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Abstract. We introduce a class of Riemann surfaces which possess a fixed
point free involution and line bundles over these surfaces with which we can
associate an infinite dimensional Clifford algebra. Acting by automorphisms
of this algebra is a "gauge" group of meromorphic functions on the Riemann
surface. There is a natural Fock representation of the Clifford algebra and an
associated projective representation of this group of meromorphic functions
in close analogy with the construction of the basic representation of Kac-
Moody algebras via a Fock representation of the Fermion algebra. In the genus
one case we find a form of vertex operator construction which allows us to
prove a version of the Boson-Fermion correspondence. These results are
motivated by the analysis of soliton solutions of the Landau-Lifshitz equation
and are rather distinct from recent developments in quantum field theory on
Riemann surfaces.

Introduction

This note grew out of conversations between the first named author and John
Palmer on applications of the results in [CP]. A cursory reading of that paper
and the work of Date et al. [DJKM] reveals that the former should provide a
rigorous framework for the latter. The main impediment to this program was to
understand the intriguing phrase from [D] : "prepare fermions on an elliptic curve."
In finding the recipe for this concoction we soon began to tread on ground already
familiar from string theory, namely quantum field theory on Riemann surfaces.
However it quickly became apparent that there were crucial differences.

Nevertheless in the early stages we benefitted greatly from lectures of D. Quillen
and G. Segal given in Oxford in the spring of 1987 on string theory, Riemann
surfaces and Bosonisation. While very similar ideas emerge here we find basic
differences which can best be summarised by saying that we are dealing with the
"real" case whereas the usual work on string theory deals with the complex case.
As our account unwinds it will become clear that this involves more than just the
usual distinction between Majorana and Dirac Fermions; nevertheless the same
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structures (infinite dimensional groups and vertex operators) arise and are crucial
to our results.

This paper is not a definitive mathematical account of the work of Date et al.
because we do not discuss in detail here the soliton solutions of the Landau-Lifshitz
equation. In fact as our analysis developed it became clear that there were two
distinct strands. The first was to understand the infinite dimensional groups (and
representation theory) whose existence is suggested by [DJKM]. The second was
to combine this with the ideas of Segal and Wilson [SW] to describe the solutions
of the Landau-Lifshitz equation. Only the first is developed here as the details of
the second are still to be fully understood. We hope to explore these in a later
publication. Here we are concerned with the appropriate mathematical setting for
the early part of [DJKM]. We present a general picture which encompasses a
class of hyperelliptic curves ([DJKM] deal only with the genus one case)
specialising to particular curves to connect up with [CP] and to elliptic curves to
discuss vertex operators.

That this is a worthwhile project must stem in part from the fact that most
mathematicians would find [DJKM] somewhat impenetrable owing to its daunting
mixture of ingenius calculations and quantum field theory folklore. We have taken
as our central theme the problem of constructing a representation of a central
extension of a certain group of meromorphic functions on some Riemann surfaces
which admit a fixed point free involution. These groups are the analogue for our
context, of the loop groups which arise in string theory.

The discussion begins with the construction of line bundles over our Riemann
surfaces Jl, We consider a pair of generic points z and w and choose line bundles
with divisor gz — w, where g is the genus of Jί. We show that the space of
meromorphic sections of L which are regular on a deleted neighbourhood of {z, w}
splits in a fashion which generalises the Hardy space splitting of functions on the
circle. In Sect. 2 we introduce a non-degenerate symmetric bilinear form on this
space of sections and construct the associated Clifford algebra. Associated with
the splitting is a (Fock) representation of the Clifford algebra described in Sect. 3.
Acting on the Clifford algebra as automorphisms is a group of meromorphic
functions on Ji. This group we show in Sect. 5 to be represented protectively on
the representation space of the Clifford algebra. Section 4 is devoted to the case
where Jί is hyperelliptic of a special form. In Sect. 6 we specialise to the genus 1
case the examples of Sect. 4 and introduce vertex operators and a weak form of
the Boson-Fermion correspondence. This enables us to prove cyclicity of the
projective representation of our group. Finally in Sect. 7 we indicate the anticipated
connection between the representation theory of the groups studied here and the
solutions of the Landau-Lifshitz equation. (This last section should be regarded
as a report on work in progress and has been included as a result of a request by
the referee.)

For the most part our notation on Riemann surfaces follows [G]:

3(ζ): the divisor of the meromorphic function ζ,
Θ(L): the sheaf of germs of holomorphic cross sections of the line bundle L,
Γ(Jί, (9{L))\ holomorphic cross-sections of L,
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Hq{M, Θ{L))\ qth cohomology group of M with coefficients in the sheaf Θ(L),
y(L): dimension of Γ{Jt, G(L)\
h\L): dimension of H\Jί, Θ{L)\
c(L): the Chern class of L,
K: the canonical line bundle over the Riemann surface.

We assume the reader is familiar with the material in [G].

1. Riemann Surfaces and Splittings

Let M be a connected, compact Riemann surface of genus g. Choose two generic
points on Jί say z, w. Let L be a line bundle over Jί with divisor mz + nw and
Jί a neighbourhood of {z,w} (strictly smaller than Jί). A good example to keep
in mind is the case where Jί is the disjoint union of two small discs centred on
z and w. (We actually specialise to this case in Sect. 4.) Now consider the Mayer-
Vietoris sequence for Jί = Jίκj{Jί — {z, w}):

0 -» Γ{M, Θ{L)) -• Γ{Jί - {z, w}, Θ(L)) ® Γ(JT, Θ(L))

(the last arrow being a consequence of the fact that Jί and Jί — {z,w} are Stein).
This defines a splitting

- {z, w}, Θ(L)) s Γ{Jt - {z, w}, Θ(L))Θ Γ(JT,Θ(L))/Γ(Jΐ, Θ(L))

if and only if Hί(Jί,Θ(L)) = 0. This splitting will be useful to us provided
Γ{Jί, Θ{L)) = 0 as well. Using Riemann-Roch:

= y(κL~1) + m + n+ 1 -g

and Serre duality: h1(L) = y(κL~1\ so

Thus to achieve our aim we need the conditions:-

(i) m + n + 1 - g = 0 and (ii) y(L) = 0.

