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Abstract. We study an adiabatic invariant for the time-dependent Schrδdinger
equation which gives the transition probability across a gap from time t' to time
t. When the hamiltonian depends analytically on time, and t' = — oo, t = + oo we
give sufficient conditions so that this adiabatic invariant tends to zero exponentially
fast in the adiabatic limit.

1. Introduction

Let H(t\ feR, be a self-adjoint operator on a Hubert space Jf. We study the
time-dependent Schrδdinger equation in the adiabatic limit, i.e.

^φ(t) H(t)φ(t\ teR (1.1)
ot

when ε->0. The self-adjoint operator H(t) satisfies three conditions.

/. Self-Adjointness and Analyticity. There exists a band Sa in the complex plane,
Sa = {t + ίs:\s\ < α}, and a dense domain D c j f such that for each zeSa,H(z) is
a closed operator defined on D,H(z)φ is holomorphic on Sa for each φeD and
H(z)* = H(z). Moreover we suppose that H(t) is bounded from below for ίeR.

//. Behaviour at Infinity. There exist two self-adjoint operators H+ and H " ,
bounded from below and defined on D, two positive constants C and α such that
for all φeD and | ί | large enough

sup \\(H(t +is)-H + ) φ \ \ ^ C , u

|s|<β (I + IH)
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and

sup \\(H(t +is)-H~)φ\\^ ,C

u + α(ilφll + ll/f-φH)? ί<0.
U + I )

///. Separation of the Spectrum. There exist two C^-functions e^t) and e2(ή and
a positive constant δ* such that for all ίeR, e2(t) — e^t) ^ δ* and the closed interval
[e1{t\e1(t)~] belongs to the resolvent set of H(ή. We also suppose that
lim ei{t) = e^ i = 1,2 and | i | 1 + a M i ) - e f I, | ί | 1 + β | e j( t) | , for i = 1,2 are uniformly

f-> ± oo

bounded on 1R.
Condition III implies that the spectrum σ(t) of H(t) is separated into two parts

σx(ί) and σ2(t) such that σx(ί) c ( - oo, et(t)) and σ2(ί) c (e2(ί), oo). By choosing the
width of the band small enough, we can assume that the spectrum of H(z) is also
separated into σ^z) and σ2(z)9σί(z) being a bounded subset. Let Pγ{z) and P2(z)
be the corresponding spectral projectors. These projectors provide a smooth
decomposition of the Hubert space

) (1.2)

γ{z) is not orthogonal to Jf2(z) if ^ )
If we put t = εs then Eq. (1.1) is equivalent to

l (1.3)

and thus we are considering a time-dependent Quantum Mechanical system with
a slowly varying Hamiltonian. A very simple but important example is a spin-1/2
in a slowly varying time-dependent magnetic field. In that case H(s) is simply a
2 x 2 self-adjoint traceless matrix. Condition III means here that the two eigenvalues
of H(s) do not cross. We can also think of the family iί(ί),ίelR as a smooth
interpolating family of Hamiltonians between H(—) and H( + ). For example
H(-) = H0, a self-adjoint operator, and H( + ) = H0 + V with V a symmetric
operator which is //0-bounded with H0-bound smaller than 1. In this case we can
choose

H(t) = Ho + i(tanh t + ί)V. (1.4)

The main purpose of the paper is to study the following problem. Let φε(t) be
a normalized solution of

ίεyφ(t) = H(t)φ(tl φ{t') = φ*eD. (1.5)
ot

We choose the initial condition φ*eDnJf 1 ( ί ' ) and we estimate the probability
H^WφβWII2 t 0 find the system in the spectral subspace Jf 2(0 by a measurement
made at time t. It is convenient to introduce

^ 2 1 ( ί , O = sup{| |P2(ί)φ ε(ί)ll2 |φ ε( ) is a solution of (1.1)

with || φB(f) || = 1 and || PMφtf) II = 1} (1.6)

The Adiabatic Theorem of Quantum Mechanics implies that

^ 2 1 (r , ί ' ) = O(ε2) (1.7)
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uniformly in t and t' (see Theorem (3.1)). (To prove this result it is sufficient that

H(t) is strongly C2 on D and that —H(ή tends to zero at infinity as in condition

III for fc= 1,2.) Result (1.7) shows that ^ 2 1 ( ί , ί ' ) is an adiabatic invariant for the
Eq. (1.1). If H(t) is analytic we can prove a much stronger result when we take
the limits t! -» — oo and ί-» oo. Let

lim \\P2{t)φε(t)\\ \φε{') is a solution of (1.1)

with | |φ e(ί)| | = 1 and lim ||P1(f)φ,(ί)|| = 1 1 (1.8)
r-> - o o

Theorem 1.1. Let H(z) be an operator satisfying conditions /, // and III. Then there
exist positive constants K and M such that for small enough ε

A similar result holds if we exchange the role of Px and P 2:

^ ( g 2 ( ^ ) " g l ( θ θ ) ) Y
V ε J

Remarks.
i) The constant K depends in particular on the choice of the functions e^t).

The distance between e^t) and σx(ί) is larger than some positive δ* for all ί.
Similarly e2{t) is at a distance at least δ% from σ2(t). If we decrease (5* and δ*, then
we can increase e2(oo) —^(oo). However K decreases.

ii) It is essential that we take the limits t -• + oo, otherwise the theorem is not
true. The analyticity property is also essential, at least in our proof, since we use
a complex time. Notice that all derivatives of Pk(t) vanish at infinity as a
consequence of the analyticity and decay conditions.

iii) In Classical Mechanics there is a well-known problem which is to estimate
the variation of the adiabatic invariant ΔI = /(+ oo) — /(— oo) of an oscillator

^2x(t)=-ω2(εt)x(t) (1.9)

when ω(— oo) = ω_ and ω(+ oo) = ω + . If ω is an analytic function which is strictly
positive on the real axis and behaves reasonably at infinity then ΔI is exponentially
small in ε (see [1] Sect. 20). This problem and our problem for the case where
H(t) is a 2 x 2 matrix are very similar. In particular the positivity of ω corresponds
to our condition III.

iv) There are many papers treating the case of a spin-1/2 in a time-dependent
magnetic field since it is a case of considerable interest in physics. However there
are very few mathematical results. It is indeed notoriously difficult to prove the
validity of such exponentially small corrections in singular perturbation problems.
An important paper in this direction is [2]. Only recently a proof of Theorem
(1.1) has been given for the case oϊnxn matrices [3] and [4]. After the completion
of this work we received a paper on the same subject [5]. The results are weaker.
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Essentially only bounded operators with discrete spectrum are treated whereas we
have no condition on the nature of the spectra σx(ί) and σ2(ή. Moreover the
authors must introduce a very strong condition in order to obtain an exponential
bound as in Theorem (1.1), so that their results do not even cover the case of 2 x 2
matrices. The reason for that is that they do not have our notion of dissipative
paths (see below).

