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Abstract. We consider the nonlinear Schrodinger equation:
i0u/ot = —Au—|u* u and (0,.)= ¢(.), (1)

where u: [0, T) x R¥ — C. For any given points x,, X,,.. ., X, in RY, we construct
a solution of Eq. (1), u(t), which blows up in a finite time T at exactly x,, X,, ..., X;.
In addition, we describe the precise behavior of the solution u(t) when t > T,
at the blow-up points {x;,x,,..., %} and in R¥ — {x,x,,...,%x}.

I. Introduction and Main Results

In the present paper, we consider the Schrodinger equation:
iu/ot = — Au—|ulP"'u and u0,.)= @(.), (1)

where A is the Laplace operator on RY, u:[0,T)x RN>C, p=1+4/N, and
peH'(R"). More precisely, we say that u(.) is a solution of Eq. (1) on [0, T) if
Vte[0, T),

u(t) = S(t)e + iij(t —s){|u(s)|*™u(s) } ds,
)

where S(.) is the group with infinitesimal generator iA (the Schrodinger group)
and for each t, u(t) denotes the function x — u(t, x).

For pe(1,2* — 1) (where 2* =2N/(N —2) if N > 2, otherwise 2* = + oc), it is
well known that Eq. (1) has a unique solution u(t) in H* and there exists T >0
such that Vte[0,T), u(t)eH' and either T = + oc or Lim |u(t)||;: = + o (see

t—=T
Ginibre and Velo [4, 5], Kato [7]). Furthermore, we have VYte[O0, T),
lu@lle=lellL ()

E@(t) = (1/2) | Vu(®) | 7. — (1/(p + D) lu(t, x) [P ! dx = E(p). )
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When p=1+4/N, we have
(d/dt)fl x| lu(t)? =4 Imjru(t, x)u,(t, x)dx,
(d?/dt®)[|x|*|u(t)|* = 8E(p), where r=|x| and u, = du/or. @)

For p <1+ 4/N, the conservation of the energy (3) implies that blowing-up in
finite time never occurs (Ginibre and Velo [4]). On the other hand, it is well known
that for p > 1 + 4/N, there are singular solutions of Eq. (1) for suitable initial data
(see Zakharov, Sobolev and Synach [17], Glassey [6]). That is, there exist solutions
u(t) of Eq. (1) such that u(.)eC([0, T), H') and lim ||u(?) || ;: = |lim| || u(z) l2ean=

t—T t=T
+ oc. Our aim is to have a better understanding of the blow-up solutions’ behavior
and in particular of the local behavior of these solutions, in the critical power case
p=1+4/N. For N =2, this model has a physical interest: it can be considered as
a first approximation to a model of a planar laser beam which is propagating
along a single direction ¢ in R3.

The phenomena which occur in the case where p=1+ 4/N seem to be quite
different from those where p > 1 + 4/N.

Indeed, in the supercritical case 1+4/N <p<(N + 2)/(N —2), numerical
computations (Lemesurier, Papanicolaou, C. and P.L. Sulem [9]) and some
mathematical analysis (Merle [11]) suggest that every blow-up solution has a
strong limit in [ at the blow-up time.

In contrast, for p =1+ 4/N Merle and Tsutsumi ([13]) show that a blow-up
solution never has a strong limit in I[? at the blow-up time. In addition, if the
initial data ¢ has a spherical symmetry, then an [*-concentration phenomenon
occurs at the origin at the blow-up time (see also [16, 8]). More precisely, for all

R > 0, we have liminf || u(t) | 2p0.r)) = | @ | L2» Where T is the blow-up time and Q is
t=>T
the ground state solution of the equation

—Au+u—|ul*Mu=0 (5)
(for the existence of the function Q, see for example Weinstein [15]).

In this paper, we are interested in the local behavior of the solution of Eq. (1)
at the blow-up time and in particular we are interested in what the blow-up sets
By and B, ;. .~ look like.

Let us first define the blow-up set B for a functional space F.

