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Abstract. We consider a model of hyperbolic conservation laws with damping and
show that the solutions tend to those of a nonlinear parabolic equation time-
asymptotically. The hyperbolic model may be viewed as isentropic Euler
equations with friction term added to the momentum equation to model gas flow
through a porous media. In this case our result justifies Darcy's law time-
asymptotically. Our model may also be viewed as an elastic model with damping.

1. Introduction

Consider the following hyperbolic conservation laws with damping

vt — ux = Q,
(1.1)

ut + p(v)x= — otu, α>0, p'(v)<0.

The system may be viewed as isentropic Euler equations in the Lagrangian
coordinates with friction term — ocu for the momentum equation. Thus it models
the compressible flow through porous media. The commonly called porous media
equation is obtained by approximating the second equation with Darcy's law

Vt=—P(v)xx>
(1.2)

p(v)x=-au.

The purpose of this paper is to show that Darcy's law may be obtained from the
more complete equations (1.1) time-asymptotically. That is, solutions of (1.1) tend
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to those of (1.2) as the time t tends to infinity. In the Eulerian coordinates (1.1) and
(1.2) become

(QU\ + (ρu2 + p(ρ))x = -

p(ρ)x=-otρu.

In this formulation both systems become degenerate at vacuum ρ = 0. In [2] some
asymptotic analysis was carried out and particular solutions found which lead to
the conjecture that the two systems are time-asymptotically equivalent even with
vacuum. In the present paper we study the equivalence for the regular case away
from the vacuum. System (1.1) may also be viewed as an elastic model with
damping. It has been shown that the damping may prevent shock waves from
forming if the initial data is not too rough [4]. As stated earlier, our interest here is
not in the shock waves. Instead, we are interested in the diffusion effect the
damping creates. On the other hand, even with rough data, the shock waves
developed represent only transient phenomena and (1.2) would still model the
time-asymptotic behavior.

In the next section we discuss self-similar solutions for (1.2) which are time-
asymptotic states for general solutions. The decay estimates for such a solution will
be needed in Sect. 3 where we study the behavior of solutions of (1.1) using energy
estimates. We are interested in solutions of (1.1) which have limits at x= ± oo:

(u,v)(x,0)-^(u±,v±) as x->±oo. (1.3)

Denote by any solutions of (1.2) with the same end states as φc,0):

v(±w,t) = v±9 (1.4)

ΰ=-^p(v)x. (1.5)

Our result says that

\\v(x9t) — v(x + XQ9t)\\L2(t) + \\v(x9t) — v(x + xθ9t)\\Lσo(t) = O(l)ί~1/2,

as f->oo, (1.6)

where the translation x0 is chosen uniquely by

1 oϊ -( nv7 - u+~u-
-oo ' ' — α

Moreover, u^ΰm the following sense:
Take any smooth function m0(x) with compact support and

00

J w0(x)dx = l ; (1.8)!
— 00
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u(x, t) tends to ΰ(x, t) in the following sense:

ll^.^.^^^ll^^+II^.^.^^^II^^^OίlX-1/2,
\ ' )

u(x,t) = u.e~at+ J mt(η,t)dη, as ί-»oo.
-oo

In the special case ι;+ =r_ we set t? to be a multiple of the heat kernel:

ϋ=υ- + -7=e 4ί J v(y,Q)dy.
]/4πί - oo

If, further, we have w + = w _ , then w = 0. In the particular case that (u+,v+)

f t<
— oo

then we have ΰ=v = m = Q and our result and the energy method used are reduced
to those of [3]. The above choice of asymptotic states v(x + x0) and ΰ(x, t) + ύ(x, t) is
dictated by the conservation laws, cf. (3.6).

2. Nonlinear Diffusion Equation

It is clear that the nonlinear diffusion equation

τ f=— Pίτ),,, p'(τ)<0 (2.1)
α

is invariant under (x,ί)->(cx,c2ί), c>0. Therefore, it possesses solutions of the
form

τ*(x, ί) = flx/lί) = φ(ξ) , - oo < £ < oo .

We are interested in solutions which have limits at x= ± oo,

#±oo) = τ ± . (2.2)2

Plug (2.2)! into (2.1) and integrate to obtain, for any ξ0,

= φ(ξ0)+lφ'(η)dη.
ξo

It has been shown that (2.3) with boundary condition (2.2)2 has a unique solution
and that is strictly monotone [1]. We are also interested in the dissipative nature of
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the solution, particularly the convergence rate of Fτ* at x= ± GO and as ί— >oo. It
follows from the second equation in (2.3) and p'(τ)<0 that

for some c, C>0 independent of ξ. For fixed M>0 we have

1/C < φ'(ξ)/φ'(ξQ) < C , - M < ξ , £0 < M .

