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Abstract. We study the large time behavior in L? of solutions to a model for the
motion of an unbounded, homogeneous, viscoelastic bar with fading memory.
Decay rates for the solutions are obtained under the assumption that the initial data
and histories are smooth and small. Moreover, convergence of the solutions to
diffusion waves, which are solutions of Burgers equations, is proved and rates are
obtained. Our method is based on the study of properties of the solutions to the
linearized system in the Fourier space.

1. Introduction

Consider the following model for the motion of an unbounded, homogeneous, visco-
elastic bar with fading memory:

—.=0
{“‘ > (1.1),
v,—o,=0, xe&, t>0,
where u,v, and ¢ are the strain deformation, velocity, and stress; the stress o is a
given function of the strain u and its past history,
t
o(x,0) = fu(x,0) + | a'(t—1)g(u(x,1))ds; (1.1),
— o0
here a(s) is a given kernel on 0 < s < oo with derivative a’, and f(u), g(u) are given
smooth material functions. The history and initial data are given by
ulx,t) =n(x,t), =0, v(x,0)=uve(x). (1.2)

We are interested in the large-time behavior of solutions whose initial data and
histories are smooth and specifically, in the convergence of small perturbations (in
the integral sense) to a constant state U = (&1, 7) as t — + o0, and particularly in
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determining decay rates. Although asymptotic expansions have been proposed to
derive a viscous approximation by the hyperbolic-parabolic system

{“‘_v"zo (1.3)
U — p(u)x = (.u(u)vx)xa

where
p(w) = f(u) — a(0)g(u),
0
pu) =g'(u) _I sa'(— s)ds, (1.4)

cf. T.-P. Liu [1], there has been no justification of the validity of such an approxi-
mation.

In this paper we show that the solution of (1.1), (1.2) has the same large-time
behavior as the solution of (1.3), (1.4) with initial data

u(x,0)=1(x,0), v(x,0)=0y(x).

Under appropriate restrictions on f,g and a, we show that the solution U = (u,v)
of (1.1), (1.2) decays to U in L? at rate (1 + t)~ /4, and in L® at rate (1 + t)~ */2; more-
over, U is asymptotically approximated in L? at rate (1 + ¢)~*/* by a combination
of U and of diffusion waves, which are solutions of Burgers equations. We also
obtain corresponding rates for derivatives of the solution. Here our rates are
optimal.

First of all, we need to assume that

gw>0, p(w>0, p"(u)<0. (L.5)
For the kernel a, we assume that

a, ar,aueLl(O’ OO),
g t|a(t)|dt < oo, (1.6),

L(a')(z) #£0, Vzell,
a is strongly positive definite,

where L(a’) denotes the Laplace transform of @', IT = {ze%:Re z = 0}, and the defini-
tion of strong positivity will be given below. These assumptions include the situation
of physical interest. Global existence and uniqueness of a classical solution has been
established by Hrusa and Nohel [5] under (1.5), (1.6), and suitable regularity and
smallness assumptions on the initial data and past history. They showed the decay
of U to U in L®. However, they don’t provide decay rates since their proof was
based on energy estimates. To obtain the decay rates here we further assume that

L(a) is a rational fraction; (1.6),

it is not clear whether (1.6), is necessary for obtaining decay rates or not. However,
it is satisfied in the most important physical application where a is a finite sum of
decaying exponential functions with positive coefficients.

Let’s explain the conditions on a. First we have
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1
loc

Definition. A function acL} [0, ) is said to be positive definite if

t s
fy(s)fa(s —1)y(r)drds 20, Vt=0,
0 0
for every yeC[0, c0); a is called strongly positive definite if there exists a constant

¢ > 0 such that the function defined by a(t) — ce™*,t = 0, is positive definite.

The definition is generally not easy to check directly. For our purposes here, it is
useful to know the following

Lemma. If aeL(0, o), then a is strongly positive definite if and only if there exists
a constant ¢ > 0 such that

4

Re[L(a)(iw)] = T Vwe. (L.7)

o®+
Using (1.7) and the regularity on a one can check that (1.6); implies
a(0)>0, a'(0)<0. (1.8)

See [5] and the references therein; (1.6) implies that a decays exponentially, i.e., there
is a constant C > 0 such that

la()] S Ce "¢, Vt=0. (1.9),
This can be seen from the inverse Laplace transform
alt) = zi | L@eds,
(1.6) and the residue theorem. Similarly, we have
@), la"(®)| < Ce™"C, Vit20. (1.9),
Conditions (1.6), and (1.6), are satisfied by kernels of the form

N
a)= "y we M, =0,
i=1
with a;, u; >0, j=1,...,N, which are commonly used in applications of visco-

elasticity theory. Moreover, they are also satisfied by oscillatory kernels of the form
e " cos ft,u>0.

Set
UO(x) = (uO(x)a UO(X))a uO(x) = U(x, O)a (1'10)
E;=|Uy—Ullpi+ llvo—oll,+ sup Il —al (), (1.11)
where || ||.» denotes the [”-norm on &, ||| = |||l .2, and || | is the Sobolev norm:

s 1/2
IlhIIs={ ) IIDthlz} , D'=0'/ox".
Jj=0

Our first result is about the L2 decay of the solution.



588 Y. Zeng

Theorem 1.1. Assume that (1.5) and (1.6) hold, n and v, satisfy
vo — veH(R), U,— UeL'(R),
n —ueL?((— 0,0]; HY(#))n C((— o0,0]; HY(R)),
where s 2 3. If E, is sufficiently small, then (1.1), (1.2) has a unique solution U defined

on & x [0, ), with U — UeC([0, o0); H (&))" C*([0, 00); H*~ 1(R)), U,eL*([0, ),
H~Y(R)), and

IDHU = U)lls-2- 2ult) < CE((1 + )7 124512, 1 20, (1.12)

where 0 < k <s5/2 — 1 and C is a constant.

