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Abstract. We study a certain family of Schrόdinger operators whose eigenfunc-
tions φ(x, λ) satisfy a differential equation in the spectral parameter λ of the form
B(λ, dλ)φ = Θ(x)φ. We show that the flows of a hierarchy of master symmetries for
KdV are tangent to the manifolds that compose the strata of this class of bispectral
potentials. This extends and complements a result of Duistermaat and Grϋnbaum
concerning a similar property for the Adler and Moser potentials and the flows of
the KdV hierarchy.

1. Introduction

The theory of solitons is still a source of surprises and unexpected connections.
The purpose of this article is to report another one of these connections. More
specifically, the link between a hierarchy of nonlinear evolution equations closely
related to the Korteweg-de Vries (KdV) equation and the bispectral problem, which
was introduced in [8]. This problem, for the Schrόdinger operator L= —d^ + u,
can be formulated as follows: When do the solutions φ(x,λ) of

Lφ = λφ (1)

also satisfy a differential equation in the spectral parameter λ of the form

Θ(x)φ, (2)

where B(λ, dλ) is a differential operator of positive order and Θ(x) is independent of
λΊ The solution to this problem, under very mild assumptions on u(x\ turns out to
be related to the theory of the KdV equation

(3)
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in a very peculiar form. As shown in [8], the bispectral potentials that are
bounded1 at x = oo can be divided into two classes according to the dimension of
the space of common solutions of Eqs. (1) and (2). This space can have dimension 1
or 2. If there exists a pair (B, Θ) such that this space is two-dimensional, we shall
say that the potential is a rank two bispectral potential. The remaining bispectral
potentials are called rank one. These last ones had been previously studied by
Adler, Airault, McKean, and Moser [1, 2] in a different context. They have the
remarkable property of remaining rational under the flows of the KdV hierarchy,
from which Eq. (3) is the first nontrivial example. Although the rank two bispectral
potentials were completely characterized via rational Darboux transformations in
[8], they have always been much more mysterious than its complement. One
reason is that the rank two potentials did not appear explicitly in any previous
work. Another one is the fact that, in general, they do not remain rational under the
flows of the KdV hierarchy. The main contribution of the present work is to
establish the invariance of the class of rank two bispectral potentials, and of
certain manifolds contained therein, by the flows of a hierarchy of nonlinear
evolution equations intimately related to KdV. This hierarchy has a number of
interesting properties, some of which we shall describe in Sect. 2. It is composed of
master symmetries [10] for the KdV hierarchy and it also appeared in the work of
Levi [20].

In order to describe our results in more detail we need to introduce another key
element in the picture. This element is the concept of rational Darboux
transformations. By a Darboux transformation we mean the process of construct-
ing from L=—dl + u and φekerL another operator L=—d2. + u such that

u = u-2dllogφ. (4)

This corresponds to factoring the operator L into A*A, where A and A* are first
order differential operators, and setting L = AA*. In Sect. 3 we present a more
detailed description of this important transformation that appeared in a number
of different contexts, [1, 5-7,21,25] to cite just a few. If the potentials u and u are
both rational functions of x, we call the corresponding Darboux transformation a
rational one. We remark that given a rational function w, it is extremely unlikely
that u will also be rational. Notwithstanding, this phenomenon appears through-
out the study of the bispectral problem. In fact, the potentials that stay rational by
the KdV flows can be characterized as the result of successive applications of
rational Darboux transformations to potentials of the form v(v —l)/x2, with
v e Z > 0 . The rank two classes can be obtained by the union of the set of potentials
of the form c/x2 with those constructed by rational Darboux transformations
applied to (I2 — l/4)/x2, with ZeZ > 0 . Since each time we apply Darboux a new
parameter is introduced we can look at the potentials resulting of n Darboux
transformations as an n-dimensional complex manifold. The following questions
arise naturally:

1. Is there some hierarchy of nonlinear evolution equations whose flows preserve
the rationality of the potentials in the rank two class?
2. If so, are the potentials in the orbit of such flows still bispectral?
3. Is this hierarchy related to some completely integrable system and can it be
described in terms of some recursion operator?
1 This restriction of boundedness at oo is actually immaterial here. If it is removed, the only
potentials that have to be added to the list are the ones of the form u(x) = ax + b [8]
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Our answers to these questions are in terms of a hierarchy evolution equations
defined via the recursion operator

(5)

which gives rise to the higher order KdV flows

Xjμ) = Nfrx. (6)

We start with

τo(u) = $xux + u (7)

and define

φ ) = Nίτo(W). (8)

The hierarchy {τj}jL0 answers the first and the second questions affirmatively, see
Sect. 4. The answer to the third question, which is also positive, is developed in
Sect. 2.

