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Abstract. We point out that the coset space Diff SV-S1 is a dense complex sub-
manifold of the Universal Teichmuller Space 5 of compact Riemann spaces of
genus g^ 1. A holomorphic map of S into the infinite dimensional Segal disk D^ is
constructed. This is the Universal analogue of the map of Teichmuller spaces into
the Siegel disk provided by the period matrix. The Kahler potential for the general
homogenous metric on Diff S1/S1 is computed explicitly using the map into Dv

Some applications to string theory are discussed.

There are many reasons to believe that there is a string theory [1] of quantum
gravity. Since classical gravity has a natural formulation in terms of Riemannian
geometry, it is reasonable to expect that quantum gravity can be formulated in
terms of its complex analogue, Kahler geometry. By combining these two surmises,
it is natural to seek a formulation of string theory in terms of Kahler geometry. One
approach to this was developed by one of us in collaboration with Bowick and
Rajeev [2]. In that approach the basic object of study1 is the coset space ΌiΰS1/S1,
which was proved to be a homogenous Kahler manifold. It was shown that this
manifold has a finite Ricci tensor (a non-trivial fact in infinite dimensions) which
gives a natural explanation of the critical dimension 26 of string theory.

Complex geometry also arises in the conventional perturbative string theory
although in a completely different way. The g-loop scattering amplitude of string
theory can be expressed as an integral of the square of a holomorphic function on a
complex manifold, the Teichmuller space of Riemann surfaces of genus g. The
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measure of integration can be understood [3] in terms of the map of yg to the
Siegel disk D(g). We will explain this in some more detail later in the paper.

It is interesting to ask how the two approaches are related. The approach based
on DiffSYS1, while more abstract, holds the promise of a truly non-perturbative
approach to string theory. This is important since there is reason to believe that the
perturbative expansion does not converge [4]. It was conjectured initially [2] that
DiffSYS1 is a "universal moduli space" for Riemann surfaces. The precise
connection between the abstract approach based on Dif fS 1 /S l and the more
conventional approach based on Riemann surfaces remains, however, obscure. It
was later conjectured by one of us (S.G.R.) that all the Teichmuller spaces could be
embedded as Kahler submanifolds of Diff SYS1. But progress in this direction was
obstructed by the presence of certain divergences. But since then there has been
important progress in this direction from the work of Kirillov, Yuriev [5], Nag [6],
and Verjovsky.

Their results imply that Diff SY-S1 is a dense complex submanifold of S, the
space of univalent functions on the unit disk. The reason why this is an exciting
result is that S is the "Universal Teichmuller Space" in the theory of Bers. More
precisely [7], the Teichmuller space yg of compact Riemann surfaces of genus g ̂  1
can be holomorphically embedded into S.

These results open up the exciting possibility of a non-peturbative formalism
for closed bosonic string theory. It is a natural conjecture [8] that the string
amplitude can be written as an integral over Diff SYS1 of the modulus square of a
holomorphic function (which can be expressed in terms of infinite dimensional
analogues of Θ functions). The measure of integration would be determined by a
homogenous Kahler metric on Diff S Y/S1. We will give a more precise statement of
this idea at the end of this paper.

In constructing this approach to string theory, a holomorphic map of
Diff Sί/PSL(2, R) into the infinite dimensional Segal disk [9] is important. It is the
analogue of the map of the Teichmuller space to the Siegel upper half plane,
(provided by the period matrix) in the perturbative approach. It is also useful to
understand the geometry of Diff SYS1 and its various embeddings as explicitly as
possible. The original approach to the Kahler geometry of DiffSYS1 was rather
abstract and relied heavily on the homogeneity of the space. The work of Kirillov
allows us to establish explicitly a holomorphic co-ordinate system on Diff S1/S1. In
this paper we will calculate the Kahler potential of the most general homogenous
metric on DiffSYS1, in this co-ordinate system. Kirillov and Yuriev already
obtained the Kahler potential for one parameter family of homogenous metrics.
But for that special case the Ricci tensor does not exist. We will generalize their
result by finding the potential for the general two-parameter family, including
those for which the Ricci tensor does exist.

Even apart from string theory, the geometry of Diff S1/S1 is relevant to the
study of irreducible representations of the Virasoro algebra, and to conformal field
theory. For example Segal has constructed the c = 1 projective representation of
the Virasoro group DiffS1 by the embedding method. We believe that all
irreducible (projective) representations of DiffS1 can be obtained in terms of
modular functions on the homogenous spaces DiffSYS1 and DiffS'YPSL(2,JR).
Witten [10] has proposed a similar idea.