Clearly, the L decay rate (1 +t)~'/2 of U — U is a consequence of the estimate
(1.12) and the Sobolev inequality.
Before stating our second result, let’s introduce the parabolic system

I
U — 0= E Uyx
(1.13)
~ U
U, p(u)x - 5 Usx
and the hyperbolic system
{““"’F (1.14)
U — p(“)x =0

corresponding to (1.1), where u = u(u), u(u) and p(u) are defined by (1.4). By (1.5) and
(1.7),
u=g'() | a(t)dt = g'()L(a)(0) > O. (1.15)
0
We are going to discuss the large-time behavior of the solution to (1.13) with initial
data

U(x,0) = Uy(x), (1.16)

where U = (i, ), and show that it is the same as the large-time behavior of the
solution to (1.1), (1.2). We choose (1.13) instead of (1.3) for technical reasons. They
have the same asymptotic behavior in L? if they have the same initial data (cf. S.
Kawashima [2]); however, (1.13) is more convenient to handle since it is uniformly
parabolic.

The hyperbolic system (1.14) has eigenvalues

'{1,2 = ¢ pl(u)s

right eigenvectors

L2 p’(u)( Tl )
VT \ - Srw/)
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and left eigenvectors

//(u) < 1 >
11,2= - +1
4./p Jp'w)

satisfying [;'r; = d;;,1,j = 1,2, and V/li-ri =1, i =1,2. We define the diffusion waves
for (1.13), (1. 16) as

lpi(xa t) = ei(x> t)ri(a)’ i= 1’ 2;

where r; are the right eigenvectors of (1.14), and 8, is the solution of the initial value
problem
00; 00, 0 (92> w026,
+— ==

Chy )
ot ()ﬁx ox\ 2 2 0x?

0:(x,0) = (@)U o(x) — U).
Set
Y(x,t)=U + Y, (x, 1) + ¥(x, t). (1.17)
Our second result concerns the approximation of U by 7.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 are in force with s = 4 and
x(Uy — U)eLY(DR). Set

EX=E,+ | |x(Ug(x)— O)ldx.

If E¥* is sufficiently small, then the solution U for (1.1), (1.2) satisfies
DU — ¥) - 4- () < CE¥(1 4 1) 26+ D (L.18)
for t 20, where 0 < k <s/2—2, and C is a constant.

Theorem 1.2 gives us a complete picture for the asymptotic behavior of the solution
U to the viscoelastic model (1.1), (1.2) in_the L2 sense. It tells us U converges to ¥
at the same optimal rate as the solution U of the parabohc system (1.13),(1.16) does,
cf. Theorem 1.3 below. Our strategy for proving it is to show that U — U decays
faster than U — ¥.

Diffusion waves were constructed by T.-P. Liu [6] (Also see [3 and 4]). Asymp-
totic behavior of solutions to parabolic systems has been studied in L?, 1 < p < oo,
by L.-L. Chern and T.-P. Liu [4], T.-P. Liu [3], where optimal rates were obtained
in [3]. Asymptotic behavior of solutions to hyperbolic—parabolic systems like (1.3),
(1.16) has been studied in L? by Kawashima [2]. However, his rate for the conver-
gence to ¥ is not optimal. For our purpose here we cite some facts from [2, 3 and 4]
concerning the solution for (1.13), (1.16) as the following

Theorem 1.3. Consider the initial value problem (1.13), (1.16).
i) Assume Uy, — UeH(R)n LY (R) for s= 1. If

E;=|Uy=Ull,+11Uo—Ullps (1.19)

is small, then (1.13), (1 16) has a unique global solution U(x t) satisfying U—Ue
C([0, 00); H¥(Z#))(n CY([0, co); H*~*(#)) if s = 2) and DUeL*([0, 0); H(R)). The
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solution satisfies the decay estimate
| DU = O)lls-1 S CE(1 +1)” P&+ g 20, (1.20)

where 0 < k < s and C is a constant.
il) Assume that U, has the property that

5= _T [1Uo(x) = Ul +1x(Uo(x) = O)] + | Uo(x) = UP? + [U(x)*1dx

is small. Then the solution U for (1.13), (1.16) exists with U — UeC((0, o), H<(#)) N
L*((0, o0); H** Y(#)) and satisfies

| DU — W) [l o) < Cot™ 120+ G=p) ¢ 5 0, (1.21)
where 1 < p < o0, C is a constant.

We will show that the solution of the viscoelastic model is approximated by the
solution of the uniformly parabolic system (1.13), (1.16) at least at the same rate as
in (1.21) by proving the following result.

Theorem 1.4. Assume that the hypotheses of Theorem 1.1 are in force with s = 4.
Moreover, assume that n—uelL®((— 00,0]; L'(R)nC((— 00,0]; L'(#)), where
1<r<2. Set

E,,=E +sup|n—il(z). (1.22)

If E;, is sufficiently small, then the solution U for (1.1), (1.2) and the solution U for
(1.13), (1.16) satisfy

IDMU — O) 54 - 24(t) S CE, (1 4 1) 7 2EF QT2 (1.23)
where 0 < k <s/2 —2,C is a constant.

Remark. Theorem 1.2 is a consequence of Theorem 1.4 with r =2, Theorem 1.3,
and Theorem 1.1.

Remark. 1f n — ae L*((— 00,0]; L'Y(#)) " C((— o0,0]; L}(#)) and E, , is sufficiently
small, then we obtain the decay rate (1 4 t)~ 1/2+(3/2)*2in Theorem 1.4, with a >0
arbitrarily small. This is the same decay rate as hyperbolic—parabolic systems are
approximated by uniformly parabolic systems. See [2] Theorem 6.3.

To prove Theorems 1.1 and 1.4, the key step is to obtain appropriate decay
estimates for the linearized systems (2.1)~(2.3) and (2.41), (2.42) below; these are
linearizations of systems (1.1) and (1.13) respectively about the constant state U.
This is a serious difficulty for the viscoelastic model problem since an explicit for-
mula for solutions of the linearized systems is not available, even for quite special
kernels like a sum of exponential functions; by contrast, in the case of parabolic and
hyperbolic—parabolic systems of PDE’s, explicit formulas are available and estimates
for the linearized systems are straightforward.

The plan of this paper is as follows: In Sect. 2, we discuss solutions of relevant
linearized systems in detail. In Sect. 3, we generalize the energy estimate of Hrusa
and Nohel [5] to higher derivatives (Also see Dafermos and Nohel [8].) Finally in
Sect. 4, we prove Theorems 1.1 and 1.4.