The first is satisfied if m = g and n = — 1 which means that L comes equipped with
a canonical section σ with divisor gz — w. Then if y(L) φ 0 choose any non-zero
holomorphic section s of L whence s/σ is a meromorphic function with a zero at
w and a possible pole of order at most g at z. For generic z this cannot happen
(i.e. for z not a Weierstrass point) and so henceforth we assume z and w are generic.
In particular, for the genus one case we can take for z and w any two distinct
points because there are no meromorphic functions with just one pole.

We conclude that, by appropriate choice of z, w, the line bundle L has divisor
gz — w and satisfies condition (ii) above so that we have a splitting:

Γ{Jί - {z, w}, 0(L)) s Γ M T - {z, w}, 0(L)) θ Γ(JV, Φ(L)).

Remark. Note that the genus zero case is a degenerate example where this splitting
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is the familiar Hardy one dividing meromorphic functions into those analytic
inside and outside the unit disc. In this case z is omitted (g = 0), w is the point
zero and Jί is the complement of the point at infinity on the Riemann sphere.

2. Clifford Algebras and Surfaces with Involution

Choose a path γ consisting of two small circles around z and w respectively, both
traversed clockwise and lying in Jί. We would like to define a symmetric complex
bilinear form on Γ(Jί — {z, w}, Θ{L)) and hence a Clifford algebra. In fact we will
restrict our attention to elements of Γ(Jί — {z9w},Θ(L)) which extend to global
meromorphic sections of L. We denote this space by W and the corresponding
subspaces of Γ(Jί-{z,w},Θ(L)) and Γ{JV,Θ(L)) by W_ and W+ respectively.
Thus

w=w_®w+.

Now Quillen and Segal have considered the case where L is a spin structure (i.e.
L2 = K). We could try something similar as c(L2) — 2(g — 1) = c(κ), and hence one
could define a complex bilinear form by taking two sections of L, tensoring them,
and integrating around γ. This integration makes sense provided the divisor of
the product is canonical, i.e. the tensor product is an Abelian differential. However
this does not appear to lead naturally to automorphisms of the Clifford algebra
defined by the complex orthogonal group. By constrast the latter group is forced
on us if we suppose that Jί admits a fixed point free automorphism # (as in
[DJKM] for the genus one case) and use it in the construction of the Clifford
algebra. This then leads us away from the string theory analogies and links up
with the discussion in [DJKM].

Examples of surfaces with such involutions are the hyperelliptic curves
associated with the algebraic equations

ω2 = (k2-a2)(k2-a2)-(k2-a2

g+ι), (2.1)

where g is odd and al9a2,...9ag are distinct non-zero complex numbers. Here the
involution is given by (ω,fc)# = ( — ω, — k). (In the even case this involution has
fixed points.) Assume for the moment Jί is the surface associated with this equation.
Given a line bundle L over Jί satisfying conditions (i) and (ii) of the previous
section we choose z and w to be the two points at oo in the coordinates fc, ω or
in other words the two points lying over the point at oo on the Riemann sphere
under the covering map (ω, £)-•£. These points are generic (i.e. not Weierstrass,
the Weierstrass points being the ±αt's). We denote these points by oo_ ( = z) and
oo+ ( = z#) (this notation accords with the fact that limω/kg+1 is ± 1 at oo + ).
Notice that ool= oo + . These surfaces will form our main examples in what
follows.

Some features of this example are generic. To see this we note the following
fact (see also [C] for a more general argument).

Proposition 2.1. Suppose Jί (a Riemann surface of genus g) is a double covering of
Jίγ (with genus gt) ramified at r points. Then 2g = 4gί+r — 2.
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This is proved by triangulating Jίγ so that the r points of the ramification are
amongst the vertices. Suppose this triangulation has v vertices, e edges and / faces.
Pulling back to Jί gives a triangulation with υ' vertices, e' edges and / ' faces,
where / ' = 2/, e' = 2e and v' = 2v — r. Thus comparing Euler characteristics

But the Euler characteristic of Jί γ is 2 — 2 ^ and that of Jί is 2 — 2g, hence the
result.

Corollary 2.2. Suppose Jί is a Riemann surface of genus g. If Jί has a fixed point
free involution # then g is odd and then Jί/# has genus (g + l)/2.

Returning to our main theme, recall that we would like to construct a symmetric
bilinear form on the space W. To this end suppose that L is any line bundle over
M satisfying the conditions

(i) c(L) = g-l a n d (ii) y(L) = 0

as above. Suppose also that L(χ)L# = /c. Topologically this is always the case as
both sides have Chern class 2g — 2 but analytically this is a very strong condition.
In any case assume this holds, choose dP to be a holomorphic section of
L*®L#*®κ and take z = w#. Then define a complex bilinear form on W
(=Γ(jV-{z,w}9Θ(L)))by

for φ and φ in W, where γ is a closed path in Jί — {z, w} encircling both z and
w once. We would like this form to be symmetric and it is easy to see that it is
either symmetric or skew as follows.

Our assumption that L*®Lβ*®κ is trivial means that the space of holo-
morphic sections of L*(χ)L#*(χ)κ; is one dimensional. Moreover # acts on this
vector space with # 2 = 1 whence dP must satisfy one of

(a) #dP = dP in which case (,) is symmetric,

(b) #dP = - dP in which case (,) is skew.

