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Abstract. We construct for the Schrόdinger operator in the semi-classical limit
compact perturbations of a radial symmetric potential which give rise to
resonances associated to arbitrarily high order poles for the meromorphic extension
of the resolvent. Our results concern the hamiltonian P0 = — h2A— x2 in the
2-dimensional case, as well as a fairly large class of radial-symmetric potentials in
the 3-dimensional case. We show that the poles of the resolvent for such a potential
are necessarily simple, and subsequently the degeneracy is due to a lack of
symmetry.

Introduction

We consider the Schrόdinger operator in semi-classical limit on L2(Rn):

P=-h2A + V(x) (fc->0).

If Fe^°°(Rn:R) satisfies:

lim F(x) = E0>-oo,
W-oo

then P is essentially self-adjoint on ^(R") as an unbounded operator, and
L2(Rn) = ̂ ppθ^ess? where <tffpp is the sum of the bound state corresponding to the
pure point spectrum σpp(P) and ^fess the space of free states associated to the
essential spectrum σess(P). Here the essential spectrum coincides with the
absolutely continuous spectrum. The threshold E0 is the bottom of the essential
spectrum

infσeM(P) = JE0

In particular, if £0 > 0, there is only discrete spectrum near 0 and for z e C small
enough, the resolvent jR(z) = (P —z)"1 is a meromorphic function whose poles
(necessarily simple) are the (real) eigenvalues of P.
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If EQ < 0, R(z) is an holomorphic function in the half lower plane Imz < 0 and
half upper plane Imz>0 for z near 0. Under some additional conditions, R(z)
extends across the real axis in the other half plane as a meromorphic function
whose poles are called resonances. In the classical theories of Aguilar-Combes
[AgCo], Balslev-Combes [BaCo], and Helffer-Sjostrand [HeSj], the extension of
R(z) appears as the resolvent of a non-self adjoint operator whose poles are not to
be simple. Ramm [Ra] has studied stability of the algebraic multiplicity q of a
resonance for the Schrόdinger operator. Sjόstrand [Sj], in the semi-classical frame,
proved existence of a double pole for some perturbation of P0(h) = — h2A — x2 in R2,
starting from a resonance with geometric multiplicity equal to 2. Here we extend
this property by showing, under some suitable hypotheses, that any resonance λ(h)
with multiplicity q (simple pole of the resolvent) of a radial symmetric hamiltonian
P= —h2A + V9 can give rise, under some slight, compact perturbation ΔV of the
potential, to a pole of order g,or in other terms, that the matrix of P = P + ΔV
relative to the invariant subspace derived from Ker(P — λ(h)) has a nilpotent part of
order q. Let us point out that this result is relevant to the well-known fact there is
no general a priori estimate for the norm of the resolvent (P—z)"1 in terms of some
fixed power of the distance of z to the spectrum of P, when P is not self-adjoint.

Our results apply to the hamiltonian P0 = —h2A — \x\2 in two dimensions, as
well as to a fairly general class of spherical symmetric potentials in three
dimensions. By the way, we show that the poles of such a potential are necessarily
simple, and the degeneracy is due subsequently to a breaking of symmetry. We will
see also how the multiplicity of the resonances is generally bounded by the number
of spherical harmonics associated to a given orbital momentum; in that sense the
case of the hamiltonian P0 is exceptional, particular to the 2-dimensional case,
which nevertheless allows us to give relatively simple examples where multiple
resonances occur. We finally give in the Appendix a semi-classical result of
classification of levels Enl for the resonant states in 3 dimensions, which can be
carried out, mutatis mutandis, in the self-adjoint case.

The results of this paper have been announced in [KaRo].
The authors want to thank J. Sjόstrand for motivating discussions.

1. Perturbation Matrix

We extend a little in this section the constructions of [Sj], adapting them in
ordinary complex scaling in order to simplify some of the proofs. For equivalence
of the various definitions we refer to Helffer and Martinez [HeMa].

Let P=-h2A + V the Schrόdinger operator on L2(RM) with Fe^OR^R)
satisfying:

V is analytic on R" and dilation analytic, i.e. V has an analytic extension in:

G-{xeC:|Imx|^C<Rex>}, where Cx> = (l+x2)1 / 2. (1.1)

V verifies the virial condition outside x = 0 at energy 0, i.e. for any δ>0 there
exists C>0 such that:

-2V(x)-x-VV(x)^C for xeR", \x\>δ. (1.2)

F(0) = 0 and V has a non-degenerate maximum at x = 0. (1.3)

lim V(x) = E0<0. (1.4)
\x\-*ao,xeG



Multiple Resonances in the Semi-Classical Limit 619

Hypothesis (1.2) is satisfied in particular if:

V is radial symmetric (V(x)= V(\x\2)) and F(x)<0, δ |jc,F<0 for X Φ O .

(1.2)'

Let p(x, ξ) = ξ2 + V(x) the classical hamiltonian associated to P, and
.KCp~1(0)nR2;ι the set of trapped trajectories for p, i.e.

as ί->±σo.

Then assumptions (1.1) to (1.3) ensure K = {(0, 0)}. Let Uβ be the one parameter
nθ

family of dilations defined by: Uθφ(x) = e2 φ(eθx). For real 0, Uθ is unitary on
L2(R"). Let:

Pθ = UθPUo l = - h2e~2θA + V(eθx) .