Definition. Assume that there exists T >0 such that Vte[0,T), u(t)eH' and
lim ||u(t) || ;. = + oc. We denote by By the set of points x, such that for all R >0,
t=>T
there is a sequence t,— T such that [[u(t,) | ppo.ry = + °C> Where 0]l ppeo.ry 1S
the norm in F of the restriction of v at the ball of center x, and radius R.
Nothing is really known about these sets. For example, we do not know if
Byi = B, . 4~ In the particular case where p =1 + 4/N, we have more information
on Eq. (1). Equation (1) has a pseudoconformal invariance law; if u(t, x) is a solution
of Eq. (1), then ||~ N2e0=™/45(1 /¢t x/t) is again a solution of (1) (see [14]). This
invariance law yields explicit blow-up solutions:

u(t,x)=|T —t| -N/2e[(—i/(T—t))+<ilxlz)/4(T-t)]R(x/(T —1)),
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where R is a stationary solution of Eq. (1) in the sense where R satisfies the
following Eq. (5) (see [2]). These are the only explicitly known blow-up solutions.
In this case, we check that

—the origin 0 is the only blow-up point,

—for all R> 0, lim [ u(®)|l >p0.r)y = | @ ll .25
t—=T

—fIx]?|lu(t,x)|* >0 as t> T.

Therefore it is natural to ask if there exist blow-up solutions of Eqg. (1) such that
the set of blow-up points is different from a single point and what behavior we
can expect at such points.

Our result is the following: for any given points x,, X,, ..., X, in RY, we construct
a solution u(t) of Eq. (1) which blows-up in finite time T at exactly x;,X,,...,X;.
In addition, we have the precise behavior of u(t) at the points x;, for i=1,...,k.
We prove for these particular solutions the existence of an L*-concentration
phenomenon at the points x; for all R>0, and for i=1,...,k, we have

im [ (0 | L2(p(x, Ry = | QillL2s Where fori=1,...,k, Q; is a solution different from
t—-T
zero of Eq. (5). More precisely, we have the following result:

Theorem. Let x,,x,,...,x; in RN and Q,,...,0Q, be radially symmetric solutions of

Eq. (5).
Then there is a constant w, such that for w; > w,...,w; > 0, there exists a
solution u(t) of Eq. (1) which blows-up in finite time T and such that

—the set of blow-up points in I2**/N and H' is {x1,X5,..., %}
—fori=1,...,k, and all R >0 such that the balls B(x; R) are disjoint,

lim “ u(t) HLZ(B(X.,R)) = ” Qi ”Ll’
=T

—for all R> 0, lim || u(¢) ||L2<IR”\ U B, R)>= 0.
t=T i=1,..,k
In addition, there is a constant y > 0 such that
i=k
u(t) — { 3 1(T — t)aoy| ~N2e! =T 0D HVT =00, (o X )T — t)wi)}

i=1

L2+4/N

< e VIT—H

on [0, T).

Remark 0. Schoen has obtained similar results for elliptic equations with critical
power in [137].

Remark 1. The main point of the theorem is fact that the result is true for any
given points x;, X5,..., X, in R",

Remark 2. We only need that the functions Q; are solutions of Eq. (5) and decrease
exponentially at infinity.
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Remark 3. We remark that the behavior of the solution u(t) obtained in the theorem
at the blow-up time is the same (except for the number of blow-up points) as the
behavior of the explicit blow-up solutions (see above).

There is a concentration of mass (in the norm I?) at the blow-up points
X1, X5,..., X Since for all solutions of Eq. (5), Q' different from zero, we have
1Q 2= 11Ql.. (by definition of the ground state); for all R>0 and i=1,...,k,

we have liminf || u(t) (| ;2. gy 2 1 Q [| .- This result is connected to the one obtained
t—>T v
by Merle and Tsutsumi in [13]: if ¢ has a spherical symmetry, for all R >0, we

have lim inf || u(t) [l 250 gy = | @ |2 (Where T is the blow-up time).
t—=T
On the other hand, at the blow-up time all the mass concentrate around the

blow-up points. That is for all R >0, lim || u(t) | LZ<R”\ U Blxs R)) =0.

t—=T i=1,.., k
Remark 4. For the heat equation in dimension one on [0, 1],
0u/ot = Au+ |u|P~'u on [0,1] and u(0) = u(1) =0,

Chen and Matano ([10]) show that when the blowing-up in finite time occurs,
there is only a finite number of blow-up points. Open problems are first to show
the existence of a solution which blows up at exactly k points, and whether or
not we can choose these k blow-up points arbitrarily.