The paper is organized as follows. We prove the theorem for bounded operators
in Sect. (4) by taking a complex time, and then for unbounded operators in
Sect. (6) by approximating the unbounded operators by bounded ones. In the
proof of Sect. (4) we introduce the notion of dissipative paths in the complex plane.
Only along such paths we can get useful bounds for the evolution. The existence
of such dissipative paths is discussed in Sect. (5) and the ideas of this section may
be interesting in a broader context. It is crucial that all bounds depend only on
the parameters appearing in conditions II and III and in particular the results of
Sects. (4) and (5) must be independent of the norms of the operators. We have
collected some basic estimates in Sect. (2) and recalled the notion of adiabatic
evolution in Sect. (3).

2. Basic Estimates

Throughout this paper 9lz is the real part of z, 3z is the imaginary part of z and
1 denotes the identity operator.

Let zeSa. If λep(z), the resolvent set of H(z\ then #(z,λ) = (H(z) - λ)'Λ
Similarly we define Λ( + ,λ) = (H+ - λ)~ι and R(-,λ) = (H~ - λ)'1. Since H(z) is
closed, the domain D with the the norm

\\φ\\z=\\φ\\ + \\H(z)φ\\ (2.1)

is a Banach space. The same is true for the norms

11^911. (2.2)

By the closed graph theorem any two of these norms are equivalent. Let Xz,
respectively X±9 be the Banach space D with the norm || ||z, respectively | | | | + .
The function z\-*H(z) is a holomorphic map on Sa with values in Jίf(Xz9Jί?) or
&(X±, Jt?). The norms in these spaces are denoted by ||| |||2 or ||| | | |±. For any φeD
we define the operator H(n)(z) by

^ (2.3)

When Z G R this operator is symmetric. We can express Hin\n^Z 0, by the Cauchy
formula

2 π r y ( z / - z ) π + 1

where γ is a simple closed path in Sa around z. The orientation of γ is
counterclockwise. All closed paths in the paper will have this orientation.

Let zeSa and ί2be a convex compact subset in Sa. Then there exists a constant
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M(z) such that for any φsD and z' in Ω,

\\H'{z')φ\\^M(z)\\φ\\z. (2.5)

Therefore, if zί and z2eΩ,

\\(H(z1)-H(z2))φ\\^M(z)\z1-z2\ \\φ\\z. (2.6)

Let us choose z = zx. Then for any z2eΩ such that \z2~zί\ is small enough,

(2.7)

From (2.7) we prove that ||| |||z is continuous in z. Indeed, if Ae£C(XZ2,J^) then

zJlzt-ZiMφLr (2.8)

Thus we get from (2.8) an upper bound for |M| | |Z 1 . In a similar way we derive a
lower bound. We have

JIz! - z 2 | ) ^ IH^HL, ̂  |||X||L2(1 + MίzJIz! - z2 |). (2.9)
Using the estimate (2.9) we prove that the function (z,z')ι—•|||H(z)|||Z' is continuous.
Let Ω be any compact subset of Sa. Then

sup sup ] & M = sup | | |H(z 1 ) | | | 2 2 ^X<oo (2.10)
φeD zι,z2eΩ || ψ | | Z 2 zι,z2eΩ

and

| | φ | | z l ^ ( K + l ) | | φ | | r 2 , zuz2eΩ. (2.11)

On the other hand, using condition II, we can compare any norm \\φ\\z with || φ \\ +
or || φ || _ when 19tz| is large enough. Thus for any r, 0 < r < α, there exist constants
M1 and M 2 such that

Mί\\φ\\+£\\φ\\x£M2\\φ\\+9 | 3 z | g r . (2.12)

The operator H(z)e£?(X + , J^) has limits when |5Rz| diverges. For any
r,0 < r < a, there exists a constant M + such that

z | ^ r + ^ ^ . (2.13)

Using Cauchy formula and (2.13) we have

, \s\£r. (2.14)

On the other hand, if | ί | is large enough, we can use condition II instead of
(2.13), and apply Cauchy formula to the applications (H(z) — H + )φ or (H(z) — H~)φ
as above. We get for \t\ large enough

(2.15)
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and

(2.16)

In (2.14), (2.15) and (2.16) the constants depend on r only. Since we can compare
any norm with || φ || + by (2.12), we have the following lemma.

Lemma 2.1. // H(z) satisfies conditions I and II and if 0 < r < α, then there exists
a positive integrable function c(t) (which behaves like | ί | ~ ( 1 + α ) at infinity) such that
for all feR and \s\^r and all z\

\\H'{t + is)φ\\^c{t)\\φ\\z,.

From Lemma (2.1) and for \s\ ̂  r we immediately have the estimate

(2.17)

with c(t) an integrable function. Let λep(t). The operator H(t)R{t, λ) is a bounded
operator and (2.17) implies

is)-H{t))R(t9λ)\\ £\s\c{t){\\R(t9λ)\\ + \\H{t)R{t,λ)\\)

= \s\c{t)d{t9λ). (2.18)

When \s\c(t)d{t,λ) <l,λ belongs also to the resolvent set p(t + is) and we have

|| R(t + faf λ) _ Λ ( t j λ) || ̂  ii Λ ( ί s λ) I, J ί i f ί ^ L . (2.19)
l | | ( ί ) d ( ί λ )

In particular if λep(H + ) then Λ,ep(ί H- is) for t large enough and for any β < 1 + α,

lim 11\β sup | |R(t + is,λ)-R( + 9λ)\\ = 0. (2.20)
*-*«> \s\<a

By choosing the width of the band small enough the spectrum σ(z) is separated
into two parts σx(z) and σ2(z) and we can find a path Γ encircling the bounded
set σι(z) so that the spectral projector Pι(z) can be written

P1{z)= § R{z, λ)dλ. (2.21)
2πi r

From (2.21) and (2.20) we get Lemma (2.2).

Lemma 2.2. // the width of Sa is small enough then the projectors Px(z) and
P2{z) = ί — Pχ(z) are holomorphίc on Sa and have limits Pk(±)9 fc = 1,2 when
|9lz| -> oo. Moreover, for any β < 1 + α,

l im | ί | ^ sup ||Pk(t + is)-Pk( + )\\ = 0
ί^ 0 0 |s|<β

and for any r, 0 < r < a and any integer n

lim | ί |

Similar statements hold for t-> — oo.
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Lemma 2.3. Let 0 < r < a. Let λeρ(z) for all z in the band, with \3z\ ^ r (e.g. λ is
negative and \λ\ large enough). Then for all z with |3z | ^ r Hf(z)R(z9 λ) is a bounded
holomorphic operator. Moreover, there exists a constant N such that

\\H\z)R{z,λ)\\^Nc{t\

Proof. We decompose the operator as

H'(z)R(z9 λ) = H'(z)R(0, λ)(H(0) - λ)R(z9 λ). (2.22)

The factor H'(z)R(0, λ) is a bounded holomorphic operator by condition I and
Lemma (2.1). The other factor (H(0) - λ)R(z, λ) is a bounded operator, locally
uniformly bounded in z. Since (H(0) — λ)R(z,λ) is the inverse of the operator
(H(z) — λ)R(0,λ) which is a holomorphic bounded operator, (H(0) — λ)R(z9 λ) is
itself a holomorphic bounded operator. From Lemma (2.1) we have

