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Abstract. Precise necessary and sufficient conditions on the velocity statistics for
mean field behavior in advection-diffusion by a steady incompressible velocity
field are developed here. Under these conditions, a rigorous Stieltjes integral
representation for effective diffusivity in turbulent transport is derived. This
representation is valid for all Peclet numbers and provides a rigorous resum-
mation of the divergent perturbation expansion in powers of the Peclet number.
One consequence of this representation is that convergent upper and lower bounds
on effective diffusivity for all Peclet numbers can be obtained utilizing a prescribed
finite number of terms in the perturbation series. Explicit rigorous examples of
steady incompressible velocity fields are constructed which have effective diffu-
sivities realizing the simplest upper or lower bounds for all Peclet numbers. A
nonlocal variational principle for effective diffusivity is developed along with
applications to advection-diffusion by random arrays of vortices. A new class of
rigorous examples is introduced. These examples have an explicit Stieltjes measure
for the effective diffusivity; furthermore, the effective diffusivity behaves like
κ0 (Pe)l/2 in the limit of large Peclet numbers where KO is the molecular diffusivity.
Formal analogies with the theory of composite materials are exploited syste-
matically.

Introduction

We are interested in the passive advection of a scalar quantity by a random,
statistically homogeneous, incompressible, velocity field. This important problem
arises commonly in the study of turbulent diffusion in the atmosphere [1], in
dispersion of tracers in Benard convection rolls [2] and porous materials [3], as
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well as in elementary models in plasma physics [4]. The equation for the advec-
tion-diffusion of a passive scalar is

υ i

where u(X t) is a statistically homogeneous vector field satisfying

V u(x, 0 = 0 , (2)
and

<u(x,0>=0 , (3)

with brackets denoting statistical averaging. The constant KO represents molecular
diffusion. Despite the simplicity of (1), formal averaging of this equation with
respect to the velocity statistics leads to

: κQA { Ty , (4)
Ul

and hence to the nontrivial problem of determining the asymptotic behavior at
large times of the statistically nonlinear term <u FΓ>.

The question of long-time, large-scale asymptotics of the passive advection
equation is particularly interesting due to the fact that it exhibits a crossover
phenomenon: the statistical properties of u(x, t) and, in particular, the nature of
the power-energy spectrum < | u (k9 ω) 12> at low wave numbers | k \ can lead to
various completely different space-time scaling laws and effective equations for
(1) [5-7]. We shall say that the advection-diffusion Eq. (1) has mean-field behavior
if the following property holds: given any smooth, compactly supported initial
profile T0(x)9 the solution Tδ (x, t) of the initial-value problem

'dTό(x9t)

Tδ(x9Q)=T0(δx)

d t v '

(5)

satisfies

T(x9 0 (6)
010

, -
O

for almost all realizations of u(X), where T(x, t) is the solution of an appropriate
diffusion equation

BT *

The corresponding tensor Kfj is the effective diffusivity tensor, describing the
macroscopic dispersion of the scalar Tδ .

For example, in the simple limiting case of a statistically homogeneous, purely
time-dependent velocity field u = u(ί), it is well known [8,9] that the crossover
between Fickian and anomalous regimes depends on whether the Kubo diffusivity

<5/c = J<u(Ou(0) Γ >Λ , (8)
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is finite or not. If όκ is finite, the corresponding effective diffusivity tensor is
given by

K = κ0l + όκ = κ0l + J <u (0 u (0)Γ> dt . (9)
o

Here, we present a mathematically rigorous study of the effective diffusivity
for advection-diffusion with incompressible velocity fields that are time-inde-
pendent, of the form u = u(X). In contrast to the purely time-dependent case
described in (9), with rapid decorrelation in time, for time-independent incom-
pressible velocity fields, u(x), the correlation time is infinite. In this paper we
discuss the mean field regime, so that the usual diffusive scaling (6) applies with
an appropriate effective diffusion equation with the form in (7). A very natural
non-dimensional characterization of the strength of the incompressible transport
by u (x) compared with the molecular diffusivity, /c0, is given by the Peclet number,

where < \du(k)\2y is the energy spectrum of the corresponding stationary in-
compressible velocity field u (x). One contribution in this paper is a proof that
the fίnίteness of the Peclet number defined in (10) is an essentially necessary and
sufficient condition to guarantee the mean-field behavior described in (7), (8) above.
Explicit examples of the authors rigorously demonstrate that when the integral
in (10) diverges, completely different anomalous scalings occur with nonlocal
effective diffusion equations [7], The proof of mean-field behavior when the Peclet
number in (10) is finite is briefly discussed in Sect. 2 and carried out in the
Appendix. Our proof uses the powerful homogenization methods developed by
Papanicolaou and Varadhan [10], Tartar [11], and others [12, 13, 14] where the
mean-field behavior is established under more stringent assumptions on u(x)
than finiteness of the Peclet number. Furthermore, in Sect. 2, we prove that the
homogenization formulas [9, 10] for the effective diffusivity tensor (/c$) remain
valid under the assumption that the integral in (10) is finite. For the remainder
of the discussion here as well as for the rest of this paper, we always assume that
the Peclet number defined in (10) is finite.

Following the discussion of mean field behavior in Sect. 2, the main new results
are presented in Sects. 3-6. In Sect. 3, we derive a Stieltjes measure representation
formula for the effective diffusivity. This tensor-valued measure is completely
determined by the flow u (x). Furthermore, the Stieltjes measure remains invariant
under the transformation u(x)++λu(x) for any real λ and contains the essential
statistical/dynamical information about the flow that determines the effective
diffusivity as a function of ic0 and Pe. In most applications, the Peclet number
is very large and one advantage of the Stieltjes representation is that it remains
valid at arbitrarily large Peclet numbers or arbitrarily small values of the molec-
ular diffusivity, KQ. In Sect. 3, we develop some simple consequences of the rep-
resentation formula including a precise characterization of the radius of conver-
gence of the small Peclet number perturbation expansion as well as a direct link
between properties of the effective diffusivity for Peΐoo and/or κ0lO and the
behavior of the Stietljes measure in a neighborhood of zero. Besides many direct
physical applications, the advection-diffusion by a steady incompressible velocity
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Fig. 1. The continuous curve represents the exact effective diffusivity

0 - , as a function of the molecular diffusivity, Λ;O, for the flow of Sect. VI with

stream function ψ0. The three discontinuous curves represent the corresponding first three Fade
approximants. The Peclet number of this flow is Pe= 1/2 KO

field with mean-field behavior in the limit as Peΐoo has an important role as a
simple model problem for testing renormalized perturbation theories for turbu-
lence [15, 16]. The Stieltjes representation formula provides a rigorous resum-
mation of the divergent perturbative series in Pe. These applications are discussed
at the end of Sect. 3.

In Sect. 4, we develop a rigorous theory of bounds for the effective diffusivity
by utilizing the Stieltjes measure representation derived in Sect. 3. With this
formula, we directly apply the theory of Pade approximants [17] to obtain rig-
orous upper and lower bounds which are valid for all Peclet numbers and depend
on a finite number of moments in the perturbation series for small Peclet numbers.
Furthermore, as the number of prescribed moment increases, the upper and lower
bounds converge to the effective diffusivity for fixed, arbitrarily large Peclet
number. The simplest special case of this theory yields the upper bound

^^l+\(Pe)2 (11)

for velocity fields u (x) with isotropic statistics with d= the space dimension. The
bound in (11) provides a rigorous proof that first order perturbation theory gives
an upper bound for effective diffusivity valid for all Peclet numbers.

In Fig. 1 we graph the first upper and lower bounds as well as the actual
effective diffusivity for a specific example (described in Sect. 6) to illustrate the
potential usefulness of these bounds at moderate Peclet numbers. In Sect. 4, we
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also discuss the readability of the bounds by suitable flows and present several
concrete examples of incompressible steady velocity fields with the integral in
(10) finite which have an effective diffusivity which achieves either the simplest
upper or lower bounds for all Peclet numbers. We emphasize here that the con-
crete flows constructed in Sect. 4 are probably unphysical and have no relation
to actual hydrodyamic flow fields. However, they serve the important purpose
of showing that improvements in either upper or lower bounds must necessarily
incorporate additional statistical information for actual fluid flows beyond the
first few moments of the perturbation expansion.

In Sect. 5, we derive a nonlocal variationalprinciple for the effective diffusivity.
We also illustrate the potential utility of this variational method by applying it
to obtain upper bounds on the diffusivity for incompressible velocity fields de-
fined by suitable random arrays of vortices. In Sect. 6, we present a class of
interesting nontrivial incompressible velocity fields where we can determine the
Stieltjes measure explicitly. In one case, the effective diffusivity K * is determined
for all Peclet numbers by the formula,

*

In particular, from (12) we have examples of flows where K* behaves like
κ0 (Pe)1/2 in the limit of large Peclet numbers. Such fractional power-law behavior
at large Peclet numbers has been established through formal asymptotic or nu-
merical calculations by several authors [2, 18, 43, 44] studying periodic arrays
of convection rolls. In those works, it was shown that the boundary layers around
separatrices between convection rolls give rise to the predicted enhanced diffu-
sivity at large Peclet numbers. The examples in Sect. 6 involve singular velocities
along a fractal separatrix, resulting in a similar enhancement mechanism. One of
the authors will present elsewhere a substantial generalization of these examples,
in which the effective diffusivity obeys power laws κ*~kQPe* with exponents
αΦi.

Throughout this paper, we have systematically exploited the formal analogy
between properties of effective diffusivity for advective transport by a steady-
state flow and the theory of composite materials.

Our study of diffusivity via Pade approximants for a Stieltjes integral in Sect. 3
and 4 is inspired by the work of Golden and Papanicolaou [19], Bergman [20],
and Milton [21] for two-phase composite materials, and the work of Battacharya,
Gupta and Walker [22] on periodic flows. Wolynes [23] derived a closely related
formalism to study the renormalized transport coefficients of mode-coupling
systems near equilibrium and Kraichnan [24] studied non-rigorously, with Pade
approximants, the eddy diffusivity for an equation related to (1) with a fictitious
decay of probability. Our examples in Sect. 6 are in some respects motivated by
work of Hashin and Shtrikman [25] and Schulgasser [26] on composite materials.
An announcement of some of the results presented here is contained in a recent
letter of the authors [27]. For the reader's convenience, we conclude this intro-
duction with a table of contents for the remainder of this paper.
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1. Statistics for the Incompressible Velocity Field

Here we briefly summarize and discuss the statistical assumptions which we make
throughout this paper on the steady incompressible velocity field, u(x), in (1).