Under hypotheses (1.1) to (1.4) the Pθ extend to an analytic family of type (̂ 4) of
operators on L2(JRW) for |Imθ| small enough. For Im0Φθ, Pθ has discrete spectrum
near 0, whose eigenvalues are the resonances of P. Resonances for Im0>0 are
called "physical" or "outgoing;" others are called "incoming" resonances. In the
complex scaling theory, it is useful to consider the scalar product on L2(Rn) as
a duality product between I2(Γθ) = I2(eθJRn) and L2(Γ§) = L2(ΛRM) by means of
the formula:

(u\v)= j u(y)v(y)dy.
eθR"

We will identify L2(ΓΘ) and L2(Γg) to L2(R") = L2.
We also consider the hamiltonian P0 = —h2A — \x\2. The resonant functions

of PO associated to the outgoing resonances:

A0(fc) = - ίh(2σ + ri) (σ e N) (1.5)

are spanned by the Hermite functions:

φΛ = CΛh ^$a(h~^2x)eix2/2h, (1.6)

where α e N", |α| = σ, and Φα is an Hermite polynomial. The incoming resonances of
P0 are then:

and the associated resonant functions:

φ* = holomorphic extension of φa(x) , x e IR71 .

The constant Cα e C is determined by the normalisation condition (φΛ \ φ*) = 1
for the duality between L2(/^) and i?(/^). Here we can analytically extend up to

lmθ= -. We know then [Sj, BrCoDu] that for any C0>0 such that none of the

values (1.5) belongs to the boundary of D(0, C0/z), and for any h>0 small enough,
there are bijections b± =b±(h) from the set of resonances of P0:
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onto the set Γ±(h) of resonances of P (counted with their multiplicity) inside
D(0, C0h) such that:

b±(E)-E = &(h312) (Λ->0). (1.7)

[Under the radial symmetry assumption (1.2)' we actually get 0(λ2)]. If FλcI?(Γθ)
for Im0>0 [respectively F^CL2(/^)] is the space of resonant functions associated
to λ(h) eΓ+(h) [respectively μ(h) E Γ ~(Λ)], then Fλ±.F'μ iίλ(h) Φ μ(/ι) and Fλ = (FJ* if
λ(h) = μ(h). For ε0>0 small enough, and D = D(λQ(h), ε0/ι), we know that:

Pθ-zΓ1 = ̂ (h-1):L2-^L2 (1.8)

uniformly for /ι > 0 small enough. Let

the spectral projector of Pθ in D, and G = 77(L2). For ε0 > 0 small enough, the rank of

Π is equal to the multiplicity q0 = I ) of λ0(h). We then make the following
\ σ /

assumption on λ(h)eΓ+(h):

3(5>0, 3JV^1 such that Dμ(/2),2^N)nΓ+(/z) = {A(Λ)}. (1.9)

Remark 1.1. Hypothesis (1.9) is generic: for odd n, V(x)= -|x
(x-^-O) with αΦO, we will show in the Appendix that (1.9) is satisfied for JV = 2.

We get the following:

Lemma 1.2. 3JV^1 such that MzEdD(λ(h\dh^):(Pθ-zΓl = &(h'Ή^:I2-^I2 uni-
formly for h>0 small enough.

Proof. We have:

(P9^zΓl=(Pβ'zΓ1Π + (P9-zΓ1(I-Π). (1.10)

Let D = D(λ(h), δhN). For z e 3D, and h > 0 small enough, the first resolvent formula
shows:

(Pβ-zΓ\l-Π)=— J (ζ-zΓ^P.-^dζ.
2ιn do

Formula (1.8) and estimate: \fzedB9^ζedD:C"1h^\z-ζ\^Ch(C>ί) show
l)\I2-^I2. (1.11)

We then consider (Pβ - z) ~ ^Π = Π(PΘ - z) ~ 1Π. For h > 0 small enough, the family
of functions:

are a basis of G. In the same way, we consider, for z e δD* = dD(μ0(h), ε0h) the
resolvent (Pg — z)"1 :L2->L2 and the spectral projector

associated to the incoming resonances of P in D(μ0(/ι), ε0Λ). The subspace
G* = J7*(L2) is a sum of characteristic subspaces for Pg, with dimension qQ9 dual of
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the latter. Let (Wβ)\β\ = σ the dual basis of the (wα). Then the matrix of Pθ \G = ΠPΘΠ
is M = (P0Wα| w|),α| = ,0|=σ. We have the following:

Lemma 1.3. Under the hypothesis (1.1) to (1.4) we have:

in L2, (1.12)

(1.13)

and under the spherical symmetry assumption (1.2)' we get respectively (9(h) and θ(h2)
in (1.12) and (1.13).

Proof. The second part of the lemma follows from a mere analysis of the proof. We
use the geometrical resolvent estimates of [BrCoDu]. Let Jf, Je e ̂ (R"), suitably
chosen with Jt = 1 near 0, Je = 1 near infinity, satisfying the condition Jf -f J2 = 1 .
We introduce the identification operator:

J : L2(R")0L2(supp JeHL2(Rw) J(u@v) = Jtu + Jev

and its adjoint:

J* : L2(Rw)-+L2(R")0L2(supp Je) J*(u) = Jtu®Jeu .

