coordinates on Γ*g, which we will call adapted
coordinates, will be useful in proving global statements that can be verified locally.
N.B. Our adapted coordinates are a very special case of what is called by Henneaux
the local abelianization of constraints.

Proposition 6.7. With the above definitions we have:

(i) {Td, /} = k f if and only if in each additive term off in a local expression the
number of factors η (ghosts) minus the number of factors p (anti-ghosts) equals k, and
(ii) {Ω, Ω} = 0.

Proof The proof of (i) is an elementary calculation in any local chart of Γ*β and
left to the reader. The proof of (ii) in an arbitrary local chart for Γ*Q is a rather
long calculation in which the Jacobi identity for vector fields plays an essential role.
However, such a lengthy calculation can be avoided entirely by using adapted
coordinates (which exist everywhere!): in adapted coordinates we have
Ω = ΣjPj'r1i a n d hence, using formula (5.2), it follows immediately that
{Ω, Ω} = 0.

Remark 6.8. It may come as a surprise that {Ω, Ω} = 0 when the cu

jk in (6.6) are
functions rather than constants. However, in view of the local abelianization
theorem, the miracle is not so much that {Ω, Ω} = 0 as the fact that the local
expressions (6.6) glue together to define a global function Ω. This is entirely due to
our special situation, i.e., the fact that the constraint functions are obtained from
a foliation defined on a configuration space.

Remark 6.9. In the proof of Theorem 6.7 (i) the reader has shown that the difference
between the number of factors η and factors p in a function on Γ*Q is invariant
under coordinate changes. However, the number of factors η separately is not
invariant under coordinate changes.

Using Td and Ω we can define the BRST-cohomology in dimension k as:

{/e C°°(Γ*β)|{Td,/} = fc / ά {ΩJ} = 0} modulo

{/= {Ω,0}|0 6C°°(Γ*β) & {Ίά,g}=(k-\yg} . (6.10)
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If {Td,J5} = VJ5 t h e n {Td,{/1,/2)}} = (/c1 + fe2) {/1,/2}. Using this one can
easily prove that the Poisson bracket on CCO(T*Q) induces a Poisson bracket on
tfW if fj represent classes [j£] in H°BRsτ, then {[/J, [/2]} = [{/1?/2}] (to
prove that it is well defined, one uses the Jacobi identity for the Poisson bracket
and {Ω, Ω} = {Ω,fi} = 0). Moreover, the map described in Sect. 5 following for-
mula (5.5) provides us with a well defined map H°BRSΎ -» C°°(Γ*<2r) and one can
show that it is a morphism of Poisson algebras. At present the author is unable to
prove that this morphism is an isomorphism.

Remark 6.11. Our approach to the extended phase space and the BRST charge
differs from the (much more general) approach in [FHST] in the sense that they
force the extended phase space to be a trivial product of the added (anti-) ghost-
directions with the original phase space, whereas we allow twists. They then can
prove an isomorphism between C^iM,) and (their) zero dimensional BRST co-
homology. The price one has to pay is that one might need more ghosts (possibly
infinitely many more) than in our approach.

We continue to mimick Sect. 5 and note that we can integrate the hamiltonian
vector fields ξ(Ύά) and ξ(Ω) associated to the total degree and the BRST-charge to
a symplectic action of the supergroup S on Γ*β. The local expressions for this
action are exactly the same as the ones given in (5.6-8), except that the vector fields
ξo(Jj) have to be replaced by ξo(Jx), i.e. the components of the momentum map
have to be replaced by the generating constraint functions Jx associated to the
local basis Xl9 . . . , Xn for @0 (and of course the structure constants cu

jk become
functions on Qo). In the next subsection we will be more explicit about this action
and show that there is an action of S on Q such that the action described here is the
canonical cotangent bundle lift of that action to