We represent formally such time-independent velocity fields as

π(jc)= J eik'xd&(k) (1.1)
RΛ

where dύ(k) is the energy spectral measure, satisfying

(1.2)

, (1.3)

= 0 a.s. , (1.4)

reflecting the incompressibility condition (2), and

f <|Jύ(£) | 2 ><cx) , (1.5)
ffu

i.e., u(x) has finite kinetic energy. This formalism subsumes the cases of periodic
or quasiperiodic flows, by suitably interpreting the averaging operation < > as
unit cell or Bohr averaging, respectively [10].

An essentially necessary and sufficient condition for (1) to have mean-field
behavior, for time-independent fields u = u(.x), is [27] that

or, equivalently,

'-»
Conditions (1.6), (1.7) limit the strength of the velocity energy spectrum near
fc = 0, or, equvalently, the long-range velocity correlation effects which favor
large-scale advective motion. From (1.7) it follows, for instance, that power-law
correlations <u (x) u (0 = > oc | * | ~ y, | * | > 1, yield mean-field behavior for γ > 2,
and from (1.6) that periodic flows always satisfy mean-field behavior. A proof
of the mean-field theorem under assumption (1.6) is given in the Appendix.

We will denote by Lp « »(1 <>p < oo) the spaces of real-valued (or sometimes
matrix-valued) functionals Φ=Φ[u( )] of the random velocity field u, which
are measurable with respect to the σ-algebra generated by the sets {u(x)eA},
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with x e JR.d and A a Borel subset of 1R, such that

Another statistical assumption that we make, without loss of generality, is
that u(x) is an ergodic random field, i.e. that the following property holds: for
all measurable, real-valued functionals Φ=Φ[u( )] with the property that, for
all x e KΛ

)] = Φ[n( )] (1.9)
we have

Φ [u( 01 = constant = <Φ[u( )]> - O IO)

This assumption is used in the proof of the mean-field theorem.

II. Homogenization and the Basic Equation Defining the Effective Diffusivity

The equation

dT
dt °

can be transformed into a divergence-form, parabolic, second-order equation,
using the incompressibility of u(x) and the convergence of the integral

——. τ . J— < oo, i.e. that the Peclet number is finite. This crucial condition
\k\

will be always assumed hereafter. Such reduction is an important step in the
proof of the mean-field behavior for (2.1). It is done by defining a stationary
process Hj (x), taking values in the set of skew-symmetric matrices, given by

where dfiλ (k) is a random measure such that

H,({0}) = 0 (2.3)

and, for

(2.4)

(2.5)

(2.6)

From the incompressibility condition (2), k du(k) = Q, we have

ik dHί(k) = ~[
\κ\

or, equivalently

Since

T,ace<HΓH,>=2jl^, p.,,
\κ\

Hj (x) is a well-defined, square-integable, stationary random process. From (2.3),
(2.4), we have
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<H,>=0, H. + H^β. (2.8)

Using the skew-symmetry of Ht we can rewrite (2.1) as

eτ(X,t)
dt

- = V (κ0I-Hl(x)) VT(x,t) . (2.9)

/x t \
The initial-value problem for the rescaled function Tδ (x, t) = T I — , —= ) is given
by \δ δ J

x,t) , xeD,t>0

xeD, (2.10)

xeδD, t>0 ,

^
where D is a bounded domain and 7^ is a smooth function supported in D. It is
convenient to nondimensionalize the perturbation Hj (x) by setting

) . (2.11)
κ0Pe

In particular, we have, from (2.7), tr<HΓH> =2. Equation (2.10) then becomes

x,t) , xeD,t>0

Tδ(x9Q)=T0(x) , xeD, (2.12)

Tό(x,t) = Q , for xεdD ,
V

and Pe can be viewed as a coupling parameter.
The homogenization theorem of Papanicolaou and Varadhan [10] applies to

this initial value problem, assuming that the perturbation H(x) is uniformly
bounded and stochastically continuous, so that mean-field behavior holds under
these assumptions. These authors, following the general procedure of multiple-
scale asymtotics, postulated the ansatz

j VT(x,t)+ ••• , (2.13)
~ \ σ /

where χ (x) : IR''-» ]R'ί is a random function such that E (x) = Vχ (x) + 1 is a sta-
tionary random process satisfying the basic equations

(i) FxE = 0 , (2.14)

(ii) 7 (I + Pέ?H(jt)) E(jc) = 0 , (2.15)

(iii) <E(jc»=I (2.16)

and

(iv) < |E(x) | 2 ><oo . (2.17)
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(We set, for η = (//Z7); | n 1 2 = Z! ^o^y/ ) ̂  nas been shown in [10] that problem
ij

(i)-(iv) has a unique solution if H is essentially bounded; this is a consequence
of the Lax-Milgram theorem. The function T(x, t) is chosen as the solution of
the initial value problem for the operator

f(x,0) = Γ 0(x), (2.18)

T(x,t) = 0 for xeδD,t>0,

where «:* = («:,7) is given by

κ* = κ0(H-A?<H E» . (2.19)

This formula defines the effective diffusivity tensor K* corresponding to (2.1),
so that one has

limTδ(x,t) = T(x,t) , (2.20)
<HO

in suitable sense. According to (2.19), and using the language of heat conduction,
the vector #* v represents, for any given v e IRΛ the average heat flux for unit
time/unit volume corresponding to a steady state temperature gradient
V T(x) = E (x) v, with average v. A proof of the mean-field result for unbounded
H( c) was given by K. Oelschlager [13], under somewhat stringent assumptions
on the density of the spectral measure dύ(k). Following references 10 and 13,
we give in the Appendix a proof of the mean-field result (2.20) for fields u (x)
and H(.x) satisfying the higher integrability assumptions

<\u(x)\d/2+βy< +00 (2.21)
and

<|H(*) | '><+<» , (2.22)

for some ε > 0, with p = 2 + ε if d=2 and p = d if d^ 3. In particular, the ho-
mogenization theorem is valid for arbitrary, incompressible, square-integrable
Gaussian fields, satisfying the mean-field condition (1.6). For further details on
the proof of (2.20) we refer the reader to the Appendix, and to [10-14], and
concentrate hereafter on the properties of the effective diffusivity /c*.

The crucial ingredient for understanding the homogenization of (2.12) is to
solve the basic Eqs. (2.14)-(2.17) yielding the field E(x) and hence the effective
tensor K*. For unbounded fields H(x), a solution to this problem can be con-
structed by approximation. More precisely, we set

•HtjM if \HtJ(x)\^n ,

-n if HtJ(x)< -n , (2.23)

+ n if Hfj(x) > n .

We consider, for each n^l, the problems,
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(224)

The corresponding solution E(π) is unique, according to [10], and satisfies

<Fτ (H-Λ?H(n)) E(' l)>=0 , (2.25)

for all square integrable fields F satisfying

<F> = 0 , FxF = 0 . (2.26)

Substituting F = E("y = E(n) - 1, we obtain

= E(n)/ τ E(">' > + Pe<Ew H(M)> (2.27)
In particular,

tr<E(")'Γ E('!)'>^JPe|tr<E('l)' H('!)>|

(\HW\2y2 (2.28)
so that

< I E(">' 1 2 ̂  Λ>2< I H(n) 1 2> ̂  2Pe2 , (2.29)
and hence

(2.30)

By extracting if necessary a subsequence we conclude that

E(">->E weakly in L2« » , (2.31)
where E satisfies

FxE = 0 , <E> = 7 . (2.32)

Passing to the limit in (2.25), using the fact that, from the definition of H(π), we
have

lim <|HW-H| 2>=0 , (2.33)
«-"oo

we conclude that
0 , (2.34)

for all essentially bounded fields F satisfying (2.26). Hence

V-(I + PeH) E = Q . (2.35)

Moreover, from (2.30), we have

. (2.36)

We have not been able to show that, if H is unbounded, the solution to Eq.
(2.35) with the constraints V x E = 0, <E> = I is unique. Nevertheless, if we define
£* by (2.19), then the mean-field result proved in the Appendix shows that the
function Tδ solving (2.17) converges to the solution f of (2.18). This implies that
the value of K* is independent of the particular subsequence of E(λί) used to define
the field E and strongly suggests - but does not constitute a proof - that Eq.
(2.35) with the constraints 7xE = 0, <E> =1 has a unique solution.



Effective Diffusivity in Passive Advection 349

Following Golden and Papanicolaou [19] we introduce a scattering-theory
formalism and transform the basic problem (2.14)-(2.17) into an integral equation
for the field E. We consider the operator Γ=(ΓiJ), given by

(2.37)
(jji ux,'

with Fourier symbols

-"-' |*|"

= 0 if k = 0 . (2.38)

The operator — Γ is equal to the projection onto curl-free, mean zero, square
integrable fields. Equation (2.34) implies that (I+PeH) E is orthogonal to all
curl-free fields with zero mean. Hence,

Γ[(I + A?H)E] = 0 , (2.39)

but, since 7Έ = I — E, we have

E-A?/ΉE = I . (2.40)

This is the basic equation that we shall use in order to derive the Stieltjes integral
representation formula. It is also useful to consider the equation satisfied by the
fluctuating component of E,E' = E — I, which is

E' - PeΓHE' = PeΓU . (2.41)

Such perturbation equations were considered by several authors, in the context
of random media [19,28].