We then define:
VQ(x} on L2(R"),

where V0(x) = %(V"(Q)x,xy, with domain ^(Pί

θ) = ̂ (A)n^(\x\2) (quadratic appro-
ximation), PQ as the Dirichlet realization of Pθ in L2(suppJe) and Pd

θ = Pl

θ@Pl. We
recall the resolvent equation

zTγJ*-(Pe-zΓ'Π«(Pde-zΓ^*, (1.14)

where Π0 is the operator defined by

with
W=V(e

We get

(Pθ-zΓlUθφΛ = (λQ(h}-zΓ^υΘφΆ + (λQ(h}-zT\^

and by integration along the boundary of D:

wα=CV?α+ - ί (λQ(h)-zΓ\Pθ-zTlWUθφadz. (1.15)
LiTί HD

Equation (1.14) gives:

aι. (1.16)

We set Uφ(x) = h~"'4φ(h~1/2x). U is unitary on L2 and:

(Pί

θ-zΓ1JίW=h-ίU(Qi

θ-h-1zΓ1Ji(hίl2x)W(hί/2x)U-1
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with βj,= -e~™Δ +e2βV0. For zedD, we easily show [BrCoDu]: (Q.^-h~1z)~ί

= Φ(\):I2-+I2. There follows:
~ 3

x<x>3ϋ-1t7βφ« = ίP(Λ1/2) (1.17)

for PF(fc1/2x)<x>-3 = <P(fc3/2) in I? and (x)3^1 [7̂  = 0(1). Let
'ί"1(6β-'ί"1z)~1 = t/"1(Pβ-z)"1t/. The estimate (1.8) shows:

(Qβ-h~ίzΓί = 0(\):ΰ.^ΰ for zedD.

As in [ReSi, Lemma 13.1], we notice that for any <5Ξ>0 : Cx>a(βi-7Γ 1z)~
= 0(1):L2-» L2 uniformly for zeθD. There follows:

(P.-z)- J HWi-zΓ V

in L2. (1.18)

The non-trapping condition (1 .2) shows [BrCoDu, Lemma 2.5] that (Pf — z) ~ 1

= {P(l):L2(suppJe)-»L2(suppJe) uniformly for zedD. As I7β<jίβ decays exponenti-
ally outside the origin, we get:

JJ(P β-zrίJ.WUβφ,=Θ(e->ik) in L2 (<5>0). (1.19)

In the same way:

h2e-2β(Pβ-zr1lΔ,Jt}(Pi-zr1JeWUβφβ = <!)(e-**) in L2 (1.20)

[here we also use the fact that (PJj — z)-1 = ίP(l):L2(suppJe)-»H2(suppJe) for
zedD]. We eventually get, by similar arguments:

xJί(/ι1/2x)W^1/2x)<x>-3<x>3t7-1l7β(?)ίI = ̂ (/ι1/2) in L2. (1.21)

Summing up inequalities (1.17) to (1.21) we get by substitution in (1.15):

(Pβ-zrWl/rf^flίh1/2) in L2

and (1.14) gives by integration on 3D:

which shows the first part of the lemma. The same procedure leads to:

) in L2. (1.22)

To show (1.13) we follow the argument of [Sj, Sect. 4]. First we show, using the
orthogonality conditions between KerU and G*, Kerίl* and G:

(Pβwα I w|) = λ0(h)δxβ + (WUeφΛ I w|) .
We compute:

= - Π*

in L2.
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Then we get:

5β/^
by (1.12) and (1.22). There follows:

Π*U9φf-wt = Θ(h), whence: w£-t/^£

S° (WUβφa \ w£) = (WUθφΛ \ U-θφ*) + (WUθφa \ wf -

As WUθφa = (9(h*}2) in L2, we get the lemma. Π

End of the Proof of Lemma 1.2. There follows from (1.7) that M has q0 eigenvalues
close to λ0(h) (counted with multiplicity); if we set M— z = h(M'— z'\ then

~

where (M' — z')" = (9(1) by (1.13) is the transposed matrix of the cofactors of M' — z'.
Let λ^h) = λ(h\ λ2(h\ . . ., λqo(h) be the eigenvalues of M, counted with multiplicity.
We have:

det(M - z) = (λ(h) - z) (λ2(h) -z).. .(λqQ(h) - z)

and for ze<9D, the relation (1.9) shows: \det(M'-z')\^Ch(N~ί)qo. Then we get:
(M-z)~ 1 = &(h(1 -^o-i). The estimates (1.12) and w| = t/9φ| 4- &(hί/2) then lead
to:

zΓ1Π = Θ(h(1-N)q°-ί) (1.23)

provided φα and φ| are normalized. Substituting (1.11) and (1.23) in (1.10) we
eventually get the lemma. Π

We now perturb P, changing V in:

V(x,h)=V(x) + ΔV(x,h)

where ΔV is a finite sum of potentials having the form:

where /, raeN*, / + m = v = const and q2m is a polynomial in x homogeneous of
degree 2m whose coefficients are bounded functions of h. We consider
Pθ = Pθ + A V(eθx) as an analytic family of type (A) on L2 for |Imθ| small enough. We
get:

AV(eθx) = Pθ-Pθ= &(ti):L2-+L2.

By Lemma 1.2, if l>Ni9 the Neumann series:

converging for h>0 small enough defines (Pβ— z)"1 as a bounded operator on L2

for all zedD(λ(h),δhN). Furthermore:
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If />2JV l 5 the spectral projector:

where D = D(λ(h\ δhN\ associated to the resonances of Pθ in β, is close in Jέf(L2) to
the corresponding projector for Pθ. In particular, if q is the (algebraic) multiplicity
of λ(h) and (Ψβ) denotes an orthonormal basis of F = Fλ, then there are exactly q
resonances in D for Pθ and F = Π(L2) is a characteristic subspace of dim q, a basis of
which is given by:

Όβ = Ω(Ψβ), 0 = 1,2,. ..,«.

In the same way we consider, for zEdD* = dD(λ(h),δhN) the operator
(P0— z)"1 :L2->L2 and the spectral projector:

associated to the incoming resonances of JP in 5*. The subspace jp* = 77*(L2) is a
characteristic subspace of dim q, dual of the latter, a basis of which is given by the
77*(Ψ*), β = 1, 2, . . ., q, where (¥7) is the dual basis of the (Ψβ). Let ϋj e Ff be the
dual basis of the (i;̂ ). We then assume that λ(h) is a semi-simple eigenvalue of Pθ) i.e.

