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Abstract. We consider C? unimodal maps f such that all periodic points are
hyperbolic, the critical point is non-degenerated and non-recurrent, and the Julia
set does not contain intervals. We construct a Markov partition for a big part of
the Julia set. Then we use it to estimate the limit capacity and Hausdorff dimension
of the Julia set.

Introduction

Understanding the dynamical behavior of interval maps is a very interesting task.
Besides having amazing and rich dynamics, they are part of more complicated
dynamics. We mention some facts about the dynamics of a unimodal map: from
the topological point of view we have a good description of the dynamics by the
kneading theory, Milnor and Thurston [6]. Melo and Strien [5] and Martens et al.
[4] generalized some theorems of structure and finiteness proved before, on the
negative schwarzian case, by Guckenheimer [1] and by Singer [7], respectively.
From the metrical point of view some problems are still open, for example: the size
of invariant compact sets, the relation between stability and hyperbolicity, the
existence of Bowen-Ruelle-Sinai measures, etc.

Here we analyze the Julia set X of unimodal Misiurewicz maps (non-recurrent
critical point) with respect to its limit capacity and Hausdorff dimension.
Hausdorff dimension is a nice way to measure the size of a set, how much it is
dense. Limit capacity relies on geometrical properties of the set, how well it is
distributed. Usually limit capacity is bigger than Hausdorff dimension. In the case
of X they are equal. They are bigger than zero and in the case that X does not
contain intervals, they are smaller than one. In fact, when X does not contain
intervals, we can see a lot of order inside it. We can essentially realize it as a
compact invariant set of a very nice Markov map.

The paper is divided into three sections. Section 1 contains precise statements
and preliminary results. Section 2 is a key one, there we construct the “first hit”
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map. It is a Markov map with finite image partition which says almost everything
about the size of 2 and about the dynamics inside it. In Sect. 3 we use the “first hit”
map to estimate limit capacity and Hausdorff dimension.

1. Statements and Preliminary Results

Definition. A C" (r=2) interval map f:[—1,1] o is called unimodal if f(—1)
=f(1)=—1 and f has only one critical point, zero.

Definition. The basin B of a unimodal map f is the interior of the set of points
such that the forward orbit converges to a periodic point. The immediate basin
B, is the union of the connected components of B which contain periodic points
on its closure. The Julia set X is the complement of B.

Inside the basin the dynamics is very simple, all points are forward asymptotic
to a periodic point. The Julia set contains the interesting part of the dynamics,
sometimes its dynamics is described by an absolutely continuous invariant
measure, Misiurewicz [7].

We consider some unimodal map and assume that its Julia set is small in the
topological sense. The following theorem says that it is a small set in a nice metrical
and geometrical sense. Let us state the theorem precisely.

Theorem. Let f be a C? unimodal map such that all periodic points are hyperbolic,
and its critical point is non-recurrent and non-degenerated. If the Julia set of f does
not contain intervals, then:

a) It has Hausdorff dimension bigger than zero and smaller than one.

b) The limit capacity of the Julia set is equal to its Hausdorff dimension.

A key part of the proof of this theorem is the construction of the “first hit” map,
in Sect. 2. Besides the metrical information, the “first hit” map explains very well
the dynamics inside the Julia set. It will be precisely stated in Sect.2, as a
fundamental lemma.

In a forthcoming paper we consider one-parameter families of unimodal maps
through f. Although the critical point can be outside the basin, we prove that the
frequency of topological changes in the dynamics is zero at the parameter
corresponding to f.

Now we introduce some notations and some preliminary facts.

Notation. We refer to a C*> unimodal map f.

a) B denotes the basin, B, the immediate basin, and 2 the Julia set of f.

b) x* denotes the symmetric point of x, that is, the unique point such that
JF)=f(x).

c¢) J denotes an open interval bounded by a point g and its symmetric g*. We

consider only points g such that J m( U fiq) ) =9, and for some m, f™(g) is a
periodic point.
d) E,:={xe[—1,1]; fix)¢ BouJ, j=0,...,n—1}, n=1.