For the general theory of (1.1) the reader is referred to the book of Renardy,
Hrusa, and Nohel [7].
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2. Solutions for Linear Equations

To obtain the decay estimate for the system (1.1), we are going to linearize it about
the constant state U, and to prove that the solution for (1.1) has the same decay
rate as the solution for the linearization. Therefore it is crucial to obtain the decay
estimate for the linearization, which is our purpose in this section.

After linearizing (1.1), we consider the following initial value problem:

u,—v,=0 ' 2.1)
v~ flu, =g fat—ulx,0)dr+ ¢, xeR, t>0,
0
Ux,0)=Uy(x), xe4, (2.2)
where U = (u,v), Uy = (ug, vo), f = f'(11) and ¢’ = ¢'(1) are constants satisfying
g >0, p=f —al)g >0, (2.3

ais a given kernel satisfying.(1.6), ¢ is a given smooth function of x and ¢, and U ,(x)
is a small perturbation of zero in the integral sense.

In this section, Fourier transform and Laplace transform are used to explore
properties of the solution to (2.1), (2.2). Let’s assume U,eL'(%)nH%(%) and
¢eC([0, oo); H¥(R)), s = 2. First we take Fourier transform with respect to x denoted
by “A” to (2.1), (2.2):

{ iév , ”
v — flikut =g [a(t —v)itu” (& dr+ ¢",
0

U™E0)=Ug (%) 2.5)
Then take Laplace transform formally to (2.4),
sL(u")—uy —ilL(v")=0,

sL(v")—vg — flilL(u")=g'ilL(a")L(u") + L(¢"). (2.6)
This is an algebraic system. It can be solved easily to get
suy +ikvg +ilL(¢p")
s+ gL+ 11
illg'L(a’) + f'luy +svy +sL{¢™)

s*+ &g L(a) + f]

Taking the inverse transform and using the convolution theorem, we arrive at the
following formula,

Lu*)=

L") =

u™ (&) =ug (En (& 1) + vy (On2(S, 1) + iﬂz(f, t—1)¢" (¢ 1)dt
o 2.7)

07 (E 1) = g (& 1)+ 00 s (Eat) + (j) (&t — Db (& s,
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where
oc+ioo Se-"
,t = d s
me=on S T san e
lé c+ioo e‘“
LS ds, 2.8
(ECE il B Ry TR Ly 9

i§ etie e"[g'sL(@)(s)+ ']
7’3(5’1:):_—_. .[ 2 122 245
27 g i 8”4 g'E*sL(a)(s) + p'¢
o is a real number sufficiently large.
To obtain estimates on U ", we need a more specific form of #’s. By assumption
(1.6), we can write

L(a)=q4./q,, 2.9

where g, and g, are polynomials that are relatively prime and are of degree m; and
m, respectively and the coefficient of the highest power in g, is 1. Clearly we must
have m, < m, since ae L'(0, c0); moreover, q, and g, have real coefficients since a is
real. Using (2.9),

1 otiw qu(S)eSt

m&n=-— 1|

- ds, (2.10)
27 o "iee d(s;8)

where
d(s; €)= 52q5(s) + 9'E%5q,(s) + P'€245(5) (2.11)
is a polynomial in s having degree n =m, + 2.

Lemma 2.1. Assume that (2.3) and (1.6) hold. Denote the n zeros of d(s; &) on s-plane
as A (&), k=1,...,n. Then (&), k=1,...,n, has the following properties:

i) If £ #0, A(&) is not a zero of qs,..

ii) A, (&) is a simple zero of d(s; &) except at a finite number of values &.

Proof. i) If 2,() is a zero of gq,, substituting it into (2.11) we get g'¢24,44(4) =0.

Here g’ > 0 by (2.3), £2 # 0 by the assumption, and q,(4;) # O since ¢, and q, are

relatively prime. Therefore 4, = 0. But then g,(4,) =0 is a contradiction to ae L!(0, c0).
it) If A,(¢) is a double zero, then

d(Ay; &) = A2 g2 (M) + E 09" g1 (A) + P'92(A)]1 =0, (2.12)

d'(; &) = 224q2 (M) + A7 45 (4) + E2[9' 91 (A) + 9 Mgy (M) + P'q5(A)1 =0, (2.13)
where “” denotes the derivative with respect to s.

The quantity in the bracket in (2.12) can’t be zero. In fact, if it is zero and & # 0,

then (2.12) gives us A2g,(4,) = 0. By i) g,(4;) # 0. Therefore 4, = 0. Substituting back

to the bracket we get p'q,(4,) =0. It is impossible since p'> 0. If ¢ =0, either

A(0)=0or g,(4,) =0 by (2.11). Clearly the bracket in (2.12) can’t be zero. We solve
for £% in terms of A, from (2.12),

]2
ao__ Thot) (2.14)
9 Mq () + P'qa2(A)
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The bracket in (2.13) is a polynomial of A,. It is not zero except of a finite number
of 4, or by (2.14), except of a finite number of &. Therefore

2 _ — 2A2(A) — Azq,z(’lk)
9'q1(%) + 9’ 4q’y (4) + p'q5(A)
except of a finite number of &.

Set the right-hand sides of (2.14) and (2.15) equal. 4, can take at most a finite
number of values. So does é&. Q.E.D

Fix & and take 6 > Re 4,(§), k= 1,...,nin (2.10). Then use residue theorem and
note that 4,(¢), k =1,...,n, are simple poles except at a finite number of &£’s. We
arrive at

(2.15)

" Az (e
m& o= 3, Adter
k=1 d (’lk9 6)
except of a finite number of &’s. We have similar expressions for #, and #5 in (2.8).
Substituting them in (2.7) we have

Lemma 2.2. Assume that the hypotheses of Lemma 2.1 are in force. Then except at
a finite number of &'s, the solution for (2.4), (2.5) is

N A B Ada(Ae) Anct A & i8q5(A) At
uh (& 1) =ug (5),‘; d'(Ag é)e % (é)k; dl('lk;é)e

L 1542(}4‘) At —1) 4 A d
+£ k; 1000° ¢ (& 1)dr,

air e o LI AG (A P RAN] o o A
CEI=EOL T s O dae0

L& iquu'k) A(t—1)
+ — eI G A (E T)dT, 2.16
('Ek;1 d'(4;¢) R ( )
where q, and q, are defined by (2.9), d(s; &) by (2.11), and 2, = A, (E), k=1,...,n, are
zeros of d.