Before we end this introduction, we have to warn the reader that any discussion
of infinite dimensional manifolds is plagued by certain technical difficulties. For
example, the tangent space of Diff S /S1 is not complete in the norm defined by its
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Kahler metric. Similarly, in the following we will see that we will not be able to map
all of S into D1? only a dense subset. We are not able to completely settle these
issues of infinite dimensional analysis. A rigorous theory can be developed only
after a sufficiently rich set of examples of infinite dimensional manifolds have been
studied. We believe that the examples we study will be useful in that direction. The
experience in mathematical physics has been that many such technical issues get
settled only after most of the physics is understood.

Let us begin by recalling that a holomorphic function / on the unit disk is
univalent if it is injective, /(zx)=/(z2) => zί = z2. It is convenient to normalize these
functions by imposing /(O)=0, /'(O) = 1. Then, every element of S has an expansion

f(z) = z 1+ Σ ckz
k . (1)

V k=ί J

Thus the coefficients ck,k^il provide a complex co-ordinate system that covers all
of S. The coefficients ck must satisfy some inequalities in order that the Taylor
series converge for \z\ < 1 to a univalent function. It is known [11] (the Bieberbach-
De Branges theorem) that \ck\ ^fc+1 is a necessary condition. Thus S is a sort of
infinite dimensional bounded domain. We will produce a homogenous Kahler
metric on S. Our strategy will be to embed S holomorphically into a more well-
known infinite dimensional bounded domain, the Segal disk Dίf

In finite dimensions, the Siegel disk (so named after C.L. Siegel) D(n) is the
space of n x n complex matrices Z such that

ZΓ = Z, l-Z tZ>0. (2)

Clearly this is a bounded domain in complex space of dimension n(n +1)/2. (For
n=\ this is just the unit disk on the complex plane.) This space can in fact be
identified with the homogenous space Sp(2n)/U(n). To see this, note that Sp(2n) can

be thought of as the group of matrices g = I Γ _ ) with

aτδ=tfa, aτά-tfb = \. (3)

Here Sp(2ή) acts on D(ή) by fractional linear transformations

-1. (4)

Any ZeD(n) can be obtained from the origin Z = 0 by this action. The stability
group of the origin is the subgroup with fe = 0, α fα = l which is just the U(n)
subgroup ofSp(2n). Thus D(ή) = Sp(2ή)/U(ή). There is a Kahler meric on D(ή) which
is homogenous under the action of Sp(2ή). The Kahler potential is just

K(Z)=-trlog(l-ZtZ). (5)

There is a holomorphic map of the Teichmϋller space 3Γg of compact Riemann
surfaces of genus g into the Siegel disk D(g). This map appears in perturbative
string theory. Each point p e 3~g describes a Riemann surface Σ along with a choice
of generators ("marked Riemann surface") for its fundamental group π^Σ). There
are some related spaces that are also of interest in string theory. Each point in the
Torelli space &~Θg is Σ along with a choice of generators for the Homology group
H^Σ) oίΣ. A choice of generators of π^Σ) implies one for flΊ(Σ) so that there is a
projection π : yg ^2r®g. One can identify 3~Θ = FJKφ where Kg is the group of
diffeomorphisms not connected to the identity on Σ that leaves the choice of
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homology basis invariant. Each point of the Riemann moduli space Mg simply
describes a Riemann surface. We have that Jίg = yjΓq> where Γg is the "mapping
class group," the group of diffeomorphisms of Σ that are not connected to the
identity. Also J%g = &~@g/Sp(2g,Z). These relations are consistent because
Sp(2g,Z) = Γβ/Kβ.

Given a point in 3~Θg we have a Riemann surface Σ of genus g and a homology
basis (αί? bt) satisfying

at a^bfb^O arbj^δtj (6)

on it. Here the dot represents intersection. There is then a dual basis of
holomorphic 1 -forms (abelian differentials) ωt satisfying

iωj = δtj.. (7)
«ι

Then to each point in ^~@g we can associate a symmetric g x g matrix Π with
positive imaginary part:

Πij=§ωi. (8)
bj

Now recall that the Siegel upper half plane (of symmetric matrices with positive
imaginary part) can be mapped into the Siegel unit disk by the map

(9)

so that it is just a matter of convenience which description we choose. We have
therefore a map τ : ̂ ~@g^>D(g). This is a holomorphic 2-to-l immersion [12] of an
open set (of non-hyperelliptic surfaces) of^~&g into D(g) for g ̂  3. (If g = 1 , 2 this is a
holomorphic embedding of &~Φg.) If we combine this with the projection
TL\3rg-*y(Sg we get a holomorphic map z:&~g-+D(g). The pullback of the
homogenous Kahler metric on D(g) gives a Kahler metric on 2Γg with Γg as the
isometry group.