(1.24)

Then the matrix of Pθ in the basis (vβ) is given by (Pθvβ \ v*) = (PθΨβ \ v*) = λ(h)δβy

+ (Δ VΨβ 1 1?*). As in [Sj] and the proof of Lemma 1.3 we get:

v* - ψ* = (v* - Π* y *) + (ft* Ψ* - Ψ*)

= &(h2(l+m}-2N>) + &(ti+m-Nί) in I2. (1.25)

We then have to estimate ΔVΨβ in L2. As FcG = Π(I2), there exists constants

αα/?eC with aΛβ = Θ(\) such that Ψβ= X βα/?wα, where (wα) is the basis of G
|α|=σ

introduced in Lemma 1.2. By (1.15):

+ Σ axf ί
|α|=σ δί)

and by the explicit form of A Fand φΛ we easily get zl VUθφΛ = Φ(hl+m) in L2. For the
complementary term, we again consider resolvent equation (1.16) and analyse each
of the terms as in the proof of Lemma 1 .3. Then it is clear that A V(PΘ — z) ~ 1 WUθφa

= &(hl+m+2) in L2, which together with (1.25) shows that (AVΨβ\v*)
= (AVΨβ\Ψ*) + &(h2(l+m)-Nί). We eventually proved the:

Proposition 1.4. Under hypothesis (1.1) to (1.4), (1.9) and (1.24) letM = (Pθvβ \ v*) the
matrix of PΘ\F in the basis (vβ). Then if I is large enough and l + m = v = const we
have:

(Pθvβ I υ*)

uniformly for h>0 small enough, with N^l independent of I and m.
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2. A Simple Case in Two Dimensions

Here we consider the hamiltonian P0 = — h2A — \x\2. Constructions of Part 1 apply
to this situation which is also treated in [Sj]. We get the following:

Theorem 2.1 For any integer g > 0, there exists a compact perturbation A V(x, h) of
Pθ=-h2A-\x\2suchthattheresolvent(P-zΓ1ofP = P0 + ΔV(x,h)forImz>0,
extends across the real axis for z close to 0 (in the sense of analytic dilations), as a
meromorphic function which has a pole of order q, for any h>0 small enough, in a
neighborhood of the semi-simple resonance λ0(h)= —2ihq of P0.

With the notations of Proposition 1.4, Ψβ = φβ [formula (1.6)], and q = qQ

, we have:

(P9υΛ I ttf) = λθ(h}δΆβ + (Δ VφΛ \ φ*) + &(h2^' *) (2.1)

for /, weN*, ί + m = v = const, |α| = |jS| = σeN* and A0(Λ)= -ih(2σ + 2). A simple
computation as in [Sj] shows that

ί e-χ2q2m(x,0)Φa(x)Φβ(x)dx + &(h)\, (2.2)
*2 /

where the Φα are the usual Hermite polynomials (the Φα are obtained from the Φα

by a rotation of π/4 in the complex domain).
The first step in our construction consists in obtaining any element of the space

M*(C) of complex symmetric matrices of order q as a finite sum:

(ί e-χ2q2m(x, 0)ΦΛ(x)Φβ(x)dx]
)\Λ\ = \β\=σ

Elementary properties of Hermite functions show the following:

Lemma 2.2. Let L2+ be the closed linear subspace in L2(R2 e ~ χ2dx) of even functions
defined on RA Then for any σ e N, the family (ΦΛΦβ)\Λ\ = \β\ =σ spans a linear subspace
E of dimension q(q+l)/2 in L2

+ (we identify ΦaΦβ with ΦβΦΛ).

Let us consider the linear subspaces ^ί (respectively 22) in L2

+ spanned by
homogeneous polynomials q2m with real coefficients (also depending on h) of
degree 2m (weN*) with even (respectively odd) m. We have:

Proposition 2.3. For s = 1, 2, 2S is a dense subspace of L2

+.

By Fourier transform in R and a Paley- Wiener type argument we can prove
the following:

Lemma 2.4. The set of homogeneous polynomials (x4m)m^ι (respectively
(*4w + 2)m ̂  o) is dense in L2(R + e ~ χ2dx).

Proof of the Proposition. First we notice that Lemma 2.4 still holds when
reinforcing a little the L2 norm, e.g. replacing L2(R+ e~χ2dx) by Z?(R+ e~ 3χ2'4dx).
We consider the orthogonal projectors in L2+ : /(x)->i(/(*ι> - ^2) +/(*ι> ̂ 2)

with ranSe L++ and L-- For

( I R + X I R + ; e x p (_x2 ) d x ). (2.5)

Let Ω=R2\{x1x2

z=0}. The proposition follows if we can approximate in
L2(R2;e~3*2/4ώc) any function φeC£(Ω) by polynomials in &S9 5=1,2. If
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φeQ^Ω), then Ψ(x) = x2

 2φ(x)eC^(Ω). Then there suffices to show the propo-
sition only for Q)±. As the set of polynomials x4m is a dense subspace of
L2(R2;e~3*2/4dx), we get an hilbertian basis of L2(R+ xR+; e'3χ2/4dx) consisting
in elements of 21 by the usual Gram-Schmidt procedure. Let φ e C^(R+ x R+).
Then:

+ 00

<?(*)= Σ %{x?,Λφ (2.6)

with convergence in L2(R+ x R+ e~3χ2/4dx) (the βj being polynomials with real
coefficients). If φ e C^(Ω)nL+ +, relations (2-5) and (2-6) show that φ is the limit
in L+ of a sequence of elements of 21. Finally, let us consider φ E C
Then:

Ψ(x) = xϊ1x2

3φ(xί,

and:

7 = 0

~χ2with convergence in I2(R2"9e~χ2dx\ which finishes the proof. Π

The mapping /:L2

+->M*(R) (space of real symmetric matrices of order q)
defined by:

f ( ψ ) = (a*β(<p))\a\ =\β\=σ = ($e- χ2Φa(x)Φβ(x)φ(x)w = m = σ

is clearly an isomorphism from E to M *(R) (Gram matrix). Let 77+ : ί?+ -+E the
orthogonal projection on E. As E is finite dimensional, Proposition 2.3 shows that
Π+(^s) = £ (s = l,2) and f°Π+ is onto. We denote:

the mapping defined by ^o(Q^Q2)==f0Π+(Qι) + ifoΠ+(Q2). Then ̂ 0 is one-
to-one from ^1/(£-Ln^1)φ^2/(£-Ln®2) to M€

+(C). Choose among all the
representatives a subspace <f of Q)V®Q)2 spanned by a family of q(q + \)
polynomials whose degrees are minimal. If βs=Σ^2m(:)C)6®s? define
Qs = Σ hlq2m(x) with /, m e N* and v = / -f m = const. Let J ŝ the space corresponding
to ®5, d the space corresponding to $ (giving minimal v) and ̂ 0 : ̂ ^M^"((C) the
isomorphism defined by ^0(6ι> 62) = ̂ 0(61562)- Using the fact that im is
imaginary if m is odd, real if m is even, formulae (2.1) and (2.2) then give the:

Proposition 2.5. Let:

@s= \QS= Σ hlq2m(x9h)\v^29m = s + ίmod2\.
[ l + m = v j

For n = 2, consider perturbations of the hamiltonian PQ= —h2A — \x\2 of the
form ΔV = (QjL+Q2)e~χ2/2 with Qse@s. Then there exists a ^-linear map

2) which realizes an isomorphism from a linear subspace $ of
such that the matrix P\F defined in Proposition (1.4) is of the

form:
Λ = λ<>(h)Id + hv(ΛάQι, 62

The next step consists in noticing that any complex nilpotent matrix is
congruent to a symmetric matrix, and in establishing a geometrical transversality
lemma to absorb the (9(h) term in (2.2). Let M (̂(C) the space of all complex matrices
of order q and Jti? C Mq(<C) the complex manifold of matrices M nilpotent exactly at
order q (i.e. M« = 0, M^1 ΦO).
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Proposition 2.6. For any MεJtif we have

q = codimM</(C)TM^f = codimM ((C)ΓMer nM,+((C) . (2.7)

Proof. The first equality in (2.7) is classical; for instance we may, without loss of
generality, assume that M is given by its real Jordan form J; in a neighborhood of J
it is easily seen that the manifold Jίf is given by:

0, (2.8)

where

i= 1

(2.9)

is a system of q linearly independent forms on CD. On the other hand we know (see
e.g. Gantmacher [G]) that any M e 34? is congruent to a symmetric complex matrix
KeM+(C)nJf. We begin with computing TMJ»f intrinsically. If AeMq(<E) we
have

where

Lemma 2.7. The map θ:Mq(<C)3A^>B(A) has kernel ΎM^f ana is surjectίve onto
); [B,M] = 0}.

Proof. First notice that for any AeMq((C) we have \β(A\ M] = 0. Next observe
that (AdM)" 1(0) is a subspace of dimension g [compute B e (AdM)~ x(0) in a basis
(βy)ι^7^β such that ei = Mq~leq with Mβ"1eβΦθ]. Let us show that
codimM (<C)Ker0 = g. B = J3(,4) and (e/)ι^j^ is defined as above, we get

Let ^ = (^j)i^i,j^q in the basis (ek). The condition B(A) = 0 gives ^ independent
relations on the αί<7 :

Σ

(first component of B^— 0). Then we have codimKerθ^^. On the other hand
KerθD TMJ^ , and the latter space has codimension q; thus Ker0= TM Jtif and the
lemma is proved. Π

We then work in a neighborhood of M = K. Up to a diffeomorphism the
relations (2.8) define J f near K. By Lemma 2.5, we can identify θ with the
differential of A-*(fι(A), ...,fq(A)\ On the other hand, we check that if

HO), then <B = B. Let tf + =3fr\M+(<£\ Then near K,

Then there suffices to show that dfl9...,dfq (at K) are linearly independent
differentials on M+(C). Let B e (AdK) ~ ̂ 0). We have seen that B is symmetric and
by Lemma 2.5 there exists AeMq(€) such that B = B(A). As £(',4) = %4) we find
B&4 + iM) = iB + ifB = B. Then θt^+(Q is onto, which gives the desired
result. Π
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There easily follows the:

Corollary 2.8. Let KeM+((C)nJf. Then there exists in a neighborhood of K an
affine subspace i^0 = M* of dimension q whose intersection with J"f is transversal,

We conclude to the existence of multiple poles for the resolvent of P \F as
h-+Q as in [Sj]. Let 0̂* = ̂ o ^^o)- Thus ι̂ 0* is an affine-linear subspace of
dimension q containing M^\K). As in [Sj] we verify that the maps Jt0 and Jί
are analytic with respect to Q^ and (52 and that their differentials satisfy:

Let yh the image of ι̂ 0* through Jί. Then i^h is an analytic submanifold of real
dimension 2q which differs in a neighborhood of K from the manifold ^0 by a
quantity Θ9h (for the °̂° topology). In particular, if /ι>0 is small enough i^h

intersects trans versally Jf in a neighborhood of K whose size is of order h. Thus we
proved that there exists an affine-linear submanifold ^e~χ2/2C^e~χ2/2 (with
obvious notations) of real dimension 2q consisting in potentials A V(h) = A V(x, h)
= (61 + <22)e~*2/2, and a real analytic map h-^AV(h)e^e~χ2/2 defined for fc>0
small enough such that M has a nilpotent part to the order q. This achieves the
proof of Theorem 2. 1 . D

When trying to extend Theorem 2.1 to radial potentials verifying assumptions
(1.1) to (1.4) and (1.2)', we encounter the following obstruction: the multiplicity q of
λ(h) is generally equal to the dimension of the space of spherical harmonics
associated to the orbital quantum number σ. For n = 2 we then have q = 2 for any
σ^ 1 and the result of [Sj] cannot be improved in general. Note however that by
choosing potentials which have a high contact order with — \x\2 at x = 0, it is still
possible to construct perturbations A V which give rise to arbitrarily high order
poles for the resolvent of P. But such an extension is not very natural; the good
generalization of our result occurs in dimension 3.