Remark. We have derived (2.16) by taking Laplace transform formally to (2.4).
Actually at that point we didn’t know if the transform exists or not. However, once
we get (2.16), it can be checked by direct substitution that it is a solution to (2.4),
(2.5). Therefore the inverse Fourier transform of (2.16) gives us a C([0, co); H¥ (%)) N
C*([0, c0); H*~ (%)) solution to (2.1), (2.2), which is unique, cf. [5] or Theorem 3.2
below.

Set

p=g | a(. 2.17)
0

Then p = g'L(a)(0) > 0 by (2.3) and (1.7).

Lemma 2.3. Assume that the hypotheses of Lemma 2.1 are in force and & is real. Then
we have the following properties:
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i) For small 6 >0,

b (&)= Fiy/pE—1u +0(&), |15, (2.18)

and there exists a constant o = a(d) > 0, such that
Rel; ,()) < —o, [E]26, (2.19),
Rel (&)L —a, k=3,...,n, E(eR (2.19),

ii) A,(&) and A,(&) are complex conjugates with
élijg (4120008 = — (2.20)

while the limits of the other zeros exist,

lim A(&) =42, k=3,...,n, (2.21)
&= 0

where 10,k =3,...,n, are the my = n — 2 zeros of

q(s) = p'q2(5) + 9'sq,(s). (2.22)

Proof. i) First 4,(£), k=1,...,n, are continuous functions of £ since the coefficients
in d(s; €) are continuous on £. Note that

d(s; 0) = s2¢,(s).
Therefore 4,(0) = 4,(0) = 0, while 4,(0), k = 3,..., n,are zeros of q,. Since ae L} (0, ),
Re4,(0)<0, k=3,...,n (2.23)

Regard ¢ as a complex variable for a moment. Then in a small neighborhood
of zero we have

= l1h1(l1)a ¢= Azhz(iz)

via (2.14), where h, and h, are analytic functions with

i i
hQ)=——=, h0)=-——F—. (2.24)
P Jr
Since £ is an analytic function of A, and of 4,,
de =h(0)#0, k=1,2,
d)'k A=0
the inverse functions A,(¢) and A,(¢) are analytic around zero. Set
A (@) =¢ ) ot PE (2.25)
=0

Substitute them in d(4, ,; &) = 0. We have
© 2 0 © ©
(¢ & erne)as(c & ene) e £ cpnetan( £ o)
1=0 1=0 1=0 1=0

+pe%4, (5 > c;“)e:') =0,
1=0
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Expanding the right-hand side in ¢ and setting the coefficients of % and &* to be
Zeros, we arrive at
[P +p =0,
252D q,(0) + [ 212 q5(0) + g'ct 21 (0) + p' g5 (0)cf > = 0.

Solve them to get

cgl) = —i p', c(oz) — i\/’/’

)= e = ~19'6,(0/a:(0) = — /2,

where the signs for i’ and ¢ are chosen by (2.24). Substitute them into (2.25) and
we have (2.18).
Next we claim that

Re 1, () #0, k=1,...,n, if &#O0isreal (2.26)
If this is not true, set 4,(¢) = iw, with w real. Substituting into d(4,; £) = 0 we have
(iw)2q,(iw) + ¢'E¥ing, (io) + p'E*q,(iw) = 0. 2.27)

Divided by ¢,(iw) and taking the imaginary part gives
g E2w Re[L(a)(iw)] = 0.

Since ¢, £2 > 0 and (1.7), @ = 0. Then (2.27) becomes p'£%q,(0) = 0. This is impossible.
Equations (2.18), (2.23), (2.26) and the continuity of 4,(¢) give us

Re,(8) <0, Ce\{0},
Re /(&) <0, k=3,...,n, EeR
As long as we can prove that there exist constants &, & > 0, such that
Rel (&)L —a, k=1,...,n, for £=2¢, and &< —&, (2.28)

then (2.19), and (2.19), follow easily.

If(2.28) is not true for some 1 < k < n, then we can find a sequence £, — oo, such
that Re 4,(£,) — 0. Set A,(&,) = r, + iw,, where r, —» 0. Substitute it into d(4,(£,); £,) = 0.
We have

(ry + i@,)? + g' &2 (r, + i@, L(a)(r, + i®,) + p'&E =0, (2.29)

since ¢,(A(&,)) #0 by Lemma 2.1. Separate the real and imaginary parts,
r2—w?+g&[r,Re L(a) — w,Im L(a)],, + 0, + P'E2 =0, (2.30),
2r,w, + ¢g'&[r,Im L(a) + o, Re L(a)],, +,, = 0. (2.30),

If w, is bounded, then there is a subsequence, denoted again by w,, such that
w,— w,. Divide (2.30), by &2, and let n— 00. We get g'w, Re L(a)(iwo) = 0. Then
w, = 0 since a is strongly positive definite. Divide (2.30), by &2, let n— oo, and note
that r,, w, — 0. We have p’ = 0. This contradicts assumption (2.3).

Therefore w, is unbounded. There exists a subsequence, again denoted by w,,

such that w,— co. Divide (2.29) by &2, let n— oo, and note that lim sL(a)(s) = a(0)
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by properties of Laplace transform. We have
2
lim <3> =7 2.31)
n—oo \ &,
Solve (2.30) for Re L(a) and Im L(a). Especially,

rap'
g 62 g+ w?)

Re L(a)(r, + iw,) =

Using (2.31) and r, >0, w, — oo, we get

’ 2

2
lim o7 Re L(@)(r, + io,) = — lim ** <‘l> —tim 2" o 232
n- oog 14 n—>oog r +w

Then the real part of lim (r, + iw,)L(a)(r, + iw,) = a(0) gives us

lim w, Im L(a)(r, + iw,) = — a(0). (2.33)

By (2.32) and (2.33) we have
lim Re[(r, + iw,)*L(a)(r, + iw,)]

= lim [(r? — w?)Re L(a)(r, + iw,) — 2r,@,Im L(a)(r, + iv,)]

—-0. (2.34)

On the other hand,
L(a")(s) = s> L(a)(s) — sa(0) — a'(0).
Set s =r, + iw, and take real part. We arrive at
Re L(a")(r, + iw,) — Re[(r, + iw,)* L(a)(r, + iw,)] + r,a(0) = —d'(0).
Let n— 0. We get
lim Re[(r, + iw,)*L(a)(r, + iv,)] = a'(0) < 0

by (1.8). This is a contradiction to (2.34).
ii) Let A° be a finite cluster point of 4,(¢) as & — oo, i.e., there is a sequence &, — 00
such that 4,(&,) = A°.d(4,(&,); &,) = O gives us

é—zik(é )2 2(Al&n) + g(A(&) =
where g is defined by (2.22). Let n — c0. We get g(4°) = 0. As & - oo, either 4,(&) - A7
or 4,(€)— oo, where A? is a zero of ¢. If this is not true, 4,(¢) has infinitely many finite
cluster points since 4, is a continuous function of £, and all these cluster points are
zeros of q. This is impossible because q is a polynomial of degree m,. If 11m A& =

rewrite d(4,(¢); &) =0 as
(&) |?