The correlation functions of string theory can be written as an expansion in
powers of a coupling constant λ. The gίΛ-order term in the expansion is the average
of certain vertex operators with respect to a measure [3] in Mg\

X ί 3γi3dyίdyi\Fg(y)\2dQt(l-z(y)z(y)Γ13. (10)
Jtg i = l

Here / is a complex co-ordinate system and F(y) a holomorphic function on Mg.
(We will propose a non-perturbative analogue of this at the end of this paper.)

We will produce a universal analogue of these constructs by mapping S into the
infinite dimensional Segal disk. We have not been able to produce an analogue for
the Torelli space. Instead we will find a map of the Universal Teichmύller Space S
directly into the Segal disk. This is the analogue of the map z discussed above. One
important difference with the finite genus case is that the Kahler metric so obtained
on S is also a homogenous metric. Of course there are no continuous isometries for
the Kahler metric on yg except for g = 1.

First we need an infinite dimensional analogue for the Siegel disk. It turns out
that all the above properties of D(g) can be generalized to infinite dimensions if
certain convergence conditions are imposed on Z [9]. Let V be an infinite
dimensional real Hubert space. Pick a complex structure J0 on V that turns it into

a complex Hubert space W9 so that V = W® W and J0 = I . 1 . Choose also the
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symplectic form ω= I ). The linear transformations that leave ω and J

invariant (i. e., ω = gωgr and J = gJg ~ *) form the group U of all unitary operators
on a complex Hubert space. Those that leave ω but not necessarily J, form the

infinite dimensional symplectic group. In order that g = ί =_ _ 1 leave ω invariant
we have the familiar conditions \ a'

aτb = tfa, aτά-tfb = \. (11)

But in fact we will only consider a subgroup of "restricted" symplectic transfor-
mations Spl9 that also satisfy

trb t fe<oo. (12)

Segal showed that much of the classical theory of Sp(2ri) generalizes to this
restricted symplectic group [9]. The subgroup with fc = 0 is clearly U. Thus Sp1

consists of those symplectic transformations that differ from unitary transfor-
mations by a finite amount in the Hubert-Schmidt norm.

The infinite dimensional Segal disk (now named after Segal) Dί is the space of
all operators Z on an infinite dimensional complex Hubert space W that satisfy

ZT = Z, l-Z tZ<0, trZ tZ<oo. (13)

The convergence condition (which is of course trivial in finite dimensions) on the
trace has been added so that the Kahler geometry of Dί is well-defined (see below).

There is a transitive action of Spl on Dv given as before by

Z-KαZ + frMδZ + SΓ1. (14)

Thus we can identify D1 with the coset space SpJU. Again we see that this infinite
dimensional bounded domain admits a homogenous Kahler metric determined by
the potential

X(Z)=-trlog(l-Z tZ). (15)

Clearly the trace is well defined because of the convergence condition imposed on
Z. f Recall that £log(l— xj converges absolutely i f f£ |x j convergesΛ It is

\ n n ^ J

convenient for a later purpose to write the Kahler potential in a slightly different

form. The group element ( Γ _} that maps 0 to Z has bά~1=Z. (bά~l is
\0 a) / fe\

symmetric and is invariant under a right multiplication of ( τ- _ 1 by an element of
\b a)

U.) Thus K(Z) can be viewed as a function on Sp{ invariant under the right action
of U. In this language,

= logdet(αrα)

= trlog(l +&*&).

Geometrically, we can regard each matrix ZeD1 as describing a complex
structure on V. The origin Z = 0 corresponds to the complex structure we started
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with, J0 = ( . j. Elements of Sp^ that leave J0 invariant form U. So SpJU can

be viewed as the space of all complex structures J = gJ0g~1 that can be obtained
from J0 by the action of some geSp^.

Therefore, to get an embedding of S into Dί9 it is enough to find a way to
construct such a complex structure. We will find a real vector space on which each
univalent function /e V defines a complex structure. This is the space V of real
functions on the unit circle with zero average:

V=\ψ:Sί-+R

We take the completion of this space (also called V to save on notation) with the
norm

//«
(17)

to be our real Hubert space. Any ψ can be expanded in a Fourier series

Ψ(eω)= Σ <AA+ Σ
w = l w = l

Here we use the basis

for convenience.
The complex structure J0 can now be defined as

(JoψKβ'V Σ iψn*n+ Σ (-OVA- (19)
n = l n = l

We can simply think of ψn9 n = l,2, ..., oo as the components of φ in the
corresponding complex vector space W In fact Wean be thought of as the space of
functions holomorphic inside the unit disk and vanishing at the origin. The
complex structure J0 simply gives a rule (analytic continuation to the interior) that
maps V to W. This way of thinking about the complex structure allows for a
generalization.