If # has fixed points then (b) is forced. To see this choose a local coordinate t
centred on the fixed point so that #t= —t. Now choose any meromorphic section
φ of L with no zero or pole at the fixed point. In the local co-ordinate t

φφ#dP = f{t)dt,

where /(0) Φ 0 (note: dP has no zeros). Applying # to both sides of this equation
gives

φφ#dP# = {f{t)dtf= -f(-t)dt

and setting t = 0 implies that dP(0) = - dP#(0) so case (b) follows.
Notice that this argument is carried out under the assumptions: (a) z# = w,

(b) L(χ)L#^fc. If (a) is not satisfied (as might be the case for even g in the
hyperelliptic curve example) then our discussion needs further elaboration which
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we do not give here (we are mainly interested in the generic case where special
choices of divisor are not made). In the case of assumption (b) it is far from clear
that such an L can be found. All we have shown is that if we want a symmetric
bilinear form then the involution # must be fixed point free. However if the latter
holds then it is easy to find such a bundle L since we can take any square root
of the canonical bundle on Jί l# and pull it back to Jί. In our explicit example (2.1)
we can take L to be the bundle arising from the divisor gz — w as then L®L*
arises from the divisor (g — l)z + (g — l)w and we may take dP to correspond to
dk/ω (an Abelian differential with a zero of order g — 1 at oo ± ) . It is evident that
#dP = dP in this case. More generally a suitable dP may be manufactured from
any Abelian differential on Jί/#. For simplicity we will restrict attention, for the
rest of this article, to the case of hyperelliptic curves of the form (2.1). This is no
restriction in the genus one case and while there may be other examples there
seems no point in pursuing such generality here. Finally we choose the orientation
of γ to be clockwise about oo ± .

It is useful at this point to make an identification of our space of sections, W,
with a function space. Firstly, L comes equipped with a canonical section which
is holomorphic on M — {z, w} and which has divisor gz — w on Jί. Then elements
of W. may be regarded as functions analytic on M — {z,w} with (possibly) poles
at the deleted points, while sections in W+ can be identified with functions which
are meromorphic on Jί, analytic in Jί except possibly at z where they may have
a pole of order no greater than g and which must have a zero at w. The elements
of W are thus identified with meromorphic functions Jί which are analytic in

Lemma 2.3. The bilinear form on W is nondegenerate and symmetric.
The proof of non-degeneracy in Lemma 2.3 and indeed much of our subsequent

analysis depends on the existence of meromorphic functions with prescribed
divisors. To prove that these functions exist is our next task.

Proposition 2.4. Given two distinct points zo,wo in M and a neighbourhood °lί ofz0

there is a meromorphic function on Jί with all its poles at z0 and one zero at w0

and all other zeros in ϋU.

Proof. Let J(Jί) be the Jacobi variety of M and de f ine ; :^-* J{Jί) in the usual
way by choosing a basis of the space of sections of the canonical bundle, say
ωί9...9ωg and defining j(x) to be the point in J(Jί) determined by the g complex
numbers

X

f

Jacobi inversion tells us that the symmetrised product ¥qJί (i.e. JίxJίx xJί
(g times) modulo the action of the symmetric group) maps onto J{Jί) under the
m a p w h i c h s e n d s (pΐ9p29...9pβ) t o j(pϊ)+j(p2)+ ••• +j(pg) N o w tfft h a s a

neighbourhood of zero in J(Jί) as its image under this map. As there is a positive
integer m such that — j(wo)/m lies in this neighbourhood we can assert the existence
of points pup2, .,Pg with;(p 1)+7*(p 2)+ ••• +j{pg) = -;(wo)/m. It follows from
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this and the fact that j(z0) = 0 that there is a meromorphic function on Jί with
divisor

w0 + mpx + mp2 + ••• + mpg - (gm + l)z0.

Corollary 2.5. There is a meromorphic function on M with divisor

w 0 + mpγ + mp2 + ••• + mpg - (wg + mpf + mpf + ••• + mp#)

The function required here is obtained by taking the function whose existence
is proved in the proposition say φ0 and taking the ratio φo/Φ% where φ$ is defined
byφ«(x) = φo(x«).

Now we return to the proof of Lemma 2.3. Suppose (φ, ψ) = 0 for all ψ in W.
If #i»42> »#m a r e Λe poles of (/> then we can find for each ι = l,...,m, by
Proposition 2.4, a meromorphic function 0,. with a simple zero at g,., all its poles
at z, and all other zeros in Jί. Then ΦιΦ2- φmφ *s regular outside Jί and
(ΦiΦ2"ΦmΦ>Ψ) = Q f°Γ aH Ά m W Another application of Proposition 2.4 gives
us a function </>0 whose divisor on Jί is z. Then multiplying ΦιΦ2" φmΦ by
suitable powers of φ0 and of φ§ we can arrange that the product
Φo(ΦoYΦiΦ2'"ΦmΦΨi*dP has a simple pole at z and is regular elsewhere in J/\
Integrating this around γ cannot give zero which is a contradiction. So our bilinear
form is non-degenerate proving the lemma.

Remark 2.6. The surfaces with fixed point free involutions are certainly more
ubiquitous than the hyperelliptic curve examples (2.1). (We thank Roger
Richardson for pointing out the following argument.) We saw above that Jί/#
has genus (g + l)/2 and the moduli space of all Riemann surfaces with this genus
has dimension (3g — 3)/2. Now the covering M -> Jί/# is determined by an index
two subgroup of πγ(Jί/#) so it follows that the moduli space of pairs (Jί, #) has
dimension ^ (3g — 3)/2 and for sufficiently large g the latter is clearly greater than
the number of possibilities given by the hyperelliptic curves (2.1). Actually stronger
information on this situation may be found in [C].

We now introduce the two objects of greatest interest to us. The first is the
group <3 which consists of functions φ meromorphic on Jί and analytic and
non-vanishing in Jr-{z,w} and which satisfy φ# = φ~1. The second is the
algebraic Clifford algebra %>(W) over W defined by the symmetric bilinear form
given above. The latter is the associative algebra with identity generated by the
elements c(w) where w lies in W, subject to the usual Clifford algebra relations

c(wi)c(w2) + φzjφj = (wl5 w2)/,

where / denotes the identity. Notice that ^ acts by automorphisms of ^(W) via
its action by multiplication operators on W, i.e. w^φw.