[T] + g A L) (4(S)) + p = 0.
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Let ¢ - oo, Note that lim sL(a)(s) = a(0). We have lim [4,(6)/&]%? = — f7. Tt is easy
$— 00 [ades}

to see by argument principle, for example, that for an m-zero of q there are exactly
m A, (&)’s approaching it as £ — oo. Therefore we have (2.20) and (2.21). 4,(¢) and
A,(&) are complex conjugates since d(s; £) has real coefficients. Q.E.D

Lemma 2.4. Assume that the hypotheses of Lemma 2.1 are in force and & is real. Then
for small 6 > 0, there exists a constant C = C(8) > 0, such that

i) for || £6,
%) _ % +0(8),
and

Z": Aq2(4y) ot Z": i8q,(4) ot

)

k=3 d'(4;; &) k=3 d'(4; &)
2 illg Mg (A + p'a2(A)] ., < Ce-llC >0: 236
2, PTVer B 39

ii) for |£] 29,

i 'lk‘I2(/1k)e,1k, i i€q,(4) ot

Ed b

k=1 d'(A4; &) k=1 d'(4;¢)
i ié[gllkch(;tk) + pIQZ(’lk)] e).kt é Ce—;/c, t g 0. (237)
K1 d'(4; €)

Proof. 1) Using (2.18) and the expression for d'(4; &) in (2.13), (2.35) can be checked
by direct computation. The proof of (2.36) is similar to that of (2.37) below.

i) We only estimate the first term in (2.37). The other terms can be done in
exactly the same way.

From Lemma 2.1 we know that d'(4,(&); &) # 0 except of a finite number of &’s
(including & = 0). Suppose that d’(4,(); £) #0, k= 1,...,n, on a finite interval [£,, &, ].
Then on such an interval (2.37) follows easily from the continuity of 4, on ¢ and
(2.19). Therefore all we need to do is to prove (2.37) for ¢ in a small neighborhood
of &, with d'(4,(&,); &) = 0 for some k and for & — 0.

Consider a small neighborhood of &, in which d’(4,(&,); &o) =0forsome 1 <k <n
and d'(A,(é); &) #0 for & # &y, k=1,...,n For definiteness let’s assume that 1, =
Ai(g)=Ay(Eg) = - = A,(&p), 2Sm < n, and A (&) # Ag, k=m+1,...,n. By the
continuity of 4,, we can choose 0 < gy < /4 and d, > 0, where « is the constant in
Lemma 2.3, such that for |& — &, < 6,

I’lk(é)_1’0|<807 k=1,...,m,
[A(&) —Ag| > 289, k=m+1,...,n (2.38)
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Using residue theorem, for any fixed &,0 < |& — &y| < 6o,
& lqu(j‘k) elk' - 1 }'qZ(ﬂ’) eltd).

k=1 d'(A4; ) 27 3 201 372300 A5 €)
Using (2.38) and (2.19), we have for |1 — Ao| = 3¢,
(4] =12 = 4,42 = 4,0 -+ |4 — A,(E) > (€0/2)",
ReA=Re(A—Ay)+Redy = |4 — 2] + Re A (&) < —a/2.
Therefore

~g  max  |Agy(A)]e"et
Sz |4 — 20| =(3/2)e0 < Ce~lu2n

(e0/2)"

i A2 (A)/d (Ay; f)elk". Equation

k=m+1

& Mg (M) ot
k=1 d'(4;€)

Similarly we can get the same estimate for
(2.37) holds in a small neighborhood of &,.
Next consider the case when & — oo,
% Aqa(Ae) o A145(44) 4295(4,)
k=1 d'(4;9) d'(44;¢) d'(1;¢)
Note that

tRe A1 tRe A2

i }'qu(lk)eikg .
k=3 d'(4; &)

<

(2.39)

2195(41) _ 41(8)q2(4,(2))
d'(A158)  (A4(8) — A2(8)(41(8) — 43(8)) -+~ (A1(8) — Au(S))
_ 42(4(9)
1= A2(8)/A1 (&) (A1(8) — A3(8)) -+ (A1(8) — A,(&))’

and g, is a polynomial of degree m, =n — 2. Using (2.20) and (2.21) we conclude
that lim 4,q,(4,)/d'(A,; &) = 1/2. Together with (2.19), the first term on the right-
[l

hand side of (2.39) is bounded by Ce ™€ for large ¢. Similarly we have the same
bound for the second term. The third term can be estimated in the same way if g(s)
defined by (2.22) has only simple zeros. If g(s) has a double zero, then we use the
same technique as in the case above when ¢ is in a small neighborhood of &, replac-
ing 4, by the double zero of q and considering large £&. Q.E.D

Theorem 2.5. Assume that (2.3) and (1.6) hold, U,e L*(#) n H(#), D~ 1 ¢ C([0, 0);

H*Y(R) N C([0, o0);, W' 1-P(R)), where s =2, —1 <1<s and pe[1,2]. Then the
solution U of (2.1), (2.2) satisfies

IDU©s C[(l )T IR U | 4 eI DU |
t

(1 + =) RO U Dl | (1)de
0

+ j' e~ I DG || (r)dr:| (2.40)
0

for max(0,l) £ k <s, wheret 20, and C >0 is a constant.
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Proof. By Lemmas 2.2, 2.3 and 2.4, for a small § > 0 and real ¢, if |£| < 6,
[UANE DI S CIUG (©)|[e” W + 7]

t
+ Cf[e7UHEUI 1 ==Y G (g 7)) dr;
0

if €] 2 6,

[UANE DI ClUZ (@)]e™" + C et 9C| ¢ (&, 7).
0

Note that (D*U)" (¢, t) satisfies (2.4), (2.5) with ¢ * being replaced by (i¢)*¢* and U
by (i€)*U . Therefore