An important open problem is to find for any blow up solution what the
blow-up set looks like. We can expect that the blow-up set is a finite union of
manifolds. In the special case of an initial data ¢ with spherical symmetry, consider
the solution of the Schrédinger equation, u(f) and assume that u(t) blows up in
finite time. Can we show that the origin is the only blow-up point in H'.

The theorem has the following corollary.

Corollary 1. It is false in general that at the blow-up time, we have

lim { inf [|x — y|*|u(t, x)Izdx} =0.
t—T L yeRN

On the other hand, the theorem has a “dual” version. Indeed, we now remark that
using the conformal invariance law of Eq. (1) on the solution obtained in the
theorem yields the corollary

Corollary 2. Let Q,,...,Q, beradially symmetric solutions of Eq. (5). Then for w > 0,
there is an initial data ¢ such that the solution of Eq. (1) u(t) is globally defined. In
addition, there exist y,(.),..., yi(.)eC(R,RY), (), .., ()eC(RN !, R) such that

-0 and inf|y(t)— y0) >+
- i)

(i)~ { S w0 (o, + yi(t))}
i=1

as t— 4+ ocC.
Remark 5. As before, we only need the exponential decay of functions Q; at infinity.

Remark 6. Therefore we obtain a solution which behaves like a sum of periodic
functions travelling with different constant speed. Of course using rescaling
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arguments on the functions Q,, we can obtain a function u(t) which behaves like
a sum of periodic functions with different periods. Similar results can be also
proved with some type of k-coupled nonlinear Schrédinger equations.

Moreover there is an application to the Cauchy problem of Eq. (1). Indeed,
we have

Corollary 3. Let x,,x,,...,x; in RY and Q,,...,Q, be radially symmetric solutions
of Eq. (5). Then there is a solution u(t) of Eq. (1) such that u(t) is solution of (1) on
0, T) for T >0, and
i=k
lu(t)> > Y. 1Qil?2:0, ., when t—0.
i=1
In fact, there is a k paramecters’ family of solutions.
The interest of this paper is twofold.

i) We construct explicit examples of blow-up solutions with a blow-up set different
from a point.

ii) We introduce a new method to construct solution of Eq. (1). We proceed as
follows. We remark that the function

i=k
Q)= Y | T —t| N2 T 0+ENAT=009 (. — x)/T — 1))
i=1

is almost a solution of Eq. (1), since it is a sum of functions which are “decoupled,”
at time T. Therefore with techniques of a priori estimates on exact solution of
Eq. (1) with one approximate solutions of Eq. (1) and compactness arguments, we
construct a solution which behaves like Q,(t) at time T.

The paper is organized as follows:

In Sect. 2, we give a precise outline of the method.

In Sect. 3, we establish crucial a priori estimates on a class of solutions of Eq. (1).
Section 4 is devoted to the proof of compactness results.

In Sect. 5, we finally prove our main result.

We conclude this section by giving several notations. We abbreviate LI(RY)
and |[|. || .om~, by L*and ||| .. We put 0 =2(N +2)/N =(1 + 4/N) + 1. For s > 1, we
define 5 such that 1/s+ 1/5=1.

II. Outline of the Proof the Theorem

Let x,,X,,...,x, bein RY, and Q,, ..., Q, be radially symmetric solutions of Eq. (5).
For convenience, using the autonomous character of Eq. (1), we have to find an
initial data ¢, >0 and an a> 0 such that the solution u(f) of the following
equation:

u(—a)=¢ and iou/ot= — Au— |u|* u, (6)

blows-up at time 0 such that
—the sets of blow-up points in H* and L***V is {x,x,,..., %},

—for i=1,...,k, and small R >0, lim [|u() || .>g(x;. Ry = | Qill L2>
t—-T
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—for all R >0, lim ||u(t)|[L(R~\ Ly ) 0,
[—V

<

LZ +4/N

—Ilu(l) {Z (T — t)eo| =2t~ HT =00+ AT =00 ((x — x,)/((T—t)a)))}
e "\T~4 on [0, T).

