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Abstract. The spacetime locality of the BRST formalism is investigated. The
analysis covers gauge theories with either closed or open algebras and is undertaken
in the explicit context of the antifϊeld formulation of the BRST theory. Under
appropriate conditions, the homology of the Koszul-Tate differential modulo the
spacetime exterior derivative is shown to be trivial in the space of non-integrated
densities with positive antighost and pure ghost numbers. As a result: (i) the solution
of the master equation can be taken to be a local functional; (ii) the gauge fixed
action is also a local functional provided one takes the gauge fixing fermion to
be a local functional as well; and (iii) the BRST transformation is local.

1. Introduction

It has become clear in the last years that the BRST symmetry provides an extremely
powerful tool for studying the geometrical, algebraic and quantum properties of
gauge theories. However, as pointed out by many authors, it is not completely
obvious that the BRST construction preserves spacetime locality of the field
theoretical formalism. For this reason, a "locality hypothesis" has been formulated,
expressing that the BRST symmetry is local is spacetime.

The purpose of the paper is to show that the hypothesis on the locality of the
BRST formalism is actually superfluous. More precisely, it is proved that under
appropriate conditions, (i) the BRST transformation is local; and (ii) the gauge
fixed action appearing in the path integral is a local functional. The spacetime
locality of the gauge fixed action enables one to describe the theory in terms of
fundamental local interaction processes. It appears to be important for the
perturbative quantum properties and the renormalization of the theory. Locality
also plays a key role in the proof of important theorems of quantum field theory
(PCT theorem, e t c . ) .
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The analysis given below covers gauge theories with either closed or open
algebras. This analysis is undertaken in the explicit context of the antifield
formulation of the BRST theory [1,2]. It can be carried out along the same lines
in the Hamiltonian formulation [3,4] to prove spatial locality of the BRST charge.

For the sake of avoiding cumbersome notations, only irreducible bosonic gauge
theories are considered. The results are easily extended to the general case of a
reducible theory with both bosonic and fermionic gauge symmetries.

2. Is the Koszul-Tate Differential Acyclic in the
Space of Local Functionals?

The question of locality of the gauge-fixed action was first raised in [5] and arises
as follows. The action ^ [ φ * ] of a gauge system cannot be used as such in the
path integral. It needs to be "gauge fixed." In the case of an open gauge algebra, or
when the gauge transformations are reducible on-shell, the Faddeev-Popov
algorithm cannot be applied, and the gauge fixed action contains generically quartic
(or even higher order) ghost interactions. The most expedient way for deriving the
correct gauge fixed action is based on the antifield formalism, where one introduces
one antifield for each field or ghost in the theory. The antifields are conjugate to
the corresponding fields (or ghosts) in the so-called "antibraeket," which is denoted
by (,). The central equation of the formalism is the master equation (S, S) = 0. The
gauge fixed action is obtained by setting in S the antifields equal to the functional
derivatives of an appropriate "gauge fixing fermion" φ with respect to the conjugate
variables. Different choices of φ correspond to different gauges and yield the same
physical amplitudes. The gauge fixed action is local in spacetime if S is local and
if ψ is chosen to be a local functional. This raises the question of whether the
solution of the master equation is local in spacetime. [The measure terms in the
path integral are of formal higher order in h and will not be considered here. A
review of the antifield formalism may be found in [6].]

To analyze this question, one expands the solution S of the master equation as a
sum of terms of definite antighost number,

^ (") (») (n)

S = £ S, antigh S = n, puregh S = n. (1)

(0) U>

The first terms S and S are given by [1,6]

(0)

S=S0 (2a)

where So is the classical action and

(i)

S=φ*Ri

aC«. (2b)

Here, Rι

a defines the gauge transformations,

δJ'^Kf (3)
while Cα and φf are respectively the ghosts and the antifields conjugate to φ\
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The antifϊelds conjugate to Ca are denoted by C*. One has

pure ghφι = antigh φι = 0, (4a)

puregh Cα = 1, antigh Cα = 0, (4b)

pure ghφ* = 0, antigh φf = l, (4c)

pure gh C* = 0, antigh C* = 2, (4d)

gh = pwre gh — antigh. (4e)