We present a few examples in order to illustrate the next sections and the
bispectral property. The most simple examples of bispectral potentials are those of
the form

«M=Λ, (9)
X

with c e C. It is easy to see that if we take Φ(z) a solution of

-Φ"+^Φ = Φ, (10)

and define

φ,λ) = Φ(xλ1'2), (11)

then

Lφ = λφ (12)

and

[ ] (13)
Since the function Φ is an arbitrary solution of (10), the space of common solutions
of (12) and (13) has dimension 2. Hence, c/x2 belongs to the rank two family of
bispectral potentials. It is easy to check that c/x2 is a stationary solution of δtu
= τo(w). The next example is given by

It was shown in [8] that the potential uί above is bispectral. It is obtained by
applying one Darboux transformation to uo = (l2 — l/4)/x2, as will be shown in
Sect. 3. A straightforward computation shows that
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and

Hence, τJ{u1) = 0 for j ^ l . In other words, the vector fields τp jeZ>0, are all
tangent to the one-dimensional manifold of potentials obtained by applying
Darboux to u0. Theorem 8 extends this result to an arbitrary number of Darboux
transformations.

The plan for this work is the following:
In Sect. 2 we develop the theory of the hierarchy of vector fields {τy}?L0. We

also describe the corresponding hierarchy associated to the mKdV equation. In
Sect. 3 we study the potentials un obtained by n Darboux transformations to
wo = (/2 —l/4)/x2. Such potentials depend on n parameters and form certain
n-dimensional manifolds, which we denote by Mn. In Sect. 4 we prove the main
result of this paper, namely, that the vector fields τj9 j = 0,1,..., are tangent to the
manifold Mn.

2. A Hierarchy of Master Symmetries Associated to KdV

2.1. Preliminaries

In this section we collect a few properties of hierarchies of nonlinear evolution
equations connected with the KdV equation

ut= -u^ + euji^Xάu). (14)

Our approach is geometric and based on recursion operators [22-24,29]. We look
at the right-hand side of this equation as a vector field defined on a vector space °U.
For our purposes it is convenient to take % to be a space of functions u(x) satisfying
the following two properties:

1. The function u(x) is holomorphic in an open sector S containing an
unbounded subinterval of the negative real axis. (The sector S depends on the
function u.)
2. The asymptotic behavior of u{x\ as x->αo, is2

= Θ\Jyj, xeS.

The usual space where the formalism of recursion operators is employed is a
space of rapidly decaying C00 functions on the line. Our choice of spaces is
motivated by the fact that we will be working with rational functions of x and with
functions that are rational in logx and x1/2. Henceforth, we choose a branch of the
logarithm with a cut coincident to the positive real axis.

We proceed with two important remarks. The first one is that we can write

def

where X0(u) = ux, and Nu is a linear map, depending o n w e t , defined by

Kψ =~dlw + 4uψ + 2uxd; V
2 Throughout this paper, as usual, f(x) = Θ(g(x)), x^a, means that f(x)/g(x) is bounded near to a
for xeS
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for ψeW. Here, by d~ι\p we mean

X

3* V = Sψ{s)ds,

where the path of integration connecting oo to x lies in S. Notice that, since i
we have that ux = Θ(l/x3) and d~ ιu = Θ(l/x) for x in any subsector whose rays are
in the interior of S. The proof of this is a straightforward adaptation of Theorems
8.7 and 8.8, Chap. 3, of [31]. We shall now state some properties of Nw considered
as a tensor field of type (1,1) on $11. For a pair of constant vector fields φ and ψm^
and an arbitrary vector field X(u) we define the directional derivatives

def d r

XJφ) = -7-A i
dε

and

x def d Ί

For NM we have explicitly

Nu(φ; ψ) = 4φψ + 2ψJ5~ιφ. (16)

The Nijenhuis torsion of Nu is the vector valued 2-form given by

ΊJtφ, ψ) = K(Ψ, Nttφ) - N'Jtφ, Nuφ) + NttN;(φ, ψ) - NuNu(ψ, φ). (17)

Notice that TM is skew-symmetric in (φ, ψ). In fact, Eq. (17) is a particular case of a
more general definition of the Nijenhuis torsion [9] of a tensor of type (1,1) on a
manifold. If X and Y are vector fields on this manifold and G is a tensor field of
type (1,1), the torsion of G is a vector valued 2-form defined by

ΎU(X, Y)d= IGX, GY] - G[X, G7] - G[_GX, 7] + G2[_X, 7 ] , (18)

where the bracket [ , ] denotes the vector field commutator [3, 16, 18]

-x'j{u). (19)

If the manifold is also a vector space we can consider the constant vector fields
given by X(u) = φ and Y(u) = ψ, where φ and ψ are fixed elements of the underlying
vector space. By using Eq. (19) it is easy to obtain Eq. (17) from (18). It is also easy
to verify that for Nw given by (15), the torsion

TM(φ,φ) = 0.