The proof in the general case will be the same.

i=k

Let us consider the function Q(t) = Y. |¢| M2e =i +ixI40 ( — x)/t), for t <0

i=1
(w = 1). We first remark that Q,(¢) has the behavior we want at the blow-up time.
Unfortunately, it is not an exact solution of the Eq. (6), but a computation yields
that it is “almost” a solution of Eq.(6) for ¢t near zero. In fact, there is a
competition between two phenomena. Indeed, for a fixed i, the function
|¢] ~NI2giit +ilxI2/2t0) (. — x,)/t) is concentrated at the point x; as t — 0 and is decoupled
with the others. On the other hand for t—0, the function |t|~V/2e/* *¥*210 (. — x,)/t)
goes out of space H', where we solve the Cauchy problem of the Schrédinger
equation. Our aim is to find a solution u(t) of Eq. (6) such that Vte[ — a,0), we
have | u(t) — Q(t)| . < e~"" (where y is a constant which does not depend on ?).
We then verify that a function u(f) which satisfies such a property has.the behavior
we want at time zero. The fact that the solutions Q, and the blow-up phenomena
are strongly unstable ([3]) imply that it is difficult to have the same local blow-up
time at points x,,..., X, To illustrate this fact, for example, we do not obtain a
solution with the behavior we want by taking for ¢ > 0 and small, the solution of
the equation

u(—e)=Qr(—¢) and idu/dt = — Au—|u[*Mu,

Rather, we use two steps to find such a solution u(t). We consider uy.), the
solution of the following problem:

u(—e)=0r(—¢) and idu/ot = — Au— |u[*Mu. (e)

In afirst step, for a fixed number a > 0, we seek estimates on u,(t) for te[ — a, —¢)
uniformly on ¢. For this purpose, we work in the space I’ which is a natural space
in which to solve the Cauchy problem of Eq. (1). We obtain these estimates using
a fixed point formulation in L7 of equation (¢) and techniques of a priori estimates.

In the second step, using the conservation law (2)—(4), we obtain compactness
results on the set {u,( — a)}. Lastly, we verify that the solution u(t) of Eq. (1) obtained
with an initial data ¢ such that there is a sequence ¢,— 0 such that u, (—a)—¢
when n— + oc, has the behavior we want at blow-up time.

III. A Priori Estimates

In this section, for a number a > 0, we estimate u,(t) on [ — a, — ¢] when ¢—~0 and
more precisely the quantity u,(t) — Q{t) = u,(t) — { 'ik |t| N2 i F G4 (| x, /t)},
when inf|x; — x;| is large. This assumption is té;llmical and has no consequences

i#j
on the conclusions of the theorem. Our main tools are, on one hand, the fixed
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point formulation on I7 of equation (¢) and the fact that Q,(t) is “almost” a solution
of Eq. (1) for t near the “blow-up time.”

We use a priori estimates techniques. We remark ([14]) that there is a constant
a > 0 such that Vee[ — 1,0), || Q(t) | .- £ o/|t|*°. Therefore, we want to prove that
for a fixed e,
if for se[t, — &), [ u,(s) |l .- < (a + 1)/|s]*", we have

lu(t) — Qr(t) | .. < e~ "™ (where y is a constant which does not depend on &).

Proposition 1. Let Q,,...,Q, be radial symmetric solutions of Eq.(5) with a finite

number of zeros (in spherical coordinates).

i) There exists a constant B, , >0 such that for inf|x; — x;| = B, ,, there is an &,

i#j '

such that for all —ego <t < —e¢,

Vse(t, — &), us) [l < (@+ 1)/|s|*/" implies that |uft)— Q(t) |l S e™ "™ (where y

is a nonnegative constant which does not depend on ¢).

ii) Assume that inf|x; —x;| Z By, , There exist a>0, K>0, y>0 such that for
i#j

€€(0,&0] we have |u(— a)ll,. < K, and for te[ —a, — €], |ut) — Qr(D)ll . = e,

Let us first establish some lemmas and preliminary results.

Lemma 1. i) Assume that ucl?, then ¥t #0, S(tjuel®
and || S(tyull . S c|t] "2y || . (where c does not depend on t and u).

ii) Assume that ue?, then VtS(tjue? and || S@)ull . = ||ul| ..
Proof. See Ginibre and Velo [4].
Lemma 2. Assume that u and v belong to L°. Then we have for t # 0,
S [l — [V} [, S cle] =0 2D a3 1 4 s — v]) ..

Proof. See Ginibre and Velo [4].
We state a simple result on solutions of Eq. (5) which is fundamental in the
proof of the theorem.

Lemma 3. Let be Q a radial solution of Eq. (5) with a finite number of zeros (in
spherical coordinates). Then there are constants ¢ >0 and 6 > 0 such that

Vr>0, Q)| +Q()<ce™.