Note that we could equally consider an n component version of this
construction in which ^ is replaced by matrix valued meromprophic functions on
Jί which are analytic in Jί — {z,w}, and on restriction to the latter take their
values in GL(n) and are subject to the constraint φ* = (φ~1)\ where τ denotes the
matrix transpose.
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To see that ^ is non-empty, let K be a meromorphic function whose divisor
is given by Corollary 2.5 with vv0 = z# and with Pi, p2> > /Vzo a n ( * their images
under # all outside Jί. In fact by construction K# K = l9 and hence K is in (S.

3. The Fock Representation of ((>{W)

Associated with any splitting of W into subspaces isotropic with respect to the
bilinear form is a representation. Since W = W+ © W_ is such a splitting we will
now construct this representation referring to it in the future as the Fock
representation. The space on which this representation acts is the antisymmetric
tensor algebra over W+ written Λ W+.

Now we define the action of^(W) on Λ W+. For w+ in W+, let F(w+) be the
operator:

F(W + )W1 A VV2 Λ VV3 Λ ••• Λ Wn = W + Λ W j Λ W 2 Λ ••• Λ Wn.

If w_ is in W- then we define F(w_) to act by

F(W_)WX A W 2 Λ VV3 Λ ••• Λ Wn = Σ j(— l)j ~ 1 (w _ ,Wj)w χ A W 2 Λ Wj A Λ Wn.

Then it is straightforward to check that F, defined by

where w is in W and w± is in W+ is a representation oϊ^(W). We use the notation
Ω for the vector 1 0 0 0 0 0 0 0 . • - .

Note that the usual convention in physics is to introduce the operator N on
Λ W+ defined by

A W2 Λ W3 Λ Λ Wn = HWX A W2 A W3 Λ Λ Wn,

and hence the operators

_) and c(w+) = (N+ l)ι/2F(w+).

With this convention one also obtains a representation oϊ^(W) which is compatible
with the usual Hubert space structure imposed on Λ W+. We shall have more to
say about this in Sect. 4. For our purposes it is not important which way the
representation of ^(W) is defined.

Our eventual aim is to construct a projective representation of ^ on Λ W+.
To motivate our approach to this problem it is useful to link up with the literature
on representations of other infinite dimensional groups. Hence we suppose for the
moment that W is a Hubert space with a distinguished conjugation Γ such that
the inner product on W, written <, > and the complex bilinear form (,), are related
by <. , .>=(/" . , . ) . Then the complex orthogonal group consists of bounded
operators on W which satisfy ΓG*Γ = G"1. Given a splitting of W into a direct
sum of Hubert subspaces W+ and W_ isotropic with respect to (,) we introduce
the projections Q± onto these subspaces. We shall suppose that ΓW+ = W_ and
define the operator Q = Q+ — Q_. Then the restricted complex orthogonal group
consists of complex orthogonals G such that QG — GQ is Hilbert-Schmidt. This
is a topological group where we impose the norm topology on the operators
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QG + GQ and the Hilbert-Schmidt topology on the operators QG - GQ. The dense
subgroup consisting of G such that QG — GQ is finite rank we write Θf. This group
as well as the restricted complex orthogonal group has two connected components
(see [COΈ] and [CP]) labelled by the index map

i: G -» dim ker Q _ GQ _ (mod 2),

where by kernel we mean the kernel in W_.
The Hilbert-Schmidt restriction is exactly what is needed to enable the

construction of a projective representation of the restricted orthogonal group on
a dense invariant subspace of Λ W+ by unbounded (invertible) operators. For the
details of its construction we refer the reader to [CP]. We shall not use this
argument to construct our representation of ̂  preferring instead a direct method.
However, we shall indicate below how this Hubert space approach works.

On restriction to the subgroup of the restricted orthogonal group consisting
of unitary operators on W (i.e. those commuting with Γ) one obtains a projective
representation by unitary operators on Λ W+. As a representation of the connected
component of the identity of this subgroup, Λ W+ decomposes into two irreducible
invariant subspaces spanned by the odd and even tensor powers of W+. Elements
G of the restricted orthogonal group with ι(G) = 1 map between these 'subspaces.
Hence if one is aiming to produce a cyclic projective representation of ^ it is
necessary to exhibit elements of the group which satisfy ι(G) = 1.

Now return to our situation in which W is not a Hubert space. It still makes
sense to introduce the group Θf consisting of complex orthogonals G for which
QG — GQ is finite rank. We shall now show that K is an element of Θf. (We will
not discuss the conjugation Γ in this section.) More precisely we shall prove

Proposition 3.1. The group <& is a subgroup of Θf.
This result is a consequence of the more general following fact.

Proposition 3.2. Let Ji be a compact Riemann surface of genus g and let L be a
line bundle over Jt satisfying conditions (i) and (ii) of Sect. 2. Let φ be an arbitrary
meromorphic function on Jί then Q + φQ_ and Q_φQ+ are finite rank.

Proof. Choose any global meromorphic section σ of L and write its divisor as

where λx is the divisor on {z,w},Λ,2 is the divisor on ^ - { z , w } and A3 is the
divisor on M — Jί. A local section s of L gives rise to a local meromorphic function
s/σ and so the splitting of W into W_ and W+ may be regarded as imposing the
following constraints on a meromorphic function / on Jί\

W = {/| 3(f) ^ - λ2 on the subset Jί - {z, w}},

^ -λι-λ2 on the subset Jί},

^ -λ2-λ3 on the subset Jί-{z,w}}.