\\H'(z)R(z,λ)φ\\^c(t)\\R(z,λ)φ\\z

Sc(t)(||R(z,λ)\\ + l + \λ\ ||R{z,λ)\\)\\φ\\. (2.23)

The lemma follows therefore from (2.23) and (2.19). •

3. Adiabatic Evolution

In this section we follow mainly [7], Chaps. II and IV. Let φ(t) be the solution of
the Schrodinger equation

d

dt

Our conditions on H imply the existence of a unitary operator U(t, t') defined for
all real t and ί', strongly continuous in t and f, which leaves the domain D invariant.
For all tί,t2,t3 we have

U(tl9t2)U{t29t3)=U(tl9t3)9 1 / ( ^ , ^ = 1. (3.2)

On D, U is strongly differentiable in t and f,

and

U(t,n H(t)U(t,t) (3.3)
ot

is~U{Ut')=-U{Ut')H{t'). (3.4)

The solution of (3.1) is given by φ(t)= l/(ί,ί')φ*. The second evolution is the
adiabatic evolution. It is the evolution V(t, f) related to the equation

iε~ψ(t) = (H(t) + iεlFJfyPMDΦit), ψ(f) = ψ*. (3.5)
ot

This evolution has the same general properties as the evolution t/(ί, t').
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Lemma 3.1. The evolution V(t, t') is compatible with the decomposition of the Hilbert
space 3tf into Jfj(ί) and tfP2(t)\

Pk(t)V(t,t')=V(t,tf)Pk(n fc=l,2.

The proof is given in [7], Chap. 4. The two evolutions U(t, t') and V(t, t') depend
on ε. However we do not write this dependence explicitly. The next result describes
the adiabatic limit ε->0 for Eq. (3.1).

Theorem 3.1. Under the conditions /, // and III, there exists a constant M such
that for all ί'eIR,

feR

Remark. This theorem is valid under weaker hypothesis (see Sect. (1)). From it we
have immediately that &2ι(U 0 == O(ε2) uniformly in t and *'. Theorem (3.1) is not
new (see e.g. [7, 6]). Some ideas of the proof are used later on.

Sketch of the Proof. Let t! = 0 and U{t) = ί/(f,0), V(t) = V(t,0). For any φeD we
define

x(t)=V(t)~1U(t)φ. (3.6)

The function x(t) satisfies the equation

= K(t)x{t). (3.7)

The operator K(t) is a bounded, anti-self-adjoint operator. It is strongly continuous
in t and || K(t) || is integrable on the real axis (Lemma (2.2)) uniformly in ε since
for ί e R V(t) is unitary. Equation (3.7) is equivalent to the Volterra equation

x(t) = x(t0) 4- f K(u)x(u)du. (3.8)
to

From Lemma (3.1) we have

P1(0)K(s) = K(s)P2(0) (3.9)

and

P2(0)K(s) = K(s)P1(0). (3.10)

Using (3.9) and (3.10) we can express Eq. (3.8) as a system of two equations. Let
xk(ή = Pk(0)x(ή, k=U2. Then

*iW = xΛh) + j Kί2(u)x2(u)du (3.11)
ίo

and
t

x2(t) = x2(t0) + J K21(u)Xl(u)du, (3.12)
ίo

where we have (by Lemma (3.1))

K12(s) = Pί(0)V-1(s)F1(s)V(s)P2(0) (3.13)
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and

K21(s) = - P2(0)V-1(s)F1(s)V(s)P1(0). (3.14)

The next step is to perform an integration by parts in both (3.11) and (3.12). From
the result we get immediately

, 0 ) - V(t,0))φ\\ = || K(t,0)x(t)- V(t,0)φ\\

Π (3.15)

Lemma 3.2 (Integration by parts formula). Let B(t) be a bounded operator, strongly
C 1 and let x(t)eD Vί and be C1. We define

B(t) = J _ I flfo A)B(ί)Λ(ί, λ)Λί,

2πr r

where Γ is a path surrounding the bounded part of the spectrum σγ(t). Then

1. B(t) is strongly C 1 and maps ffl into D. Moreover

Pk(t)B(f)Pk(t) = 0, A: =1,2.

2.

\pι(0)V(sy1B(s)V(s)P2(0)As)ds = - iεP1
t'

+ iε } P.φWisy1 (jS&) V(s)P2(0)x(s)ds

+ iε j P1(0)V(s)-1mV(s)P2(0)^x(s)ds.
t as

t

3. An analogous formula holds for j P2(O)V(s)~1B(s)V(s)P1(O)x(s)ds. It is obtained
f

by exchanging P^O) and P2(ty and changing the sign on the right-hand side in the
above formula.

Remark. This lemma is proved in [6] except part 1) which simplifies the formula.

4. Bounded Operators

We prove in this section our result for bounded operators. Let us suppose that
H(z) is a bounded operator which satisfies conditions I, II, and III and that all
conclusions of Lemmas (2.1) to (2.3) are valid. As in Sect. (3) we choose t' = 0 and
put U(t) = U(t9 0) V(ή = V(t9 0). Let

Λ(t)=V-\t)U(t). (4.1)

This operator satisfies the equation

A'(t) = K(t)A(t\ A{0) = l . (4.2)
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We now take complex time, i.e. we take t = zeSa and we consider Eq. (4.2) on Sa

A\z) = ̂  A(z) = K[z)A{z\ A(0) = 1. (4.3)
dz

The operator K(z) is holomorphic on Sa because the operator V(z) has an analytic
extension on Sa. Indeed, we can define for zeSα,

V(z) = t + )(-is-'H{z') + IFtfXPMWVW (4-4)
o

The path of integration in (4.4) is any path in Sa from 0 to z. By choosing suitably
the path of integration we obtain immediately from (4.4),

r sup \\H(z)\\\

II V(z)\\ S Constexp z:^~r I, |3z | ̂ r , (4.5)
V ε )

where 0 < r < a. From (4.5) and Lemma (2.2) it follows that || K(z) \\ is integrable

sup { \\K(t + is)\\dt<ao. (4.6)
\s\^r ~oo

Equation (4.3) is equivalent to a Volterra equation and can be solved iteratively.
Thus its solution A(z) is holomorphic in Sa and by the integrability condition (4.6)
A(z) has limits A( + ) and A(-) when |9ίz|-^oo,

lim sup ||A(t + is)-A(±)\\= 0. (4.7)
ί-»±oo |s|5r

The operators A( + ) and A( —) are unitary since on the real axis K(ή is anti self-
adjoint.

Lemma 4.1. Let φ(t) be α solution of the Schrόdinger equation with φ(0) = φ*eD
and such that

lim ||P2(ί)φ(ί)||=0.
t-* — oo

Then there exists a unique (^*GJf?

1(0) such that φ* = A( — )~ίφ*.