Since the torsion is a tensorial quantity it also vanishes for arbitrary vector fields,
provided that we use now Eq. (18) to compute it. Recall that the Lie derivative of
the (1,1) tensor NM along the vector field X(u) is a tensor field of the same type
defined by

^ ( N > = N^(φ; X) + NuX'uφ-X'uNuφ.

The second important remark is that for NM given by (15) and X0(u) = ux, we
have that
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So, we can say that Xo is an infinitesimal symmetry of Ntt.
The consequence of the two remarks above is the following: The iterated vector

fields

satisfy [X,,XJ = 0.
The vector fields Xj generate the higher order KdV flows [29, 23, 24]

These flows can also be obtained via the Lax pair formalism [19] and by fractional
powers of differential operators. See [12,13, 30] and references therein for a more
comprehensive list of references on such approaches.

2.2. Master Symmetries

We shall now construct, from our point of view, a hierarchy of master symmetries
for the KdV equation. The concept of master symmetries was introduced by
Fuchssteiner and was applied to a number of important examples such as the
Benjamin-Ono equation and the K.P. hierarchy [10, 11, 27, 28].

Consider the vector field

If we compute the Lie derivative of NM, with respect to τ0, we find

^τo(Nu) = N1(. (20)

Leibniz rule gives

(21)

Due to Eq. (20), by analogy with the definition of a conformal symmetry of a
Riemannian metric, it seems natural to call τ 0 a conformal symmetry of NM. Let's
now consider the hierarchy {τJJLo obtained by defining

The vector fields τj9 for ^O, do not commute with one another, since τ 0 is not a
symmetry of NM. However, they do verify the following remarkable commutation
relation

lτPτJ=(l-J)τj+ι, (22)

as will be shown below. The reader familiar with Virasoro algebras will recognize
Eq. (22) as defining a Virasoro algebra of zero central charge.

To prove Eq. (22) we start by remarking that such objects are well defined in the
space %, since τ o ( ^ ) C ^ and N u (^)c^ . Secondly, we prove that the vanishing of
the torsion of Ntt yields

(23)

and hence

£ (24)
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Indeed, from the vanishing of the torsion and by Leibniz rule

0 = [N u X > N l i y]-N u [N B X, y ] - N u [ X , N u y ] + Nu

2[X, Y]

Now, we compute

From Eqs. (24) and (21) we get

[T,, τ J = Ni^τo(N'u)τ0 - NJ :S?τo(Nί)τo

=(/-;>,+,.

The first two nonlinear master symmetry fields constructed above are given by

() (

(M) = I (w5jc - 10MM3X - 1 8 w Λ j c + 24iι2ιι J + 3u4x - u3xdx

 ιu

- 24uuxx -15ul + ux(4ud~ 1u + 23 ~ ̂ (w)) + 1 6M3 .

In order to fully appreciate the power of the remark that the torsion of NM vanishes,
the reader should try to prove Eq. (22) for O^lJ^l directly!

The master symmetry vector fields defined above are deeply connected to the
KdV flows. To show this we first compute the commutator of Xo and τ 0 , which

(25)

Thus, by repeating the argument given above for [τj9 τJ we find that

M (26)
(27)

Xo) (28)

(29)

(30)

=(-j-toX,+J. (31)
In going from Eq. (29) to (30) we used Eqs. (21) and (25). The conclusion from
Eq. (31) is that the master symmetry fields can be used to generate, via
commutators, the fields in the KdV hierarchy. We summarize the results thus far in
the following:3

3 Proposition 1 is part of a more general theory of master symmetries. See [4, 26] and refer-
ences therein



336 J. P. Zubelli and F. Magri

Proposition 1. The hierarchy {τj}jL0 satisfies

ίτj,τι]=(l-j)τj+ι

and

23. Transformation Properties

We shall now consider the relation of the KdV hierarchy with the mKdV one. It is
well known that the Miura map

u = F(v)d=v2 + υx (32)

is a transformation that maps solutions of the mKdV equation

2 a (33)

into solutions of the KdV equation (14). We shall look at (33) as a vector field in the
space if of holomorphic functions defined in a sector near oo, around the negative
real axis, and with asymptotic behavior of the form Θ(l/x). We remark that the
Miura map v\-^F(v) is a point transformation from Y into ύlί. Its directional
derivative is given by

F'vv = x

The corresponding transformation law for vector fields is

(v)) = F'v.Y(v).