Given a general / in W we write its divisor as

τ 1 + τ 2 + τ 3 (3.1)
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where, again, this decomposition corresponds to the decomposition of Jt into the
disjoint sets {z,w},^Γ-{z,w} and M — Jί respectively. The only restriction is
τ 2 ^ — λ2. If we now split / as a sum /+ + /_ of its components in W+ and W_
respectively then a little thought shows we must have

-λ3,τ3}, (3.2)

-λuτί}. (3.3)

There is a similar decomposition of the divisor of φ:

Now we consider the image of an / in W_ under Q + φQ_. With the notation of
(3.1) we have

τ 2 + τ 3 ̂  - λ2 - λ3

and

%>/) = (/<i + τx) + (μ2 + τ 2) + (μ3 + τ3),

and hence, by (3.2)

But as / is in W_ the constraint, given above, on its divisor implies τ 3 ^ — λ3 and so

Hence (φf)+ may be regarded as a holomorphic section of the line bundle
corresponding to the divisor

whence the dimension of the space of such sections provides g/bound for the rank
of Q + φQ_. Similarly, the rank of Q_φQ+ is bounded by the dimension of the
space of holomorphic sections of the line bundle corresponding to the divisor

^2 + ̂ 3 + m a χ Ui> —μi + Λ-i }•

Remark 3.3. The above argument is more general than it may appear. In fact it
works when L is a line bundle with divisor z1-{- z2 + —\- zg — w (for a generic
choice of these points with Jί an open set containing them).

Remark 3.4. One may also use this argument to establish the matrix analogue of
Proposition 3.1. Here one tensors an n-dimensional complex vector space onto L,
appropriately generalises the bilinear form and considers the group o f n x π matrix
valued meromorphic functions on Jί which are holomorphic on Jί — {z, w} and
satisfy φ# = (φ~1)\ where τ denotes the matrix transpose. Then this group also
has the property that it is a subgroup of Θf.

4. A Special Case

In this section we assume Jί is the hyperelliptic curve determined by the equation:

ω

2 = (k9+ι - ag+1)(kg+ x - fc*+1),
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where a and b are fixed distinct non-zero complex numbers. Then as before we
choose z = oo _. In this case one may write down explicit elements of ^ such as
the function h defined by:

h(ω,k) = (ω + kg+1- a9+1)/(ω -kg+

Then it is immediate that hh# = 1 and so h is in ^ . One easily checks that h has
divisor (g + l)oo_ — (g + l)oo + . To construct more interesting elements of ^ recall
Riemann-Roch:

To guarantee the existence of a holomorphic section of L1 we need ciL^ ^ g + 1.
This implies one may specify generically g + 1 poles for any meromorphic function.
By adding a constant one may also specify one of its g + 1 zeros. Choose q
generically in Jί and let ζ be any meromorphic function with divisor

#(0 = Pi + p2 + * + Pg + oo _ - (g - 1) oo + - q - q#.

Then

Now define Ko = ζ/ζ# so that trivially K0K$ = 1 and

By choosing Jί so that Pi,P2>'->Pg lie outside it we find that Ko is in ^ . Now
the function Koh^ has divisor

An argument similar to that in the proof of Proposition 3.2 shows that Koh
# has

the property that the kernel of Q_Koh?Q- as an operator on W_ and of
Q + Koh*Q+ as an operator on W+ are both one dimensional. To see this consider
first the case where / is in W_ and in the kernel of Q_Koh#Q_. Then Koh#f has
to lie in W+ but this is impossible unless 9(f) ^ — (g — l)oo _, which means / is
constant. On the other hand if/ is in the kernel of Q + Koh

#Q+ then Koh#f lies
in W_ and so

But then S(Kof) ^ - (g - l)oo + which forces Kof to be constant. So the kernel
is spanned by K§.

For this example we can make contact with the Hubert space formalism of
[CP]. This is done by introducing the functions αΓ and βr defined for integral r by

αr(/c,ω) = jfc-"-1, βr(k,ω) =

Then one may check that the following relations hold:

(αr,αs) = 0, (*nβs) = crδrs, (βr,βs) = O,

where cr is some non-zero constant. To see this note that in all cases except where
we pair α's and jS's with r = s either the integrand is regular in the neighbourhood
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Jί or the integrand is regular outside the contour. Only in the case where we pair
α's and /Fs and r — s does the integrand have a simple pole at oo +.

Now assume we have renormalised βs so that (αΓ, βs) = δrs. Then we can inject
W into L2{Sι, C2) via the map which sends the pair αΓ, βs to the C 2 valued function
θ->(eirθ,eisθ)/(2π)112. It is not immediately clear that every function in W can be
written in the appropriate form for this map to be everywhere defined (i.e. as α,
possibly infinite, linear combination of the α's and /Γs). However, since

h{ω,k) = (2ω + 2k9 + 1 -a9+1- bg+1)/(a9+1- bg+1\

it suffices to show that every function in W may be written as /i(fc) + ω/2(fc),
where f1 and f2 are the Laurent series of functions regular on the image of Jί in
the Riemann sphere except possibly at oo. Now since any meromorphic function
on M is a rational function of A; and ω it suffices to establish the claim for functions
of the form (p(k) + ωq(k))~1

9 where p and q are polynomials. By multiplying by
a suitably large inverse power of k we can assume that this function is regular in
Jί. We can assume without loss that Jί is a pair of discs which include the unit
circle (in the k variable) and is # invariant, so the function (p(k) — ωq{k))~1 is also
regular in Jί. It fallows that the function (p(k) — coq(k))/(p(k)2 — ω2q(k)2) shares
this property and since the denominator is a polynomial it has a convergent Taylor
expansion in powers of /c"1 in Jί. This establishes the claim.

Note that the bilinear form also maps over to L2(5X, C2) under this map. Using
the Fourier transform we identify the latter space with pairs of sequences in which
case the bilinear form goes over to the map which sends two pairs of sequences
(fr\ (gr)

 a n d (/r)> (g'r)to ^λfrG'r + 9rf'r) The bilinear form and the inner product
< . , . > are then related by < . , . > = ( / " . , . ) , where Γ is the conjugation which
sends the pair of sequences ((/ r), (gr)) to the pair ({gr), (/r)) (here the bar denotes
complex conjugation). Pulling this conjugation back to W it has the form

Γ(Σr(frar + grβr)) = Σr{grar + frβr).

Using this we define the obvious pre-Hilbert space structure on W. This has the
great advantage that now we are in a position to import the Hubert space theory
of [CP]. It has the flaw that this complex conjugation appears to be very unnatural
form the geometric viewpoint we have adopted to this point. We see no way to
give an intrinsic geometric definition for the conjugation.