III. The Stieltjes Integral Representation Formula

By analyzing the perturbation Eqs. (2.40) ands (2.41), we will show that to each
incompressible, zero mean, time-independent velocity field u (x) with finite Peclet
number, i.e., such that

/ I ΛA Π^\ I 2\

^ < o o , (3.1)

there corresponds a unique positive definite, tensor-valued measure dμ (τ) satis-
fying

U([<*,b])=lί([-b,-a]) , for 0 < a < b , (3.2)

such that the effective diffusίvίty /c* = κ0(I + P£<HE» is given by the represen-
tation formula

+00 Pf>2rlιι(τΛ\
Γ Γe aK V-> }

J l+pe2τ2

—

We also discuss several consequences of this result for moderate and large values
of the Peclet number.
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///. 1. The Derivation. Consider the sequence of linear operators Tn, n e N defined
by

Ύnφ = iΓH^φ , (3.4)

where Γ and H(Aϊ) are defined in (2.37) and (2.23), respectively. For each «, the
operator Ύn is bounded and hermitian on the subspace of L2« » defined by

F={0eL 2«.»:Fx0 = 0;<0>=0} . (3.5)

By the Spectral Theorem for bounded, hermitian operators in a Hubert space
[29], there exists an increasing family of projection operators (Rn(τ)},
— oo ̂  τ ̂  oo - the spectral resolution of Ύn - such that

R Λ (-αo) = 0, R n ( + oo) = I (3.6)

and such that, for all bounded, continuous functions /(τ):IR->><C, we have

/(!„)= f/(τ)JRn(τ) . (3.7)
— oo

We apply this theorem to represent the solution of the equation

E(Λ)-A?ΓH(II)E(||) = I . (3.8)

Noting that E(/ί)/ = E(w) + 1, with E(/ί)/ e F, we write (3.8) as

. (3.9)

The right-hand side of this equation can be regarded as an element of K
Taking /(τ) = (l -\-iPeτ), we obtain from (3.7)

1+iPeτ
— oo

Consequently, we have

w= . n
J

where yM w (τ) is defined in terms of H(π) and the spectral resolution Rw, by the
formula

^(τ) = <HWT. JΓ-Rn(τ) JΓ.HW> . (3.12)

The fact that Ύn is hermitian implies that μn satisfies (3.2). We thus conclude
from (3. 11) that

">' T E^>=I+ +p

To obtain the representation for the effective diffusivity, we pass to the limit in
this identity as n-^co. For this, notice that, from (2.24)-(2.27), we have

.E(w)> (3.14)
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and, since E(/ί) converges along a subsequence to E and

lim <|H ( > I )-H| 2>=0 , (3.15)
M— * QO

the limit of the left-hand side (3.13) is given by

lim (7+PKH(").E(")'>) = /+Pe<H E'> = /+<E' Γ E'>
H— >oo

=I+PKH E> . (3.16)

On the other hand, from (3.6), (3.12), we have

Tr f ^w(τ) = Tr<H(/ί) jΓ H(/ϊ)>
— oo

< I I H ^ I I 2

^ll1 1 IU2« »

so, by Kelly's lemma, {dμn} is a relatively compact set of measures. If ju is a limit
point of {#M}n^ι, we have, passing to the limit in the right-hand side of (3.13)
and using (3.15),

'>=I + + p 2 , (3.18)

which, after multiplication by κ:0, yields the desired representation formula (3.3)
for the effective diffusivity /c*. We show next that dfj, (τ) is determined completely
from £*, i.e., that, given KO and K* as a function of the Peclet number Pe, there
is a unique measure djίi(τ) satisfying (3.3). To see this, we consider the identity

+001

I --'^ <3 ">

Denoting by &~ and S* the Fourier and Laplace transform operators,

= f Φ(s)e"'ds; S?[φ](t) = ]φ(s)e-stdS , (3.20)

and using PlanchereΓs identity,

— oo

we have, for θ > 0, Pe > 0,
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+ 00

i J

=

(3.21)

Inversion of this identity (cf. Widder [30]) yields a formal relation determining
ju in terms of the function κ*(Pe).

III. 2. Expansion in Powers of Pe2 and Moments of the Representation Measure. A
more useful relation between ju and H (and hence u) can be obtained by equating
the coefficients of the asymptotic expansion of the Stieltjes integral representation
(3.3) in powers of Pe2 and those of the expansion of K* obtained by formally
solving the equation (2.39), so that

substituting this expression in (2.19), and expanding in Pe. Expanding (3.3)
formally we obtain

I 00 +°°

0 n=\ _oo

while the second procedure leads to

1 #

KO ~

= 1+ J (Pe)2n(H(ΓH)2"-ly , (3.24)
n=\

where we used the fact that <H(jΓH)2w> = 0, for n |> 1, since H is skew-symmetric.
Equating coefficients, we obtain the formal relations between successive terms
of both expansions:

J τ2Λίφ(τ) = (-l) iV<H(rH)2ΛΓ+1> , (3.25)
— oo

for #=0,1,2,....
Such relations are immediately justified for bounded H. In fact, the operator

is then bounded in L2« » and thus the expansions (3.23), (3.24) converge for
small enough Pe. The justification of (3.25) for unbounded fields H(.x) is more
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delicate since the operator 7Ή is unbounded in L2« ». For velocity fields with
finite moments of all orders,

< |H(jc) | "><oo , N^l , (3.26)

the formulas (3.25) are nevertheless valid. This can be shown using the LN-
boundedness of the operator Γ and the arguments developed by Oelschlager [13].
The reader is referred to that paper for details.

We will assume in the rest of the paper, for simplicity, that the identity (3.25)
holds at least for N=0, i.e., that

f rf#(τ) = <H Γ H> . (3.27)

Taking the trace of both sides of this equation we obtain

(3.28)

using the fact that tr<H7Ή> =^trHΓH= 1 (cf. Sect. 2). Thus, this assumption
implies that the scalar measure dv (τ) = tr dju (τ) is a probability measure. Con-
dition (3.27) holds for uniformly bounded H. More generally, it can be shown,
using the arguments of [13, Sect. 4], that (3.27) holds for H e L4« ».

In the following paragraphs we discuss some immediate consequences of the
Stieltjes integral representation.

III. 3. Radius of Convergence of the Expansion of K* for Small Pec let Number. An
important application of the Stieltjes integral representation is that it provides a
formula for the effective diffusivity at large values of the Peclet number Pe,
determined by the coefficients of the perturbation expansion at small Pe. This
"analytic continuation" formula for /c* is particularly useful since the direct
perturbation expansion (3.24) can have small, or even vanishing, radius of con-
vergence. The radius of convergence, /?, can be related to the representation
measure ^ in a simple way. In fact, we have

' (3'29)

where supp# denotes the support of ju, i.e. the smalles closed set such that
I Pe \ju {( — oo, + oo)\supp ju} = 0. To see this, we notice that if - - - < 1, then

τ 2 N d j u ( τ ) \ ^ \Pe\2Pe2N[Lu.b.suppy]2N

= \Pe\
Pe

P
(3.30)

for all N so that the series (3.23) converges absolutely for \Pe\ < p. Also, for
\Pe\ > /?, we have that, for all ε > 0, there exists a positive constant C(ε) such
that
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2Nl.u.b. suppμ — ε
(3.31)

= C(ε)|Pe|2 — (1 •

Choosing ε sufficiently small, we see that the norms of the successive terms of
(3.23) are bounded from below by C(ε)θ2N, for some θ > 1, and hence that
(3.23) is divergent. In particular, if supp# =( — oo, +00), the radius of conver
gence of (3.23) or (3.24) is equal to zero. Since the support of the measure dju
can be related to the spectral properties of/Ή through (3.12), we can estimate
the radius of convergence by

P^ \\m\\ L*« »,£Ϊ« » . (3.32)

For uniformly bounded fields H, we can further estimate the right-hand side of
(3.32) using the fact that ||/'||z/2(<.>)j jL2(<.>)= 1, to obtain finally

III.4. Behavior of K* as Pe-+ao, or /c0->0. In the remainder of this section we
assume for simplicity that K* = K *I, i.e. that the flow is macroscopically isotropic.
Fixing the value of KO and letting Pe->oo in the representation formula

κ* = κ0 1+^ 1 \+P^τ2\ » (3-34)
— oo

where dv (τ) = Tr dju (τ), we obtain

lim — = - J -—^- . (3.35)
— oo

The right-hand side of this equation represents the maximum enhancement of
the diffusivity that is possible by diffusion-advection by velocity fields λ u (x), as
the (r.m.s.) velocity amplitude A increases, with a fixed value of the molecular
diffusivity. Thus, the limit of *c* as Pe-*co is either infinite or equal to a non-
dimensional constant multiplied by the bare diffusivity KQ. The constant,
+ 00

j* τ~2dv (τ), is determined explicity from the representation measure.
— oo

Another interesting limit arises when the amplitude of the flow field is held
fixed while the diffusivity tends to zero. Recalling that

^2==~2 J ΓTΓΰ '

and substituting this expression in (3.34) we obtain

with α2 = J -j—^—. Passing to the limit as κϋ tends to zero in (3.36), we
obtain 1*1
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, 1 / 2

y , (3.37)
ΛΓO — O tt V I AC I /

with

(3.38)

For representation measures with continuous densities dv/dτ formula (3.37)
becomes

Λ / / I ΛS,(ls\ I 2\ \ 1/2 /Λi , ί(\\\

(3.39)
dτ

In particular, for 0 < —-— < oo, the limiting value is independent of κ:0. It seems
dτ

reasonable to conjecture that lim K * coincides with the eddy-diffusivity of in-
KO->Q

viscid transport computed by several authors for isotropic flows exhibiting
highly ergodic or chaotic behavior [24,31]. In general, the numbers

—— and J —— > associated with the /c0->0 and Pe-*co limits, respectively,
tt L Λ

— oo

are very difficult to compute. Unfortunately, they cannot be determined in any
useful way by any finite set of moments of dv (τ).

In Sects. IV and VI we discuss some rigorous examples, corresponding to
highly idealized flows, for which the representation measure can be computed
explicitly.