Since ^
J φ'(

—

we have from the above that

From this and the first and last equations in (2.3) we conclude that

\φ"(ξ)\ + \φ'(ξ)\ + \φ(ξ)-τ + \ξ>0 + \φ(ξ)-τ-\ξ<0^c\τ+-τ_\e-™s\ (2.4)

From (2.1), we have

τ*(x, t) = ~ φ'(ξ) , τ*(x, t}=~ ξφ'(ξ) , τ*x(x, t) = | φ'(ξ) ,

(2.5)

From (2.4) and (2.5) we have the following dissipative properties:

2Γ1'2, (2.6)

-τ_)2r3/2, (2.7)

r5'2. (2.8)

3. Asymptotic Behavior

We want to show that the asymptotic behavior described in (1.4)-(1.9) holds for
solutions of (1.1), (1.3). We set the solution v of (1.2), (1.4) to be

v(x9t) = τ*(x,t+l)9 τ±=υ±9 (3.1)

where we have avoided the singularity of τ*(x, ί) at t = 0 so that v satisfies (2.6)-{2.8)
with t replaced by t + 1 on the right-hand side. With m(x, t) given in (1 .8) we set, for
solution (u,v)(x,t) of (1.1), (1.3) and (ύ,ΰ) of (1.5) and (3.1),

u(x,ί)Ξu_e"α ί+ j mjη,t)dη, (3.2)
— CO

w(x, t) = φc, t) - v(x + x0> 0 - w(x, ί) , (3.3)

Z(X, ί) Ξ U(X, ί) — U(X + XQ, t) — W(X, ί) . (3.4)



Hyperbolic Conservation Laws with Damping 603

We have from (1.1) and (1.5) that

w — z = 0
(3.5)

zt + [p(w + v + m) — p(vj]x + ut + αz = 0 .

Set

(3.6)!
— oo

Note that from the conservation law vt — ux = Q in (1.1) and (1.7), (1.8)2,

Xoo,ί) = I wfa,ί)ώf = 0 = ;K-oo,ί), (3.6)2
— oo

and, from (1.1) and (3.5),

X X

yx = w, yt= S wt(η,t)dη= f zx(η,f)dη = z. (3.6)3

From (3.5) and (3.6)3 we obtain a single equation for y:

(3.7)

Our basic assumption on the initial data (w, v)(x, 0) of (1.1) is that it tends to(u+,v±)
sufficiently fast as x-> + oo so that

where HW(R) are the usual Sobolev space:

dkf
^ Σ dxk

 L2

We further assume that \u+—u-\ + \υ+—v-\is small so that

\u+-u_\ + \v+-v_\ + \\y(xM3+\\yt(xM2^ (3.8)

for some small δ. We will show that y(x9t) also satisfies the same smallness
condition as in (3.8). By the Sobolev lemma we have

Thus in the following energy estimate we will make the a-priori hypothesis

for some C independent of t. Multiply (3.7) by j; and integrate to obtain

oo Λ i 2 oo T oo

J J -
O - o o 0 - oo OC
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Since p' < 0, and ϋ satisfies (2.6)-(2.8) and that m satisfies (1.8), we have, for δ small,
that the above yields

oo T oo

J y2(x, T)dx + J J y2dxdt
— oo 0 — oo

Γ , «> , Γ w , Ί
= 0(1) £2 + j j;2(x, 7>bc+j J yfdxdtl. (3.10)

L -oo O - o o J

Here we have used the Cauchy-Schwarz inequality.
Multiply (3.7) by yt and integrate to obtain

j oo T oo T oo

- J y2dx\Q+ J J ay2dxdt— J J
O - o o O - o o

-f f -P(v)xtytdxdt = 0. (3.11)
o -oo α

Set yχ

ί(x, ί) = - f [p(ι/ + ϋ(x9 1)) -
o

yχ

-qt=Lp(yx+v)-p(v)~]yxt+ f O'
0

Since p; < 0 we have
^2 (3.12)

for some Cl9 C2>0. We have from above and (2.7), (2.8) for u that

T oo

- ί ί
0 - oo

= ] qdxβ+l J ΐ
- oo 0 - oo 0

= f ήfί/x|J+ J 0(ί)y2

xϋtdxdt
— o o O — o o

ί .
— oo — oo

Thus (3.11), the above and (1.8), (3.9) yield

oo T oo Γ oo

— oo 0 ~ o o 0 — GO

We have from this and (3.10) the basic estimate

- oo

ί (y2 + yί

2 + ̂ )(x,T)rfx+ί j (y2

x + yf)dxdt = 0(l)δ2, (3.13)

where we have used the smallness of δ.
Instead of integrating (3.7) yt over O^ί^Γ, -oo<x<oo,to obtain (3.11) we

integrate it over (ί, T) x (— oo, oo) to obtain

ί {-yϊ
- G 0 \ / / -

+ J
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We then integrate the above for O^ί^ T:

— oo \^ / O — o o |_^

+ }ds] ] ίO(ί)y2

xvt + 0(l)p(v
0 s - oo

= } J βrf + βldxΛ+f J tίO(ί)y

2

xvt + 0(ί)p(v)2

xt + 0(l)m2ldxdt.
O - o o L^ J O - o o

From the estimates (2.6H2.8), (3.1) for ΰ, (1.8) for m, and (3.12), (3.13) we have from
the above

T ί (y? + yΐ)(x,T)dx = 0(l)δ2.
— oo

This and (3.13) give rise to the basic decay estimate:

— oo

From (3.3), (3.4) and (3.6)3 this becomes

||(M — ΰ — ii)( , ί)llL 2+ IK^"v — m)( , ί)||L2 = 0(l)<5(f + l)~1 / 2.

Similar arguments as above we have, based on (3.8) and (3.9), that
l l - . / _ . ^ \ l l . l l - . / ^ _ ^\ II ^x /^t C

(3.15)

and the solution to (1.1), (1.2) exists. The decay estimate (3.15) can also be
generalized to higher derivatives. In particular, we have

||(M-fl-ώ)(χ,ί)||fll + ̂  (3.16)

From (3.16) we have from the Sobolev lemma the pointwise decay

sup(|M-M-ίί|(x,ί) + l^-^-m|(x,ί)) = 0(l)(5(ί + l)-1/2. (3.17)
X

This proves (1.6) and (1.9).
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