In particular, the vector fields X1 and Yί defined above are F-related. Next, we
exhibit a torsionless tensor field of type (1,1) on "Γ, which is F-related to the tensor
NM defined in Eq. (15). It is given by the following linear map:

Mv: ψ h-> Mvψ
 d= dx{ - dxψ + 4vd~ ι(vψ)).

Remark that if v and ψ are in TΓ, SO is Mvψ. One can easily check that, for u = F(v\

N F' = F M

Consequently, the torsion of M, and NM are F-related. A straightforward
computation gives that the torsion pf Mυ vanishes. We also remark that if we
define the vector fields Yo and σ0 by

and

σo(v)=2(xv)x>

then Yo and σ0 are F-related to Xo and τ0, respectively. Once again, 70 is a
symmetry of M„ and σ0 is a conformal symmetry of Mv. The mKdV hierarchy is
obtained by
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and the associated master symmetry hierarchy by

σj = Mίσ 0.

Obviously, these hierarchies are also F-related to the corresponding ones in the
"KdV domain" and satisfy equations similar to (22) and (25). We close this section
by calling attention to the fact that M ^ = M_vψ. This will play an important role
in the final steps of the proof of Theorem 8.

3. Darboux Transformations and Families of Bispectral Potentials

3.1. Outline of this Section and Preliminary Remarks

The first goal of this section is to describe the potentials un obtained by n successive
applications of the Darboux transformations to

L0=-d2

x + u0, (34)

where u0 = (I2 — 1 /4)/x2 and / e Z > 0 . As we shall see, each Darboux transformation
introduces a new complex parameter in the resulting potential. By introducing
such parameters in a suitable way we shall construct an n-dimensional complex
manifold Mπ, given by4

If n ̂  /, then un is a rational function of x. It is a consequence of [8] that there exists
a differential operator B(k, dk) and a function Θ(x) such that the space of com-
mon solutions of

k2φ (35)

and

B(k,dk)φ = Θ(x)φ (36)

has dimension 2. Furthermore, any rank two bispectral potential, modulo
translation and addition of a constant, belongs to the union of (J (J Mn ι

l>OO^n^l

with the set of potentials of the form c/x2 and ax + b, where α, b, and c are
arbitrary constants [8].

This section was influenced by the exposition in [32], which unfortunately was
not made available to a larger audience. This brings in the second goal of this
section, which is to extend the construction of the manifolds Mn ιfoτn> I. This was
not done in [32]. For such values of n, Mnl has elements that are not rational
anymore. However, we shall prove the peculiar fact that the potentials in this case
are rational functions in x1/2 and logx. Since, as shown in [8], the bispectral
potentials are always rational functions of x9 for n>l the manifolds Mnl are not
composed of bispectral potentials anymore. The interesting fact is that the
tangency result of Sect. 4 remains in this case.

4 Strictly speaking un and Mn are also dependent on /, and we should write MΠ t and Mn z. However,
we will do this only when it is unavoidable
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The plan for this section is the following:
In Sect. 3.2 we give the general description of applying n Darboux transfor-

mations to MO = (/2 — ί/4)/x2. In this paragraph this is done without specifying
the choices of the element in keτLn_ι at the nth step. This construction is com-
pleted in Sect. 3.4 with the help of the concept of dominant and recessive
solutions. In Sect. 3.3 we collect a few general facts about the intertwining operator
Un such that LnUn=UnL0. In Sect. 3.5 we prove some results about the functions
vn, which are related to un via the Miura map.

3.2. The Construction

We shall first establish some terminology. In what follows, A will denote the first-
order differential operator

A = dx-v (37)

and A* its formal adjoint

A*=-dx-υ. (38)

If we take

v=x!/χ, (39)

where χ is a solution of

then

L = A*A. (40)

We remark that the relation between v and u here is given by the Miura map
u = v2 + vx. We start from Lo as in Eq. (34), and χ0 a nonzero element in kerL0. This
gives a factorization

LQ=AQAQ

with A09 Aξ, and υ as in Eqs. (37), (38), and (39). Take

T f A A*

A simple computation shows that Lγ = — dl + ul9 with

Suppose we have found pairs (χo,Lo), ...,(χπ_2 ?Lw_2) such that

Lj=AfAj, for 0^j^n-2, (41)

and

Lj^Aj.^f-^ for 0<j£n-ί. (42)

We take χ ^ e k e r L ^ Λ W , set

Λ,- i= f d*-^- i> (43)

ϋ Λ -i^χ;- i/χ»-i , (44)
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and

Lnt f^_^*-i. (45)

Notice that our choice of χn _ t e ker Ln _ x gives Ln _ γ = A*_ γAn _ γ. We can illustrate
this process via the following diagram:

We define a sequence of operators {Un}™=0 as follows:

and, for n>0,

U^A^.U,.,. (46)

The operator Ln is related to Lo by means of [/„,

LnUn = UnL0. (47)

So, £/„ intertwines the operators Ln and Lo. We remark that this formalism follows
very closely that of [1], which starts from — d2

x and generates the potentials in the
manifold of rational solutions of KdV.