Proof. This is a classical result. In the case where Q has no zero, we refer to [1]
(Berestycki, Lions and Peletier). The proofin the general case is exactly the same.
As a corollary, we have the following lemma:

Lemma 4. Let be R > 0 and Q, and Q, radial solutions of Eq. (5) with a finite number
of zero (in spherical coordinates).

i) Then [le™ 430/ £1) | 5 5~ O and e+ IPIIQCK/IE) 1y = O 2
t—0. - -

ii) Let s = 1. There exists a constant ¢ > 0 such that for t near zero

101((- = x)/)Qa((- — x2)/1) o < ce ™l 32l
1OM( = x)/0Qa((- = x2)/t) | o < ce ™=l
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and
11Q1((- = x)/00Q5™(. — x2)/0) | s < ce™elxr ~2llie],

Proof. From Lemma 3, some calculations yields
e~ 41D/ ) | Loy 2.y < € %M/ and part i) follows.

Let s=1 and t>0. We have now to estimate the quantity ||Q,((. — x,)/t)
Q2((- — x)/t)|l .- Lemma 3 implies the existence of constants ¢ >0 and 6 > 0 such
that Vr>0, |Q;(r)| < ce™® and |Q,(r)| £ ce™®. Therefore we have also Vr >0,
1Q1(n)|* < ce™® and [Q,(r)* < ce™™.

Hence we have

1Q:((- = x1)/0Qa((- — %)/ 155 = J1Q1((x — x1)/D)F1Q((x — x)/t)Fdx
Scfexp{—0{|x — x; |+ |x — x,|}/t}dx.
On ther other hand, we have the following inequality |{x—x|+[|x—x,{2
(1/2){1x —(xy + x,)/2| + |x; — x,|}. Thus some computation yields
1Q1((- — x1)/0Qa(- — x2)/D) 11« < cexp {(— 6/6)|x; — x,1}
“Jexp {(—=0/0)x —1/2(x; + x2)| }dx

< cexp {(—0/t)lx, — x,|} fexp {(— 0/)|x|}dx
ZcltMexp {(— 0/1)Ix, — x,|}.

With a similar proof, we can obtain the two last estimates and Lemma 4 is proved.

Lemma 3 yields exponential estimates for ¢t near zero on the function

™M

101(t, ) Q(t, x) — { k ||~ M2 i @A) 1| N2 O (. — xi/ )M QU( — xi)/t)},

13

W

which allows us to find a good estimates on u,(t) with the fixed point formulation
of Eq. (¢). More precisely, we have

Lemma 5. Let us assume that the assumptions of the theorem are satisfied.
1) There exist ¢ >0 and y > 0 such that we have for te[ — 1,0),

126l N2, Q. —x,-)/r)}

i=1

L7

Q- (O™ QT(t)—{

< ce "

ii) Then there exist ¢ and y such that we have for te[ — 1,0),

iii) In addition, assume that k and the function Q; are fixed. Then 7y goes to infinity

when inf |x; — x;| goes to infinity.
i#j

i=k . .

Y [t 7Nz G (— x)/t)
i=1

<ce MM,

i=k
= 2 el =Nl m i G0 (— x /)]
H! i=1




Schrédinger Equation with Critical Nonlinearity 231

Proof. The proof is based on the exponential decay of the functions Q; at infinity
and on the concentration phenomenon at the point x; of the function Q,((. — x;)/t)
when t goes to zero. This proof is somewhat technical. For simplicity, we consider
the case of k =2, the proof in the general case will be the same.
Let us consider the quantity
A= {{1t17MHQ4(- —x0)/)+ Qo — x)/O)*M(t]V{Q4((- — x1)/1) + Q- —x2)/0)}}
= (17201204~ X/ Q((- = X )/)+ 1t T2Qy(( — )/
Qa((- —x,)/1)}
=16 "M@ (- = x )/ + Qo (- = X/ N*N = [Q (. — x, )/ N}
Q4 = x)/t) + {HQ1 (- = x1)/0)+ Q((- = x)/NI*™ —1Q,((. —x,)/0)|*™N}
“Qa( —x,)/1)}-