IV. Fade Approximants and Realizability

IV. 1. General Principles. The Stieltjes representation formula (3.3) provides an
expression for K* that remains valid for arbitrarily large values of the Peclet
number. For simplicity, we will assume in the sequel that u (x) gives rise to an
isotopic diffusivity, κ* = κ*I which, by the arguments of the previous section,
satisfies

•
with v (τ) = trace ju (τ). In particular, from (3.27)-(3.28), v(τ) is the distribution
function of a probability measure in ( — 00, +00), i.e.

f j v ( r ) = l . (4.2)
— oo

Integral expressions involving a positive measure, such as (4.1) appear in many
branches of physics as a result of spectral perturbation calculations [17,23]. Their
approximations by rational functions, whenever feasible, have been extensively
studied. For instance, the overall physical properties of a two-phase composite
material, such as the dielectric constant or the electrical conductivity, can be
studied using this approach. In that case the relevant perturbation parameter
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measures the contrast between the physical properties of the individual compo-
nents. Several authors, including Bergman [20], Milton [21], and Golden and
Papanicolaou [19], have successfully used integral representation formulas and
rational function approximations to obtain information about the effective re-
sponse of binary composites.

The idea behind the method of Fade approximants is to obtain upper and
lower bounds on /c* by maximizing or minimizing the right-hand side of (4.1)
as dv (τ) ranges over a set of measures satisfying suitable moment constraints.
More precisely, consider the asymptotic expansion for small Pe from expression
(4.19),

^=l+Σ Pe2"a2n (4.3)
K0 n=\

with

02, = ̂ — jf-^ fτ^-'MJτ) , (4.4)
— oo

n= 1,2, 3, ... . Recalling that the moments of v (dτ) correspond to multiple in-
tegrals obtained by formal perturbation theory,

α2M = ̂ Tr<H (Γ.H)2"-1> , (4.5)

- which can be computed or suitably estimated in principle - let us assume that
the numerical values a2,a4,...,a2N in (4.3) are known. Then, upper and lower
bounds on K*/KO can be derived by varying dv in (4.1) over all probability
measures satisfying the moment constraints (4.4) for n^N. This leads to the
bounds

K* ΛΛ 1 V Pe2dv(τ)

' (4'6)

and
* +

Γ°° Pe2dv(τ)

' (4'7)

where v ranges over the set of all probability measures satisfying
1 +00

- J τ2("-1)v(Jτ) = (-ir+ 1α2 n , n^N . (4.8)
— oo

Wheeler and Gordon [32] have shown that the extremal values in (4.6), (4.7) are
achieved by measures consisting of finite convex combinations of Dirac masses,
and that the corresponding bounds which are functions of Pe2 are suitable Fade
approximants for (4.1).

Recall that the Pade approximant [m, n] (z) of a function f ( z ) is defined as

where Pm (z), Pn (z} are respectively polynomials of degree m an n, determined by



Effective Diffusivity in Passive Advection 357

the constraints

r \ r p (^\ ~J / // \ r

+ 2 . (4.10)
dzj Pn(z)\z=. \dz

According to Wheeler and Gordon [32], the approximants [«, n— 1] and [n,n]
have the following extremal properties :

(4.11)
W

where v satisfies (4.8) with N=2n— 1;

ι +ι +°° pe

2dv (τϊ
= 1 +mjn ^ f γτ^y,

-

(4.12)

where v satisfies (4.8) with N=2n.
We therefore conclude, from (4.6), (4.7), that the following bounds hold for

a l l w ^ l :

K0[«,«](Pe2)^A;*^/c0[«,tt-lK^2) . (4.13)

From general principles on the approximation of Stieltjes' integrals, the bounds
(4.13) are known to converge to the effective conductivity as «->oo; i.e., as more
and more statistical information (in the form (4.5)) is incorporated into the
bounds. A few approximants, for low, «, can be readily computed from (4.10).
We have

-Pe2 , (4.14)
a

' (4 15)

, (4.16)

and

where

βuflo — a*
2 2 2

a4-a2a6 a4-a2a6 (4.177)

and oc2 = a4 + a2

The Stieltjes integral representation can also be useful to determine, by ex-
trapolation, bounds on the effective diffusivity κ*9 given that its exact or ap-
proximate value is known for one or more values of Pe and KO. Such an approach
may be useful for checking the validity of Monte Carlo simulations for the
effective diffusivity.
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IV.2. Realizability ofκ* = κ0[l,0](Pe2)for Three Dimensional Flows. Let u be
a simple shear flow:

0

u(x)=( 0 (4.18)

so that Eq. (1) becomes

dT(x,t)

dt

dT_

CX3

(4.19)

The field H! (jc) is given explicitly by

where

0 0 φι(x

0 0 0

_ -φ(xl) 0 0

*,(*,)=+/V'!

ik,

(4.20)

(4.21)

is the stream function for the flow (4.18). We nondimensionalize the problem by
setting

(4.22)
KQ KQ

and defining the nondimensional velocity potential φ by

(4.23)

Note in particular that <02> = 1. The field E = E(^!) satisfying the basic equa-
tions

(4.23')

(4.24)

FxE-0 , <E>=I ,
is given by

1 0 Peφ(xl)'

0 1 0

L O O 1

so that, by the arguments of Sect. 3,
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/C*=/CO<EΓ E>

i o
o i

o
1 0 o
o i o

_0 0 l+Pe2_

Observe that (4.25) corresponds to the anisotropic representation measure

0 0 0

359

(4.25)

0 0 0

_0 0 δ(τ)dτ_
= <5(τ)e3Θe3 , (4.26)

where e3 represents a unit vector along the direction x3. Taking the trace of
(4.25), we obtain

which is the upper bound corresponding to the approximant [1,0]. It is not
immediately clear, however, that the upper bound can be realized by isotropic
flow configurations (for which /c* = κ*I). We argue here that this is indeed true,
i.e., that values of K* arbitrarily close to the right-hand side of (4.27) can indeed
be attained by suitable isotropic flows.

The construction of such flows is done using an argument involving separation
of scales introduced by K. Schulgasser in the study of composite materials [33],
and subsequently implemented by other authors [34, 35]. Since the effective
diffusivity of a simple shear flow is a uniaxial tensor with eigenvalues /c0 (double)
and /C0(l +Pe2) (simple), we view such flow, on a macroscopic scale, as a ho-
mogeneous, anisotropic diffusive medium, e.g. a heat conductor, and seek a
geometric configuration, in "polycrystalline" form, of this anisotropic medium
that gives rise to an isotropic effective diffusivity

which is the arithmetic mean of the three principal diffusivities. To construct
such a macroscopically isotropic polycrystal, one proceeds in two steps. First,
we layer periodically the "pure crystals"

/c0 0 0

0 /c0 0

0 0 K0(l+Pe2)_

and

/c0

0

_ 0

0 0

0

*oJ

(4.29)

in parallel slabs (laminates) of thicknessess f lλ and \ lλ, respectively, where /t is
a given length, the slabs being perpendicular to the unit vector el in the direction
xγ. The effective diffusivity tensor for this configuration is [33, 34]
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KO

0

L 0

0 0

/c0(l+f/V) 0

0 /c0(l+iPe2)J

(4.30)

In a second step, we layer the tensor #f with itself after a rotation of 90°
about the jc3-axis, i.e., with the tensor

/c0(l+fP£?2) 0 0

0 /c0 0

0 0 /c0(l+|/V)J

(4.31)

in layers of thickness /2 for both crystals, perpendicularly to the unit vector e3.
The length /2 is chosen so that /!<^/2. The corresponding effective diffusivity
tensor is obtained by averaging the eigenvalues of (4.30) and (4.31) in the direc-

0'

tions Cj and e2 = 1

L o J
, so that, finally,

(4.32)

To relate this construction to our flow problem, we choose /j very large
compared to the typical wavelength of the function u(xί) of the simple shear
flow (4.18). The configuration consisting of parallel slabs of crystals (4.29) has
approximately the same effective diffusivity as a periodic flow with period /1 ?

u(x) = u(xl), such that

f/i+e/i
(4.33)

where ε <ζ 1, and 2ε represents the thickness of a very thin transition layer along
which u(^) rotates continuously by 90° through the jcraxis. Since the normal
component of u (x) near the transition is equal to zero, the vector field uε can
be taken to be incompressible. (In the limit ε-»0, this transition layer can be
interpreted as a vortex sheet). At the second level of this hierarchical construction,
corresponding to the layering of (4.30) and (4.31), we inteφret this layering as
a periodic flow with period 2/2 in the x3 direction, obtained by juxtaposing uε

and a flow consisting of a rotation of uε by 90° degrees, connected by a transition
layer of thickness ε/2. The argument of iterated homogenization presented here
implies that such incompressible flows have an effective diffusivity tensor
xf 7 j such that

lim lim jc
εlO /ι//2-"0

* 7 l / (4.34)

The discussion of multiple-scale homogenization and its relation to various ef-
fective medium theories is given in Avellaneda [36]. Such work provides a set of
formal mathematical tools for making the above arguments fully rigorous.

We hasten to observe that the flows just described are unphysical and have
probably litte or no relation to actual hydrodynamic flows. They serve, however,
the important purpose of showing that for three-dimensional flows, improvements
of the upper bound
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l+^Pe2) , (4.35)

should necessarily incorporate other statistical or dynamical information about
the Eulerian velocity field u such as the 2«-ρoint correlation functions, for n^2.
Moreover, this realizability result provides us with an approximate idea of what
type of flows satisfy approximately the bound κ* = κ0[l,

IV.3. Realizability ofκ* = κ 0 [ I , l](Pe2) for Three-Dimensional Flows. Pursuing
further the analogy with the theory of composite materials, we construct another
yet highly idealized class of flows that saturates (i.e., reaches asymptotically) the
lower bound

(4.36)

This construction is based on the coated-sphere model, introducted by Hashin
and Shtrikman as model of a two-phase composite with explicitly computable
effective diffusivity. We will consider a flow of the type constructed in the previous
section, with ε<ll, and Iι^l2, so that the value of the corresponding diffusivity
£* 7 l ) / 2 is arbitrarily close to κ* = κ0(l + ̂ Pe2). We treat such a flow macro-
scopically as an isotropic diffusive medium with (scalar) diffusivity κ*tl4ltl2. Fol-
lowing Hashin and Shtrikman [25], we consider a space-filling configuration of
composite spheres, consisting of a core of diffusivity £* j / l j / 2 , surrounded by a
shell of diffusivity KQ. Note that the radii of the composite spheres must range
down to infinitesimal sizes, so as to form a space-filling configuration. The ratio
of the core radius to the overall radius is the same for all the coated spheres.
Therefore, the volume fraction occupied by the "material" with diffusivity
κ*f 7l /2 is equal for all spheres, say equal top, 0 <p < 1. An exact, self-consistent
calculation of the overall effective diffusivity, based on the classical dipole ex-
pansion of the potential around a composite sphere embedded in an infinite
homogeneous medium yields the value [25]