Proof. We can write the solution φ(ή as

φ(t)=V(t)A(t)φ*. (4.8)

By Lemma (3.1)

|| P2(t)V{t)A(t)φ* || = || V{t)P2{0)A(t)φ* \\ = \\ P2(0)A(t)φ* ||. (4.9)

By hypothesis we have

lim || P2(0)A(t)φ* \\ = \\ P2(0)A{-)φ* \\ = 0 (4.10)
ί-» - 00

and therefore ^* = A(-)φ*eJ^ι(0). D

We can give a convenient expression for the adiabatic invariant ^ 2 1 ( o o , — oo).
By Lemma (4.1) any solution φ(t) of the Schrόdinger equation, which is normalized
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and satisfies the boundary condition

lim | | P 2 ( ί M t ) l l = 0 (4.11)
ί->-αo

can be written

φ(t)=l/(tM(-ΓV*. | | ^* | | = 1. (4.12)

By a computation similar to that of the proof of Lemma (4.1) we get

lim \\P2(t)φ(t)\\ = ||P2(0M( + M(-)- 1P 1(0)^*| | . (4.13)

Therefore we have

^2i(°°, - o o ) = | |P 2(0M( + M ( - ) - 1 P 1 ( 0 ) | | 2 . (4.14)

Remark. The solution A(t) of (4.2) is normalized at t = 0. Since we have the
integrability condition (4.6) we can work with a solution A(t, — oo) normalized at
t = — oo. By definition Λ(t, — oo) is a solution of (4.2) with lim A(t9 — oo) = 1, and
we can express (4.14) as

^21(00, - o o ) = | |P 2 (θμ(oo, -ooJPiίO)| | 2 . (4.15)

Notice that this formula is also true in the unbounded case, since we are on the
real axis.

The next lemma is the generalization of Lemma (3.1) in the complex plane.
The proof is the same.

Lemma 4.2. For all zeSa we have

Pk(z)V(z)=V(z)PM 4 = 1 , 2 .

Proof of Theorem 1.1. We must estimate the norm of the operator P2(0)A(co, — ooJP^O).
The operator A(t9 — oo) is solution of the equation

t

A(t9 - o o ) = l + J K(u)A(u9 - ao)du. (4.16)
— oo

This operator has an analytic extension on Sa since A(t, — oo) = A(f)A( — ) ~ γ .
Moreover, by (4.7) we know that

lim A(γ(τ)9 - oo) = A(oo, - oo) (4.17)
τ-» oo

if γ(τ) = 7i(τ) + iy2(
τ) is a smooth path in Sa9 parametrized by τ, such that

7i(τ) = τ, 7 2 (τ)>0, lim y 2 ( τ ) ^ κ > 0 . (4.18)
τ-> ± oo

Therefore we consider A(y(τ), — oo) as a function of τ. This is the solution of the
equation

A(γ(τ),-oo) = t+ \ K{y{u))A{y{u), - co)y(u)du, (4.19)
— oo

where y(τ) = —(y^τ) + iy2(
τ)) Let x(z) be the solution of (4.3) with initial condition

dτ
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x(0) = A(-y1x*9 χ*6Jί^1(0) and | |χ* | | = 1. Then we have

x(y(τ)) = Λ(y(τ),-oo)x*, (4.20)

and we must estimate (see (4.15)) || x2(y(τ)) II as τ-*oo.
In order to do that we introduce new quantities θk(z). Let λ(z) be the function

defined by

λ(t + ίs) = iseM (4.21)

where ex(t) is the function of condition III. We define

θk(z) = exp (ίε- ιλ(z))V(z)xk(z\ fc = 1,2. (4.22)

Lemma 4.3. There exist a path y satisfying conditions (4.18), in particular
lim y 2 ( τ ) = κ > OJ and a constant M such that

) | | ^ M , || Θ2(y(τ)) || g zM, τ e R

for ε small enough.

We first finish the proof of the theorem and then prove Lemma (4.3). Let V(z, z')
be the solution of the equation

^ V(z, z') = (- iε-^Hiz) + [P;(4 P^Wiz, *') (4.23)

dz

with initial condition V(z\zf) = 1. For z = τ + iy2(
τ) w e have

V(zy
1 = V(τ + fr2(τ),O)"1 = V(τ,ϋ)~'V(τ + ̂ ( τ X τ Γ 1 . (4.24)

The operator V(τ + iu,τ)~x is solution of the equation

4- V(τ + in,τ)~1 = - V(τ + iu,τ)~ \ε~xH(τ + iu) + ilFΛτ + m),Pγ(τ + in)]) (4.25)
aw

on the interval [0,y2(
τ)]> w ^ initial condition at u = 0 K(τ,τ) = l . By Lemmas

(4.2) and (4.3), formula (4.24) and || K^O)- 11| = 1,

ll*2Mτ))ll =exP(y 2(τ)ε- 1e 1(τ))| |

= exp(y2(τ)ε-'eι(τ))\\ V(y(τ)r1P2(y(τ))θ2(y(τ)) \\

S εMQχp(y2(τ)ε-1eί(τ))\\ V(y(τlτ)~1P2(y(τ))\\. (4.26)

Using the differential equation (4.25), and Lemma (2.2) we get from (4.26),

lim ||*2(y(τ))|| ^εMexp(72(oo)ε-^1(oo))| |exp(-72(oo)a-1//( + )P2( + ))| |
X~+ 00

SsMexp(-ε-1κ(e2(oo)-ei(oo))l (4.27)

since we have with H2(τ) = H(τ)P2(τ) for any τeR,

llexpί-^φ-1//^))!! ^expί-γ^φ-1 inf <φ\H2(τ)φ>\ (4.28)
\ \\φ\\ = l,φejf2(τ) )

D

Proof of Lemma 4.3. Let us consider the quantities xk(y(τ)) along a path y. They
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satisfy the equation (see (3.11) to (3.14))

*i(y(τ)) = * * + ί K12(y(u))x2(y(u))y(u)du (4.29)
— oo

and
τ

x2(γ(τ))= I K2ί{y(u))xMu)W)du (4.30)
— oo

since x*6Jf?

1(0). We perform an integration by parts in (4.30) (see Lemma (3.2))
and we write xk(u) for xk(y(u)) etc. We get

x2(τ) = - /εF

+ *ε j V-1(u)P2(u)(P\(u)YPι(u)V(u)xί(u)y(u)du
— oo

iε J F-1(«)P2(M)F1(M)P1(«)P'1(«)J>

2(M)nΦ2(«hi(«¥«. (4.31)

(In (4.31)' denotes the derivative with respect to the complex variable z.) We write
the result using Θk of (4.22) and Q defined by

), zeSa. (4.32)

We get

θ2(τ)=-iεP2(τ)fXτ)P1(τ)θ1(τ)