3. Case of Radial Potentials in Dimension 3

For a radial symmetric potential, the states corresponding to a same "energy" level
λQ(h) = — ih(2σ-fn) of the hamiltonian P0= — h2A-\-^V(0)-x. x generally split
according to the orbital quantum number (quantization of orbital momentum);
these states only can be perturbed by breaking the spherical symmetry to obtain
degeneracies, for Theorem 2.1 does not directly extend to P0 as soon as ra^3. If
n = 3, the (geometric) multiplicity of a resonance λ(h) of P= —h2A + V close to λQ(h)
[in the sense of (1.7)] is equal to 2(σ —2fc) + l, for fc = 0, 1, ...,[σ/2].

(From the point of view of representation theory, we can say that the space of
corresponding resonant functions (after dilation) is an irreducible component of
L2(R3) under the action of the group 0+(3), isomorphic to an eigenspace of the
Laplace-Beltrami operator on L2(S2), while the eigenspaces of P0 split into several
irreducible components. (For an introduction to problems relevant to representa-
tion theory in Quantum Mechanics, we refer e.g. to Mackey [M].)
In particular, for k = 0, λ(h) is the first resonance (state s) of the operator

2 2 d σ(σ-l)\ 2I v I I l/fyM I Λ 1 \
9 " ^ Λ 9 1 " ^ \ / ' V /r dr r
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acting on the r variable, where x = rω, r>0, ωeS2 (of course, non-zero fc's
correspond to other values of σ). We are going to show that the algebraic
multiplicity of the A(/ι)'s is equal to their geometric multiplicity (at least as h tends
to zero) or, in other terms, that the resolvent of P has only simple poles.

Let us recall some properties of spherical harmonics. Let Δω be the Laplace
operator on Sn ~ 1 . The eigenvalues of — A ω have the form λσ = σ(σ + n — 1 ) and their

multiplicity is dσ = I 1 — ( ) . Let ®/σ the corresponding eigenspace,
\ σ J \ σ-2 J

then ®/σ is an irreducible component of L2(Sn l) under the action of 0+(n),
isomorphic to the space of harmonic polynomials on Rw homogeneous of degree σ.
If n = 3 we have dσ = 2σ + 1 and

Let P = -h2A + V on L2(R3), where V satisfies to hypotheses (1.1), (1.2)', (1.3),
and (1.4). P is not essentially self-adjoint on (^o)(R3\0), but we can consider its
Friedrichs extension and it is easy to see that it defines a non-bounded operator on
L2(R3) with domain ®(P) = H2(R3): thus this extension is precisely the natural

extension of P from ^(R3). In polar coordinates we have P= φ φ P(σ),
σ — O τ= —σ

where P(σ) is the self-adjoint extension from ^(R+) of operator (3.1), whose
domain is contained in:

du2\ 2,— r2dr<ao
dr J

Then we get ̂ (P(σ)) = fίJtσ(R+)n Jfσ where Ho,σ(R+) is the closure of < (̂
in #*(R+) and:

^σ={w6L2(R+,r2dr)|P(σ)MeL2(R+,r2dr)}

We can recover (̂P) by means of the formula:

= Σ° Σ uστYστluστe$(P(σ))Vσ,τ\
= 0 τ= -σ

+ 00 σ

Σ Σ ||uστ||
2ίίi(]R+)<α)

σ= 0 τ= —σ

+ 00 σ

Σ Σ ||P(σ)u||i2<oo
σ = 0 τ= —σ

(see e.g. [Ro]). We deduce:

+ 00

Sp(P)= U Sp(P(σ))

[note that the (locally finite) union is generally disjoint, in an asymptotic sense that
will become clear in the Appendix, which is not the case when P(σ) is replaced by
the hamiltonian P(σ)= —h2A(σ) — r2.

Let Uθ the operator of analytic dilations, and:

Pθ= UoPUό1 - -h2e~2θΔ + V(e2θr2)
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for θ in a complex neighborhood of 0. We have:

'= 0 0 UθP(σ)V^= 0 0 Pθ(σ)
= 0 τ= — σ

with

Simplicity of poles for the resolvent of the P0(σ)'s induces that for Pθ. Let us
consider the harmonic oscillator:

We have β = 0 0 β(σ), where β(σ) is the self-adjoint extension from ^(IR+)

of the operator Q(σ)=σ-h2A(σ) + r2 with domain (̂β(σ)) = Hjj(T(R+)n^fσn^(r2).
The (simple) eigenvalues of Q(σ) are given by ek(h) = h(2σ— 4fc + 3) (fe^O) and the

corresponding eigenfunctions e~r2/2hrσL^ ^ (r2/h\ where Lfc

σ ^ is a Laguerre
polynomial [NiOu, p. 48]. fc is called radial quantum number. The eigenstates of Q
are all degenerate (except the fundamental).