/c!w =j 1+- (4.37)

Thus, from (4.34),

lim lim
εlO /1//2-+0

Pe2

(4.38)

We relate the configuration just described to a flow field, using ideas of separation
of scales of [36] by considering the Hj-matrix field corresponding to the multiply
layered flow of IV.2, realizing the Fade [1,0] bound. The Peclet number of such
a flow is, by definition, given by

(4.39)
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Consider now the matrix Hl>θ(x) defined by

(4.40)

where 0<ξ 1 is a small parameter and lCα is the characteristic function of the core
Cα of the composite sphere B^ in the aggregate. Thus the core of each composite
sphere is replaced by a rapidly varying flow with H-field equal to Hj (x/θ). This
field is not smooth at the boundary of the cores and hence gives rise to spherical
vortex sheets around each core. If necessary, a thin transition layer, corresponding
to a smoothing of the characteristic functions lCa (x) can be introduced, to obtain
a smooth flow. Since the flow in the core varies much faster than the typical
spherical radius, by the principle of separation of scales, or iterated homogeni-
zation, introduced in [12] and developed in Avellaneda [36], the effective dif-
fusivity of the flow corresponding to Hλ^θ(x\ £*,/,,/2,0 converges as 0-»0, to
/c*ff, given by (4.37), and hence

lim lim lim /c*
eiO /ι//2->0 0—0

1 +
1 pPe2

(4.41)

Finally, the effective Peclet number of the flow associated to H! ^ is given by

~. 1

T-Z lim —— 3 f Tr fir, (x)fi l f, (*)</*
\Xi\^R

where Q (R) = {x e R2: | xt \ ̂  R}. Hence

lim Pe2 = ^—2 lim
^^0 R-+ °°

(4'42)

lim f TrHΓ
<^° C,

P

I™ 3 Σ Tr<HΓHI>Vol(C.)

=PPe2 ,

where we used (4.40). Thus, substituting (4.43) ino (4.41) we obtain

(4.43)

Iim/c* f f=/c0

9p
Pe

(4.44)
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Notice that the coefficient -̂ - = tp in the denominator of this expression takes

which is excactly the lower bound corresponding to the [1, 1] Fade approximant.
\-p

9p
all values such that 0 <Ξ tp < oo. For p=l9 corresponding tofiίθ (x) = Hj (x/θ),
we recover the extremal flow of Sect. IV.2, realizing the upper bound for the [1,
0] Fade approximant. For 0 <p < 1, the extremely idealized class of flows just
described consists of isolated, high velocity patches, surrounded by an infinite,
connected region where the velocity is nearly equal to zero, occupying a volume
fraction of space 1 —p. The numerical value of the corresponding effective dif-
fusivity is arbitrarily close to the one predicted by the Fade [1,1] lower bound.

V. A Variational Principle for the Effective Diffusivity

In this section we show how K * can be obtained by minimization of a suitable
functional defined on curl-free-fields. This variational principle yields an upper
bound for the effective diffusivity if one substitutes an appropriate trial field in
the functional. The functional that needs to be minimized is non-local, i.e., given
a trial field F, it involves not only F but also the calculation of the values of an
integral operator applied to F. The actual computation of the value of this func-
tional for a given field is analogous to solving an electrostatic polarization prob-
lem for a system of distributed charges - or finding the hydrodynamic flow field
arising from a homogeneous configuration of sources and sinks. Fortunately, in
certain cases, such a calculation can be greatly simplified by choosing a suitable
trial field F, so that a numerical upper bound for K * can be obtained. We shall
illustrate this point here by applying the variational principle to flow fields con-
sisting of arrays of vortices. We note that Krommes and Smith [4] and Kim and
Krommes [37] have obtained variational principles for the dissipation rate in
diffusion-advection problems which are different from this one.

V.I. The Derivation. We assume first that the field H(x) under consideration is
uniformly bounded, i.e. that He£°°« ». This restriction allows us to use a
Hubert space argument for the derivation of the variational principle. The as-
sumption is subsequently removed by an approximation argument.

We define the operator

K = H7Ή , (5.1)

which is a bounded, linear operator on Z2« >) Moreover, since H + HΓ=0,
and Γ2 = —Γ, we have

K = - HΓ/Ή = (HΓΓ) (ΓH) = (ΓH)Γ(/Ή) , (5.2)

so that K is positive and self-adjoint. We claim that the effective diffusivity for
time-independent flows u = u (x) with H e £°° « » satisfies the following

Variational Principle. For all vectors e e Rrf, we have

min KO< | f | 2 + Pe2fΓ K f> . (5.3)
f e Z 2 « . »
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Proof. In fact, the Euler-Lagrange equation for this variational problem is the
divergence-form equation

F x f = 0 , (5.4)

<f>=<e> .

Note however that the "diffusivity" l + Pe2K is positive, and self-adjoint but
non-local, since K is defined in terms of the integral operator Γ. By linearity, we
have,

f=F e , (5.5)

where F is a matrix-valued function satisfying the equations

= ° ' (5.6)
= 0 , < F > = I .

Since F = I — 7T, and — Γ is the projection operator onto the subspace V of
L2« » defined by

F={FeL 2 «.» |FxF = 0 <F>=0} , (5.7)

Eqs. (5.6) can be rewritten as the integral equation

F — Pe2ΓKΈ = l . (5.8)

Separating F into fluctuating and average components, we obtain F = F' +1 with
F' satisfying

F' - Pe2ΓKV = Pe2ΓKl , F' e K . (5.9)

We proceed as in Sect. Ill, observing that the operator

S = ΓK (5.10)

is negative and self-adjoint on V. Consequently, introducing the resolution of the
identity U(0) of the operator S, we can write

l-Pe2θ -- J
0

Pe2dU(-θ)ΓKI
- ' (5'Π)

Hence, we have

where
m(6>)-<IKU(-0)ΓKI> , (5.13)
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and, consequently,

The successive moments of the measure dm(θ) are determined from (5.13); we
have,

+3> . (5.15)

In particular,

(5.16)
oo

J θdm(θ)= -<H(/Ή)5> , etc.
o

It follows that the measures dm and ju are related by the formula

Λn(τ 2 )=-τ 2 φ(τ) , - oo < τ < oo , (5.17)

so that, as claimed,

/ +00
J φ

2 2

— oo
+ τ2Pe2

" Pe2

= e £* e . (5.18)

This variational principle can be extended to unbounded H-fields, satisfying
the weaker condition H e £4« »• In fact, let V4 be the space

0} . (5.19)



366 M. Avellaneda and A. J. Majda

The corresponding variational principle for K* is

er κ* e=min KO< | f | 2 + Pe2 |/Ήf|2> . (5.20)
f e F4

<0 = e

To see this, consider the truncated H-fϊelds, H(rt), w = l , 2, 3,..., and the
corresponding solutions to the basic equations, E(w), n=l, 2, 3, ____ Since
jj(/ι) e £°° « . »? We have a variational principle for the diffusivity corresponding
to the field H(n), namely,

f \ 2 y , (5.21)

for all f e£4« •». Letting «-»oo on both sides of this inequality, and subse-
quently minimizing the right-hand side over f e £4« », we obtain

er κ* e^min KO< \ f \ 2 + Pe2\ΓHf |2> . (5.22)
f e F4

<O = e

To obtain the opposite inequality to (5.22), we denote by f* the minimizer of the
right-hand side of (5.22). Then, since jΓ is a bounded operator in L2« » and
H(/ί)f*-»Hf* jn L2« )) as «-»oo, we conclude that for all ε > 0, there exists
no = no(ε) such that, for all nl>n0,

mm
f e F4

f e V

Letting «-*oo, we obtain

min /c0< |f \2 + Pe2\ΓHf |2> ̂ er £* e — ε , (5.24)
f e F4

<f>=e

for all ε > 0, and hence

min κ:0< |f |2 + Pe2|ΓHf |2> ί>er /c* e . (5.25)
f e F 4

<f>=e

Combining (5.22) and (5.25) we conclude the validity of the extended form of
the variational principle (5.20).

V.2. Application. We present a simple application of this variational principle
for estimating the diffusivity of certain flows formed by superpositions of vortices.
Let H(0) (x) be a smooth, skew-symmetric matrix-valued function of compact
support in JR.d(d=2, 3), and let {<^α} be a periodic array of points in IRΛ We
define the periodic H-field,

-{.)• (5.26)
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We assume that the points ξx are spaced sufficiently far apart so that for α Φ β
the supports of the functions H(0)(x — £a) and H(0)(x— ξβ) are separated by a
positive distance from each other. Equation (5.26) defines a stationary process
in IRΛ Taking the divergence of both sides of this equation, we obtain a periodic
incompressible velocity field u ( c), given by

u(x) = 2>(0)(x-£α) > with u(0) = F H(0) . (5.27)
α

The Peclet number of the advection-diffusion equation with diffusivity /c0, for
this flow is

Pe2 = \ Trace <H(1)ΓH(1)>
KQ

= -^2 Trace <H(1)'r H(1)/> (5.28)

= -ξ-τ [Tr J H(0)2"0c) H(0) (x) dx - Tr (j H° (x) dx)τ(\ H° (je) dx)} ,
2κQ

where H(1)/(x) is the fluctuating par of H(I)(Λ:) and p is the volume fraction
occupied by the union of all the supports of H(0) (x — ξΛ ) as α varies. We denote
this set by Σ.