+ iε J Q(τ)Q-1(u)P2(u)(F1(u)yPί(u)θ1(u)7(u)du
— 00

t

+ iε J Q(τ)Q-\u)P2(u)P'ι{u)PM)P'MP2{u)θ2{u)y{u)du. (4.33)
- oo

Equation (4.29) becomes

0i(τ) = β(τ)x*+ J β W β - H ^ i ί ^ i W ^ W ^ W ί ί ^ " - (4-34)
— 00

On the path γ the operator Q(t) = Q(y(τ)) satisfies the equation

with

γQ(τ) D(τ)Q(τ) (4.35)
dτ

D(τ) = - iε" ^(yWJίίτ) + ίε~1 ^ λ(y(τ))l + [P\(y(τ)), P!(y(τ))]y(τ). (4.36)
ατ

The operator β(τ)β(w)~1P2(
M) ^s a solution of (4.35) with initial condition at τ = u

given by P2(u). By Lemma (4.2) we have

β(τ)β(i4Γ ιP2{u) = P2(τ)Q(τ)Q(uy 'P^u). (4.37)
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Therefore Q(τ)Q(u)~1P2{u) is a solution of the simpler equation

γ(Q(τ)Q(uΓ1P2(u)) = D2(τ)(Q(τ)Q(uy1P2(u)) (4.38)

dτ

with

D2(τ) = D2(y(τ)) = D(y(τ))P 2(y(τ)). (4.39)
Similarly Q(τ)Q(u)"1P1(κ) is solution of the simpler equation

^-(β(τ)β(u)" 'PΛu)) = D,{τ){Q{τ)Q{u)- ^ ( u ) ) (4.40)

dτ

with

£>i W ^ DM*)) = β(7(τ))Pi(y(τ)). (4.41)

The main problem is to control the norms of the operators Q{τ)Q(u)~1Pk(u),
k = 1,2. We say that a path y is dissipative for Eq. (4.33) if there exists a constant
C o independent of ε such that

|| β(τ)β(ii)" 'PM || g Co, Vτ ^ u. (4.42)

Similarly, y is dissipative for Eq. (4.34) if along y

|| β(τ)β(iιΓ ^ ( I I ) || ^ Co, Vτ ^ «. (4.43)

One natural way to find a path y which is dissipative for (4.33) would be to require
that

<R<φ|D2(τ)φ>^0, Vφe^f, (4.44)

since this condition would imply (4.42) with C o = 1. However such a condition
cannot be verified for all φeJ^, but we show in Sect. (5) that a related condition
to (4.44) implies (4.42) with C o Φ 1 usually. Moreover there is another difficulty.
We cannot find a single path which is dissipative for both Eqs. (4.33) and (4.34).
We proceed as follows. In Sect. (5) we show that there is a path y which is dissipative
for (4.33) and which satisfies the conditions (4.18), provided the width of the band
is small enough (Lemma (5.6)). Let A be the region of the complex plane between
the real axis and y:

^ s ^ γ2(t)}. (4.45)

Let z = zx + iz2 be a point in A. We introduce two paths y and y (see Fig. (1))

~ m < * = Zl (4.46)
zί<τ^zί+z2

and

We prove (Lemma (5.5)) that γ is dissipative for Eq. (4.34) and y is dissipative for
Eq. (4.33). The fact that y is dissipative for τ^zι is trivial since for these values
of τ the operator D is anti self-adjoint.
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Fig. 1. The paths y and γ in Δ

We can now finish the proof. Let

ll|0*IH = sup||0k(z)| |, fc=l,2.
zeΔ

Using the fact that y is dissipative we have for τ = zx + z2,

If we use the path y in (4.34) we get for τ = zι+ z 2 ,

Indeed we can write

(4.48)

(4.49)

(4.50)

= β(τ)β(zi)~1J>i(z1)β(zi)x* (4.51)

since x*eJfx(0). But | |β(zi)| | = 1. Thus || Q(τ)x* || ^ M", using the fact that
||x*|| = 1. The constants M' and M" are independent of ε and can be chosen
independently of the paths γ and % i.e. they do not depend on zeΔ. Therefore we
can take the supremum over A on the right-hand side of (4.49) and (4.50). •

Remark. There is an analogous result for ^ 1 2 ( o o , — oo). In that case we perform
an integration by parts in Eq. (4.34) and we use a dissipative path y for Eq. (3.34);
y satisfies instead of (4.18):

= τ, 72(τ)<0, lim
τ~> ±oo

-κ<0. (4.52)

5. Dissipative Paths

We come to the crucial point of the proof of Theorem (1.1), the existence of
dissipative paths for Eqs. (4.33) and (4.34). We first establish a sufficient condition
for a path y to be dissipative.
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Let H(z) be a bounded operator satisfying conditions I, and II and III. Let
τ*-+y{τ) = yi(τ) + iy2{τ) be some path inside Sβ, parametrized by τ. We consider
Eq. (4.35)

^φ(τ) D(τ)φ(τ) (5.1)
dτ

with

D(τ) = -iε-'HiyiτMτ) + is'1 ^λ(y(τ))t + [^(yMXP^τ))]^). (5.2)
dτ

We are interested in the solutions φk(τ,u) of (5.1) with initial conditions at u,
φk(u, u) = Pk(y(u)). With the notations of Sect. (4) they can be written as

φk(τ,u) = Q(τ)Q(uΓ1Pk(y(u)) (5.3)

An important property of these solutions is that

Pk(viτ))Φk(τ> u) = φk(τy u)Pk(y(u)). (5.4)

We use this fact as follows ([7], Chap. IV). Let W(z,z') be the solution of the
equation

^ W[zJ) IF^P
dz

with initial condition W(z\z') = 1. By Lemma (2.2) W(z,z') is holomorphic on Sa,
uniformly bounded on Sa,

sup \\W(z,z')\\^M (5.6)
z,z'eSa

(provided the width of the band is small enough) and Wiz.z')'1 = W(z',z). We
also have

Pk(z)W(z, z') = W{z9 z')Pk{z'\ k = 1,2. (5.7)

Lemma 5.1. The operator W(z,zf) leaves the domain of the operator H(z) invariant.
Let H(z):= W(0,z)H{z)W(z,0) be defined on D. Let 0 < r < a. Then there exists an
integrable function c(t) such that

φeD, (5.8)

provided \s\^r

Moreover, H{i)φ is holomorphic for each φeD.

The first part of the proof of Lemma (5.1) is essentially given in [7] p. 308.

Proof. We prove the lemma for z' = 0. By Lemmas (2.2) and (2.3) the operator

G(z) = {_P\{z\ Px{z)-] + f\(z)tf'(z)/φ, λ)P1(z) + P2(z)Hf(z)R(z, λ)P2(z) (5.9)

is a bounded holomorphic operator, provided that λ is negative and |λ| is large
enough. Moreover, there exists a constant N' so that for \s\ rg r,

is)\\ύN'c(t) (5.10)
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with c(ί) the integrable function of Lemma (2.1). Therefore we can define S(z) by

S'(z) = G(z)S(z), 5(0) = 1. (5.11)

The solution S(z) is holomorphic. Besides S(z) we also introduce the operator

F(z) = R{z,λ)S(z). (5.12)

Let us compute the derivative of F(z),

F'(z) = R'(z, λ)S(z) + R(z, λ)G(z)S(z). (5.13)

We know that

Pk{z)R{z,λ) = R{z,λ)Pk(z), fc=l,2. (5.14)