Theorem 3.1. Letn = 3. Under hypothesis (1. !),(!. 2)',(1. 3), am/ (1.4), and/or Im0>0
swa// enough, then for all C0>0 SMC/Z

and /or all h>0 small enough, there exists a bijection b = b(h) from

ΓQ(h) = { - iek(h) I k E N} nD(0, C0Λ)

ίo ί/z^ s ί̂ o/ outgoing resonances of P(σ) in D(0, C0Λ) 5wc/z ί/zaί

In particular, the resonances of P(σ) in D(0, C0h) are simple.

Idea of the Proof. The idea is to compare the resonances of P(σ) to those of P(σ) =
— h2A(σ) — r2, as /z-»0 by mimicking the proof of [BrCoDu]. As it goes along the
same lines we leave it to the reader, except the following lemma (cf. Lemma 2.3 of
[BrCoDu]) which needs the assumption on the dimension (for n ̂  3 it is equally
true, but we don't know if it holds for n = 2 and σ = 0). We first perform another
unitary transformation to put the operator P(σ) in a normal form.

Let L/:L2(]R+;r2dr)-^L2(IR+;dr) defined by U(u)(r) = rw(r). We set

P=Uop(σ)oU1 and

Pθ=U°Pθ(σ)oU-1.

From now on, we work with A, P, Pθ. Let: Γa = {θe(L\lmθ\<oc}. We notice that
{Pθ\θεΓΛ} is an analytic family of type (^4) with domain <&(A) for α>0 small
enough. The strategy of [BrCoDu] consists in decoupling the operator Pθ in an
"interior" hamiltonian Pl

θ= — h2e~2θA— e2θr2 (quadratic approximation) on
L2(R+) and an "exterior" hamiltonian Pe

θ which is the Dirichlet realization of Pθ
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outside a small neighborhood of the origin in R+. Pl

θ has domain @(Pi

θ) = 3ι(A)
n®(r2) when ImθΦO and its properties give asymptotically, roughly speaking,
those of Pθ. We need the following:

Lemma 3.2. The family {Pl

θ | θ e Γπ/4; Imθ > 0} is an analytic family of type (A) the
spectrum of Pl

θ is independent of θeΓπ/4 for lmθ>0 and given by
Sp(Pθ)=-iSp(-h2A+r2).

Proof. There suffices to check that {(Pi

θ\θ = iβ, j8e]0,π/4]} is a family of closed
operators on L2, with domain @(A)n@(r2). For β = π/4, this is obvious. As A and r2

are self-adjoint, and thus closed, there suffices to show in turn that if 0 < \β\ < -,
then 4

|zlu||2 + ||r2u||2) (Cβ>0), (3.3)

for ue@(A)n@(r2). But in operator sense

|Pj,|2 = h4A2 + r4 + h2 cos4β(r2A +Ar2)- 2ih2 sm4β(rdr + drr)

^ (h4A 2 + r4) (1 - |cos4β|) - 2ih2 sm4β(rdr + drr) .

On the other hand

+ 2ih2 sm4β(rdr + drr) ̂  - 2h\sin4β\ (r2 - h2A) + 2/*3|sin4j?|

^-2h\sm4β\(r2-h2A)

(here we use the assumption on the dimension, which rules out the existence of a
repulsive term). Inequality (3.3) easily follows as in [BrCoDu]. It also shows that Pl

θ

is an operator with compact resolvent for 0 < \β\ < π/4 (cf. the proof Theorem XII-1 6
in [ReSi]). There follows from the analyticity of Pl

e that its spectrum is independent
of θ, which proves the lemma. Π

There follows in particular from Lemma 3.2 that the spectrum of Pl

θ, for
Im0>0 consists in the simple eigenvalues

λθ(h) = - ih(2σ + 4k + 3) (k e N) .

The proof then again goes as in [BrCoDu]. Π

We conjecture that the simplicity of poles for a radial symmetric potential
holds for all h. To show degeneracies, it is then necessary to break the radial
symmetry of the potential, which justifies the general procedure of perturbation set
up in Sect. 1. We just showed that assumption (1.24) is always verified. We have the
following result, similar to this of Sect. 2:

Theorem 3.3. For n = 3, let P satisfy hypotheses (1.1), (1.2)', (1.3), and (1.4) and let
λ(h) be a resonance of P close to λ0(h)= ~ih(2σ + 3) in the sense of (1.7), with
(geometric) multiplicity q = 2σ+\ (σeN*) satisfying also hypothesis (1.9). Then
there exists a compact perturbation AV(x,h) of P such that the meromorphic
extension (in the sense of analytic dilations) of the resolvent (P — z)"1 of P = P
+ A V(x, h) close to z = 0 in the half plane Imz < 0 has a pole of order q, for any h>Q
small enough, in a neighborhood of the semi-simple resonance λ(h).

We proceed now to sketch a proof of Theorem 3.3. The resonant functions of
P(σ) associated to the outgoing resonance λQ(h) = — ih(2σ + 3) are given by

β = (σ,τ), x = rω.
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Let Ψβ(x) be the resonant functions of P(σ)®\ά®/σ associated to resonances of
P(σ) close to λ0(h) in the sense of (1.7). We can easily prove, with similar arguments
to those giving Lemma 1.2 and Proposition 1.4:

Lemma 3.3. With notations of Proposition 1.3 we have:

(AVΨβ\Ψ*) = (AVfβ\fy*) + Θ(hl-m-1), β = (σ,τ), y = (σ,τ').

With the same notations, and under hypothesis (1.1) to (1.4) and (1.9) we have

x J[ q2m(ω,0)Yβ(ω)Yy(ω)dω + &(h) /? = (σ,τ),y(σ,τ').

We then proceed to an analysis totally analogous to this of Sect. 1.2. The first
step consists to show the independence of products (Yβ(ω)Yy(ω))β)y.