The variational principle can be applied to this problem. In fact, for all vectors
e in 1RΛ

er κ* e .
= inf

KQ fe¥
<0=e

^inf{<|f | 2 > , Vxf=0 , f = O o n Z - , <f>=e} . (5.29)

The last expression can again be related to a problem in composite materials. In
fact, consider a composite consisting of a metallic (conducting) phase contained
in Σ with dielectric constant εm= oo, and a surrounding homogeneous dielectric
(insulator), contained in JR.**—Σ with dielectric constant εr The right-hand side
of (5.29) coincides with the ratio εe f f/ε/ ? where εeff is the effective dielectric
constant. This ratio is clearly finite if the "metallic" phase is disconnected, i.e.,
if the supports of the functions H(0) (x — ξa) do not overlap. We conclude that
the effective diffusivity of the flow (5.27) satisfies

κ*<±κQC(ρ) , (5.30)

where C(p) is a constant depending on the geometry of the array of vortices. In
particular, jc*oc/c0 for all values of KO.

This result applies not only to periodic arrays of vortices, but also to random
arrays in which the vortices are allowed to overlap. For instance, we consider a
random or Poisson process of points { ξ a } in Rrf with intensity A, and the velocity
field u(jc) defined by (5.26), (5.27). The corresponding support set Σ9 which is
now random, is known from classical geometrical percolation theory (see
Deutscher et al. [38] or Kesten [39]) to have two distinct phases corresponding
respectively to low and high values of the intensity A ( = density of points £α).
Accordingly, there exists a critical value λc such that we have
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(i) a non-percolating phase: if λ < λc then Σ is composed of a disjoint union of
clusters of vortices having finite diameter, with probability one; and
(ii) a percolating phase : if λ > λc then Σ contains at least one infinite cluster of
vortices with unit probability.

The variational principle (5.20) applies once again to yield, for λ < λc,

(5.30)

where C(A) is a constant depending on the shape of the support of H(0) and on
the intensity λ of the point process. Thus, the variational principle gives an easy
proof of the fact that the long time/large scale diffusivity of a random array of
vortices below the percolation threshold is, in a sense, trivially renormalized
(K*~KQ). We expect that the variational principle may be useful to construct
accurate upper bounds on K *, for situations in which the vortices interact more
substantially by using suitable trial fields f. The interesting problem of studying
the effective diffusivity for λ > λc is currently being investigated numerically [45].

VI. A Special Class of Two-Dimensional Flows

This section concerns a class of isotropic two-dimensional flows for which the
diffusivity can be computed explicitly. Such flows consist of arrays of non-over-
lapping, similar vortices separated by an intricate array of vortex sheets. These
models have the property that the net diffusion-advection resulting from all
vortices but one has exactly the same effect on the remaining vortex as that of
a homogeneous diffusive medium with enhanced diffusivity K *, satisfying

e1/2 (6.1)

as Pe-+co or /c0->0. These examples provide evidence of the fact that intricate
vortex sheets, or narrow boundary layers with high Eulerian velocity connecting
stagnant regions, can produce a strong enhancement of the macroscopic diffusion
rate. The importance of boundary layers in the long-time behavior of incom-
pressible flow was recognized by Childress and So ward [18] for two dimensional
Beltrami flows and by Young et al [2] for dispersion in convection rolls; see also
Shraiman [43] and Rosenbluth et al. [44].

VI. 1. Definition of the Stream Functions. To construct the stream functions we
consider the following geometric picture. Let {Dα}, α = 1, 2, 3,... be a spatially
homogeneous, isotropic tiling of the two-dimensional plane 1R2 by non-overlap-
ping disks Da . Such an array of disks must necessarily contain elements with
arbitrarily small diameter, since any restriction on the smallness of the diameters
would result in a packing volume fraction strictly less than unity, but, aside from
these basic geometric features, other details of the tiling can be specified arbi-
trarily. For instance, the tiling can be periodic, quasi-periodic or random.
The centers and radii of the disks will be denoted respectively by ξΛ and rα ,
α = l, 2, 3,.... (See Fig. 2).
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Fig. 2. Schematic representation of the flow geometry corresponding to the examples of Sect. VI.
The regions contained between the larger disks become identical, after a scaling transformation,
with the original configuration. The streamlines are closed circles drawn in a thin line. The
separatrix Γ, drawn in a thick line, consists of the collection of all circles bounding the
disks Dv

Next, we consider a family φr (/?), 0 ̂  r f£ 1, of functions defined on the interval
^/?^1, by

(6.2)

(6.3)

Πogr if

i log p if r<^p<;

for 0 < r < 1, and, for r = 0,
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We extend the functions φr (p) by zero for p > I. For each r, 0 <Ξ r <| 1, we define
the stream functions

x e IR2 ,

and the associated solenoidal velocity fields ur(x), given by

(6.4)

(6.5)

The finiteness of φr(p) for p«l ensures that y/v(x) is continuous across the
curve A consisting of the set-theoretic union of tίϊe circles {x: |x — ξΆ \ =ra}, as
α varies. However, the gradient of ^r(x), and hence ur(x) will be discontinuous
along A. This set is thus a spatially homogeneous vortex sheet, i.e. a region along
which the vorticity

ωr (x) = A ψr (x) = V x ur (x) (6.6)

concentrates. In fact, the vorticity of ur is a measure concentrated on Λ, as well
as on the union of the "internal" circles {x: |x — ξα | =rrα}, for r > 0, and on
the points £α for r = 0. The importance of A stems from the fact that large-scale
motion must necessarily take place by crossing A and that, since all streamlines
ψr = const, are closed circles, for small values of JC0, the flow takes place essen-
tially along a thin layer around Λ.

In the present context it is appropriate to interpret the averaging of spatially
homogeneous quantities (such as ψr(x), yr

2(x), ur(x), etc.) as Bohr averaging,
i.e.,

</>=lim—-2 J j f(xl9x2)dxίdx2.4R

It is then easy to check that

(6.7)

(6.8)

and

(6.9)

(6.10)
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In particular, the Peclet number associated with the advection diffusion equation

Λ rji

(6.11)

is given by

[<Ψ2>-<Ψ,y2]l/2

(6.12)
K°

KQ

We note that, since the velocity field is discontinuous on a set of dimension one,
the Lagrangian description of the flow in terms of the stochastic differential
equation

dx(t) = ]/2κ0dβ(t) + ur(x(t))dt (6.13)

is no longer valid. However the Eulerian description in terms of (6.11) is well-
defined. In fact, for r > 0, ψr(x) is uniformly bounded. Since (6.11) can be
rewritten in the equivalent form

Λ rji

(6.14)

where

j = ι ; i , (6.15)° "Ί.i oj '
the Nash-Moser theorem [40] ensures that (6.14) has a (unique) Holder-contin-
uous transition probability density p(t, x9 y) so that T(x,t) satisfies

•s, x,y)T(x,s) dx . (6.16)

For r = 0, the stream function ^Γ(x) diverges logarithmically as x->4> at all
points ξa. Nevertheless, the radial component of the motion within a given disk
DΛ is a Bessel-2 process

dp (/) = ]/2/c0 dβ (t) + —τ\dt , (6.17)

which never hits the singular point p = 0, with probability one, since it satisfies
the same equation as the radial component of a two-dimensional Brownian mo-
tion. This guarantees, by the Stroock-Varadhan theory [41], the existence of a
unique transition probability function p(t,x,y) such that (6.16) holds for solu-
tions of the advection-diffusion equation (6.11) with r = 0.

VI. 2. Self-Consistent Calculation ofκ *. As a preliminary calculation, we consider
the boundary-value problem

= 0 for | x | ^ l

T(x) = x for | x | = l , ( ' }
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where

I v 1 (6.19)

and φ (p) = φr (/?), for some fixed value of the parameter r, 0 <^ r < 1 . Introducing
polar coordinates p , 0 , 0 < 0 < 2 π , we seek a solution of (6.18) in the form

(6 20)

with

, (6.21)

where w(/9) is an unknown function. Due to (6.19), we have

and hence (6.18) can be recast into a two-point boundary-value problem for
), namely

(623)

The boundary condition w(0) = 0 is imposed so that VΎ has finite energy; i.e.
J I FT|2 Jx < oo. Multiplying (6.23) by w(p) (the complex conjugate) and

l * l ^ ι

integrating from 0 to 1 with respect to p dp, we obtain, after integration by parts:

(6.24)

0 ^ 0
Hence

(6.25)

and the average energy of FT on the unit disk { | x | <| 1} is related to the function
w, from (6.21), by the formula

2-n }a

= Rew'( l ) . (6.26)
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We now apply an argument due to Hashin and Shtrikman [25], and Schul-
gasser [26], to show that the effective diffusivity corresponding to (6.11) is
given by

/c* = /c 0 Rew / ( l ) . (6.27)

The argument consists in exhibiting the solution of the basic equation (2.14)-
(2.18), which is constructed using the field FT(x). For this, we consider the
stationary, matrix-valued field

l(x-ξβ)] , (6.28)
α

where FT (x) is extended by zero for | x | > 1 . Since we have

m(l)efθ = iefθ , (6.29)

the tangential component of E (x) is continuous across Λ and hence

FχE(x) = 0 (6.30)

in the sense of distributions. Moreover, since T(x) = x on |x| = 1, we have

- f VΎ(x)dx = l , (6.31)
π J

| x | ^ l

and this implies, using (6.28) and Bohr averaging, that

<E>=I . (6.32)

We will verify by an explicit calculation that w' (1) is indeed finite, and hence
that VΎ has finite energy, by (6.26). As a consequence of this and (6.28), we have

< |E | 2 >=i f \VΎ(x)\2dx
71 l χ l ^ 1 (6.33)

= 2Rew'( l ) ,

so E belongs to L2« ». It remains to verify that E is a solution of the basic
equation (2.15), which we write as

κ0VΈ + u(x) E(x) = Q . (6.34)

To check this, notice that, from (6.18), the equation is satisfied in the interior of
each disk. Finally, we compute the jump of the normal component of E across
an arbitrary point of A. We have, for x = pelθ, x0 = elθ,

/cosf lX /-sinβ\
l ) ( . ) + I m w ' ( l ) ( )

\ sin θ ) \ cos θ /

= Rew'(l)n(x 0 ) + Imw'(l)τ(x 0 ) . (6.35)
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Here n is the outgoing normal vector and τ is a vector obtained by rotating the
normal n by 90° counterclockwise. The definition of E is such that this calculation
yields precisely the outgoing normal flux n E at any point on A, from any disk
Dα, and thus we find that

jump of n E | Λ = 0 . (6.36)