The classical master equation

(S,S) = 0 (5)

is equivalent to
(n+l) («)

δ S +D = 0 (n£l) , (6)

(») (*)
w h e r e D d e p e n d s o n S wi th fc ^ n a n d fulfills

(n) (n) (n)

δD = 0, antigh Z> = w, pure gh D = n+ 1. (7)

The Koszul-Tate differential δ in (6) and (7) is defined by

err

δφ*=-Λ <5C* = R ι > * , (8a)
1 50' α

^ = 0, ^C α = 0, (8b)

antigh <5 = - 1, pwre gh δ = 0. (8c)

This derivation is nilpotent and has been shown in [2,7,8], following standard
methods of homological algebra, to be acyclic in antighost number k> 0,

Hk(δ) = 0, k>0. (9)

(w+l)

This implies that Eq. (6) possesses a solution for S . However, the problem of

spacetime locality was not examined in [2,7,8] and so, it is not clear from that

analysis that (9) still holds in the space of local functionals. In other words, even
(n) (Λ)

though D in (6) is a local functional as soon as the lower order terms S are local
(Λ+l)

functionals for k ^ n, it is not clear that the solution S of (6) is also a local

functional.
The main result of this paper guarantees that this is so.

Theorem 1. Let A be a local functional,

A = $a(zA,dμz
A,...,dμι...dμsz

A)dx (10a)

with

antigh A > 0, pure gh Λ > 0, (10b)

Z^EE (</><, C*,φ*,C*). (10c)
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If k is δ-closed, then it is the δ of a local functional,

δA = O^>A = δB, (lla)

B = Sb(zΛ

9dμz
Λ

9...,dμι...dμtz
Λ)ix. (lib)

Differently said, the homology of δ is trivial

Hk{δ) = O, k>0 (12)

in the space of local functional having both the antighost number and the pure ghost
number strictly positive.

The proof of this theorem, announced in [6], is given in the subsequent sections.

The spacetime locality of each individual term S in the expansion (1) implies
the locality of the sum S itself provided the theory is of finite rank, i.e., provided
the sum (1) is finite. If the theory is of infinite rank, S might in principle involve
derivatives of the fields of arbitrarily high order. However, no irreducible gauge
theory of infinite rank is known and so, it appears reasonable to make the
assumption that the rank is finite. This will be done here.

The locality of S, in turn, implies the locality:

(i) of the BRST transformation, given by

szA = (zA,S); (13)

and (ii) of the gauge fixed action obtained by eliminating the antifields, provided
one takes a gauge fixing fermion that is also a local functional.

The remaining part of this paper is devoted to the proof of Theorem 1 and is
organized as follows.

In the next section, we reformulate the theorem in terms of the non-integrated
densities a and b occurring in (10) and (11). We then explicitly state the technical
assumptions on the action So and the gauge transformations necessary to prove the
theorem (Sect. 4). One assumption concerns the regularity of the surface defined
by the Euler-Lagrange equations δSo/δφ^O, the other is a local completeness
condition on the gauge transformation. Finally, in Sect. 5, we prove the Theorem 1
or rather, its equivalent reformulation given in Sect. 3. The last section contains
concluding remarks.

3. More on Local Functional

It is convenient to reformulate Theorem 1 in terms of the non-integrated densities
a and b defining respectively A and B. For that purpose, it is necessary to remove
the integral sign. This can be done by means of the following theorem from the
calculus of variations.