The attentive reader might have noticed that the previous construction of Ln is
not complete if we do not have a mechanism for generating the elements in the
kernel of Ln_1. Fortunately, such mechanism is given by the formula

ί X2

n-2(s)ds, (48)
Xn-2 Xn-2

where χπ_ 2ekerLM_ 2 . The proof of this is elementary. Indeed, from
LΠ_1=AW_2^4*_2 it follows that l/χ π _ 2 ekerL π _ 2 . Equation (48) is just the
requirement that the Wronskian of χn.1 and l/χM_2 be a constant.

Since

(49)
Xn-1

and

un = v^ί-vf

n.1, (50)

it follows that each step of the Darboux method introduces a new parameter,
which is essentially the ratio β/cc in Eq. (48). In the forthcoming construction,
instead of using (48) we shall actually exhibit elements in the kernel of Ln_γ.
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3.3. A Few Facts

Let U* be the formal adjoint of the operator Un defined in (46). Then, we have the
following elementary fact

Lemma 2. For n^O,

Ln

0 = UΪUn (51)

and

Ln

n=UnU*. (52)

Proof. We first prove (52) by induction. Suppose that

then

= UnU*.
n

To prove (51), Eq. (47) implies that Ln

nUn = UnL
n

0, and hence UnU*Un = UnL
n

n. But
since Un is a monic differential operator and the cancellation law holds for such
operators [17], it follows that U*Un = Ln

0. Q.E.D.

Lemma 2 implies that the process of applying n Darboux transformations leads
to a factorization of Ln

0. It also implies that ker Un C kerLo From Eq. (47) it follows
that ker Un is invariant by Lo, and in fact is nilpotent of degree less than n in this
space. Our next step is to construct kerLo by exhibiting sequences {ψfYjZo of
functions satisfying

Loψt=ψf-i (53)

with

For j ^ I, the trick lies in noticing that [32]

We define μ$ = 1 and

μf = X μf_ x, (54)

for 1 <^j^/-I. Thus, we have that

1 O ± d— ,,± y.2j±l+l/2 /cc\
Ύ j Γ*/ ^ ? W /

satisfies Eq. (53) for ' ^ / - 1 . To extend this for y'^ / we have to look at the " + " and
the " — " cases separately. In the " + " case, Eqs. (54) and (55) can be used to define
ψf for every j ^ 1. To extend the definition of \pj\ for j^l, first we define oct and βt
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recursively by setting α0 = μj~_ J{ — 21), β0 = 0, and for i ̂  1:

Second, we take, for i ̂  0,

It is easy to check that

Using Eqs. (53) and (56), it is straightforward to show that {ψ^ΐZo i s a basis for
kerL"0.

3.4. Dominant and Recessive Solutions

We shall next recall the concept of dominant and recessive solutions, which was
crucial in [8] to construct the bispectral potentials of rank two. It was shown
therein that if we apply n^l Darboux transformations to Lo, the resulting
potential is such that the differential equation

= 0, (57)

has a regular singular point at x = 0. Furthermore,

as x->0, for some ρ eZ^o. In this situation, the two roots of the indicial equation
differ by an integer, and the Frobenius series representing the solutions of (57)
might require logarithmic terms. In any case, (57) always admits one solution of
the form φ_ =x ρ + 1 / 2 ( l +Θ(x))9 as x->0, which is uniquely determined by this
asymptotic behavior. Any nonzero multiple of this solution is called recessive. On
the other hand, any other linearly independent solution is called dominant. In this
case, however, the solution is not uniquely determined by its leading behavior,
since adding cφ_ to a dominant solution does not alter this leading behavior.

The manifold Mn will be constructed by applying n successive Darboux
transformations to Lo, using at each step a dominant eigenfunction for the
eigenvalue zero. Before completing such a construction, we still need a few general
facts about differential operators.