Remark. The connected components of E,\E, , ; are difftomorphically applied by
" onto connected components of ByulJ.
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Lemma (1.1). Let f be a C* unimodal map such that all periodic points are
Zyperbollc Given J there exist C, >0, A, >1-and R, < o such that for all x in E, we
ave:

o b f]jg(c)l)r .,
XX, x
® .o =R

Proof. a) First of all we observe that E,(n=1)is a decreasing sequence of compact

sets, f "(E JCE,_(0O<k<n)and ﬂ E; is a non-empty compact invariant set of f.

The set ﬂ E; does not contain attractlve periodic points, either non- hyperbohc
ji=1

periodic points or critical points. From Méané [3] we conclude that ﬂ E;isa
hyperbolic set (it also has null Lebesgue measure). Therefore we can choese some k
and some 1>1 such that |8, f¥(x)|= 1, for all x in ﬂ E;. By continuity we can
dmumsh Z a little and can take N so big as to have 10,./¥x)| = for all x in
Ey= 'ﬂ E;.
Nc;:v: given n> N we write n— N = jk+1, where 0 <I<k. Therefore:
10, "N =10V T SN0 x)

For x in E, we have that the first factor is uniformly bounded away from zero and
the second is bigger than (1). Part a) follows immediately.
b) We observe that:

O0xxf"() _ "1 1 0uf(fx)
@f"x)* jZ0 O HTSTHI) @S (F)?

The factor

( 6 f)2 is bounded in the complement of J. Now part b) follows by
parta). [ i

Lemma (1.2). Let f be a C? unimodal map such that all periodic points are
hyperbolic and the critical point (zero) is non-degenerated. Given J there exists
R, <0 such that for all y in J such that f([0,y])CE,_, we have:

S'l n, n,
a) R—lylél(?xf IS RS0V, Sp:=10./"O))-

K zfé} Y <10 -0l "2y

Proof. We omit this proof which is a straightforward consequence of Lemma (1.1)
and the non-degeneracy of the critical point. []

2. The First Hit Map

This section is a key part of the proof of the theorem. Our first tentative step to
prove the theorem is to construct a Markov partition for the Julia set X, but as X
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may contain the critical point, it is impossible. The following lemma has many
dynamical and metrical implications. Roughly speaking it says that we essentially
have a Markov partition for 2. As a dynamical consequence we can see a Markov
chain with infinitely many states inside the dynamics of f in 2. As a metrical
consequence we can see that X has null Lebesgue measure. As a geometrical
consequence we can see a lot of order inside X': it is self-similar. In fact, we have
much more than this, as we will see in Sect. 3.

Fundamental Lemma (2.1). Let f be a C? unimodal map such that all periodic points
are hyperbolic and the critical point is non-degenerated and non—recurrent If the

Julia set X of f does not contain intervals, there exists a C> map ¢ : U K;-»[-1,1]

(k in Nu{o0}) such that:

(@) K; (j=1) are closed, non-degenerated, disjoint intervals contamed inf[—1,1].

Their boundar y points a;and b; form two sequences which converge exponentially to

zero. k w

(b) X is equal to the union of ﬂ @ ’( U K j> and the countable set | ¢ %(0).
j=1 j=o0

(¢) ¢ is a C* Markov map w:th flmte image partition, that is; ¢ applies each K ; C*
diffeomorphically onto p(K J) If o(K;) intersects K, then (K ) contains K. The set
of intervals {o(K)); j=1} is finite.

(d) Thereexist C>0,A>1 and R < o0 such that, for all y in the domain of ¢" (n=1),
we have:

100" W)
10,0"0)1* =

We refer to the Markov map ¢ as the first hit map. It has nice properties. Before
getting into the proof of Lemma (2.1) we say something about the construction of
the first hit map. The natural idea is to consider gaps of some fixed piece of the
basin. The first hit map could be simply f restricted to these gaps. It works fine,
except on the central gap which contains the critical point. To correct it we take its
images by iterations of f until hitting the fixed piece of the basin. At this moment
we decompose the central gap in some good ones where ¢ is the corresponding
iteration of f. A new central gap appears. It must go through the correction
process. Fortunately this new central gap is considerably smaller, and after
infinitely many induction steps all the gaps are nice. We miss only the critical point.

[0.0"()| 2 CA"  and <R.

Proof (Lemma (2.1)). We need to build the first hit map ¢ with good topological
and metrical properties. We consider three parts; the construction of ¢, its
topological properties and its metrical properties.