Theorem 2. // the variational derivatives

ί?Ξa?"^+ w^?)"'" ( 1 4 a )
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o/a all identically vanish, then a is the sum of a total divergence and a constant,

^ 3/ + C. (14b)
δz

More generally, ifδa/δz1 = 0, then, z1 and its derivatives can be removed from a by
adding a total divergence,

δa
0oa ά(za,dμz

a,...,dμί:.dμqz
a) + dJ>1 (α = 2,3,...,n). (14c)

Proof: The proof of this theorem may be found in [9,10,11], and more recently,
in [12,13].

It follows from the theorem that if A = \adx = 0, then a = dμj
μ. Indeed, if A = 0

for all field configuration, then, δA/δzA(x) = δa/δzA = 0 and so, a = djμ + C. But
the constant C is easily seen to vanish as A itself must be zero.1

Consequently, one can reformulate Theorem 1 as follows.

Theorem 3. Let a (zA,..., dβι dβsz
A) be a non-integrated density with

antigh a > 0, pure gh a > 0. (15)

// a is δ-closed modulo a total divergence,

δa = dλμ\ (16a)

then, it is automatically δ-exact modulo a total divergence,

a = δb + dλv
λ, (16b)

(16a)=>(16b).

The homology of δ modulo the exterior spacetime derivative is thus trivial at
positive antighost and pure ghost numbers. [This latter statement uses dual
terminology, in which the function a is replaced by the dual D-form
adx° Λ ••• Λ dxD~x, and dλμ

λ is replaced by dμ, where μ is the (D — l)-form dual
to / . ]

It is this equivalent version of Theorem 1 that will be proved in the sequel.
For that purpose, the following theorem will be needed

Theorem 4. IfdJ* = 0, then j μ = dvS
μv + Cμ, where Sμv= -Svμ and Cμ = const,

dμj
μ = 0(identically)^ = dvS

vμ + Cμ, Svμ = -Svμ. (17)

Proof Again, this a well-known theorem from the calculus of variations. A recent
proof is given in [12,13]. For completeness, another proof is given in the appendix.

4. Assumptions on the Action So and the Gauge Transformations

4.1. Regularity Conditions. The action is a local functional,

x (18a)

1 As a rule, it will always be assumed that the boundary conditions are such that the flux of
the currents that appear are zero
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and the Euler-Lagrange equations

( 5 ^ = 0 (18b)

δφ1

are therefore partial differential equations of finite order for φ\
Let Vn be the space of the fields φι and their successive derivatives 3 μ i . . . dμhφ

ι

up to order n at some arbitrary but unspecified spacetime point. For an arbitrary
field configurations, these variables are independent (they are only subject to the
symmetry properties dμd^φι = dvd^1 e t c . ) . Let s be the order of the highest
derivative occurring in δJ£0/δφ\

) \ dβφ\. . . , δ μ i . . . dβsφ
l). (19)

δφ1 δφ1

The equations

(20a)

0 δz0 δ<e0
r = 0, ou r = 0 , . . . , dUΛ.. .ouir r = 0 (20b)1 μ δφ1 μι μk δφ1

δφ1

define a surface in Vs. Similarly, the equations

r 0, o u r 0 , . . . , dUΛ.. . o u i r r
δφ1 μ δφ1 μι μk δφ1

define a surface in Vs+k.
We will assume that for any k, the equations (20b) indeed define a smooth

surface and provide a "regular" representation of that surface.
[One says that the equations Ga = 0 provide a regular representation of a

surface ]£ if one can locally split the functions Ga as Ga = (GA, Ga) in such a way
that (i) Gα = 0 is a consequence of GA = 0; and (ii) the exterior form AAdGA does
not vanish on ]Γ (0 is a regular value of the map defined by GA).~\

The regularity condition is usually fulfilled, at least almost everywhere, by most
of the theories of physical interest. If there are constraints on the dynamical
variables enforced in the variational principle by means of Lagrange multipliers,
the regularity condition forbids one to replace them by, say, their squares [14].

In principle, one should check that the regularity condition holds for any value
of k. In practice, however, the verification is finished as soon as the independent
equations among (20b) form a "passive" partial differential system in the sense of
[15].