By differentiating this identity we get

P'k(z)R(z, λ) + Pk(z)R'(z, λ) = R'(z, λ)Pk(z) + R(z, λ)P'k(z). (5.15)

Now, using (5.14), (5.15) and R'{z, λ) = - R{z, λ)H'(z)R{z, λ), we have

R{z, λ)P'k(z) + R(z, λ)Pk{z)H'{z)R(z, λ) = R{z, λ)P'k(z) - Pk(z)R'(z, λ)

= P'k(z)R(z,λ)-R'(z,λ)Pk(z). (5.16)

Hence we can write

R{z, λ)G(z) = R(z, A ) ^ Σ P'k(z)Pk(z) + Pk(z)H'(z)R(z, λ)Pk(z)

= Σ P'k{z)Pk{z)R{z, λ) - R'(z, λ). (5.17)

Therefore the operator F(z) satisfies the differential equation

nz)=f Σ nωnω Vω=IFMPIWW' (5 18)

At z = 0 we have F(0) = .R(0, A) and by the uniqueness of the solution of (5.18) we
have

F(z) = W{z, 0)Λ(0, A) = Λ(z, λ)S(z). (5.19)

Therefore W(z, 0) leaves the domain D invariant.
By definition

S(t + is) - S(ί) = i f G(ί + iu)S(ί 4- ίu)du. (5.20)
o

Iterating this equality we have

S(t + i s ) - S ( ί ) = Σ (0 π f ^ 1 J dynG(t + iyi) ~G(t + iyn)S(f)9 (5.21)

n ^ l 0 0

and by (5.10)

|| (S(ί + is) - S(ί))φ || g I s I ΛΓ'c(t) exp (| s | JV'c(ί)) || S(ί)φ II. (5.22)
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Using (5.19) we have

|| (H(t + is) - H(t))R(0, λ)φ || = ||(W(0, t + is)S(t + is) - W(0, t)S(t))φ ||

^ || W(0,t + is)-W(0,t)|| \\S(t)φ\\

+ || W(0, t + is) || || (S(t + is) - S(t))φ ||. (5.23)

Since we can write

W(0,t + is)- W(0,t)=-i]dyW(0,t + iy)[_P\{t + iylP^t + iy)\ (5.24)
o

we have by Lemma (2.2) and estimate (5.22) the existence of a constant N" such that

|| (H(ί + is) - H(t))R(0, λ)φ\\£\s\ c(t)N" || S(t)φ ||

= \s\c(t)N"\\(H(t)-λ)R(t,λ)S(t)φ\\

= I s I c(t)N" || (H(t) - λ) W(t, 0)R(0, λ)φ ||

= \s\c(t)N" || W(t,0)(H(t) - λ)R(0,λ)φ II

+ \λ\\\R(0,λ)φ\\). (5.25)

Finally, if φeD,

H{z)φ = W{0, z)S(z)φ + W{0, z)λR(z, λ)S(z)ψ (5.26)

for a ψeJtf', and this application is holomorphic because W(0,z),S(z) and R(z,λ)
are bounded, holomorphic operators. •

Let us introduce a new operator Q0(τ) by putting

Qo(τ)=W(O,y(τ))β(τ). (5.27)

The solution φk(τ,u) (see (5.3)) now reads

φk(τ, u) = W(y(τ), 0)βo(τ)βo(M) ~x W(0, y(«))Pt(y(«))

u)). (5-28)

In order to prove that || φk(τ, u) || is uniformly bounded for all τ ̂  M it is necessary
and sufficient to prove that || <2o(

τ)δo(M) ~ 1P*(0) II ' s uniformly bounded for all τ ̂  u.
The operator βo(") i s solution of the equation

f δo(τ)= - W(O,7ατ

s-iε-^Wβoίτ), (5-29)

where (see (5.2))

f(τ) = W(0, y(τ)) T(τ) W(y(τ), 0) (5.30)

and

= H(γ(x))y(τ)-γλ(γ(τ))l
dτ

^T) - ie,iyx{τ))y2(τ). (5.31)
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Since we are interested only in the solutions 6o(τ)6o(M)~ljPfc(0) °f (5.29) we can
also consider them as solutions of the simpler equation

Y βoW = - « Γ ' f(τ)Pk(0)Qo(τ). (5.32)
dτ

These solutions can therefore be considered as solutions of Eq. (5.32) in the fixed
Hubert space J^k(0) = Pfe(0)J f with initial condition l ^ k ( 0 ) . It is therefore sufficient
that — iε~1f(τ)Pk(0\ considered as an operator on JPk(0)9 be dissipative in order
to have

\\Qo(τ)Qo(uyιPk(0)\\^l Vτ^w. (5.33)

We summarize these results in Lemma (5.2)

d
Lemma 5.2. Let T(τ) = H(y(τ))y(τ) λ(y(τ))i and let W(0,y(τ)) be the operator

dτ
defined by Eq. (5.5). A sufficient condition for a path y to be dissipative for Eqs. (4.33)
and (4.34) is that for all φeJfk(0\ all τ

for k = 2 resp. k= 1.

We now apply this lemma to prove the existence of dissipative paths. We first
consider a descending vertical path γ9 i.e. a path of the type

τι->y(τ) = z * - ΐ τ , τ ^ 0 , z* = z* + iz*eSa. (5.34)

Since here ^(τ) = 0 and y2(τ) = — 1, we must show (see (5.31)) in order that y be
dissipative for (4.33) that

). (5.35)

This follows from Lemma (5.3).

Lemma 5.3. There exists a function g2(t), given by (5.42) such that for all φ G J f 2 W

and

\3(φ\(H(t + is)φ}\ ί \s\g2(tKφ\(H(t) - ex{t))ψ\

provided that the width of the band Sa is small enough.

Proof. We have for

\<φ\((H(t + is) - H(ή) + (H(t - is) - H(t)))φ> (5-36)

since W(z,0)* = W(0,z). By Lemma (5.1),

| | ( H ( t + is) - H(t))φ \\S\s\c(ί)(IIH(t)φ\\ + \\φ\\)

^ \s\c(t)( || (H(t) - ei(t))φ II + (i + ki(t)l) II Ψ II )• (5.37)
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By condition III the operator (H(t) - e^t)) is positive on JP2(0). Thus

UH(t + is)-H(t^\\^^\s\c(t)\\(H(t)-ei(t)^ l + \eM)φl (5.38)

At that point we use the following theorem (Theorem V.4.12. [8])

Theorem. Let Aγ be self-adjoint and non-negative. Let A2 be symmetric with domain
D(A2)^D(A1)and \\A2φ\\£\\A1φ\\,VφeD{A1). Then

y, φ€D(At).

We apply this theorem with A2 = \{H{t + is) 4- H(t - is) - 2H(ή) and

x = ̂ /2\s\c(t)(H(t)-e1(t)+ 1 + 1^(01), considered as operators on Jf2(0). We get

^ (φ\(H(t) - e1(ί))φ>(l - y/2\s\c(t)) - ^2\s\c(t)(l + 1^(01) || φ | |2. (5.39)

Since on ̂ T2(0)

H(t)-e1(t)^e2{t)-e1{t), (5.40)

we have

^(φ\(H(t + is)-e1(t))φ}^(φ\(H(t)~eMφXl-\s\g2(t)) (5.41)

with

^(^|L) (5.42)

The second statement follows from the identity

= i l ^ (5-43)
Π

Lemma 5.4. There exists a function gχ{t\ given by (5A6) so that for all

provided that the width of the band Sa is small enough.