Part (1) (Construction ). Firstly we define the domain U K of ¢ and afterwards

we define how ¢ acts on its domain. To define the closed intervals K; we fix a
convenient piece of the basin B. We have two cases; in the first case ) does not
accumulate on the critical point and in the second case X accumulates on the
critical point.

If X does not accumulate on the critical point (zero), we choose the smallest j,

Jo 3 .
such that the closure of B; := _90 f T By) contains zero. B;, has finitely many

connected components (Martens et al. [4]) and its boundary is invariant by f. In
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this easy case the intervals K ; are the connected components of the complement of
the interior of closure (B;,u f !(B;,)- There we take the restriction of f to K ; to be
the first hit map ¢. Lemma (2.1) follows by Lemma (1.1), by the fact that B;, has
finitely many connected components, and by the invariance of the boundary
of B;,.

Let us assume from now on that ¥ accumulates on zero. Given some Jo We
define the interval J | ; the open interval bounded by the two symmetric connected
components of B;, which are the nearest to zero. We fix j, such that the distance

between J, and B,u < Urf f(O)) is positive. This is possible because B, has finitely
j=1

many connected components, X does not contain intervals and zero is non-
recurrent.
Now we start an induction process to define the intervals K; and the first hit

map o.

Induction Step(1). J,:=J 1\Bj, is a closed non-degenerated interval which
contains zero. If we take k,=0 we have:

(a;) f*(0J,)C0B;,, here d denotes boundary.

(by) ka(Jl)nB =0.

Induction Step (n). J, is a closed non-degenerated interval which contains zero.
There exists k,_, such that:

(a,) fH- 1(c?.I,,)CaB

(b)) f*-{(J)NB, =9.

Induction Step (n+1). Because X does not contain intervals we can choose the
smallest k, such that f*(J,)nB; +0. We define J,,,; the maximal interval
contained in J, which contains zero and satisfies /*(J, . ;)nB;,=0. J, , , is closed
and non- degenerated and the pair J,,; and k, satisfy (a,,H) and (b, ). This
concludes the induction process.

Now we define the domain of the first hit map ¢ and its action on it. The

e o}
intervals K ; are the connected components of |J (J,\(J;+ ;v f ~*(B;,))) union with
1=

1
([—1L,1\Bj v f " U(B; NN —1,1]\J,). We enumerate K; conveniently in order
that the convex hull of K and K, , contains K ; ,J, - We define the action of the first
hitmap ¢ on K j;itis f'if K is contained in [ —1,1]\J, and f*if K is contained in

I\J141-

Part (2) (Topological Properties). We mean by topological properties those
stated in Lemma (2.1a, b, ¢), except by the exponential convergence of a; and b; to
zero; which is a metrical property. All of them are direct consequence of the

induction process. We only mention that: k, <k; <..., () J,={0} and ¢ applies
n=1

K; diffeomorphically onto ¢(K;) which is a connected component of the
complement of B; . Since B;, has finitely many connected components and its
boundary is invariant by f, part (c) in Lemma (2.1) follows.

We have other important topological properties: the fact that each J\J,,,
contains only a finite and uniformly bounded number of intervals K; and the fact

that( U 1, ))m(Bmqu) 0, n=1.
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Part (3) (Metrical Properties ). Kobe’s lemma (see Strien [9]) is the main tool in
this part, at the right moment we point out its role.

We mean by metrical properties the exponential convergence of a; and b; (a;
and b; are the boundary points of K;) to zero and part (d) in Lemma (2 1). Part of
their proof is the following fact. There exist C >0, 1>1and R,, R, < oo such that
for all y in K;CJ\J,,, we have ¢ =/* and:

() 10,0012 CT and =20 g .

- 00> =
(i) |[J|S R A"
To prove (i) we observe that ¢ =f* in K;CJ\J;,, and f(J))CE,,_,. Where
E,:={xe[—1,1]; f{(x)¢B;,uJ,,i=0,....,n— 1} n>1 By Lemma (1.2),for all yin
K ;CJ;, we have:

10,0 =10, f4()| = R"‘ Iyl
2

and

P2 21f4(y) —f*(0)] _
2Sk1
As yeJ\J,,, the interval bounded by f*(y) and f*(0) contains some connected
component of B;, and it follows that | f*(y)—f*(0)| is uniformly bounded away

from zero. Lemma (1.1) implies that S, :=10,, "‘(0)| >C,S, A1 It follows that
there exist C >0 and 71> 1 such that |3,¢(y)|= C7%. To prove the boundedness of