B. Quantization. We now proceed in this subsection to apply geometric quantiz-
ation to the symplectic supermanifold Γ*β. We choose the obvious vertical
polarization 3> spanned by the vector fields d/dpj9 d/dpk or equivalently by the
(hamiltonian) vector fields ξ(qj\ ζ{ηk). The "generalized" configuration space is
Q itself and we only have to worry about the orientability assumptions, which are
satisfied if and only if the foliation <30 is an orientable foliation, i.e. Θo is an
orientable vector bundle over Qo. As prequantization line bundle L we use
the trivial one (this choice is always possible for cotangent bundles), which allows
us to identify sections of L with («s/ + ij/)-valued functions on Γ*<2 and hence
sections of QB with sections of A~1/2(έP). Now, to make a long story short, one
can identify Γ(C)(QB)^ in a canonical way with Ωί/2

ic)(TQ). In local coordi-
nates (z1, . . . , zd+n) = (q1, . . . , qd, η1, . . . , ηn) on Q with associated momenta
(Ci, , Cd+n) = (Pι, ",Pd,Pi,> ,Pn) the element φ e Γ(c)(QBf is identified

with φ e Ωί/2

(c)(TQ) by

φ(z;(d/dzJ)) = ψ(z9ζ;(ξ(z*))). (6.12)

N.B. The fact that φ is in Γ{QBf implies that the RHS of (6.12) is actually
independent of ζ. As in Sect. 4, functions which preserve 3P are at most linear in
momenta. This means more precisely t h a t / e C™(T*Q) preserves & if and only if
there exist a function^ e C°°(Q) and a vector field Y on Q such t h a t / ^ fQ + J y ,
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where JΫ is defined as in (6.1). The translation of the operators τ(f) to the
identification of Γ(QB)^ with Ω1/2(TQ) gives us

τ(f)φ=fQ φ-i &(Y)φ. (6.13)

A glance at formula (6.5/6) shows that both Td and Ω are of the specified form:
fQ = 0 while the vector fields Y are given locally as:

( 6 1 4 )

(6.15)
7 ujk

With these and (6.13) we know the operators τ(Td) and τ(Ω) and, as in Sect. 5, we
can integrate the associated Schrόdinger equations to a (super-unitary) action of
S on Γ(C)(QB)^ £ ί21 / 2

( c )(Γβ). However, in this case we can do slightly better: the
vector fields YTD and YQ have "the same" properties as f (Td) and ζ(Ω\ especially
LYQ, YΩ\ = 0, and "hence" we can integrate these vector fields to an action of S on
g; the action of S on Ω1/2

(c)(TQ) is then just the pull-back of (l/2)-densities.
Proceeding as in Sect. 5A we obtain the S action Φ in a local coordinate chart
(U, X) for Q as

( ] (6.16)

The interpretation of this action is the same as in Sect. 5A: the #-part is scaling of
the ghost directions; the χ-part moves a point q e Qo in a nilpotent direction
determined by the even nilpotent vector χ ηj! Xj. The last statement is particularly
clear in an adapted coordinate system in which the cu

jk are absent; in a general
chart the cu

jk should be seen as an artefact of the coordinate transformation. For
every smooth map Φ: Q -• Q we have an associated action Φ* on Ωί/2

(C)(TQ) by
pull-back: for φ e Ω1/2

(c){TQ) it is defined by

(Φ*φ){(q, η); (βj)) = φ(Φ(q9 η); (Φ^ej)) . (6.17)

Using this we obtain the (super-unitary) action U of S on Ωί/2

(c){TQ) by
U(g, χ) = (Φ(g, χ)" 1 )*; the infinitesimal generators of this action are exactly the
operators τ(Td) - - i-£e{YΊά) and τ(Ω) = - i-£f(YΩ).

When we have the S action on Γ(C)(QB)^ ^ Ω1/2

{c)(TQ\ we can define Γ r e d as in
(5.33) using the superdeterminant; in view of the relation gh = i τ(Td) + n/2 we
obtain the following expression for Γ r e d (note that the application of the vector field
YΎd does not make sense on ψ e Ω1/2

(c)(TQ))

Γ r e d = {φeί2 1 / 2

( c ) (Γβ) |VseS: U(s)φ =

= {φe Ω1'\C)(TQ)\&(YTd)φ = - (n/2) φ & <?(YΩ)φ = 0} . (6.18)

We are now faced with several questions: (i) does a τ(f) for [/] e H°BRSΎ leave
Γ r e d invariant, (ii) if so, do equivalent functions induce the same operator on