ID*UI1*(5) = (D*U)" ()

=< [+ )[(D"U)Alz(éﬁ)dﬁ
1g1=o

18126
SC [ |@}UG@PLe™ W% +e71CTdE +C [ |(OFUs(E)Pe"CdE
1&l=é ez 6
+C j {i'[e—(u/4)§2(t—r)+e—(r—r)/C]|(i6)k¢/\(é,r)ldt}2d€
[gl=é L0

C | {fe“'“"’cl(iﬁ)"wg,r)|dr}2d5

|&1zo Lo

<C [ [BUH @) MHAE + C[(DFU,)" 2o
[&lso

t

1/2 2
f[ e~ WMD) 4 p=(=DICY2) Fk gy A (E z)|2d5] dr}
m<a

0

1/2 2
+C{ [ e (T (f,f)lzdé‘] dr}
r¢|>«s

SCIUS 2.1+ )72 4 CI(D*U) |2e™ ¢

{i[u IéIZ‘"“”e_“"z’éz"“’I(D'¢>)A(é,r)lzdtf]mdr}2
0 &l <o

{je ¢TI (D) Nl (v)d }2

0

SCHUG N1+ 072+ CI(D*U,)" |76

+C

+C

2
+Cq (1 41— )7 RETOZIRAmRI (D)~ IILp'(f)dT}

o'__,.-.

+ C{I eI (D )" | (r)dr}z
0

< CLUglI2(1 +£)® /20 4 | kU 2747
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t 2
4 c{ [(1 41— )~ 126- =20 pigy an(r)dr}
0

+ C{i ¢~ | Drgs n(r)dr}z,
0

where we have used the Hausdorff-Young inequality | w” || .- £ Cl|w| ., P€[1,2],
1/p + 1/p’ = 1. Taking square root gives us (2.40). Q.E.D

To obtain the decay estimate for the difference between the solution of (1.1) and
the solution of (1.13), again we need to know the decay rate for the difference between
the solutions of the linearizations.

Note that u defined by (2.17) is positive. We consider the following parabolic
system which is the linearization of (1.13):

i, — 5, = gam
(2.41)
0, —pi,= gf)xx +¢, xeR, >0,
U(x,00=Uo(x), xe, (2.42)

where U = (4, 7). Take Fourier transform,

iy — g5 =L eran
2
~A ’e ~A_lu ISAVE PN T
o —p'idi —E(lé)v +o",
U(&0)=U3 ().
Solve these ODE’s,

it D =uf (g){le—iéﬁr—(ulzx% + leiéﬁt—(u/z):%}
’ 2 2

+0g (5){ _ 1 e VPt —(w2)e 1 eicJFt—(u/Z)éZr}
NI NI
! 1 : 7 201 — 1 ; (t—1)— 2(t— g
+ [ — 2\/_/ e VP -0 - W20 2\F 2P =0~ (W2)E( r)] (& 1)de
0 p p
M) =ug (g){ — ﬁ e VP2 | \/_; Uiy —(u/2)§2t}
’ 2 2

+ v@ (5){1(@@:—(#/2)&2! + 1ei€f;7:-(u/2)§2t}
2 2

+ i B e VP9 w/2)8 -0 4 %eiéff(t-r)—(u/2)€2(t —r):l ¢ (& t)dr.  (2.43)
0
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Theorem 2.6. Assume that (2.3) and (1.6) hold, U,eLY(#)~H*(®), D~ '¢, D~ '¢e
C([0, 0o); H** () A C([0, o), W'* 12(#)), D~ '$eC([0, o), W'+ 14(R)), where
§22,— 1= I'Ss—1 and p,qe[1,2]. Then the solution U of (2.1), (2.2) and the
solution U of (2.41), (2.42) satisfy

IDHU - 0)ll(0) < C[(l + )T EECEN Ul s+ e Ul s
t ~
+ [(1 4t — )7 V2EURZARD | DY — @) || p(c)dT
0

t ~
+ (14— eI QRN DY | (1) dr
0

+ ie_('_”’c( ID*$ 1l + || Dk$|‘1)(‘c)dt:| (2.44)
0

for max(0,L,I') <k <s—1, where t 20, and C >0 is a constant.
Proof. By Lemmas 2.2, 2.3, 2.4 and (2.43), for a small 6 > 0 and real &, if |£| <6,
U =T 7) S CIUG@)ILIE e W9 4 7]

4 CJ[eWBE 0 gn _ FA|(E D) + eI A (E D)
0

+ | E|em WHEE=D| Fn (& 1) ]dr,
if €)=,
[UA — T (& 1) S| UAE D) + 1T (E9)]

< C{e"’cl Ug @)1+ je_('_”’c[IW(é, )l + |$“(€,T)I]d1}-
]

Theorem 2.6 then follows in exactly the same way as in the proof of Theorem 2.5.
Q.ED

3. Energy Estimates

Consider the following Cauchy problem

Wy(x, 1) = f(wi(x, 1)), + jfa'(t —1)gw,(x,71)),dt + d(x,1), xeh, t>0, (3.1)

0
w(x,0) =wo(x), w(x,0)=w;(x), xeX. (3.2

Hrusa and Nohel [5] established the existence and uniqueness of the solution for
(3.1), (3.2) and gave an energy estimate for the derivatives of the solution up to the
third order. In this section we generalize their result to higher derivatives, which is
needed later. Precisely, we have

Theorem 3.1. Assume that (1.5) and (1.6); hold. For each given wy,w,, and ¢
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satisfying
wo€L} (R), wy,w,eH X(R),
¢eL'([0, o), L*(R)) N C([0, o), H** {(#)) N L([0, o), H** (),
¢.€L*([0, c0); H¥(R)),
$.€C([0, co); H(2)) N L™([0, c0); H*(#)) n L*([0, 00); H** (R)),
where s 2 0, if

R e A e LY PO R EAHO)

+ °g°n|¢||3“ + 16412, 10z + [:f n¢||(r)dr]

is small, then the initial value problem (3.1), (3.2) has a unique solution w defined on
R x [0, 00) with

weC([0, o); L2 (),

w,, w,C([0, c0); H** *(#)) N L*([0, co); H** (),
wy, € C([0, 00); H** 1(R)) N L([0, c0); H*" (),
wu € C([0, 00); H(#)) N L*([0, c0); H(%)),

Waxs Wexs W € L2([0, 00); H** (),

W € L*([0, 00); H(R)),

and

On;lai(z { lw, ||32+2 + W, ”32+2 + | Wy ||52+  t+ [ Wi ”52}(1')
St

t
F [ W lZe 1w 12, + I wellZey + W12} (Dde <CN,, ¥e20, (3.3)
0

where C > 0 is a global constant.