If one now completes W to give a Hubert space H then W+ close up to give
subspaces with precise regularity properties. As the functions αr for r < 0 and βr

for r ^ 0 lie in W_ while αΓ for r ^ 0 and βr for r < 0 lie in W+, it follows from
the embedding in L 2 (S\ C2) that we may identify the closure of W_ with the
direct sum of two copies of the Hardy space consisting of functions regular outside
the unit circle and L2 on the boundary. Then W+ is the direct sum of two copies
of the orthogonal complement.

Now we have to check that our group 0 lies in 0f whether we define the latter
with respect to operators on W or on its closure. But, for example, for any φ in
^ we have Q + φ W_ a finite dimensional subspace and since such spaces are closed
in H it follows that Q + φQ_H is also finite dimensional. Notice that because of
the regularity properties of the completions of W± which we found iir the preceding
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paragraph the kernel dimensions of Q-Koh#Q_ and Q + Koh
#Q+ do not change

on passing from W to H. Thus we need not worry about the fact that we have
completed W. Now there is a topology on ^ with respect to which we may discuss
the continuity properties of the index map. Note that this begs the question of
the topological structure of ^ in some natural function space topology. We have
not investigated the latter.

Our first side effect of these constructions is an index formula. Suppose φ is
any element of c§. Then φ has a pole and a zero of the same order at the two
points at infinity. By multiplying by a suitable power of Koh# one then obtains a
function φ' in ^ which is regular in Jί and hence has no zeros or poles in that
neighbourhood. For any function / in W_, φ'f cannot be in W+ because φ' cannot
change the divisor at the points at infinity. Similarly if/ is in W+ then φ'f remains
in W+. Hence the kernel of Q_φ'Q_ as an operator on W_ must be zero and
similarly with the kernel of Q + φ'Q+. Notice that in completing W to H this
argument still works because of our identification of the regularity properties of
the functions in the completion of W+. As we have shown in the previous section
that Koh# does not lie in the connected component of the identity of ^ it follows
that φ lies in the connected component of the identity of Θf exactly when its pole
in Jί is of even order. This argument proves:

Proposition 4.1. For each φ in &,

ι(φ) = order of the pole of φ in Jί (mod 2).

It would be interesting to devise a proof of this fact which did not appeal to
the Hubert space structure. One unnatural feature of the introduction of Γ is that
conjugation by 7" does not leave ^ invariant. This seems especially unsatisfactory
and it would be interesting to know whether there is any freedom in our choice
of Γ which would enable this to be overcome.

Our second by-product is:

Proposition 4.2. There is a projectίve representation p of& by unbounded but densely
defined operators on a dense {invariant) domain in the completion of A W+ in its
natural Hubert space structure. The operators in this representation satisfy

p{φ)F(w)p(φyι = F{φw)9 weW9φe&. (4.1)

We refer to [CP] for the proof of this result. It would be interesting to
compute the two-cocycle on ^ which arises from this representation. In the genus
one case it is computed (at the Lie algebra level) in [DJKM].

It is worth recording that one can define the operators p(φ) directly without
recourse to the results of [CP]. We will do this in the next section.

5. The Projective Representation of ^

It is possible to construct the operators ρ(φ) for φin^ which satisfy (4.1) by using
some ideas from [P]. We will not discuss the construction in complete generality
but focus on particular elements of the group Θf. Suppose that G is in Θf and
lies in the subset consisting of elements for which the kernel dimension of Q_Gβ_
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acting on W_ is zero. Then the operator

is well defined as (β _ G + β+) ~* exists precisely when β _ Gβ _ is invertible on W_.
In fact R(G) is skew relative to the complex bilinear form on W. Introduce the
notation

Now if <5 7̂  5' then J ^ has finite dimensional range and is skew relative to the
bilinear form. Consider first the case of R+ _. Let V+ be the range of R+ _ in W+.
Then one can find a finite dimensional subspace K_ of VF_ whose dimension is
the same as that of F+ and a complementary subspace V'_ of W_ such that
(ι?,w) = 0 for all i? in V+ and w in K'_. Skew symmetry implies JR+_ is zero on
V'_. A similar argument works for Λ_ + and so we may assume the existence of
a finite dimensional subspace Wo of W on which the bilinear form is non-degenerate
and a complementary subspace W'o on which Λ+ _ + K_ + is zero. Moreover we
can find a basis of Wo consisting of a basis {e}} of Won W_ and a dual basis {/,}
of WonW+.

Now introduce the elements Σj(R + - e,-) Λ fj and ^ ( Λ _ + fj) Λ ̂  of Λ 2 W. We
are then able to use the argument of Lemma 1.0 of [P] noting that while this
result has only been formulated for finite dimensional W trivial modifications
allow us to extend the essential arguments to the case where W is infinite
dimensional provided we work only with elements of Θf. Following [P] we define
the following invertible elements of

gx = exp l(Σjc(R+-ej)c(fj))/2]9 (5.1)

g2 = exp l(Σjc(R _ + /,)φ,))/2], (5.2)

and also the complex orthogonal:

+(1-6.11)-^-) (5.3)

which commutes with β. The group of operators commuting with β is represented
on Λ W+ by defining their action as

Wί A W2 Λ W 3 Λ ••• Λ Wn->G'\Vί A G'\V2 A G ' w 3 Λ ••• Λ G'\Vn,

Ω-+Ω.

We denote this operator by Γ(G'). Now define Γ(G) by

Γ(G) = F(gi)Γ(G')F{g2).

Some straightforward although lengthy calculations reveal as in [P] that

Γ(G)F(w)Γ(GΓ1 = F(Gw).