The intertwining operator Un of Eq. (46) is monic and therefore can be written
as [17]

{ φ }
LnUn = UnL0, we obtain that
where span{φu...,φn}=kQrUn. If we compare both sides of the equation

bi h

= u0-2d2

x\ogWn, (59)



342 J. P. Zubelli and F. Magri

where Wn=W[φ1,...,φn]. The facts that φ ekerl^CkerLJ, as we showed in
Lemma 2, and that

imply that Wn is a polynomial in x1/2 and in logx. Hence, the asymptotic behavior
of un in a sector near x — oo is

) , (60)

and unε<%. This remark is important because we want to be able to apply to un
X

nonlocal operators involving J.
00

We are ready now to define the manifold Mn by induction. It will be
parametrized by5 the n-tuple (ί0,...,£„_!) eCπ. We start with

Xo = Uo(ψo + toVo) = Ψo + *oVo > (61)

which is obviously in kerL0. The operators Ao, Ul9 and Lγ are defined as in Eqs.
(43), (45), and (46), with n = 1.

Suppose that Aj9 χp Up and L} have been defined as in Eqs. (37), (38), (39), (41),
and (42) with Xj = UfxpJ + toψf +. . . + tjψo)ekerL,. for 0 ^ j ' ^ n - 2 . We take

\ Xn-2

and

def , .
V . = [7 Jt/λ, ! + ί Λ t p J " 1 + . . . + ί itPπ ) .
Λn — l n — I V T Π — i • KJTΪI — l • ' n — i i u /

Now, we claim that χn-ιeLn_1. Indeed, first we note that

Second, we remark that

But since L0\pf+ ι = φf9 we have that the right-hand side of the previous equation
is

= K~2ln-2 =0 . (63)

Putting Eqs. (62) and (63) together it follows that

^ - i Z n - i = 0 . (64)

The next goal is to show that if O^n^Z, then at x = 0, l/π-i(ψo) is recessive and
Un _! (ip ~_! + toψn-1 + + tn - 2Ψ ΐ) is dominant. The proof of this will be based on
two lemmas.

The use of the variables tj9 j^O, is due to Wright [32]
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Lemma 3. // χ and f are holomorphic in an open sector S near x = 0, with
asymptotics

χ=x\\ + Θ(x)) (65)

and

f=x»(ί + Θ(x)), (66)

then, for x in a subsector of S,

. (67)

The proof of this lemma is a straightforward computation. We also note that if
/J=t=y, then Eq. (67) can be rewritten as

) . (68)

We are now ready to show:

Lemm4. Let

ΨΪΛ=V^o) (69)

and

Ψj =f VftpJ + ίov/ + + tj- i^i+) (70)

If 0^j^l—ί, then φf is recessive and φj is dominant at x = 0.

Proof We shall first show by induction that

for O^j^l—1, where γj=j—l+ί/2 and λjή=O. Indeed, for ; = 0 this property is
obviously satisfied. Suppose it is true up to j—1, let's prove it for j . But if we recall
that

χj=UJ{ψJ+toψt+...+tjψ+),

we get

χj^Aj^... Λ0(/ι7x2

Using Lemma 4,

Λj Λj-lvx A.j-2rx '"AO^x \t*j

Xj-i Xj-2 Xo

where

h= Π(2/-2i + 2)Φ0.

Therefore, χj=λjXγj(l + ̂ (x)), with γj and A7 as above. A similar computation with
φ/ = l//ψj) gives

j

φ+=2jγ\(l-ί-
ί = l

Hence, for O^j^l— 1, U/xpo) is recessive and ψj =χj—tjφf is dominant at
x = 0. Q.E.D.
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The consequence of the previous lemma is that for 0 ̂  j^I the potential Uj was
obtained from wo = (/2 —l/4)/x2 using at the j t h Darboux transformation a
dominant element in the kernel of L^γ.

If we try to apply more than / Darboux transformations to u0 = (I2 — l/4)/x2 we
have to introduce logarithmic terms in the functions xpf. The corresponding
potentials cease to be rational and the asymptotics of the eigenfunctions get a little
bit more complicated. However, the construction described above can be
continued for arbitrary values of n. The only point that needs to be verified is that
φf = UJ{ΨQ) and φj = Uj(\p]~ + to\pf +. . . + ί, _ ^ l ) are linearly independent.
This guarantees that at this step we are obtaining a generic element in the kernel of
Lj_ 1. The following lemma provides a general proof of this fact and an alternative
one for j<l.

Lemma 5. For every j^O, φf and φj, as defined in Eqs. (69) and (70), are linearly
independent.

Proof. If j = 0, this is immediate since Uo = 1 and (̂ o1 = ipo Let's assume that 7^1.
If aφj + βφf =0, then

<*(ΨΪ + hψt + + h-1^i+) + βψo e k e r u j

From Eq. (58) we have that kerUj = span{φ0,..., φj_ J , with φt = ψ^~ + toψ+ +...
£. But Loφo = 0 and Loφi = φί^1 for ί^l. So, if we write

*Σ

where β^eC, and apply Lj

0 to both sides we get aψo-0. Hence, α = 0. Since
ψo £kert/./ f o r 7>°5 & follows that φf φO, which implies that β = 0. Q.E.D.