The symplectic form in this space is defined to be

. (20)
In the decomposition V— W®W described above

Now we can construct Spί9 U and D1 = Spί/U for this space as before. What is
special about this particular choice of ω is that it is invariant under an action of
Diff S1 on V. Thus we have an embedding of DiffS1 to Sp^ and DiffSYS1 to D{ [9].
Viewed another way this will give us an embedding of S into D^
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The action of an element φ ~ 1 e DifΓS1 on a ψ e V is given by

T(φ- l)ψ(eiθ)= ψ(e^)- ίψie^). (22)

This is just the action of Diff S1 on a scalar except that we subtract a constant to
maintain the condition that the average value of the function be zero. It is
straightforward to verify that this leaves the symplectic form ω invariant. In ref. [9]
it is shown that the operator T(φ) satisfies the convergence conditions required for
it to be a element of Sp{. Thus we have an embedding T:ΌiΰSί^Sp1.
Furthermore, it is obvious that rotations leave the complex structures invariant so
that they go into the U subgroup under the embedding. But in fact none of the
Mόbius transformations mix positive and negative frequency components. So in
fact Tmaps PSL(2, £)-» U. Thus we have a map of Diff S1/PSL(29 R^D^ This is a
holomorphic isometric embedding. We can therefore obtain the Kahler potential
on ΌiϊϊSl/PSL(2,R) by pulling back the Kahler potential on D^ To obtain the
Kahler potential on Diff S^S1 we must regard it as a bundle over ΌiSS1/PSL(29 R)
with the unit disk D = PSL(2,R)/U(1) as fibre. Thus DiffSV-S1 has one extra
complex co-ordinate than DiffS1/PSL(2JJR).

This way of thinking about Όiΐ(S1/PSL(2,R) however does not make it
obvious that it is a complex manifold. However if we consider the complex
manifold S of which ΌiϊfS1/PSL(2,R) is a subspace, we have a complex co-
ordinate system, provided by the coefficients ck. How can we construct a complex
structure on V given a univalent function feSΊ

The complex structure J0 on V was constructed based on a splitting ofipeV
into a positive frequency part that is holomorphic inside the unit circle and a
negative frequency part holomorphic outside the unit circle.

Consider a univalent function feS that can be extended as a continuous
injective function on the unit circle. Then / maps the unit circle to some non- self-
intersecting contour K = f(S1). It is known [13] (the Koebe one-quarter theorem)
that this contour surrounds a disk of radius at least .̂ Hence functions
holomorphic inside K can be expanded in a power series that will converge at least
for |z|<^. Given any function ipeV we can decompose it into a piece ψf
holomorphic inside K and a piece — ψ J holomorphic outside K. Explicitly,

It can be shown then that

ψ(Ό) = ψj(v)-ψj(Ό) (24)

for vεS1. When f(z) = z we can verify that ψf is precisely the positive frequency
part of ψ defined earlier.

vm

Recall that em(v) = / _ for m φ 0 forms a basis for V. Because of the one-
Iml

quarter theorem em for m = 1,2,..., oo also forms a basis for the space of functions
holomorphic inside K. So we can associate to each real function ψ e V a set of
complex numbers ψnf for n = 1,2,..., oo:

) = Σ W-ζ- (25)
» = ι yn
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This defines a complex structure J f on V that differs from J0 obtained earlier. The
sum on the right converges inside the contour K. It is now possible to take the old
basis em, e_m for m = l,2, ...,oo, decompose each basis vector into pieces
holomorphic inside and outside K and re-expand in powers of z. This will produce

an element of Sp1? g= ( Γ _ ) where

e-mf= Σ aJJ)e-n+ Σ bmn(f)en. (26)
n = l

We can get a more explicit form by multiplying both sides by a power of z and
integrating over the circle of radius £ (where we know the right-hand side
converges):

.
and

du - dv

Now we have an explicit formula for the embedding S^Dί:

\f). (29)

It is worthwhile to calculate explicitly the special case when / is only
infϊnitesimally different from the identity:

f(z) =

A fairly straightforward calculation using our formula above gives

Zmn = bmn = ]/(mn)cm+n + 0(c2). (30)

Let us digress to make a technical remark. In fact, not all functions /e S lead to
a Z that satisfies the convergence conditions, only those in a dense subset does.
This is the sort of technical difficulty that arises all the time in infinite dimensions.
From the above expression we see that in order for trZ fZ to be finite £ \cp\

2p3

p
must converge. This is definitely true for the subset ΌifίS /PSL(2,R).
(ΌiϊϊS^/PSLQR) consists of functions for which cp goes to zero faster than any
power of p.) In any case it is clear that the convergence condition is satisfied by a
dense subset of functions in S. For example the space of univalent polynomials (for
which Z is a finite rank matrix) is already dense [13] in S.