Proof The proof is analogous to the proof of Lemma (5.3). The only difference
is in the lower bound (5.40) which is now replaced by

δ* (5.44)

if e^ή — ίfiiή is considered as an operator on ̂ ( 0 ) . The positive constant δ* is
given by

iW). (5.45)

Therefore the function g^t) is given by

i lMl 1 ) Π (5.46)

From Lemmas (5.3) and (5.4) we immediately have
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Lemma 5.5. Vertical descending paths are dissipative for Eq. (433) and vertical
ascending paths are dissipative for Eq. (4.34) provided the width of the band Sa is
small enough.

We now consider a path y(τ) such that

= τ, y 2(τ)>0. (5.47)

Lemma 5.6. If the width of the band Sa is small enough, there exist paths y satisfying
(5.47) which are dissipative for Eq. (4.33) for all τ e R and such that

lim γ2(τ) = γ2(oo) > 0.

τ->oo

Proof. From Lemma (5.2) and from (5.31) we must have for φeJ^2(0),

3<<pl W(0Mτ))T(τ)W(γ(τ%0)φ} = 5R<φ|(H(τ + iγ2(τ)) - ex{τ))φ>γ2(τ)

+ 3<φ|(H(τ + iy2(τ)) - ie\(τ)y2(τ))φ) ί 0.
(5.48)

We can choose the width of the band so that the factor in front of y2(τ) is strictly
positive (Lemma (5.3)). Thus (5.47) is now equivalent to

( τ ) < 3<φ\{H(τ + i?2(τ))-ie>1(τ)γ2(τ))φ>
2 ~ 9 ? < | ( H ( + i ( ) ) ( ) ) >

Condition (5.49) is certainly fulfilled for all φe^T2(0), | | φ | | = 1 if

Uτ)*~ sup

2

By Lemma (5.3) we have

+ iy2(τ)) - ex(τ))φ}

S g2(τ)2y2(τ) + ^[e'l(τ)l

( ) (
provided we choose the width of the band so small that for all τeR,

^\. (5.52)

Therefore it is sufficient to choose y(τ) = τ + iy2(τ) with y2(τ) solution of the
differential equation

g2(τ) + ' f 1 ^ , , ) (5.53)

with y2{$) > 0. Indeed, Eq. (5.53) can be solved explicitly,

y2(τ) = y2(0)expf - 2 ] (g.2(u) + 'f1^' W ) » (5'54)

\ o\ e^-e^u)) )

and since I ^2(M) Λ I is integrable we can choose y2(0) s o

V e2(u)-ei(u)J
0<y2(— oo)<a and y2(co) > 0. Therefore condition (5.49) is fulfilled. •
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Remarks.

1. It is clear from the above results that we can prove the existence of a
dissipative path for Eq. (4.34) so that γ(τ) = τ + iγ2(τ) with γ2(τ) < 0 a n ^
lim γ2(τ) < 0.
t-*ao

2. The functions e^t) and e2(t) do not play the same role because we have
defined λ(t + is) = iseί(t). We could work with λ(t + is) = ise2(t) or with
λ(t + is) = is ^(ex(t) -f e2(0) which is more symmetrical.

3. We can remark that the results of this section are valid for unbounded
operators. The existence of the dissipative path γ of Lemma (5.6) is based only on
the estimate of Lemma (5.1). In particular the value of y2(°°) depends only on
c(t\eι{t\e2{t) and \e\{t)\. Moreover c(t) depends only on the basic estimates of
Sect. (2).

6. Unbounded Operators

Let H(z),H+ and //"be unbounded operators which satisfy the conditions I, II
and III. It is not possible to use the same strategy as before by making the time
complex. We prove our main result by approximating the operators by bounded
operators. The operators H(t) are uniformly bounded from below for ίelR. Without
restricting the generality we suppose in this section that they are bounded from
below by 1 for all ί. We approximate H(z) and H± by

Hn(z) = nH(z)R(z,-n) (6.1)

and

-n). (6.2)

Lemma 6.1. There exists a constant a\ 0 < a' < α, such that the following statements
hold

1. For any n, Hn(z) is a bounded operator, holomorphic on Sα,,//n(z)* = Hn(z)
and 0ep(Hn(z)).

2. There exists a constant C independent of n, such that

sup II(Hn(t 4- is) - H;)φII ^ C

| U + g ( l l Ψ I I + IIHB

+ φ \\), t > 0
|s|<α' U + I H )

and

sup \\(HH{t + is)-H;)φ\\^—-^—-(|(φ|| + | |Jί;φ| |), ί<0.
\s\<ar (1 + μ|)

3. Hn(z) converges strongly to H(z) on D, uniformly on Sa>.
4. The operator Un(t,s), solution of

is y Un{t9 s) = Hn(t) Un(t9 5), UH(s9 5) = 1
ot

converges strongly to U(t, s), uniformly in t and s belonging to a compact interval of
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1R and Vn(t, s) defined by the equation

iε~ Vn(t,s) = (Hn(t) + ιε[P;(ί),i\(0])^(ί,s), Vn{s,s) = i
ot

converges strongly, uniformly in t and s belonging to a compact interval of ]R to the
adiabatic evolution V(t, s).

5. If H(t) satisfies condition III, then Hn(t) satisfies the same conditions for n

large enough, and the spectral projectors P1(t),P2{t) a r e a^so spectral projectors for

HM
Proof

1. If — nep(z), then clearly

Hn(z) = n±- n2R(z, - n), (6.3)

and therefore Hn(z) is holomorphic, Hn{z)* — Hn(z). If Oep(z), then Hn(z)~1 =

~{H(z) + n)H(z)"1. It remains to show that — nep(z) if |3z| is small enough. This
n
follows from (2.18), since for all n and ίeR,

L (6.4)n ) | | ^
n+ 1

and therefore it is sufficient to take |3z| ^ a\ with a' such that

α'sup c(ί)3 = α'M' < 1. (6.5)

2. We have the estimates

|| (Hn(z) - H; )Rn( + , 0 ) ^ II = II (Hn(z)Rn( + , 0) -

= \\(H{z)R(z, -n)(H+

= \\{H(z)R{z, -

ίl sup sup \\H(z)R(z,-n)\\ +1 \\\(H(z)R( + ,O)-t)ψ\\.