The statements 1 and 2 of the next proposition summarize the results so far. The
results 3 and 4 can be found in [8, 32].

Proposition 6. The potential un obtained by the preceding construction has the
following properties:

1. We can write for any n

I2 —1/4
un= ^ _ 2 < 5 2 l o g W ; (71)

with

(72)

2. The asymptotic behavior ofunatx=oo, in a sector of angle smaller than 2π near
to infinity, is un = Θ{\/x2).
3. (Duistermaat and Grunbaum [8]̂ ) For 0<nSL the manifold

Mn

d={un( ;to,...,tn-1)\(to,...,tn-1)eCn}

is composed of rank 2 bispectral potentials.
4. (Wright [32]j For 0<n^l,the most general potential obtained by a sequence of
n Darboux transformations using at the j t h step, Q<j^n, a dominant element in

j-i belongs to Mn.
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3.5. The mKdV Fields

We shall now collect a few facts about the function vn9 which is given by

(73)

Since χn satisfies Lnχn = 0, it follows that

un = vl + υ'n. (74)

It is also easy to check that

The function υH can be written explicitly as

' wiφn-1,...,φ0]

(75)

We note that the field vn depends on n + 1 variables t0,..., tn9 and not n as un. In the
next section the following lemma will play an important role:

Lemma 7. For every n ^ 1, there exists c π φ 0 , independent of x, such that

Oln Xn-ί

Proof. From the definition of χn we have that

We claim that UJίψ^ekeτA*-^ Indeed,

= 0.

But, ker>l*_ 1 =span{l/χ π _ 1 } . For n^l, since the function C/π(ψo) has nonzero
asymptotics as x-+0, it follows that 3cn e C\{0} such that (76) holds. This constant
cπ can be computed explicitly using the techniques of Lemmas 3 and 4. For n> I,
the fact that cnή=0 follows from the fact that ψo φkeτUj. Q.E.D.

4. The Tangency Property

In this section we shall show that the vector fields τj9 y'^0, are tangent to the
manifold Mn of potentials obtained by n successive applications of Darboux to
u o = (/2 —l/4)/x2. Our proof follows closely an ingenious argument of Adler and
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Moser [1], which was used to prove the tangency of the higher order KdV vector
fields to the manifolds of rational solutions of KdV. The key element in this proof
is the relation among the KdV flows, the mKdV flows, the Miura map and the
Darboux transformation.

Theorem 8. The vector fields τp defined by

τo(u) = %xux + u

and

are tangent to the manifold Mn.

Proof, We shall show by induction on n that τj(un) is a linear combination of
dujdtk9 with 0 ^ / c ^ n - l . For n = 0 this is trivial, since uo = (/2-l/4)/x2, and
T O ( W O ) = 0 , which implies that τ/wo)=0, for y^O. Suppose that we have established
the existence of coefficients yjjjitθ9...9tn-.1)9 independent of x (but possibly
depending on ή) such that

»-i Q

Φn)= Σ yjkTΓU*-
k = 0 Utk

Since un is related to vn via the Miura map F(v) = v2 + vX9 we have that

(2υH + dx)Gfvn) = τ/iij = \ yjk j - un.
fc = O Otk

Here, σj is the / h master symmetry field associated to the mKdV hierarchy as
defined in Sect. 2. But,

and hence

n - l S

Therefore,

Now, ker(δx + 2ι?w) is 1-dimensional and generated by \/χl because of Eq. (73).
Therefore, we can write

where the constant β is independent of x. Our next task is to rewrite the right-hand
side of (77) as yjndvjdtn. In order to do that we compute

θ d d , 3 / 1 3 "
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Using Lemma 7 we get that

d_ d fί 1 \

dtm

υ"-C"dx\χnχΛ-1)'

for some nonzero cn. Hence,

τΓVn = Cn-2 WίXn> Xn-ll
Oln An

We recall from the previous section that χn and χ~}1 are linearly independent
solutions of Lnφ = 0. Therefore, the Wronskian W[χn, χ ~-\] is a nonzero constant
independent of x. So we can write

(78)

where γjn is also independent of x. Equations (77) and (78) give that
n d

We conclude using that un+1=v* — v'n and that Mv is invariant by reflections
v ι-> — v. Therefore,

=(2vn-dx) Σ yjk^-vn
k = 0 Ctk

= J o ^ έ u " + i Q E D

Remarks. 1. The Darboux transformation that sends un\-^u = un+1, changes the
sequence γjk as follows:

r 7jk f° r O ^ k ^ n — 1,

-ŷ  = J function of (ί0 ... tn) for k = n,

l θ for

2. We can construct a family of rational solutions of the master symmetry fields by
solving equations of the form:

dtk

for 0 ̂  k S n. However, since the master symmetry flows do not commute with one
another, we cannot expect to be able to find new time variables s0,..., sn such that

as in the case of the KdV hierarchy [1]. Indeed, we can check that such variables
do not exist in a few examples.