Consider for example
B(x, t)=t|"M{1(Q1(x — x1)/t) + Q2((x — x2)/NI*N — Q1 (x. — x1)/D1*°} Q1 (x — x,)/0).
IF|(Q1((x — x,)/0)] = (1/2)| Q,((x — x,)/1))|, then applying the mean value theorem
(even if 4/N — 1 £0), we obtain
IB(x, 0)] < clt] " M{1Q1((x — x 2/ 71 +1Q,5((x — x )/ 7 HQ (x — x1)/2)]
1Q2((x — x2)/1)].
If (1/2)] Q,((x — x,)/t)| = (Q1((x — x,)/t)|, a direct estimation yields
IB(x, t)] < cltl M{1Q2((x — x)/O1*™M} Q1((x — x,)/8)].
Thus
AL < clt) ™ {1Q1((- — X2/ Qo( — x2)/O1 Lo+ 1Q2((- = %2/ Q1 ((. — x1)/0)]] 15}

We have from Lemma 4, [|A|,, < c|t| Nel(~20/emixi=x2ll < col(=0lenlxi=x2l} for
— 1 =2t <0 (with the same notations as the ones in the proof of Lemma 4) and
part i) follows.

Part ii) is consequence of calculations similar to the ones done in part i). Part
iii) follows from the proof of part i).

We now state and prove a fundamental inequality to obtain crucial a priori
estimates for the proof of the theorem.

Lemma 6. Let ¢, > 0. For y large, there is a constant © > 0 such that

t
Vte[0,7], [(t—s) M HHMTgm 2T DIopm M5 < ¢ 07 OM,
0

Proof. The proof is somewhat technical. Showing that

t
[t — )" +2M =20 2lag=(I9gs < ¢ o™ VN
0

is equivalent to showing

t
J‘(t _ S)—(l +2/N)~ ‘s—2(0'—2)/0'6-(7(1—s)/st)ds é c;.
0
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If we put s = tu, we obtain after some computation

1
j'(l _ u)—(l +2/N)~ ‘u—2(o'—2)/ae—(y(l —u)/ut)du é CltZ/(N+2).
(4]

On one hand, we have for t near zero,

1/2 1/2
J’ (1 —u)~@+2M" Ly 2= 2) o, — (Y1 —wu) g, <c j‘ u =20 2e o= (A —wju) g,
0 0

Since Vue(0,1/2), 0<t<1 and y>1 we have y(1 —u)/ut =y(1 —u)/2ut + y(1 —u)/2ut =
y/2t + 1/4u.
Thus

1/2 1/2
j' (1 _ u)—(l +2/N)- ‘u =2(c- 2)/ae— (1 —u)/ut)du <c j’ u- 2(c— 2)/ae - 1/4ue —(v/2t)du § ce—()'/tl)
0 0

(where c is a constant which does not depend on ¢).
On the other hand, we have

1 1
j (1 _ u)—(l+2/N)"u—2(6—2)/6e—(7(1 "“)/u!)du § c J' (1 _u)—(1+2/N)"e’(Y(l—u)/t)du
1/2 1/2

(from the fact that Yue(1/2,1), (1 — u)/u = (1 — u)).
We remark that

1 1/2
[ (1—u)y@r2m gm0 -wigy — ¢ [ (u)~0+2N" /2= (uingy,
1/2 0

1/2t
—c [ (5)UHAM gm0 (2NN + D))
0

I\

+ o
{c j‘ (s)_“ +2/N)~ le-(VS)ds}tZ/(N+2)
0

Sc(y)t?™*2  (for t near zero),

where c(y) goes to zero when y goes to infinity.
Using these two estimates, it is easy to conclude the proof of Lemma 6.
We are now in position to prove Proposition 1.

Proof of Proposition 1. Part i) follows from the fixed point formulation of Eq. (¢)
and a priori estimates (Lemmas 5 and 6).

For convenience, as before we denote the function
i=k

(|t =2+ G4 Q (. — x;)/1)) by Qxlt, X).

M

i=1

We recall that computations yield ||Q(s)l,. < «/|s|*°. The assumptions of the

proposition imply that for t <s < — &, ||u,(s)] .. < (@ + 1)/Is]*°.