The proof of this theorem is totally parallel to that of Theorem 1.1 in [5], which
is a special case of s =0. Actually higher derivatives cause no difficulty. We can
simply take derivatives with respect to x at each step for getting a priori estimate
in [57. This gives us the energy estimate (3.3) under the assumption that the left-hand
side of (3.3) is small. Then using a local existence result which is a generalization of
Lemma 2.1 in [5] we get the global result. We omit the detail.

To our purpose here, let’s apply Theorem 3.1 to the problem (1.1), (1.2), with

We=u—1u, w,=0v-—70,
0

o= [ d(t—1)gn(x,1))dr.

We also assume (1.6), so that (1.9) holds.
Theorem 3.2. Assume that (1.5) and (1.6) hold. For each given n and v, satisfying
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vy — Ve H(R),
n(-,0) — ue L'(R),
n —ueL*((— o0,0]; HY(#)) N C((— 00, 0]; H (%)),
where s = 2, if
E,= v — 0l +suplln — (2 (3:4)
is small, then the problem (1.1),(1.2) has a unique solution U defined on # x [0, o), with
U — UeC([0, 0); H(#))n C*([0, c0); H*~ (),

U,eL*([0, oo); H~ 1(R)),
and

sup U= U120+ [ V]2, (0d@) < CE?, (35)
<t<t 0

where C > 0 is a constant independent of t.

4. Proofs of Theorems 1.1 and 1.4

Once we have Theorems 2.5, 2.6 and the energy estimate (3.5), the proofs of
Theorems 1.1 and 1.4 become a routine. We outline them as the following.

Proof of Theorem 1.1. Linearize (1.1) around the constant state U,

(4= i), — (v =), =0 )
(0= ) — /@) — D) = g'@) [ ' = ) — i), s + b+ 6,

where

h=fw)— f(@)— f@u—ua+ ja’(t — 99w — g(@) — g'(@)(u — )] (x, 7)dx,
0

0
o= | at—1)gn).(x,1)dr. 4.2)
Use Theorem 2.5, for0<k<j<s—2—k,
IDI(U — U)li(1) < C{(1 + 1)U UG = Ul + e €| DU, — U)|

12
+ [ (1 +t—1) VRUTCp| i (1)de
0

t
+ [ (14 t—1) V2UTK*C2Y DR u(1)de
12

t t
+ [ I DI | (1)dr + [(1 + 1 — 1) "YUV DB (1)de
0 0

+ je_('_"/c | D¢ | (t)dr}.
0
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Sum up j,
IDXU — U)ll5- 5 - 2(t)

t/2
=< C{(l + 1) WREFWDE 4 [ (14 ¢ — 1) VREECRD R L (7)de
0

t t
+ [ (L +t =17 D*h|| i ()dr + [TV DF* Thl y_py(t)de
t/2 0

t t
+J(1+1—7) 2D D1 | (1)de + [ D"¢||s-2-2k(r)dr} 43)
0 0

Set
My = sup (1+1)"2% 42 DHU — D), 5(2) (44)
0=<t=t

First consider k = 0, then (4.3) is simplified to

IU=Ul,s-2(0) < C{(l +0)7TPE+ [(1+ =07 | L()de
0
+Je T hylls-p(0)de + (1 +t =172 D7 | (v)de
0 0

t
+[e ¢ lls-z(f)df} (4.5)
0
It is easy to see from (4.2) that
t
IRl < C{ lu—al®@)+ fe ) u— ﬁllz(f)df}
0

SC(+1)"Y2M(t)% (4.6)
Using the Sobolev inequality and (3.5), we have
Ihells-2(2)

S ILf @) = @) Juells-2(0) + Cje_“_”/c Ilg' (W) — g’ (@) Ju s - »(x)dz
0

—_— — t — —_—
= C{II U=UlIU=Uls—2()+ e " NU - Ul | U — Ulls-z(f)dr}
0

S CEM,o(0)(1 +1)~ 1%, (4.7
From (4.2) we also have
0
ID~ ¢ () = i _I d(t—1[gn(, ) —g@)lde
<CEe'c,

I lls-2(t) < Ce™"'¢ sup [lg(n)x[ls-2(7) = CE.e™" . (4.8)
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Substitute (4.6), (4.7) and (4.8) into (4.5). We arrive at
1U = U lls-2(t) £ C(L+ )" {E + Mo(1)* + E;Mo(1) }-

Therefore M, < C{E; + M}(1)}. M(t) < CE;if E; is small. Equation (1.12) is proved
for k=0.

Now prove (1.12) by induction. Assume that (1.12) holds for k =0, 1,...,ky — 1.
We want to prove that it holds for k = k,. From (4.2) we have, for k, = 1,

ID*h () < 1D~ 1[(f"(u) = f'@)u | a(2)
+ Cje_"_”/c ID*~ [ (g'(u) — g'@)uc] |l i (D)dx. (4.9)
0

It is easy to see that the first term on the right is bounded by

C{Ilu—ﬁll I D*ou |l + OZ IDIf @l IID"°‘jull}- (4.10)

ji=

Use induction hypothesis to bound || D’f”(u)|| and | D* ~Ju|,j=1,...,k, — 1. After
a careful calculation we find out (4.10) is bounded by

C(1+ 1)~ 12ke*DIE M, (1) + EZ].
Similarly the second term on the right of (4.9) has the same bound. Therefore,
I D hl|La(t) < C(1 + 1) 2* T DLE M, (1) + EZ]. (4.11)
Again from (4.2) we have for k, = 1,
D ¥ Rl 3 - 2o(8) < I D*L(f" () — f'(@)) 1Tl 2 - 200()

+ cg e~ I | DOL(g/ () — g/ @)i] s - axy (D).