348 J. P. Zubelli and F. Magri

3. It is not hard to adapt the reasoning in the proof of Theorem 8 to the case of u0

of the form v(v — ί)/x2 for v a natural number. The manifolds generated by
successive applications of Darboux to such potentials are composed of Adler-
Moser potentials. Therefore, the master symmetries are also tangent to the
manifolds of rational solutions of KdV that decay at infinity. Now, the manifolds
of Adler-Moser potentials are contained in the class of bispectral potentials [8].
When the latter manifolds are united with the manifolds Mn>ι, for 0^n</, they
exhaust, modulo translation, the class of bispectral potentials that decay at infinity
[8]. Therefore, the master symmetries of KdV are tangent to all the manifolds that
satisfy the class of bispectral potentials decaying at infinity.

The results obtained above can be translated in the "mKdV domain." We define
the manifold M'n by

M'n = {vn(.;t0,...,tn)\(t0,...,tn)eCn+1}.

One simple consequence of the proof of Theorem 8 is:

Corollary 9. The vector fields σj9 defined by

and

are tangent to the manifold M'n.

We conclude this section with a small digression on the matrix case of the
bispectral problem. In [33, 34] the bispectral problem was introduced for matrix
differential operators. The question is analogous to the one formulated in Sect. 1,
except that one now allows the operator B(λ, dλ) to have matrix coefficients, and
requires its leading order coefficient to be nonsingular. The remark is that the
matrix differential operator

L _ Γ o dx+vnl

possesses the bispectral property. The case n = \ was proved in [34] as a
consequence of a more general result for matrix differential operators. The case of
arbitrary n can be obtained as a consequence of the results in [8]. Details will
appear elsewhere.

5. Final Remarks

The main motivation for the present work was to understand the results of [8] in
terms of hierarchies of nonlinear evolution equations. This can also be looked
upon as part of a long term program of attacking the bispectral problem in the case
where L is a matrix differential operator or a scalar differential operator of order
greater than two. Some initial steps have been done in this direction in related
works [14, 33-35]. We believe that similar results to the ones described here
concerning the hierarchy of master symmetries of KdV should also hold in the
higher order case. We are currently pursuing some of these avenues.
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We close with some general remarks:
It is interesting to note that if one looks at the bispectral problem as stated in

Sect. 1, one very trivial symmetry appears: If u(x) is bispectral, then so is u(x + x0).
In other words, X0(u) = ux is the infinitesimal generator of a one-parameter group
of symmetries for the class of bispectral potentials. Another symmetry, which is
not so obvious is the following: If u(x) is bispectral, then so is the potential t2u(xt)
for any value of t. This transformation is induced by a change of scale in the
Schrodinger operator, namely x \-> tx. It turns out that the infinitesimal generator
of the one-parameter group of symmetries

S{t):u{x)v-*t2u{xt)

is exactly 2τo(u) = xux + 2u. To check this just differentiate S(t)u at ί = l . The
remarkable fact, which certainly deserves further investigation, is that the
hierarchies of vector fields obtained by applying the Nijenhuis tensor NM to τ 0 and
to Xo are deeply connected to the bispectral problem. As we showed in this paper
the elements in the hierarchy {t/J^o a r e tangent to the manifolds of rank two
bispectral potentials. This, added to the earlier result of Duistermaat and
Grunbaum [8], which says that the manifolds of rational solutions of the KdV
hierarchy {Xj}j^o a r e a l s o bispectral, indicates that there should be some more
general theory lurking in the background of the results in [8, 14, 33-35].

Another remark of interest is that the tangency result of Sect. 4 also holds for
the manifolds of rational solutions of KdV. In other words, the manifolds of
rational solutions of KdV are also invariant by the flows of the master symmetry
hierarchy {TJ}J^0. The proof of this follows the same lines of the proof in Sect. 4.
This yields the following picture:

Rank 1 Case

Fig. 1. The vector fields in the master symmetry hierarchy are tangent to both the rank 1 and rank
2 bispectral potentials. The vector fields in the KdV hierarchy are tangent only to rank 1 bispectral
potentials

In [15] a differential equation was found, which is very similar to ut — τγ(u). It
works for the potentials obtained by applying Darboux once to u0 = 3/4x2. The
coefficients of this equation, however, do not seem to be the appropriate ones for
the constructions of the whole hierarchy by means of a recursion operator.
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