10,0 ()|

2.00)7 we observe that:

10xx0) _ 1 N0 ON | 10snf ROA0))
|0x<l>(y)|2_|6 SISON 100N 10/ O

By Lemma (1.1) the second parcel of this sum is bounded by R,. To estimate the
first parcel we observe that:

0/ SO - 10 SO =100 10/ D) -

By an argument analogous to the previous one, we prove that |0,.¢(y)||0,f(y)| is
uniformly bounded away from zero. The proof of (i) is now complete.

By Lemma (1.2) it follows that y* < 4SR Therefore, we can conclude (ii).
ki
The fact (ii) (above) implies the exponentlal convergence of a;and b; to zero, but

we cannot yet conclude part (d) in Lemma (2.1). We do not have the expansiveness
we want; it may fail in some intervals K;. By the fact (i) above there exist only
finitely many of these K;, but this could be enough to cause problems of
expansiveness on ¢". We must correct ¢ where it is not expansive. During this
correction process we must not loose the topological and metrical properties
already obtained.

Given y>1 we redefine ¢ in order to have the following property: If K; is a
connected component of the domain of ¢, then:

p(K)=J, or min{|d0.p(); yeK;}=

We call it property (y). Afterwards we use Kobe’s lemma (see Strien [9]) to prove
that property () (y>1) implies part (d) in Lemma (2.1).
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If ¢ does not have property (y) (y> 1) there exist a connected component K ; of
its domain such that:

o(K)nJ;=0 and min{|0,0(y); yeK;}<y.

We modify K; and redefine ¢: We choose the smallest i; such that
f ”((p(K]))nB =l=‘b The fact (i) above and Lemma (1.1) imply that
105" 0 <p(y)|
101" o

K\(f “oq)) !(B;,) we redefine ¢ to be f''oq. If this new ¢ does not satisfy
property (y) with respect to I we repeat this process: we choose the smallest i, such

that f*(o(I)NB;,+0. As before Il—a% <N for all y in I'. After finitely
many steps we obtain property (y). In fact, in each step the non-linearity of ¢ is
bounded uniformly, the size of the image intervals are bounded away from zero
and the size of the intervals in the domain becomes very small as the process goes
on.

We observe that ¢ must be corrected only in finitely many K; and each one
produces finitely many intervals I where we redefine ¢ and obtain property (y).
The complement of the intervals I" in K is contained in the basin B. The topo-
logical and metric properties of ¢ are not affected.

Now Kobe’s lemma (see Strien [9]) is the key to show that the first hit map ¢,
which satisfies property (y) (y>1), has the metrical properties we need in
Lemma (2.1). We prove that there exists n, such that |0,¢"(y)| =7y for all y in the
domain of ¢": we take y in a connected component K7 of the domain of ¢". We
have three cases:

(@) (p'(K")r\J =0, i=0,...,n. In this case we have |0,¢"(y)|=y" by property (7).
(b) (p‘(K")mJ 1=0,i=0,...,n—1 and ¢"(K})=J,. In this case we take [ such that
f'=¢"in K. We take also the maximal 1nterval L, whlch contams K", where f'is

monotone and satisfies fY(L)nB,=0. By Strien [9], Z |f4Ly)| is uniformly

<N, forall yin K;and some N < co. In a connected component I" of

bounded. Since J, is far away from B,u ( U f ’(O)) we have that fY(L)\ f(K?) are
=1

two intervals of length bounded away from zero. Then we can use Kobe’s lemma
(see Strien [9]) to conclude that the non-linearity of f'=¢" in K7 is uniformly
100" W) .
" 10.9"(2)|
together with the finiteness of image partition of ¢ and the fact that |[K}| tends
uniformly to zero, when n goes to infinity, guarantee the existence of some n, such
that |0,¢0™(y)|27, for all y in Kj* and any j.
(c) (p‘(K")r\J 1, #0 for some 1<n 2. In this case we take the biggest i<n—2 such
that (p'(K")mJ . +0. We have two sub-cases: i > ny ori<ny,n; was fixed in case (b).
Ifizn,, 10.0"(0)| =16,0" (P 10,00 27"~ >y as we want. If i<n, we have
|0,0'(y)] uniformly bounded away from zero and for n big enough we have
10,0"(»)|=7 as we want.