In the general case where β_Gβ_ may have a kernel a simple modification of
this definition is required. We will discuss the case where β_Gβ_ has a one
dimensional kernel. If v spans this kernel let u = Gv + x, where x is an element of
W- such that (x, Gv) = 1. (Recall that W± are isotropic with respect to the bilinear
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form so that W_ and W+ are dual to each other under the pairing induced by
this form.) Now let O(u) denote the operator O(u)w = — w + (W,M)W and write Go

for the product O(u)G. Let w be an element of W_ in the kernel of Q _ G0Q _ so that

0 = β_ Gow = β_ ( - Gw + (Gw, ύ)ύ).

Hence

ρ_Gβ_w = (Gw,M)x.

But

(Q _ GQ _ w, Gt;) = (Gw, Gt;) = (w, t;) = 0.

Combining the preceding two equalities gives (Gw, u) = 0 so that, in fact, w is in
the kernel of Q-GQ_. But

Q-GQQ-υ = -Gv + (Gv,u)u = u-Gv = x.

Thus w = 0 and β_G 0 + β+ is invertible. Thus we may define Γ(G0) as above
and then define

= F(u)Γ(G0).

It is easy to check that for all w' in W

Γ(G)F(wf)Γ(G)~1 = F(Gwf).

The case where the kernel dimension of Q_Gβ_ is greater than one is a little more
complicated and we will not discuss it. (Provided one avoids the use of the complex
conjugation in the way we have here one sees that all the main ideas are in [P].)

Proposition 5.1. The map sending G to Γ(G) is a projective representation of Θf

on A W+.

Proof. The decomposition of the subset of Θf consisting of G with g_G + <2 +
invertible defined in (5.1), (5.2) and (5.3) above shows in fact that each element of
Θf decomposes into a product of elements which lie in subgroups on restriction
to which 7̂  is a representation. The projective character only enters when we try
to combine them and a little thought reveals that the only place where the
representation property fails is when we try to multiply elements of the form (5.1)
by elements of the form (5.2). Now these are both in the so-called Clifford group
(i.e. the group of invertible elements g of the Clifford algebra which are such that
gc{xv)g~: = Gw for some complex orthogonal G onW with G — 1 finite rank). Now
we are back in the finite dimensional case (cf. [P] and [CP]) where we know that
Γ is a projective representation completing the proof.

Applying this to the example in Sect. 4 we obtain as an immediate corollary
of this construction the fact that the operator Γ(Koh

#) when applied to the cyclic
vector Ω produces a vector which is in the odd sector of the Fock space (the
completion of Λ W+). (The odd sector consists of eigenspaces of N corresponding
to odd integer eigenvalues.) Successive powers of this operator move one in and
out of the odd sector. It is not surprising therefore to expect that the representation
of ^ is at least cyclic if not irreducible in the Fock space. We do not have a proof
of this conjecture in general, however in the genus one case a vertex operator
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construction exists which proves cyclicity and a weak form of the Boson-Fermion
correspondence.

6. The Boson-Fermion Correspondence and Vertex Operators

The special property of the genus one case which enables us to take our arguments
further is that the function K o has been given explicitly in [DJKM]. We let

Kq(p) = c1/2(fe(l>) - h(q))/(k + W){h(qψ\

where p is the point (k, ω), q is the point (k\ ω') and c = (a2 - b2)/4 and the choice
of square root is not important. What is special about the genus one case is that
the point q may be chosen arbitrarily whereas we had no control over the points
PnPii'-iPg *n the general case. The crucial fact is the

Lemma 6.1. Let G be an element ofΘf with the property that the kernel dimension
ofQ_GQ_ is one. Suppose that W_ = k e r β _ G β - θ V9 where V is a subspace on
which Q + GQ. is zero. Then Γ{G)Ω = F(z)Ω for some z in W+.

The proof depends on our construction of Go from G in the previous section.
Firstly we have v spanning the kernel of β_ GQ_ and u = Gυ -j- x. Then if w is any
multiple of v:

Q + G0Q _ w = -Gw + {u, Gw)Gv = -Gw + (x, Gw)Gv.

The last two terms cancel because (x, Gυ) = 1 so that β + G oβ_w = 0. Now given
the existence of V as in the lemma we can write any w in W_ as a sum λv-\-v1

with υλ in V and Gυί in W_. Thus,

Q + GoQ_w = Q + GoQ_v1=Q+l-Gv1+(u,Gv1)u']=(u,Gv1)Gv.

Now

where we have used the isotropy of W_. Hence we have Q + G o β_ = 0 . A brief
calculation then reveals that Q+R(G0)Q_ = 0 .

Now recall the construction of Γ(G0) from the previous section. With

we have

exp ί(Σjc(R+.ej)c(fj))/2] = 1, exp l(Σjc(R_+fj)c(ej))/2JΩ=Ω9

and

^[(1 + Q + R)Q+ +(1 -Q-R)~1Q-W = Ω.

Thus, Γ(G0)Ω=Ω, implying that Γ{G)Ω= F(u)Ω= F{Gv)Ω. This completes the
proof of the lemma.

The application of this result in the genus one case (and our failure in the
higher genus case to see how to apply it) rests on our ability to show that there
is a complex orthogonal consisting of multiplication by an element of ^ which
satisfies the hypotheses of the lemma. In the genus one case this function is {Kqψ.
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To see that the lemma applies we note that 9(Kq) = q# — g + oo _ — 00 + and that
the kernel of Q_(KqψQ_ is spanned by the function which is identically one. Hence
for any w in W_ we write

w = [w — w(q)~] + w(q).

Then (Kq)*[w — w(g)] has no poles except at oo± and so lies in W_. Thus the
subspace V consists of the functions w — w(q). We conclude then that

Γ((Kqf)Ω=F((Kqf)Ω. (6.1)

A formal expression for Γ((Kq)#) is given in [DJKM] which for those familiar
with these matters will make it clear why one should think of it as a vertex operator.