4.2 Local Completeness of the Gauge Transformations. The symbolic form (3) of the
gauge transformations actually stands for

δεφ
i = ri

xε° + rl:δμε*+- + r^~>"dμi...dβcε\ (21)

where the functions rι

a, r^μ,... and r*£ι'"μt depend on the fields on their derivatives
up to some finite order, and where the εα are arbitrary functions of x. From the
invariance of the action under (21), one gets the Noether identities

V δ V " i ... i I Yd d i Z L V / i * \ _ o
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We will assume that the gauge transformations (21) are not only complete in
the sense of [6], but also locally complete. By this it is meant:
(i) ("completeness") that any gauge transformation can be expressed in terms of
(21) up to gauge transformations vanishing on-shell.
(ii) ("local completeness") that any gauge transformation given by a local
expression can be expressed locally in terms of (21); or, what is the same,
that any local identity on δJ^o/δφ1 and its derivatives can be derived from (22)
by local means, i.e., by algebraic manipulations and differentiations but no
integration. So, if the equation

holds identically, where Tι (x,x') involves the delta function <5(x,x') and its

derivatives up to some finite order, then it must be true that

(x, x ) — J ax κa (x, x ) μ (x , x )

+ \dx" vί7(x, x', x") — ^ — ,

vίj(x,x',x") = - v ' V , *',*),

where both μα(x",x') and vy(x",x',x) involve the delta functions <5(x",x'), <5(x',x)
and their derivatives up to a finite order, but no primitive of <5(x,x'). [Of course,
these functions also possess an unwritten dependence on the fields and their
derivatives.]

For instance, in the case of the Maxwell theory, the gauge transformations are

δελμ(x) = dμε(x) = \dx' —μδ{x,x') ε(x') (23a)

and yield the Noether identity

dμψ^ = 0. (23b)

If one replaces ε by \Jη in (23a), one gets a different form of the gauge
transformations,

c 3
δηAμ(x) = dμΠη(x)= Jdx'D—-δ(x,x')η{x')9 (23c)

dxμ

which leads to

Ώdμ - = 0. (23d)

This second form of the gauge transformations is not locally complete because
one cannot express the coefficient δ (x, x') appearing in (23a) in terms of • δfβ(x, x')
by mere differentiation: one must invert •, and this is a non-local question. By
contrast, the representation (23a) of the gauge symmetry is locally complete.

By redefining the gauge transformations, or by completing the given set of
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gauge transformations (increasing possibly the reducibility), one can assume that
the local completeness condition is fulfilled.

In a locally complete representation of the gauge symmetry, the commutator
of two gauge transformations can be expressed locally in terms of the original
gauge transformations and the equations of motion.

5. Homology of δ Modulo d

Under the above assumptions, the proof of Theorem 3 is direct.

5.1 Local Cohomology of δ. The Koszul-Tate differential (8) explicitly reads, in
uncondensed notations

tΦΐ^ηπT, (24a)
oφ

δC* = rι

aφf — dμ(rιμφf) + ••• 4- ( — Ydμι...dμt(riμί"μtφf), (24b)

δφι = O δCa = O. (24c)

Its action on the derivatives of the z's is obtained by using the rule

<5^μ = ^ μ ^ (25)

The Koszul-Tate differential implements the restriction to the surface
<50' = O, dμδ&o/δφ^O,... . Each of the equations ^ ^
0,... has an independent antifield, namely, φf, dμφf9... . Furthermore, for each
independent identity among the equations, there is an independent "antifield of
antifield," which is either C* or one of its appropriate derivatives.

Accordingly, by using standard methods of homological algebra, one can show
that any (5-closed function of the fields and their derivatives which has positive
antighost number is also δ-exact,

δa = 0, antigh a > 0 => a = δb9 (26a)

i.e.,

H[oc(δ) = 0, fc>0. (26b)

To that end, one constructs a contracting homotopy σ,

σδ + δσ = N, (26c)

where N counts the number of antifields, of equations δ^^jδφ'1 and of their
derivatives contained in a (see e.g. [7] for more information).