Now we can conclude that there exists n, such that |0,¢"(y)|=y>1for all y in

090
129"

uniformly bounded for all y in the domain of ¢”". This follows from the

bounded; that is,

is bounded independently of n, j or y, z in K. This fact

the domain of ¢". To finish the proof of Lemma (2.1) we show that —=*——=
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0
boundedness of ( 61;(;)2 proved before in (i), the expansiveness of ¢ and the
following formula: i
0ex@"(y) _ "3 1 0.x0(@(y))

@x0"0)* j;, 30" T PTTI0) @. (0T

Corollary (2.2). Let f be as in Lemma (2.1). If the Julia set does not contain
intervals it has null Lebesgue measure.

a

Proof. The proof is a straightforward consequence of Lemma (2.1). [

3. Limit Capacity and Hausdorff Dimension

In this final section we use the first hit map to estimate the limit capacity and the
Hausdorff dimension of the Julia set ~. We prove the following theorem that we
already stated in the first section.

Theorem. Let f be a C? unimodal map such that all periodic points are hyperbolic
and its critical point is non-recurrent and non-degenerated. If the Julia set of f does
not contain intervals, then:

(a) It has Hausdorff dimension bigger than zero and smaller than one.

(b) The limit capacity of the Julia set is equal to its Hausdorff dimension.

Besides the dynamical aspects of the first hit map ¢, it implies this fine
measurement of the Julia set. The point is that ¢" produces nice covers of the Julia
set. To prove the theorem we need some lemmas.

We consider the first hit map ¢ and the connected components K7 (j,n=1) of
the domain of ¢". We denote by k, the number of intervals K. By Lemma (2.1) k,
can be all of them finite or all of them infinite. We define a sequence of functions:

kn

H,t):= ¥ IKj', nz1.
1

f=
These functions play a fundamental role in the proof of the theorem. The following

lemma says that they have some regularity and decrease at least as an exponential
function.

Lemma (3.1).

(@) H,(t) is defined for all t in R* (i.e. t>0).

(b) H,:R* o isa C' function.

(c) There exist ny and a>0 such that 0,H,(t)< —aH,(t) for alln=ng, and t in R*.

Proof. We assume k, = oo, if not; Lemma (3.1) is obvious.

(a) We use induction with respect to n. The case n=1 is a direct consequence of
Lemma (2.1-a). We assume that case n is true and prove that case n+1 is also true:
for each K} ** contained in K}, (K7 * ') is some K7 contained in (K }). We define:

Anj:=min{|0,0"(y)l; y in K}},
for t >0 we have:

Y H,(t)
Krtit< (_) K:”S m7
K',.;C,(Jnl = Ayj Kl!'c%(K})l = (A1)
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By Lemma (2.1-d) /111 = lggl){ 2R

lp(K})| 2 b; some b>0 Therefore we have:

and, as ¢ has finite image partition,

e2R t
Hn+ l(t) é Hn(t)Hl(t) <T> s

and part (a) follows.
(b) We fix an arbitrary n and consider the following sequence of functions:

1
ht):= Y K,  t>0.
=1

e . .1
When [ goes to infinity we have that h; converges to H, uniformly in [ﬁ’ N],
N>0. We claim that the sequence of derivatives;

()= Z K3l log|K3j],

ji=1

P . .11
when [ goes to infinity, converges uniformly in [—ﬁ, N:| to:

3. K7 log|K3).
2

Let us prove this claim by induction with respect n: For n=1 it is a direct
consequence of Lemma (2.1-a). If it is true for n we prove it for n+1, in fact:

L, K thoekr s (L) |y koo
1j/ Kpco(K})

k+l

1 t
+<—> log(4,e*) ¥ |Ki[".
Aij

Ky Co(K})

Now we sum over all K} and obtain:
2R\t ®
Z lK"“l'lloglK”“H<H1(t)< ) ; (K3 logl K|

+§Q)mwuwzmw

The above sum is uniformly bounded in [%, N]. This immediately implies our

claim and that H, is differentiable in N’ N |. As N is arbitrary we conclude that

H, is differentiable in R*. Its derivative is the following continuous function:
OH, ()= ¥ IKjlogIK],
I=

and part (b) follows. In fact H, is C* but we do not need it.
(c) We choose n, big enough to have |K°|<1/2, for all j. We define:
a:=min{|[log|K7ll|; j=1}.