Since for i = 1,...,k, |t| N2 "M +Ex40 (( _ x)/t) is a solution of Eq. (1), we
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have
—_ -1 i 2
]~ V/2el 0 (. —x)t)

= S(e+ (el ~Mele Q. — x)/— e+ [ S(t—){|(s]~ Vel istves
“QU(. —x)/s)IHN(|s| N2l @I (. — x,)/s))}ds.
Hence

01(0) =S +2)Qx(~0)+1 | SC QS Qrls)ds —1 | St~

-{IQT(s)r*/"QT(s)— 1526t 9 095 N2, x VO —xo/s)}ds.

i=1

On the other hand, since u,(— &) = Q(— ¢) we have
t
ut) =St +&)Qr(— &) +i [ St — s)|us)|*Nu,s)ds.

This yields
{ud) — Qr(0)} =i _I S(t — 5){[u(9)|*Mu(5) — 1Q1(s)|*NQr(s)} ds — i _I S —s)

i=1

i=k
‘{IQT(S)I“’"QT(S) — X Is| M2 F AN “N 20 — xS QU —xi)/S)}dS-
Now taking the L’ norm of this equality and applying Lemmas 1, 2, we obtain

I
lud®)— Qr(®)ll . < [ clltl —s| = 2N u Y + 1Qr (I

€

I
llu(s) = Qr(s)ll o ds+c [ ||t —s| = /1 *2M)
€

i=k
- —i ilx|2
NIQHSN*™Qrs) — ¥, Is|~ el i
i=1

N8l TM2Qu( — x)/N*NQU( — x )/ s ds.
Let us estimate the last term of this inequality. From Lemma 5, we have for

te[—1,0),

It| i=k
j‘ ”tl _s,— 1/(1 +2/N)|| IQT(S)|4/NQT(S) _ ‘Z |s|—N/Ze(-i/s)+(i|x|2/4s)
€ i=1

[IsI =2 — x /SN QU — x; /5)| Lods

lz| e
<c j’ ||t| —s| —1/(1 +2/N)e-vllsld3§ ce v/l 5 l|t| —s| 1/ +2/N) g < ce~ Y,

€ &
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Hence the fact that for se[z, —é), llu(s)|l.. < (a + 1)/Is]*”* implies that we have on

[t’ - 8),

It
lug®) = Q@) = J clltl —s| ™2 {u)IFN + 1Q (SN uds) — Qr(s)l .

Il
ds+ce™ "M S ¢ [ [g] — 5| 702l =20 Do) — Q(s)] s + ce
€
We obtain a Gronwall type inequality. Unifortunately, the term |z — 5|~ /¢ *2/M
does not allow us to directly apply the Gronwall lemma. We obtain estimates on
lu(t) — Qr(1)|l .. by using a method of a priori estimates. Indeed, Lemma 6 implies
for y large (that is from Lemma 5, nif [x; — x;| = By, ) the existence of &, such that
i#j
for €€[0,¢,), we have for

—Vte[ —gy, —e, ce” "M < (1/2)e” 721,
t

— Vte[0,60], ¢ [(t — )t HHN T 5720 Do 1245 < (1/2)e 7,
0

The fact that for all —gy >t> —¢,

Il
¢ | |lt] — s| 7 1A+ 2/N)5| =20 = Diog =125 4 oo~V < o= V/2H,
€

and a priori estimate method implies that
for —go>t> —e¢, [lu(t)— Qut)l . Se V2
and part i) of Proposition 1 is proved.

We can easily check part ii) of Proposition 1 from part i) and a priori estimate
techniques.
Assume that inf|x; — x;| = By, With the same notations as the ones in part
itj
i), we can choose ¢, such that for te[ —¢,,0), e~ ”/?!' < 1/|t|%°. In this case, for
tel — 0,0), |lu(t) — Qr(t)ll . < e~ ?*"! implies that

luge) Il < €M+ [ Q(e) . S e 7721 4+ 1/12]2/7 < (o + 1)/11*".

We consider now, for ee[ — g, 0),
the first t,e(— 1, — &) such that |Ju(t,) — Q(t,) . = e~ 7?1l

Applying part i), we obtain that r,< —¢, and for te[ —e¢y,0), we have
lu(t) — Q1(t)|| .. £ e~ 7?1, This ends the proof of Proposition 1.