This shows that E is the solution of (6.34) and hence of the basic field equation.
To compute the effective diffusivity it suffices to observe that

with

(6.37)

where the Eqs. (6.33), (6.34) and V ψrJ = u were used.
We now solve explicitly the boundary value problem (6.23) for φ (p) = φr(p),

0 <; r < 1. The problem becomes

if 0<p<r

w2(p) , if r< p< 1

0 < p < r ,

) = 0 , r<p < 1 ,
(6.38)

*Ί 0) = w2 (r), w{ (r) = wt, (r) .
χ»

We find that wl9 w2 are given by

w ί ( p ) = ap ,
(6.39)

with
v = l l - / / c ~ 1 , (6.40)

where the real part of v is positive and the coefficients a, b, c are given by

2vr~2

a — -

b = -

and

c = - ,-v-l

(6.41)

(6.42)

(6.43)



Effective Diffusivity in Passive Advection

We obtain

375

1 +(—v\l + vj
(6.44)

so, in particular | w' (1)| is finite, as claimed.
Finally, from (6.27) and (6.44), we conclude that the diffusivity corresponding

to ur (0 <Ξ r < 1) is given by

1-

(6.45)

l + i
Since v = |/1 — /KO ' = /= for small values of κ:0, we have

κ0l/2

1/2

+ 0(1))

for all r < 1. In particular, at r = 0, we obtain the simple formula

(6.46)

(6.47)

VI. 3. Explicit Formula for the Stieltjes Representation Measure for the Case r = 0.
Substituting, in (6.12), r = 0, we obtain

Pe = -
1

(6.48)

By substituting this value in Eq. (6.47) we obtain the formula

K * = / (6.49)

expressing the dependence of K */KO on the Peclet number. We wish to compute
the corresponding representation measure dv (τ) entering formula (3.3) for the
flow with stream function ψ0 (x) given by (6.4) with r = 0. Making the change
of variables p = e~\ and using (6.38) we can rewrite Eq. (6.38) for r = 0 as

0 < t < oo

We set

(6.50)

(6.51)
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and obtain a homogenous boundary-value problem for the function z:

'z" -z + 2ίPez= -2iPee~t , 0 < / < oo

X0) = z(oo) = 0 .

Using the Fourier transform, one finds readily that:
1 +00

Rez'(0)= Γ —
n J (1

— OO

1 2 Pe2

= —ϊ- f i ;r^(2- \τ\)l/2\τ\l/2dτ . (6.53)
2π ^ l+Pe τ ' ' ' '

Hence, from (6.27) and (6.51), we find

(6.54)

so that the density of the corresponding representation measure is given by

j / \ l — O — I / Π1/2 I 1 1 !/2 if I / I < 9dv(τ) _ } n (2 \t\) \t\ 3 « μ l ^ 2

dτ I o , if m >2 .

Appendix: Proof of the Homogenization Theorem

We present an essentially self-contained proof of the homogenization theorem
for the advection-diffusion equation

Λ rri

— =

= K0V'(l-PeH)'VT , (A.I)
assuming that

<|u(jc) | i / / 2 + e >+<|H(x) |^>< +00 (A.2)

for some ε > 0, where p = 2 + ε, \fd= 2 and p = dfor d^ 3 [d= space dimension].
The proof of follows the almost classical methods in Bensoussan, Lions and

Papanicolaou and L. Tartar [12] for averaging equations with rapidly oscillating
coefficients. In adapting such a scheme to homogenize equations with random,
unbounded coefficients, two difficulties arise. The first difficulty is that the cor-
rector χ (x) associated with the basic problem described in Sect. 2 can be un-
boundeH and is not, in general, a stationary process. In the context of divergence-
form, parabolic equations with random, bounded coefficients, this difficulty was
overcome by Papanicolaou and Varadhan [10], who formulated the basic problem
(2.14)-(2.17) for the field E and showed that the corresponding corrector has
sublinear growth. (See Lemmas 1, 2, 3 in this section.) The second difficulty
arising in the context of random advection-diffusion equations is that it may be
desirable to consider fields H and u that are, in general, unbounded. (Such is the
case, for instance, if u is a Gaussian field.) Nevertheless, under the additional
assumption (A.2), a suitable approximation argument applies and we have the
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Homogenizatίon Theorem. Let D be a bounded region 0/IR/ with smooth boundary
dD, and let the functions Tδ (x, /), T ( x , f ) be the solutions of the following initial-
boundary-value problems:

dTβ(x,t)

dt
for (x,t) in Dχ(0, +00)

for (A.3)

for (x9t)edDx(Q, + 00) ,

and

^ί_ v *
Λ , ~ 2j Kij

T(x,0) = TQ(x) , for xeD , t = 0 , (A.4)

T(x, 0 = 0 , for (x,t)edDχ(0, +00) ,
•v

where TQ(x) is a smooth function with compact support defined in D. Then, for all
functions ζ (x, s) satisfying

/J J ζ2(x,s)dxds\ < +00 (A.5)
0 D

we have, for all t > 0,

l i m / f f /Tό(x,s)-T(x,s))ζ(x9s)dxds\=Q . D (A.6)
<uo V I /

0 D

The function T 3 ( x , t ) is understood to be a weak solution of (A.3) in the
following sense:

(A.7)

(A.8)

(i) ϊieC([0, +co),L2(A£2

(ii) For all t > 0,

TδeL2([0,t], W0

l(D,L2«

(iii) For all ζ (x, s) e C0°° (D x [0, T], £°°« »), we have



378 M. Avellaneda and A. J. Majda

/J $ Tδ(x,s)d,ζ(x,s)dxds\

0 D

x9s)^u (j) ζ(x9s)dxds\ . (A.9)

^ ' '

(iv) The initial condition is understood in the ZΛsense, i.e.

l i m / f |7i(x,0-r0(*)|2Ac\=0 . (A.10)
rio \ 1 /

For a definition and discussion of the spaces L2(Z), L2« •))) and
W0

l (D,L2« ») the reader is referred to Papanicolaou and Varadhan [10].
It can be shown that problem (A.3) admits a unique weak solution satisfying

(A.7)-(A.10). This is an immediate consequence of the classical theory of para-
bolic equations with nonsmooth coefficients [42], since from (A.2) the first-order
term u (x/δ) satisfies the integrability condition

Ldl2+ε^ ? with probability one . (A. 11)
*)e

Moreover, it can be shown that, under the condition (A.I 1), the solution Tδ (x, t)
satisfies

sup \Tό(x9t)\^\\T0\\L*w , (A.12)
xeD

as well as the energy identity

t
f I T (x /) 1 2 dx 4~ K f f IV T (x s) \2 dxds = f I T (x) 1 2 dx (A. 13)

D o D D

with probability one (see [42], Chap. Ill, Theorem 7.2). Averaging (A. 13) over
the velocity statistics, we obtain the integrated energy identity

/ J ϊ$ \VTδ(x,s)\2dxds\
0

(A.130

In addition to these properties of the solution Tδ (x, t) of (A.3), we will need
certain asymptotic results for rapidly oscillating random functions in
L2(D,L2 «•>)), and for the correctors χ appearing in the formal expansion
(2.13). Such results are due to Varadhan arici Papanicolaou [10], and are presented
here for completeness' sake. Our exposition follows their work closely.
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The reader interested in a probabilistic version of the homogenization theorem
can consult the very interesting article of K. Oelschlager [13] that considers ran-
dom, unbounded H-fields, under somewhat different assumptions than the ones
of this paper.

Step. 1. Auxiliary Results and Properties of the Correctors

Lemma 1. Let f (x) e L2(( » be a (scalar) random stationary process. Define,
for α = 1 , 2, . . . , d, the functions

iRy-{o}

where df(k) is the Fourier transform, or spectral measure, of the random process
f(x). Then, for all M > 0,

lim sup (δ2\g.(£)\2)=0 π (A. 15)
.510 \x\^M \ \ 0 / I /

Proof. From (A. 14), we have

= r l * ' *-- i | 2 <I
J-{0, \k\2 \k\

= J \k\2 <\d'M\>' (A 16)

and hence

sup lδ2

*" \δ

^ sup
Ao, ιw~Ί2

max^Sm^'_X,'--|<K/(A:)|2> . (A.17)

The integrand in (A. 17) satisfies

for all /:=t=0, as well as

lim fM>ό(k) = Q , pointwise . (A. 19)

Therefore, we can apply the Lebesgue dominated convergence theorem to con-

clude that, from (A. 17), we have lim sup ( δ >n , ,=0. D
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The following lemma gives a useful weak convergence result for stationary,
rapidly oscillating functions, viewed as elements of L2(D,L2« •»).

Lemma 2. Let f be an element of L2« », satisfying </> =0, and suppose that
{ ζδ (*)}δ is bounded sequence in W0

l (D, L2 « - »). Then, if

we have

lim ( ί
<5iO \ „

weakly in L2(D,L2(( ~yy) ,

=</>{K(*)«

Proof. Since u is ergodic, we can write

/(*) = </>+ ί eίk'xdf(k),

where df(k) is the spectral measure of/ We define the vector field

G(x) =

(A.20)

(A.21)

(A.22)

(A.23)

where the functions g α (x), 0<?(x<?d, are defined in (A. 14). By construction, the
vector field G (x) satisfies

G(*) = </>-/(*) . (A.24)

Hence,

(A.25)

Clearly, the first term in the right-hand-side of (A.25) converges to

(A.26)

while the second term can be estimated from above by

2(Vol(Z))) 1 2xsupup/> G (j)
e Z > \ \0 / /

\Vζβ(X)\2dx\2, (A.27)

a quantity that tends to zero, by Lemma 1. This concludes the proof. D
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The next lemma concerns the corrector χ, appearing in the formal expansion
(2.13). Let E be the solution of the basic problem (2.14)-(2.17), i.e.