Lemma 3.4. For all σ e N the ( Yβ(ω) Yy(ω))βf y(-σ^β,γ^σ) form a set of q(q + 1 )/2
linearly independent trigonometric polynomials. Here q =

The proof of this lemma ultimately uses known properties of Legendre
polynomials (cf. [NiOu]) and elementary trigonometric functions, it is somewhat
lengthy but straightforward and so we leave it to the reader.

The next step, as in Sect. 2, consists in noticing that the products (Yβ(ω)Yy(ω))βί y

are even functions on S2 [either by a direct computation, either by noticing that
e~r2r2σYβ(ω)Yy(ω) is a linear combination of the (Φa(x)ΦΛ>(x))\(X\ = \Λ>\=σ], then in
establishing a density result of trigonometric polynomials 3>s (s = 1.2) in L2+(S2),
e.g. by an argument of approximation in the topology of uniform convergence for
even functions in ̂ (S2) whose support avoids the equator θ=π/2 and a meridian,
by polynomials of 2S (Stone-Weierstrass). Again the proof is left to the reader as an
exercise. We then achieve the proof as in Sect. 2 by a transversality argument.

Appendix

Here we show that the hypothesis (1.9) of separation in the spectrum is generally
fulfilled, under a condition relative to F(4)(0). We actually show a more precise
result concerning the EnJ levels classification of resonant states for a radial
potential, as /ι->0, which seemed to us to be new, even in the self adjoint case (see
however [DaPa]).

Proposition Al. Let P= —h2A + V(x) on Rn with odd n^3 satisfying hypotheses
(1.1), (1.2)', (1.3), and (1.4), and F(4)(0)ΦO.
(i) // /10(/0= — ih(2σ-{-n) is a resonance of the hamiltonian PQ= — h2A — \x\2

associated to P, then there exists q0 = I I resonances of P close to λQ(h) in
V σ J

the sense of (1.7) counted with their multiplicity

'σ'-n-3

σ'-2

where σ' = σ — 2k for fc = 0, ...,[σ/2] and such that λmιk(h}= —I
(αm>fce]R) with m = 2σ + n and αm>feΦαw^ for feφ/c'.
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(ii) In particular, if n = 3, with the notations of Sect. 3, the fcth resonance of
P(σ) = -h2Δ(σ)+V(r2) is of the form λ2σ+4k + 3ίk(h) with fceN.

Proof. We use analytic dilations. We compute, in a somewhat formal way, the
asymptotic expansions for the resonances of P at order 2 in h (their existence being
justified in [Sj]). For Imθ>0 we first perform a Bargmann transform:

Tθu(x) = f eie2θ(χ2+y2 + 2vΊx^2hu(y)dy
R"

for u E L2(RΠ), x e C". Then it is easy to see that if we set W(\y\2) = V(\y\2) + y2, the
conjugate operator QΘ=TΘPΘTΘ~1 is the formal pseudo-differential operator
defined by: „„

Qθ= -ih(2xdx + n) + Op(W(e2θ(e-2θhξ-x)2/2)),

where xdx = rdr denotes the radial holomorphic vector field x^dxι + . . . + xndXn. We
still denote by Qθ the image of Qθ by the transform x-+h~l/2x and μ = W"(0)/&,
where W is considered as a function of t = r2; in the sense of pseudo differential
operators we have:

. (Al)

At the level of principal symbol we simply get:

Qθ = - ih(2rdr + n) + μh2( -e~2θΔ + 2irdr + in + e2θr2)2

We look for eigenfunctions of Qθ as classical symbols in h, valued in polynomials in
x. At the first order in h the eigenfunctions of Q = — ih(2rdr + n) are the
homogeneous polynomials qσ(x) of degree σeN. Following [V,p.446], we have
the (unique) decomposition:

[<τ/2]

«*(*)= Σ r2khσ,2k(x),
k = 0

where hσ_2k i§ an homogeneous harmonic polynomial of degree σ—2k. Then:

[σ/2]

+ μh2 Σ (αk(rVfc + V"2^2fc~2 + ̂ ~4V fc-4)Λσ_2fc
k=0 t\*>\

with (A2)
%(r2) = (e

2θr2 + /m)2 + 4ie2θr2 - 4k(m -2k -2) -2m,

bk= -4ik(m-2k-2)(m-2),

Cfc = 4/c(/c-l)(m-2/c-2)(m-2/c-4),

where we have set : m = 2σ 4- n. We then look for the eigenfunctions of Qθ in the form

uk(x) = r2khσ.2k(x)(\ +hfk(r2) + θ(h2)) (A3)

and the eigenvalues:

λk(h) = - ihm + Λ2αw > k + &(h3) (A4)

for fc = 0, 1 , . . . , [σ/2] . Substituting (A 3) and (A 4) in ( A 1 ) we get to the second order
in h, after simplification and setting as before: t = r2:

le-2β + ckt-
2e-4β) = am,k. (A5)
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oo

If we write fk(t)= £ β}t
j the latter equation gives by identificating the

j=-k

coefficients of the powers of t:

fk(ή = iμckβe ~4ΘΓ2 + iμbk/4e ~ 2ΘΓ 1 + μ(m + 2)/2e2θt - iμβe4θt2 + const

if the following compatibility condition is satisfied:

μ(m2 + 2m + 4fe(m - 2k - 2)) + αm? k = 0 .

This relation determines the second term of the asymptotic expansion of λk(h).

Further, if there exists k and k such that αm,fc = αm,fc'' we get:

whence k = k for m = 2σ — n is odd if n is. Then we proved point (i). Point (ii) easily

follows by inverse Bargmann transform and polar coordinates. Π
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