From the proof of part (b) it follows that 0,H,(t) < —aH,(t) as we want. []
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Corollary (3.2). Let f be as in the theorem. If the Julia set X does not contain
intervals its Hausdorff dimension is smaller than one.

© kn
Proof. By Lemma (2.1-b) it is enough to prove that A:= ) <U K'{) has
Hausdorff dimension smaller than one. n=1\j=t

We observe that for each K7* contained in K} (m>n21), o"(K7') is some k" ™"
contained in ¢"(K}). By an argument similar to the proof of Lemma (3.1-a) we
have:

e2R t
Hm(t)é Hm—n(t) ' Hn(t) <_b_> s

e2R t\1
Hy,(t)= <H,,(t)(—b—)> ; Lnx1.

kn
By Corollary (2.2), |A|—|Z|—-O We know that K":= U Kj is a decreasing
j=1 2R
sequence and A= ﬂ K". Then there exists n such that H,(1)-— <1. By
n=1 2R\ a
continuity there exists « <1 such that H,,(oc)~<eb > < 1. It follows that H,,,(oc) tends

therefore:

to zero when [ goes to infinity. Because H,,(x) is the a-Hausdorff measure of the
cover €, of A, which elements are the intervals K7, and we know that the
Hausdorff dimension of A is the infimum of all the numbers d such that A has a
cover with arbitrarily small d-Hausdorff measure; we can conclude the proof. []

Now we prove that the Hausdorff dimension of the Julia set 2 is equal to its
limit capacity. In fact, we consider only the case that 2 accumulates on the critical
point zero. If it does not happen, the domain of the first hit map has finitely many
connected components and the theorem is a direct consequence of Lemma (2.1)
and Takens [10].

Firstly we make an additional assumption: we suppose that f does not have a
restrictive central point, in the sense of Guckenheimer [1]. This additional
property implies that for each interval L there exists k, such that for all k= k, (L)
covers all the interval [ f%(0), f(0)]; Jonker and Rand [2]. This is a crucial property
to get lower bounds to Hausdorff dimension.

Before the following lemma we fix some numbers: Because the first hit map ¢
has finite image partition we can fix some k, such that for all K} and k = k, we have
that f*("(K?) covers [ f 2(0), £(0)]. We define:

Anj:=min{|0,¢"(y)l; y in K7},
A,;:=max{]0,0"(y)|; y in K}}.

We choose my, such that for alln 2 my, 4,;= > 71> 1. We also define the unique 4, and
the unique 6, such that:

1 4, 1 [
=M d — ) =1,
jezz" <An ,-) o jezé,. </1n j)

where M :=max{|0,f(x)|; i=0,...,ko} and
Z,= {J 2 1; Kin(f*0), f(0) +0} .
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The following two lemmas are proved only for n >m, because we need that the

functions;
() = 50
J.Ez-’gn Anj fezfzn }'nj

decrease as t grows. They are essentially the same functions we considered in
Lemma (3.1) and for n=m, they decrease at least as an exponential function.

One point about the proof of the two following lemmas is that we can use the
first hit map to construct better covers of the Julia set.

Lemma (3.3). Let f be as in the theorem and without restrictive central points. Then
the Hausdorff dimension of the intersection of its Julia set with [ f*(0), f(0)] is at
least A,, for all n=m,.

Proof. Let us prove this lemma by contradiction. If the Hausdorff dimension of
Q:=2n[f*0), f(0)] is 4<A4,, there exists j, such that:
A4+ A4,
M < ! ) oM
€%, \Ay; '
iz

A+4,

Given >0, Q has a cover € with -Hausdorff measure smaller than Me. We

choose ¢ small such that each interval in € intersects at most one K%, j<j, in Z,.
Therefore, € induces, by restriction, non-empty covers ; of QK" and each €
has strictly less intervals than %.

A+ 4
As the + 4

2
A+ 4n

j=jisuch that 4,;> times the 4 -;A" Hausdorff measure of € is smaller than &.