- Γ r e d and (iii) is there any correlation with a direct quantization of the reduced
phace space T*QrΊ As we will see, for ^-preserving functions the answers are all
positive. Given the reduced phase space Γ * β r we have the same geometric
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quantization as for any cotangent bundle: the one described above for Γ*Q. Thus
the representations space Γ(c)(QBr)^r is isomorphic with Ωί/2

{c)(TQr\ a function/ is
^.-preserving ifffr =f<2r + Jγr and then τr(fr) =f<2r — ί J£(Yr). We now claim that
Γ r e d is in a natural way isomorphic to Ω1/2(TQr)\ To see this we work with adapted
coordinates (q, η) on Q. If we now define the (local) 1/2-density vt on Q by
vt(q, η; {d/dqj, d/dηk)) = 1, then every φ e Ω1/2(TQ) can be written locally as
φ =f-vt. We now apply i f(7χ d ) to obtain the condition

t + (1/2) D i v ( ^ , d/dη)(Yτd) •/• v,

= - (n/2) φ o Σ ̂  5//^' = ° > ( 6 1 9 )

where we have used Lemma 2.8 and the fact that Όi\^/dqtd/dη)(Yτd) = — inβ) It
follows that a, φe Γ r e d is locally expressed by a function / independent of the
coordinates η. We now apply the same technique to YΩ, and we note that in
adapted coordinates Xj = d/dqj (j = 1, . . . , n < d) and cu

jk = 0. Hence the condi-
tion if(Yα)φ = 0 translates as

Σηj-df/dqi = 0, (6.20)
j

from which we deduce that/must be the pull-back of a function on Qr, which has
local coordinates qn + 1, . . . , qd. We now define a 1/2-density φ e Ω1/2(TQr) on the
local chart with coordinates qn+1, . . . , qd by

φ ( ^ > M ; ( W ^ ) ) = φfe ιy; (3/3^, d/dηk)) . (6.21)

If we introduce the local 1/2-density vtr on Qr defined by vtr(qj>n;(d/dqj>n)) = 1,
then the map Γ r e d -• Ω1/2(TQr), φ -+ φ is given by

φ=f vt^Φ=f'Vtr (6.22)

We now have to show that these local expressions glue together to a well-defined
global element φ e Ω1/2(TQr). For this we observe that if ([/, X) and (£/', X') are
both adapted coordinate charts, then the matrix λ connecting the vectors X to X' is
just part of the Jacobian matrix dq'/dql Moreover, denoting by Jac 0 the Jacobian
of the (full) coordinate transformation q -> q' on Qo and by Jacr the Jacobian of the
(reduced) associated coordinate transformation qn+1

9 . . . , qd -> q'n + 1, . . . ,q'd on
Qr, we have the equality

Jac0 = Jacr Det(λ) . (6.23)

We then compute

φ(q>>n; (d/dqi>n)) = φ(q, η; (d/dq, d/dη))

= I l a c / ' 2 Detμ)" 1 / 2 φ(^, η'; (δ/dq\ d/dη'))

= \Jαcr\
1/2'φ(qfj>n'Λd/δq^>n)), (6.24)

where (q\ η') indicates the same point as (q9 η) and where we have used the fact that
our orientability assumption implies that Det(A) must be positive. It follows from
this calculation that φ is indeed a globally well-defined 1/2-density on Qr. The
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reverse procedure shows that to every φ e Ω1/2(TQr) we can associate a φ e Γ r e d

and thus we have established an isomorphism Γ r e d ^ Ω1/2(TQr).

Remark 6.25. The isomorphism Γ r e d ^ Ω1/2(TQr) obtained above is an identifica-
tion of Ω1/2(TQr) as a subspace of Ω1/2(TQ), where Q is a supermanifold. A similar
identification can be obtained without the use of supermanifolds. If we consider Θo

as a sub-vector bundle of TQ0 over Qo, then we obtain ^ 0 * -• β 0

 a s the dual vector
bundle. A computation similar to the (super) calculation described above estab-
lishes Ω1/2(TQr) as a subspace of Ω 1 / 2 (Γ(^ 0 *)) The underlying idea is that,
although there is no canonical choice to extend a basis of TQr to a basis of TQ0 by
adding vectors of ̂ 0 ? we can extend it in a natural way to a basis of Γ(^ o *) by first
extending it arbitrarily to a basis of TQ0 and then choosing the "dual" basis in
Γ ( ^ o * ) to extend it to a full basis. The fact that these choices are dual prove that
the resulting 1/2-density is well defined. A more detailed account of this idea can be
found in [Tu2]; it is the analogue of the result described in [DEGST] for a free
group action.