1 = 0 , <E>=I . (A.28)

We define the (vector-valued) corrector χ (x): IR/-»IR/ as the function

(pik x _ Λ\

X (χ)= - f ,. ,2 ik -dE (k) . (A.29)
d- \k\

Following Papanicolaou and Varadhan [10] we claim that

Lemma 3. The function χ satisfies

7χ(x) = E'(x) = E(x)-I ,

lim sup (δ

(i)

(ϋ)

and, for all q ̂  2d/d(d- 2) (q e IR+ if d= 2) and all p e Q

\ L i - U/ Ί / = 9<

uniformly in the parameter δ. π

Proof. Differentiating (A.7) with respect to x, we obtain

Vχ(x)= J e / A ;- x |/c|- 2/c/t ri/E(/c) ,

(A.30)

(A.31)

, we have

(A.32)

(A.33)

since — Γ (with Fourier symbol \k\ 2kkτ} is the projection operator onto the
set of curl-free fields with zero mean. This proves claim (i). The second assertion
is an immediate consequence of Lemma 1. Finally, to prove (A.32) we introduce
the function

(A.34)

which is an element of W$ (D, L2« »), since

) Vp(x) (A.35)
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By the Sobolev inequality [42], we have

Γ 12/?

J //(*)</* ^ C J |7/,(*)|2<fc. (A.36)

where C is a numerical constant depending only on d. Hence, integrating both
sides of this inequality with respect to < >, we obtain

\2/g\

J \Vfβ(x)\2dx\
RΊ '

ί

sup (A.37)

which is bounded independently of £. This concludes the proof of Lemma 3. D

Step 2. The Energy Argument. From the integrated energy identity (A. 13') we
conclude that there exists a subsequence Tsn(x9 1), n^.1 - which we still denote
by Tδ (X t) for simplicity - and a function T(x9t) such that

Tδ-*T weakly in L2([0,Γ], Htf (A£2« »)) ,

for all Γ>0.
Let us consider the vector field

H*(x,s)= \I-PeH

(A.38)

(A.39)

The next lemma establishes a bound on q^ (x9 s) in a suitable norm, which is
independent of δ.

Lemma 4. There exists a positive constant, C, depending only on t, \\TQ\\L2(D^,
VolZ), and IJHH^^.^ (withp = difd^3 andp = 2 + ε ifd=2\ and not depending
on δ, such that

j J (A.40)

with r = 2d/(d+2) if d^ and r = if d=2. D
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Proof. By Holder's inequality, for all r^ 1,

f J \<ιό(χ,s)\rdxds2r

^ f J / - Λ H ώ c ώ f J |77i(jc,,y) | 2 Λc<fc , (A.41)
^0 D \ / I / \ 0 £> /

for /? such that !//?+ 1/2= 1/r. We observe that, by the (pointwise) energy
t

identity (A. 13), J J | VTδ(x,s)\2dxds is uniformly bounded, with probability
0 D

one, in terms of the ZΛnorm of the initial data. Accordingly, taking p and r as
in the statement of this lemma, we have

2/

2//7\

I f t \ 2 / r v

( i f J \<b(x,s)\'dXdS\ }
'

\
\
/

(A.43)

KQ

In deriving this estimate, we used Jensen's inequality and the fact that H is a
stationary random process. This concludes the proof of Lemma 4. D

As a consequence of Lemma 4, {q^ (x9 s)}s > 0 is a bounded set in the reflexive
Banach space L2(( y,Lp([Q9t]xD)) and hence has a weakly convergent sub-
sequence, {q^n(x,s)}'9 δn-+Q. Let us denote the corresponding limit by q(;c, s).
Taking the limit in Eq. (A.9) as <ϊπ->0, and using the fact that u (x) = κ0PeVΉ,
we obtain

J J T (x, s) ds ζ (jc, s) dx ds\=κ0l$ $ (Vζ (x, s))τ q (jc, s) dx ds\ (A.44)

^

0 D 0 D

for any function ζ (x, s) e Q00 (D x [0, Γ]; L°° « »). This can be interpreted as
statement that T(x9s)9 q(X s) satisfy, formally, the equation

£-sT(x9s) = κ0V q(x,s) . (A.45)

The problem of interest is to identify κ0q(x,s) as the "homogenized flux" cor-
responding to (A.4), i.e. to show that

κ0q (x, s) = K * - V T(x, s) (A.46)
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with £* = £0<(I + PeH)E>. For this, we follow the classical approach due to
Tartar [11], which consists in introducing the test functions

(A.47)

where v e R* and ζ (x, s) e C? ([0, t] x D\ L°° « »).
Using the incompressibility of u, we can rewrite the identity (A. 9) as

D

= KO / J I (V Tδ (x, s)) τ (V ζ (x, s}) dx d^
0 D

-/J j Tδ(X,s)^u(^] Vζ(x,s)dXdS\ . (A.48)
0 D ^ '

Substituting the test function ζδ (x, s) in this identity, we obtain

\
/

0 D - \

dxds
0 D

0 £>

0 £ )

-/j j
0 D

, (A.49)

where we used the identity (cf. Lemma 3),

[ / Y \ Ί / v \
x v + ̂  - v U E - U . (A.50)

~ \o/ J \ d /

Note that, by (A. 12), Tδ is uniformly bounded, so we can in fact introduce the
unbounded test function ζδ in (A. 48) and obtain (A. 49). Using integration by
parts in (A.49), we have
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x / J \Tδ(x,s)
\

ίί
0 D

H ( ^ ) VTδ(X,S)dXds}

0 Z)

Moreover,

0 D

= / c 0 / j

-*o f (^C(^^))Γ E .vTδ(x,S)dxds . (A.52)
o z> ^ ^

Substituting expressions (A. 51) and (A.52) in (A.49) we conclude that

j J T α ( x , s )
o />

= / c o(j f
^ 0 D

• (l - PeH ( J Y) - F Γa (x, 5) dx ds
\ \f>JJ

-*o{ί J (Vζ(x,s))τ l + PeH E

0 D

(A.53)
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The sum of the last two terms on the right-hand side of (A.53) can be computed
using the equation satisfied by E. For this, let { ψn (x, s)} denote a sequence of
smooth functions satisfying

> χeD , Q<s<t, (A.54)

with probability one, for some constant Q , and

ψn-+ Tδ ζ strongly in L2 ([0, Γ], W0

l (D, L2 « - »)) . (A.55)

Then, we have

-(j J , -

= lim Γκ0( J J
«-*» L \ 0 Λ

(Vψn(x,s))τ E -

J J (F^(x,5))Γ H -E
0 £> \ / \

= 0 , (A.56)

since F [(I + P^H)E] = 0 in the sense of distributions.
Summarizing, we have shown that, from (A.53), the solution Tδ(x,s) of the

problem (A.3) and the vector field qδ(x,s) satisfy, for all smooth test functions
ζ (X s)9 the equation

/ J I Ta(x,s) Γx v + Jx (ί) v j d,ζ(x,s)dxds\
* 0 D L ~ \ / J /

= *»$ J

0 Z)

(A.57)
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We wish to pass to the limit in this identity as J->0 (along a subsequence).
Clearly,

J f Ts(x,s) x v + δχ v dsζ(x,s)dxdsJ -

(A.58)

To pass to the limit in the first summand of the right-hand side of (A.57), we
write

= <#> (*,*) + A? H -H(n) -VTδ(x9s) , (A.59)

where H(π) is the usual trunction of the H-field. Using the method of Lemma 4,
we have the estimate

j J I q . ^ ^ - q ^ f e ^ l C ^ I H - H ^ I O 2 ^ , (A.60)
0 D '

where p and r are as in Lemma 4. Consequently, if q(ra) (x, s) denotes the weak
limit of q^C*, s) as <5->0, we have

lim l(] J \q(X,S)-q^(X,s)\rdxdS}
2 '}=0 .

«-00 \ \ 0 β / /

Using the decomposition (A.59), we write

f \χ.

= l i m / J Jδlo\

(A.62)

f J
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By Lemma 3, since H(n) is uniformly bounded, the second summand of the right-
hand side is equal to zero. Moreover, using (A. 60) and (A.61) we can conclude,
by letting «->oo in (A. 62), that

lim / J J \x
X 0 D L

= / J J (x y)(Vζ(x,s))τq(x,s)dxds\ . (A.63)
A r»

Finally, we wish to pass to the limit as J->0 in the second summand of the right-
hand side of (A. 57). For this, set

= (I + A?H(x)-E(x)-v . (A.64)

The function f (x) is an element of Ll « ». Let {f(w)(x)}«^ι denote a sequence
in L2« » such that

Accordingly, we have

l i m / f J (FC(x,.)))r.f Tδ(x,s)dxds
*w\

j

+ liml im(f J
<no \ 0 ^

From Lemma 2, we have

lim(ί I
ί w \ O Z )

= (ί ί
0 D

Finally, the remainder satisfies

(A 65)

Ts(x9s)dxds . (A.66)

(A.67)

(A.68)

and hence
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/ ' / X\ \
limί J J (Vζ(x,s))τ f ί - J Tδ(x,s)dxdsJ

= lim / J J (Vζ(x,s))τ^y T(x,s)dxds\
n-+co \ Q D I

= — J S<(Vζ(x,s))τ κ* yT(x,s)dxds\ , (A.69)
0 /

0 D

since <f> =<(I + P^H) E> v = — K* v. Putting together (A.58), (A.63) and

(A.69) we obtain, from (A.57),

t

J J ^ ^ ^ / s * \

0 D

"(ί ί (A.70)

But, substituting the test function x \ζ(x,s) in (A.9) and letting ό-^Q yields, as
in (A.44),

/f J Tf(jc,

0 D

J C(Λ,

Thus, we reach the conclusion that

-
^o( J J ζ(x,s)vτ q(x,s)dxds)

0 D

= -/ J J (Vζ(x,s))τ-κ* \T(x,s)dxds\ . (A.72)
0 D

Integration by parts in (A. 72) leads to the desired result:

s) . (A.73)
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Finally, note that (A. 73) holds true along an arbitrary weakly convergent sub-
sequence Tδn (X s), so that, in fact, we have lim Tδ (x, s) = T(x, s), for 0 < δ < 1.

<5iO

This concludes the proof of the homogenization theorem. We note here that this
theorem provides an a posteriori justification of the fact that the effective dif-
fusivity tensor #* corresponding to (1) is uniquely determined by the formula

)EM) , (A.74)
y/Όo

independently of which particular subsequence {E(My)}, converging weakly in
L2« »ischosenin(2.31).
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