Since f*° o p"(QNK?) covers  we can define a new cover & of Q; we take the image

Hausdorff measure of 4 is smaller than Me, there exists some

- . . A+4 .
of €; by f* o 9" % has less intervals than % and its 2 “-Hausdorff measure is

smaller than Me.
We can repeat the above process and after a finite number of steps we cover ©
with an empty cover, which is clearly false. [

The point about the proof of the following lemma is that the intervals K7 are
nicely distributed and form nice covers of the sets which we are interested in. Given
an &> 0 we can count how many intervals of length ¢ we need to cover the Julia set
or its intersection Q with [%(0), (0)]. One crucial point is that K} converges
exponentially fast to zero as j goes to infinity. We can get upper bounds to limit
capacity. Roughly speaking, the idea is that the intervals K} provide part of the
Julia set with nice covers. Of course they do not have a fixed length as we need in
limit capacity but, it does not matter, we can solve this problem: By Lemma (2.1)
we know that K} accumulates at zero. Then given an >0 we choose an interval
Zo(e) of length & with center at zero. Outside Z(¢) it remains finite many K j, some
number of the same order as |loge]. We must exchange these K} by intervals of
length &. If K is smaller than & we simply replace it by an interval of length &. If K}
is bigger than &, we can use the first hit map to reestimate how many intervals of
length ¢ we need to cover it. At this moment to obtain a better estimate than a
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previous one it is crucial the way that we choose 6, . Unfortunately it is not enough,
t

. Ty, . . . .
we need that the function ) ——) is strictly decreasing. To be certain about this

jeZn /11 j
property we need to consider some high level, n2m, which implies 4,;= 7>1and
the decrease wanted. We need to reestimate more than one time. Let us be more

precise from now on.

Lemma (3.4). Let f be as in the theorem and without restrictive central points. Then
the limit capacity of the intersection of its Julia set with [ f*(0), f(0)] is at most 6,,,
for all n=Zm,,.

Proof. We prove this lemma by contradiction. If the limit capacity C(Q) of
Q:=Zn[f?0), f(0)]is 6> 5, we first claim that there exist &, >0, 0, < 1,and a, < 0o
such that for all ¢ in (0,¢,) and /=0 we have:

l 9-0n
C(Q,s)é((Z Gf,)a,,a 2 +9f,+1>8_5;
i<0

where C(Q,¢) denotes the smallest number of intervals of length & we need to
cover Q.

Now we assume that the claim is true and prove Lemma (3.4). Afterwards we
prove the claim. 5—6n

Given ¢in (0, &) we choose the smallest I such that 0i*1<¢ 2 . It follows that:

! _ 6= dn
C(Q,s)§<<‘200f,>a,,+1>s 7

We know that the limit capacity C(Q) of Q is the infimum of all numbers d for
which there exists £>0, such that, for all ¢ in (0,8) Q2 has a cover with not more
than &7 intervals of length & The above estimate for C(Q,¢) implies that

@)= % <& which contradicts C(Q)=6.

Now we prove the claim. If C(2) = there exists ¢, > 0 such that for all ¢ in (0, &)
we have that C(Q, &) <&~ % Given ¢ in (0, &) we use the first hit map to reestimate
C(Q,e). We define:

Wy:={0} and ZLy(e):=(—¢/2,¢/2)

and by induction with respect to n:

W;+13=§0_("+1)(O)\,.QO$1(8) and Z,.(e)i= | (x—¢/2,x+¢/2).

xeWn+1

We also define:

n—1
Xt:= {je,@"n; Kj# |J #(e) and j" gs}

nj
and
n—1
Y= {je&"’,,; K'¢# |J Z{e) and Lo >s}.
i=0 A"j

By Lemma (2.1-a) K} approximates exponentially fast to zero as j goes to
infinity. Therefore, the cardinality of W, is bounded by a constant times |logg|. It
follows by Lemma (2.1-a, d) and induction with respect n that the cardinality of W,
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n—1

is bounded by a constant times |logs|" Then the number of intervals in U Pe)is
bounded by a constant times Z [loge|'. The cardinality of X? is bounded by the
n - 1

number of intervals outside U Z{e), which is at most a constant times |logg].

These small K} (j in X}) can be replaced by intervals of length &. It remains to
cover the part of Q inside the big K7, i.e. jin Y;. It is in this part that we improve
our previous estimate which was C(Q, e)§s“’, for all ¢ in (0, ;). It follows that:

C(RNe"(KN,e)<e™°, &in (0,¢).