Even though δ commutes with dμ9 the contracting homotopy σ cannot be
chosen, in general, to commute with dμ. This would imply that the homology

of δ modulo d is trivial at positive antighost number ( δa = djμ=>a = δ[ -σa ) +
\ \n /

-σjμ ) I, and this may not be the case.
,n J)
That the homology of δ modulo d may be non-trivial at positive antighost
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number can be seen on the example i f 0 = q2/2. One has δq* = 'q = dqjdt and yet
q*Φδ(x + dβ/dt. [If q* = δ<x + dβ/dt9 then also q* = dβ/dt with β = β(q = O,
q = 0,...). But this is impossible because the variational derivatives of q* do not
vanish.]

This is the reason why the extra condition on the pure ghost number is imposed
in Theorem 3 (and Theorem 1).

Because δ does not art at all on the ghosts Cα, one can, however, choose σ to
commute with dμ, where dμ is the operator that differentiates only with respect to
the ghosts,

σdμ = dμσ. (27b)

The complete derivative dμ is the sum

dμ = dμ + dμ9 (27c)

where dμ acts on all the variables but the ghosts. The homology of δ modulo dμ is
therefore trivial,

Sa = dμj
μ

9 ainύgha>O=>a = δb + dμλ
μ. (28)

5.2 Proof of Theorem 3. The proof of Theorem 3 crucially relies on (28) and follows
a perturbative argument similar to spectral sequence techniques.

Let M be the even differential that counts the number of derivatives of the
ghosts,

i . . . δ μ k 0 ί = O, Mdμi...dμkφ* = 0, Md μ i . . .5 μ k C α * = 0, (29a)

Mdμι...dμkC" = kdμί...dμkC". (29b)

A similar differential was introduced in [12,16] in the study of the BRST cohomo-
logy for Yang-Mills models. One has

μ ] = dμ. (30)

Let a be <5-closed modulo dλμ
λ, with antigh α > 0 , pure g h α > 0 . The local

functions a and μλ can be expanded according to the number of derivatives of the
ghosts,

(0) (s)

a= a + •••+ a, (31a)

(k) (k) (k) (k)

Ma=ka, Mμλ = kμλ. (31c)

The expansions (31) are finite, because a and μλ are polynomials in the ghosts (they
possess definite ghost number) and are local, i.e., contain the derivatives dμι...dμ Ca

up to a finite order.
The equation δa = dλμ

λ is equivalent to

(0 _ ( i - 1)A _ (i)λ

δa = dλ μ +dλμ. (32)
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Without loss of generality, one can assume t = s — 1, since otherwise Eq. (32) with
i = t + 1 reads

which implies

ιι — d ^ λ v ^ λ v — — *\vλ Λ/ί Vλx — it — \\ <\λv

(i)λ

(Theorem 4). The ghost-independent term in (17) disappears because pure gh μ > 0.
But then, μ'λ = μλ — dyS

λy is also such that δa = dλμ*λ and contains only terms of
degree ^ t — 1. So, one can assume t = s — 1.

With t = s — 1, Eq. (32) for i = s is given explicitly by

(s) _ (s-iμ

( 5 0 = ^ μ .

Using the fact that the <5-homology modulo dλ is trivial, one gets

(s) (s) __ (s-iμ

a = δb +dλ v
(s) (s-iμ (S) _ ( S -iμ

and so, the function a-δb - dλ v =a- a —dλ v is <5-closed modulo d and
has no component of M-degree 5. Going on in the same fashion, one then removes
successively the remaining components of M-degrees s — 1, 5 - 2,... by adding an
appropriate (5-exact term and a total divergence. Collecting the terms, one
ultimately gets

a = δb + dλv
λ

which is the desired result. This completes the proof of Theorem 3.