Finally we turn our attention to operators induced on Γ r e d. First we note that
two representing functions for H° B R S T are equivalent iff they differ by {Ω, g] with
{Td, g) = — g. Now if g also preserves ^ , then we have for φ e Γ r e d :

φ{τ{g)φ) = [gh, τ(g)~\φ + τ(g)(gh(φ)) = - τ(g)φ , (6.26)

where we have used Proposition 3.13 and gh = / τ(Td) + n/2. The local analysis of
(6.19) shows that the only φ' e Γ r e d satisfying gh(φ') = — φ' is the one identically
zero, hence τ(g)φ = 0. From Proposition 3.13 and the definition of Γ r e d it follows
that τ({Ω,g})\Γred = 0 and "thus" equivalent representing functions for H°BRSτ

induce the same operators on Γ r e d. Now let /eC°°(Γ*<2) preserve ^ , i.e.,
/ = /Q + iy, and suppose it represents a class in H°BRSτ, i.e., {Td,fQ + Jγ} =0 =
{Ω, fQ + Jγ}. Before we translate these conditions to a more concrete form, we need
a construction. Let Yo be a vector field on Qo which preserves Q)o, i.e., Yo projects
down to a well-defined vector field Yr on Qr, then we define a vector field Y on Q as
follows. On a local chart (17, X) we have [Xj, 7 0] = ΣkXk μkj(q) and we define
Y on this chart by

JΊ<*. n) = ô \q + Σ Λ to ηJ * W (6.27)
jk

With this construction we can describe the ̂ -preserving elements in H°BRSΎ; the
proof is an elementary calculation in local charts.

Proposition 6.28. f = fQ + Jγ represents a class in H°BRSΎ if and only if(ϊ) fQ is the
pull-back of a function fQr on Qr by the standard projection Q -> Qo -• Qr, and (ii) the
vector field Y is derived in the above manner from a S>0-preserving vector field Yo on
<2o If these conditions are satisfied, then the class [fQ + J y ] e ίf°B R S T is mapped to
the function fQr + JYrs C°°(Γ*g r) by the procedure as described following (5.5).

Proposition 6.29. The isomorphism Γ r e d ^ Ω1/2(TQr) intertwines the operator
ΛΪQ + JY) restricted to Γ r e d with the operator τr(fQ + Jγ) on Ω1/2(TQr)
^ Γ(QBrf> .



264 G.M. Tuynman

Proof. The part for fQ and fQr is immediate since it only involves pointwise

multiplication of 1/2-densities with functions. For the Jγ and JYr we use adapted

coordinates in which the Yo involved is given as Yo = £ \ ys(<ϊ)' d/dqj, where the

yj(q) for j > n do not depend on q1, . . . , qn and hence the local expression for Yr is

Σj>« yj^ί)' d/dqK Using the local trivializations vt and vίr, the isomorphism φ -> φ

is given by/• vf ->/• vίΓ and we calculate:

vt) = (Yrf) v, + (1/2)

= (Yrf) v, + (1/2) Div (^)(Γ r)•/• v,, (6.30)

where the local expression for Y shows that the divergence of Y with respect to the

vectors d/dq1, . . . , d/dqd, d/dη1, . . . , d/dηn equals the divergence of Yr with re-

spect to the vectors d/dqn + 1, . . . , d/dqd (the contributions of the remaining d/dq's

cancel those of the d/dη's). Hence with <£(Yr)vtr = (l/2)mΌi\φβq)(Yr)'vtr we con-

clude that (SφOCT ̂ Γ) = &(Yr)((7 Vt)), which finishes the proof.

Remark 6.31. Our approach is different from the approach by McMullan and

Paterson [MP] in that we do not use so-called self-dual elements. This has

a definite advantage since one needs in the general case additional structure (i.e.

a metric on 3)0) in order to define self-duality.
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