Then if we take the pre-image by ¢" of intervals of length ¢ we obtain intervals of
length at most &/4,;. We replace them by intervals of length ¢/4,;. It follows that:

C(QNK%e)< 1 68_6 gin (0,52
j o) = /‘L,U' s ’Anj .

Then we conclude that to cover the part of Q contained in |) K7 we need not
more than: je®s

1\ —s
je%n(a—n,-) ¢

intervals of length ¢. Consequently, we can take Q < oo such that to cover all the set
Q, with intervals of length ¢ in (0, ¢y), we need not more than

<Q z llogel'e’ +JEZ (/1 )) ~

intervals. We define g, and 6,<1 which we need to prove the claim: q, is the

n 6+ F]

maximum of <Q Y |logel'e 2 )in (0,¢y) and O,:= Y .
i=0 jeZn nj

chose n and 3, we have that 6, <1. The first reestimate that we have is:

. By the way we

0~y

C(Q,e)< (a,,-sT+0,,>a“’, £in (0,&,).

To finish we need some induction. We assume that:

-1 9=0n
C(Q,6)< (< Y 0;>a,,e 2 +0f,>.«3“s
i<0

As in the first step we can conclude that to cover the part of Qin () Kj we need
not more than: jeY

1 ) 60— 0n
((Z 0:,>a,,s 2 +0f,“)s“’
i=1

intervals of length &. To cover all the set Q with intervals of length ¢ in (0, &5) we

need no more than
1 . d—dn
((ZO 0;) age 2 +64F 1) g™ ?

intervals. The claim is proved. [J
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Corollary (3.5). Let f be as in the theorem and without restrictive central points and
let 2 be the intersection of the Julia set with [ f?(0), f(0)]. Then:

(a) The Hausdorff dimension of Q is bigger than zero and smaller than one.

(b) The limit capacity of Q is equal to its Hausdorff dimension.

Proof. (a) It is the explicit content of Corollary (3.2) and Lemma (3.3).

(b) We know that limit capacity is not smaller than Hausdorff dimension. By
Lemma (3.3)and Lemma (3.4) they are between 4, and d,, 4, <6, for all n=m,. We

have:
(a,) )
=M and — ] =1.
jézgn Anj j;@',‘(}."j

It follows by Lemma (2.1-d) that:

1\ 2Rs
> >e “fn,
€&, <A,,j> ¢

t
) (n=m,) decreases at least as an exponential function:

The C! function ¥ < !

JjeZn nj
in fact, by the same argument as in Lemma (3.1) we have:

a,(j b ( . )) g—aogxn)(j h ( . ))

where n2m, and Z,:=min{4,;, j=1}>1. It follows that:

1\ 5
<Me™C=M8hn p> 4
jezfn<Anj) - ’ =

Therefore:
2R, + logM
"= logi,

By Lemma (2.1-d) we know that 1, tends to infinity as n goes to infinity, and
part (b) follows. [

0,—4,=

Proof of the Theorem. To start we need some property of the unimodal map f.
Since its critical point is non-recurrent there exists the minimal restrictive central
point p. The point p and its symmetric p* define an open interval J and some
iterated f™ restricted to the closure of J, Cl(J), is a unimodal map.

The unimodal map f": Cl(J) o satisfies the hypotheses of Corollary (3.5) and
the correspondlng set Q has the properties obtained there. The Julia set 3 of this
map is in general an infinite union of compact sets 2 (j=1). Each Z is applied, by
some iterated of f, Cz-dlﬁeomorphlcally into Q. Besides that thcy approach
exponentlally fast, as j goes to infinity, to the boundary of J. It is because the point
p is a hyperbolic periodic one. It follows that & has the same limit capacity and
Hausdorff dimension as .

To finish the proof we observe that the Julia set X of f is the union of two sets,
A;and 4,: 4, isthe set of points in X for which the forward orbit does not intersect
J and 4, is the set of points in X' for which the forward orbit intersects J. If we
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consider the  map ¥ given by the restriction of f to the complement of J, we have
that: 4,= U ¥-"%5) and A, is the intersection of the domain of ¥*, n>1. Now
the theorem follows by Lemma (1.1) and Takens [10].
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