(6.6)
For any z we have

|| H(z)R(z, - n) || ^ 1 + || nR(z, - n) || (6.7)

and from (2.19), with z = t + is,

n\\R{z,-ή)\\^n\\R(t,-ή)\\Λ \
1 — a M

(6.8)
~ 1 - a'M'

provided |s| ^ a'. Therefore

sup supll#(z)/φ,-κ)ll + l W + \ (6.9)
z:\s\Za' n ) \~aM
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Considering φ = H* φ, we see from (6.6), (6.9) and condition II that we can take
forC

C' = C(2 + - \ (6.10)

where C is the constant of condition II.
3. Let φeD. Then

|| nR(z, -n)φ-φ\\ = \\ R(z, - n)H(z)ψ ||

£ | |K(z ,-n) | | || H(z) r̂ ||. (6.11)

By condition II, if z = t + is,

sup II H(z)φ || < oo. (6.12)
z:\s\ia'

From (6.11), (6.12) and (6.8) we see that nR(z, — n) converges strongly to the identity
on a dense subset D, uniformly in zeSa,. Since the norm of nR(z, -ή) is bounded
uniformly in zeSa>, we can find, for any φe Jf and any ε > 0, a vector φeD such that

||nR{z, -n)φ-φ\\£ \\(nR(z, -ri)-l)(φ-φ)\\ + \\(nR(z, - n ) - t)φ\\ (6.13)

and

||(nR(z, -ή)- i)(φ -φ)\\^ε Vn large enough. (6.14)

Therefore nR(z, - ή) converges strongly to the identity on f̂, uniformly in zeSa,.
The map zt-+H(z)φ, for any fixed φeD, is holomorphic and has well-defined limits
when ί-> ± oo: there exist φ+ and φ~ such that

lim sup ||H(t + is)φ-φ±\\= 0. (6.15)
ί~*± 0° \s\Za'

Consequently the set {H(z)φ;\3z\ ^af] is a compact subset of Jf and thus
Hn(z)φ = nR(z, — ή)H(z)φ converges to H(z)φ uniformly on Sα. Indeed, nR(z, — n)
converges strongly to the identity uniformly on any compact subset of Jf.

4. Let φ(t) be a solution of the Schrodinger equation (1.1) with initial condition
φ(s) = φ*eD. We have

iε~φ(t) = Hn(t)φ(t) + (H(t) - Hn{t))φ(t), (6.16)
ot

and we can write

φ(t) = Un(t9 s)φ* + ί l/B(t, ιι)(H(u) - Hn(u))φ(u)du. (6.17)
s

For any fixed T > |s|, the function (/f(w) — Hn(u))φ(u) converges to zero uniformly
on [— T, T]. Thus Όn(t,s)φ* converges uniformly in t and se[— T, T] to U(t,s)φ*.
Since D is dense the result follows. The proof of the second statement is the same.

5. The last statement follows easily from the spectral theorem since

MY

HH(t) = fm(H(t)\ with /„(*) = . • (6.18)
x 4- n
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Remark. It is essential that the constant C depends only on the constant C of
condition II and on M' of (6.5), which is independent of n.

Proof of Theorem 1.1. Let A{t) = V'^ήUiή, where V(t) is the adiabatic evolution.
We approximate H by Hn given in (6.1) and we define Λn(t)= V~ι{t)Όn{t). The
operators A(t\ respectively An(t) are solutions of the equation

A\t)= -V-^lP^tlP^WiήAitl A{0) = % (6.19)

respectively

4,(0 = - V- \0\? nΛ{t),PnΛ(m Vn(t)An(t), AM = 1. (6.20)

Assuming that n is large enough we have by Lemma (6.1) that Pnί(t) = P^t).
Therefore we can assume that

4,(0 = - v; Ht)ίPfMPΛtΏ vΛ(t)AH(t), A M = t. (6.21)

With the notation of (3.7) we can write

A(t) = An(t) + ί An(t, u)(K(u) - Kn(u))A(u)du, (6.22)
o

where An(t, u) is solution of (6.21) with An(u, u) = H. Let ε > 0. By Lemma (2.2) there
exists T = T(ε) such that

-T oo

I || K(u) - Kn{u) \\du + J || K(u) - Kn{u) || du ^ ε. (6.23)
- 0 0 T

By Lemma (6.1) we conclude that An(t) converges strongly to A(t), uniformly in
ίeR, i.e.

lΰn sup 11(^(0-^(0)^11=0. (6.24)

We must estimate ^ 2 1(oo, - oo). We have for n large enough by Lemma (6.1),
point 5,

(6.25)

We see that we can prove the theorem by proving it for Hn, provided that the
constant K = y2(oo) is independent of n and that the constant M of Lemma (4.3)
is also independent of n (n large enough). Indeed the last term disappears as n-> oo.
We already know that Hn satisfies conditions I, II and III on Sa, with constants
α, C and δ* independent of n (n large enough). We now prove the basic estimate
of Lemma (2.1) with an integrable function independent of n. The bounded operator
Hn(z)Hn(z'Yl is by definition

Hn(z)Hn(zT' = H(z)R(z9 - n)(H(z') + n)R(z\ 0)

= H(z)R(z, - n)(H(z) + n + H(z') - H(z))R(z\ 0)

= H(z)R(z\ 0) + H(z)R(z, - n)(H(zf) - H(z))R(z'9 0). (6.26)
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Therefore

\\HH{z)Hn(zr1\\£\\H{z)R{z'90)\\

+ || H(z)R(z, - n) || (1 + || H(z)R(z\ 0) ||). (6.27)

By (6.9) we have a constant Nt independent of n and z such that

|| H(z)R(z,-ή) || £NV (6.28)

On the other hand by (2.12) there exists a constant N2 such that

Λ(z/, 0)φ || ^

(6.29)

Since R(z',0) is a bounded, holomorphic operator admitting K( + ,0) and R( — ,0)
as limits at infinity, it is uniformly bounded on Sa.. Therefore there exists a constant
N3 such that for all z and z' in Sa.9

WH^H^T'W^N,, (6.30)

and thus

(6.31)

From this result and Lemma (6.1) we can prove exactly as in Sect. (2) that there
exists an integrable function c(ή, independent of n, such that for all
z = ί + i s , | s | ^ r < α ' , all z'eSa>,

|| H'n(z)φ || S c(t)( || φ || + || Hn(z')φ | |). (6.32)

The estimate (6.32) corresponds to Lemma (2.1). For the existence of the dissipative
path we need Lemma (5.1). The integrable function c must be independent of n
and we must prove the estimate of Lemma (2.3) with a constant N independent
of n. We take in our present case λ = 0. We have from (6.32)

\\H'n{z)Hn{zyιφ\\ g c ( ί ) ( I I H Λ ( z Γ V I I + \\Hn{z)Hniz)~l<PII)

(6.33)

Therefore there exists a constant N independent of n so that

|| H'n(z)Hn(zy1 φ || ^Nc(t) \\ φ ||. (6.34)

From this estimate and Lemma (2.2) we get the existence of an integrable function
c(t) independent of n such that

\\(Hu(t + is)-HH(t))<P\\ ύ\s\£(t)(\\HH(t)φ\\ + \\φ\\) (6.35)

(see proof of Lemma (5.1)). Thus there exists a dissipative path γ as in Lemma
(5.6) which is independent of n. It remains to show that the constant M of Lemma
(4.3) is also independent of n. This is not immediate but the verification of this
statement does not present particular difficulties. •
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