To see why (6.1) implies both cyclicity of the representation of ^ and a weak
form of the Boson-Fermion correspondence we need one more property of Kq.
This is the observation of [DJKM] that the function q -> Kq(p#) acts as a Cauchy
kernel for the path γ in the sense that, as one easily calculates,

)=7>
γ 2πιω

where q lies on the oo ± side of γ and p has coordinates (ω, k). We now appeal to
the theory of Fock representations of the Clifford algebra [A] to see that

^ is weakly continuous. So we may form the Bochner integral:

y 2πιω

for w in W+ where q has coordinates (ω, k). By virtue of the Cauchy kernel property
this integral defines an element of the Fock space equal to F(w)Ω. Hence we can
span the subspace of the Fock space corresponding to the eigenvalue one of N
by using vectors constructed as weak limits of linear combinations of the operators
representing the group (S. This argument can now be repeated. To get the
eigenspace of N corresponding to the eigenvalue 2 we consider for w in W+,

Γ((Kqf)F(Kqw)Ω= F(w)F((Kqf)Ω.

Now it is clear how to construct any vector in W+ A W+ by repeating the previous
argument. In this way we build up the Fock space cyclically from the vector Ω,
using the projective action of ^ . We summarise these arguments as:

Proposition 6.2. The projective representation of& on the Fock space (the completion
of A W+) is cyclic with cyclic vector Ω in the genus one case. The action of the
element [Kqψ on Ω gives a vector in the eigenspace of N corresponding to the
eigenvalue one. Eigenspaces corresponding to larger eigenvalues may be constructed
by an inductive procedure.

This result can be interpreted as a form of the Boson-Fermion correspondence
as we shall now explain. Note firstly that if / is a meromorphic function on Jί
which is regular on J ^ - { o o + ,oo_} and satisfies / # = - / then (exp/)# =
(exp / ) " 1 so that exp / is a complex orthogonal. However, it is not straightforward
to determine when exp/ is in ^ . In fact we have not considered the appropriate
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Lie structure for ^ at all. Rather than address this question directly it is sufficient
for our purposes to note that there are many such / with the property that QδfQ-δ

is finite rank and hence by general arguments [CHO'B] exp / lies in the restricted
orthogonal group. We denote the set of all such meromorphic / by if.

By general arguments [L, CR] the 2-cocycle for our projective representation
of the restricted orthogonal group defines, a projective action of this Lie algebra
$£', where the Lie algebra cocycle is:

σ(fJ) = tr(Q-fQ+ΓQ--Q-f'Q+fQ-)

(We do not have a method for explicitly computing this cocycle in general although
[DJKM] give it in the genus one case.) Denote the projective Lie algebra action
by f-+p'(f) and consider the commutation relations satisfied by the operators
p'(/i) and p'(f2) for fx and f2 in if:

where / is the identity operator. Those readers still with us will recognise these as
Boson commutation relations. Thus the Lie algebra if is a "Boson algebra," the
operators ρ(φ) for φ in ^ are generalised Weyl operators and we have shown
above that associated with our representation of the Clifford algebra (the fermions)
there is a representation of a Boson algebra and that the Fermions may be recovered
from this boson representation via Proposition 6.2.

This is what we earlier referred to as a weak form of the Boson-Fermion
correspondence. It contrasts with the situation in the theory of loop group
representations in that there one may construct the elements of the Clifford algebra
as limits, in the sense of strong convergence on a dense domain, of complex
multiples of the representers of certain loop group elements (see [CR]). Here we
have only been able to show that one can construct the vectors in Λ W+ of the form

by using the representers of "loops" in ^ .

7. The Landau-Lifshitz Equation

In [SW] Segal and Wilson elaborate the strategy of M. and Y. Sato which connects
a certain infinite dimensional Grassmannian of subspaces of a complex Hubert
space with solutions of the KdV equation and related hierarchies of soliton
equations. Our analysis here was partly motivated by their paper and indeed we
expect similar results to hold in the context of the Landau-Lifshitz equation.
Firstly we note that, following [DJKM], we need to consider a matrix valued
version of our group obtained by tensoring onto our line bundle a copy of C2.
Recalling Remark 3.4 we consider the group ^ 2 of 2 x 2 matrix valued mero-
morphic functions on Jί which are holomorphic on J^ — {z,w} and satisfy
φ#=z(φ-ι)τ

9 where τ denotes the matrix transpose. We continue to denote our
space of sections of the resulting bundle by W and the splitting by W = W_ 0 W+.
Then this group also has the property that it is a subgroup of the group Gf defined
by this splitting.
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Now in this setting there is a "real" Grassmannian consisting of subspaces
which are "close" to W_ in the sense that the orthogonal projections onto these
subspaces differ by say a trace class operator. One might anticipate therefore that
the appropriate adaptation of [SW] would involve associating solutions of the
Landau-Lifshitz equation with certain elements of this Grassmannian. At first
sight [DJKM] is of no help here because their method of constructing solutions
involves introducing singular functions (actually distributions) on Ji and treating
them as if they were elements of the group ^2 . Thus they write down formal
expressions for the operators which represent these singular objects and allow
them to act on the vacuum or cyclic vector. They then compute various matrix
elements which depend on the flow parameters of the Landau-Lifshitz hierarchy
thus obtaining their tau function and solutions. Now these calculations are difficult
to make precise as at best the "operators" under consideration are densely defined
quadratic forms on the Fock space. However there is an alternative strategy which
is suggested by the form of the solutions appearing in [DJKM]. When one
considers the Lax form of the Landau-Lifshitz equation one sees that the solutions
in this case are constructed in [DJKM] using bona fide elements of ^ 2 As ^2
acts on our Grassmannian it seems plausible to seek a connection between points
in the Grassmannian and solutions of the Lax form via the construction of these
elements of ^2 . One can get a hint of how this works from Eq. (3.10) in [DJKM]
which constrains the elements of ^ 2 needed to construct solutions via an isotropy
condition arising from the splitting W = W_ ® W+. What is currently absent is
an understanding of the meaning or origin of these elements which is analogous to
the more detailed understanding of the corresponding construction for KdV in
[SW].

Remark. There is another approach to the Landau-Lifshitz equation described in
[R]. At first sight one might expect that it is related to the approach described
above as both exploit a splitting of a space of meromorphic functions on an elliptic
curve. However as yet we see no link at all between them.
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