It can be estimated in a way similar to what we did for (4.9) although it is a little
more complicated. For example, we have a term

1Cf @) = £ @ID% tull, s (0
< Cllu— a2 g |21 D* = 8) - 2 20 (0
< CE3R(1 4 1) 130~ 1) |y |12

< CEY?(1 4 1) 120+ DM, (1)V2 4 EL2].

Here in the last step we have considered k, = 1 and k, > 1. After a careful computa-
tion we get

ID** TRl -y~ 2o(t) S C(1 + 1) 12K UIEL 4 E M, (1)]. (4.12)
Substitute (4.6), (4.11), (4.12) and (4.8) into (4.3). We have
[ D*(U — U) |ly- 5 - 25(t) S C(1 + 1) 12k WD E 4 E M, (t)+ E}.
Therefore,
M, (t) £ C{E,+ E;M, (1) + EZ}.
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We conclude that M, (t) < CE; if E is small. Equation (1.12) is proved. Q.E.D

Proof of Theorem 1.4. Linearize both (1.1) and (1.13) around the constant state U.
We have (4.1), (4.2) and

(a—a),—(ﬁ—mﬁg(a—a)xx
4.13)

~

(5 — B), — p/ (@) (@i — @), = ’5‘(5 — )x + T,

where
h = p(@i) — p(@) — p' (@) (@i — ). (4.14)

From Theorem 2.6 we have, for 0 < k<j<s—4—k,

IDIU - 0)(1) < C[(l + 1)U U — Ui+ e | U~ U4

t/2 . ~
+ [ (L4t —7) 120D h— R, (1)de
0

t ~
+ [ (1+t—7) V2K C2) | DX(h — h) || Li(r)de
/2

t
[t =) RO D1 | (2)de
0

12 . ~
+ [ A+ t—1) V2UEODh|(1)dT
0

t ~
+ [ (141t —1) V2Uk+GI2) | Dk (1)dt
t/2

, ~
+ [ I DIg | + | DI* A + ||Df“h||1>(r)dr]-
0

Sum up j,

IDHU = D),y 0 < C{(l + 1) YAF G

t/2 ~
+ [+ =) V2EEED | — h| u(t)de
0

+ j(l +t—1)" 34| DXh — h) || p(v)de

t/2

12 -
+ [ (14t —7)" 2GR (o)de
0

+ [ (A +t—0) 3| D* 1h | (v)de
t/2
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t

+ [(1 41 —1)~ V2EFUNTA2) | D=1 | (7)d
0
t

o A N [ SR 5 ) Yy ] ISR
0

+ ||D"“71||s_3_2k](r)dr}, 4.15)

where h and ¢ are given by (4.2). Set
M(t)= sup (1 + 7)l/2k+n+Q20) Dy — (7) lls— a4 24(7)- (4.16)
0=<t=t

First consider k = 0. Equation (4.15) becomes

~ t ~
JlU-U|,_,()= C{(l + 0 E+ [(1+t—1) 3 * | h—h| (r)de
0

/2 - t -
+ (A + =17 * |k pa(r)de + f (L +t—=1)7 4 bl a(r)de
0 t/2

t
+[(1+1—1) VRAM+AR) | D1 (2)de
0

+ ie""t”c[ll¢lls_4 + el g+ 1 IIS_3](1’)dT}. (4.17)

Integrating by part for h, we have
h—h = p(w) — p(it) — p'(@)(u — 1) + a(t) [guo) — g(@) — g'(@)(uo — )]

+ ga(t —1)[g'(u) — g'(@) Jv.(x, t)dx. (4.18)

It is easy to see that
|p(w) — p(@) — p'(@)(u — D) = C(lu —u| + |& — al)|u—il.
Therefore by Theorem 1.1 and Theorem 1.31), we have
[h=hll(t) S C{E(1 + )" Y*|u—ii| + e "E2 + EX1+1)"'}.  (4.19)
Similarly we also have

IRlL:(t) < CEX(1 + 1)~ 1/2,
I a0, [ Rl o), IR Il 5(8) < CEX(1 + )71,
ID~1¢ | (t) < Ce "°E,,. (4.20)

Substitute (4.19), (4.20) and (4.8) into (4.17),
1U = Ull,-ft) S C(1 + )" HAM+ANE 1+ B M8))}.
Therefore,
M) S C{E,, + E, , M1}
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We conclude that M(t) < CE_ , if E_, is small. Equation (1.23) is proved for k=0.
Prove (1.23) by induction for k > 1 Suppose (1.23) holds for k=0, 1,...,kq — 1,
where ko, = 1. Then by (4.18),

| D*o(h — B) || 4(2) < || p'(w)D*ou — p'(@)D*it — p'(i) [D*ou — D it ] .1(2)
ko—1

+C Y |ID'p'(u)D*~'u— D'p'(@)D*° || s
1=1

+ Ce™ "¢ D*°g(uo) — g'(@)D*uq || .

+ Cfe” 7€ D {[g'(u) — g'(@) ], } || a(r)d.
0

Take Taylor expansion of p'(u) around #. We see that the first term is
bounded by |[(p'(@i) — p'(@))(D*°u — D*°@l) || .. + C||(u — #)D*u| ., hence by
CEM, (t)(1 + 1) 12ko* UM+ D CE_ (1 + )7 12N+ D Here we have used
Theorem 1.3 1), (4.16), (1.23) with k = 0 and Theorem 1.1. Similarly using the induc-
tion hypothesis we can bound the other terms by CE_ (1 41)~ '/2# (/0% 1) Therefore

| D*o(h — B [ (t) < C{EM (£)(1 + 1)~ V2ot 0+ D L E (1 4 1)~ U2k (1in+ DY
(4.21)

By Theorem 1.1 and Theorem 1.31) we also have
D% R (e, DR Ry @) NPT Ry 5y (6) S CE(1 4 1) /2002,
4.22)

Substitute (4.19), (4.21), (4.20), (4.22) and (4.8) into (4.15),
ID*(U — O) [, 4 p4o(8) S C(1 4 )7 V20T UMTANE 1 EM, (1)}
Therefore
M, ()< C{E,, + E M, (t)}.
M, (t) £ CE,, if E, is small. Equation (1.23) is proved for k =k,. Q.E.D.
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