We can now pullback the Kahler form of D1 to get a function K^ on S. It is best
to use the expression for K as a function of b that we derived earlier. Thus the
Kahler potential for the homogenous metric on S is

«!(/) = trlogίl+fcί/r&ί/)), (31)

where the matrix bmn can be calculated by evaluating the contour integral given
above. Since K is describing a homogenous Kahler metric it is completely
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determined by its value at the origin. We can now calculate, near the origin, to
leading order

= Σ rnn\cm+n\
2

m, n= 1

= \ Σ (p3-p)\cP\
2

O p=l

Note that this does not define a non-degenerate metric on S. At the origin, the
direction cγ is degenerate. It provides a metric on the submanifold
DiffSγPSL(2, R) of S. On Diff S1/PSL(2, R) the most general homogenous Kahler
form is [14]

ω(Lm,Ln) = a(m*-m)δ(m + n), (32)

where a is some constant. Also Lm are the generators of the left action of the Lie
algebra of Diff S1. If we regard this manifold as a subspace of S, we can get an
expression for the Kahler potential of this metric:

K(f) = 6atτlog(ί+b(f)ib(f)). (33)

Without the use of the co-ordinates cm provided by the relation of
ΌίSS1/PSL(29R) with S, it would have been impossible to get such an explicit
expression for K. The calculations of [2, 5, 14] show that the Ricci tensor is finite
for this metric. We also note that the metric is in fact Kahler-Einstein,

R i c = - ω . (34)

The most general homogenous metric on ΌiffS1/Si depends on two
parameters:

ω(Lw, Lπ) = (am3 + bm)δ(m + n) . (35)

Kirillov and Yuriev have already found the Kahler potential in the special case
a = 0. However this is a singular case since the Ricci tensor does not exist [2] even
though the Kahler metric itself does. By combining their result with ours, we can
get the potential for the general homogenous Kahler metric.

Let us first recall the potential of Kirillov ad Yuriev. Consider a non-self-
intersecting contour K on the complex plane. It can be viewed as the image of the
unit circle by a univalent function feS. But it can also be thought of as the image of
the unit circle under by a function gf that is univalent outside the unit disk. This gf

is unique up to a constant phase, if we impose that g/oo) = oo. A point υεS1 will in
general be mapped to two different points by gf and /, but they will both lie on K.
The quantity lng^(oo) is called the "analytic capacity" of the countour K = /(S1). It
has been shown by Kirillov and Yuriev that — b In g}(oo) is the Kahler potential of
the homogenous metric on S with a = 0.

It follows that the Kahler potential of the most general homogenous metric on
Sis

K(f) = 6a tr log(l +&(/)t&(/))_(& + 1) lng>(α)). (36)
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We would like to point out that our embedding of S into Dί produces as a
byproduct an infinite number of inequalities on the coefficients cp of a univalent
function. It is clear from the derivation above that the matrix

Zmp(f)= Σ bmn(f)ά-p\f) (37)
n= 1

satisfies

Z'(/)Z(/)<1. (38)

It is quite possible that these inequalities imply the inequalities cp ̂  p +1. Then this
would give an alternative proof to the Bieberbach-De Branges theorem. Since the
Bieberbach conjecture was an open problem for several decades before it was
proved by a very long argument by De Branges, it might be of interest to follow this
approach to its proof.

We now conclude with an idea on the non-perturbative approach to string
theory [8] that is part of the motivation for this paper. It is proposed that the
scattering amplitudes of string theory can be expressed as an integral of vertex
operators, with measure

J Π dcndcn\F(c)\2~i3 det(l -Zt(/)Z(/)). (39)
M n=l

Here F is a holomorphic function on S. Two points on S are to be thought of as
equivalent if their images in D^ differ only by an action of Sp^Z), the subgroup of
Sp l with integer entries. A fundamental region in S under such an equivalence
relation is M^ a candidate for the "Universal Moduli Space".

We know that it is possible to embed the Teichmϋller space of Riemann
surfaces of genus g ̂  1 into S. It should be possible to show that the restriction of
Z(/) to this subspace of S is related to the period matrix of the corresponding
Riemann surface.
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