6. Concluding Remarks

(i) One can analyse in a similar fashion the homology of δ modulo the exterior
spacetime d for other values of the form-degree. One finds again that the homology
is trivial when both the antighost number and the pure ghost number are strictly
positive.
(ii) If the antighost number of a is strictly greater than the spacetime dimension D,
one can provide a different proof of the triviality of the homology of δ modulo d.
This alternative proof does not require pure gh a > 0 but fails if antigh a ^ D. It is
based on "zig-zag equations" in the double complex based on δ and d and goes as
follows.

The equation
(D) (D-D

δ a = d μ ,

where the superscript denotes the form-degree (we revert to dual notations), implies
successfully

(D-l) (D-2)

δ μ =d μ ,

(D-2) Φ-3)

δ μ =d μ ,

(0)
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This follows from the triviality of the d-cohomology (Theorem 4): the constant terms
drop out because the μ's have strictly positive antighost number. Furthermore,

(0) (0) (0) (0)

antigh μ = antigh a — D^l. Hence, μ is (5-exact, μ = δ v . By going up the ladder,
(1) ,(0> (1) (D) (D-l) (D) .

one then gets μ + α v = 0 v , . . . , and finally, a +d v = <5 v as required.
(iii) The triviality of the homology of δ modulo d for antigh > 0 and pure gh > 0
can be used to prove that the BRST invariant extension of any on-shell gauge
invariant local functional (more generally, any local, closed, longitudinal form along
the gauge orbits) is also a local functional.
(iv) A different approach may be found in [17].

Acknowledgements. The author is grateful to M. Dubois-Violette, J. Fisch, M. Talon and C.
Vίallet for useful conversations.

Appendix

We prove in this appendix Theorem 4: if the divergence dμj
μ = O vanishes

identically, then 7 ̂  is the sum of the divergence of an antisymmetric tensor and a
constant current, j μ = dvS

μy + Cμ with Sμv = - S v μ . Here, the Cμ are constant.
First, one needs the following lemma.

Lemma. Let y* = (ya,yN + 1), a=l9...9N9 α = l , . . . , J V + 1 , be ΛΓ+1 independent

fields and let m be a local function of the first N fields ya and their derivatives. If

then

i.e.,

m = dμn
μ + C. (A.3)

The proof is straightforward: because the left-hand side of (A.I) depends only
linearly on yN + 1 and does not contain the derivatives of yN + 1

9 it must actually be
independent of yN + 1

9 i.e., δm/δyN = 0 (the right-hand side of (A.I) necessarily con-
tains derivatives oϊyN+1 if it contains yN+1). Repeating the argument, one then finds
(A.3).

Once the lemma is established, the proof of Theorem 4 is direct and proceeds
by induction on the dimension.
(i) The theorem is easily seen to hold in one spacetime dimension,

(ii) If true in n spacetime dimensions (for any number of fields), the theorem is then
also true in n + 1 dimensions.

Indeed, straightforward integrations by parts in
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yield

δm°dzA δ m i 0 ) d2zA δ m { 0 ) du+1zA _ _k

~δ?Ίh? + d ( d 0 z A ) ( d x 0 ) 2 + ' " + δ(duzA/(dx°)u)(dx0)u + 1 " km'

Here, the variational derivatives are those in n dimensions, for which zA, doz
A,

dooz
A,... are independent. An application of the lemma then gives

mo = δ f cS
o k + C°,

which, when substituted in dμm
μ — 0, implies

mk = d0S
k0 + dmSkm + Ck,

since the theorem is true in n dimensions. Here

Sk0=-Sk0

and

S k m = - S m k .

This proves the theorem.

Remarks, (i) The Theorem 4 shows that the cohomology in degree D — 1 of the

algebraic d defined in the space of functions of the fields and their derivatives by

is exhausted by the constants. Here, D is the spacetime dimension. A similar

property actually holds for any degree < D and is proven along identical lines.

(ii) If dμ in Theorem 4 does not act on some variables, then the constant current

Cμ can depend on all the variables not "seen" by dμ.
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