IV. Compactness Results

In this section, we assume that inf|x; — x;| 2 B, ,, where B, , is the constant defined
i#j

in Proposition 1 (see Sect. 3). Therefore we can check from Sect. 3 that there are

constants ¢, >0, a>0, y >0, K >0, such that for £€(0,¢,], we have

—llul—a)ll.. =K,
—Jlult) — Q1) | . S €™M for te[ — a, — ).
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Our purpose is to have more information on the set {u,(— a)}, and in particular to
have compactness results on this set in order to find a sequence ¢, — 0 and a function
¢ such that u, (—a)— ¢ in a suitable topology. Our main tools to obtain such
estimates are to use the conservation laws of Eq. (1), the fact that u(— &)= Q(—¢)
and for t near zero, the function |t|~N/2e/t+ (X122t (| — x,)/t) is concentrated at
the point Xx;.

Lemma 7. Suppose u,(— a) is defined for ¢€(0,¢,]. Then

i=k
— E(u(—a) — Y, E(@ 40 (—(.—x),

=0 i=1

i=k
— llul=a)llf:—— X 1Q:l72,
e—0 i=1

i=k
— JIxPlu =@ — ¥ [IxIP1Q(x — x)/(— a))*.

e—0 i=1

Proof. The conservation laws yield for all ¢€(0, 5],

E(u(— a)) = E(u(—¢)) = E(Qr(—¢) = E{ 12 |e] ~N2eilemixPIeg (— (. — xi)/S)},

and
lud—a)ll = llul— &)l .= 1Qr(— &)l 2

Lemma 5 implies that
\E(QT( 3 8)) 3 { iik E{‘gl_N/Zei/s-i|x|2/4eQi( _ ( _ x,-)/s)} }’ -0
i=1
and

-0

i=k
1Q2(— ). — X Illel ~™2Qu — (. — x)/e) 12,
i=1

as & goes to zero.
Since for a fixed i, the function [¢|~¥/2e/t*ilx*/41Q(_ (. x)/t) is a solution of
Eq. (1), we have
Efje|~2efler (Cix4e (— (. —x,)/e)} = E{e' X140 (— (. — x)}
and
el ™20 — (. — x)/e) [l - = 1 Qill .-
We have

Eu(— ) — 3 B R0~ (~x), and [u(=a)—— 3 102,

e20 i=1 £~0 i=1
The last conclusion follows from similar arguments and the conservation law (4).
We are now in position to prove the existence of a function ¢ and a sequence

g,— 0 such that u,(—a)— ¢ in I nI2. Indeed, the following compactness lemma
yields the result.

Lemma 8. Let C be the set defined by {u; |ull;: < c and [|x|*|u|* < c} where c is a
positive constant. Then C is a compact set in L7 N2,
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Proof. We can easily check that Vp >0, VueC, [ |u|*>=<c/p® Since VueC,
xI2p

lull 1 < ¢, from a classical argument, it follows that C is a compact set in L. The

Holder and Sobolev inequalities (c€[2,2%*)) yield the result.

Therefore we easily check

Proposition 2. Let f, ,, a>0 and y >0 be the constants defined in Proposition 1.

Assume that inf|x; — x;| 2 By, -
i#j
Then there are a sequence &,— 0 and a function oeH* such that u,(—a)— ¢ in

LN I2. In addition, we have |@|7.= Y, 110;l2..
i=1

Proof. Ttis consequence of Lemmas 7 and 8. Let us consider the sequence e, = 1/n.

From Proposition 1, we check that for n large, u, (— a) is defined. Lemma 7
implies, for n large, the existence of a constant ¢ >0 such that E(u,(—a)) <c,
lu,(— a)lZ. <¢, fIxI*u, (— a)|* < c. On the other hand, Proposition 1 yields that
flu, (—a) —Q(—a)l . § e " Thus fu, (—a)fl,,<c and from the energy
estimates, [lu, (—a)lly: <c.

It follows from Lemma 8 that there is a e H' such that u, (— a)— ¢ in [’ [?
(the subsequence of (g,) is also denoted (g,) for convenience).

In addition, the fact that Vn, |lu,(— a)ll;: <c and [|x|*|u,(— a)|* < c implies
that @[ . <c, fIx[*lol* <c and peH".

i=k
Finally, |u,(—a)lf:~lelf: and [u,(—a)lf: = lu (=&)L~ Y 10,12,
i=1

i=k
when n— + oc. The uniqueness of the limit yields that |@]|Z,= ) [|Q||Z,. This
oy i=1
concludes the proof of Proposition 2.

V. Proof of the Theorem

We may now prove the theorem. We use two steps. We first consider the case

where inf|x; — x;| 2 B, ,, (Where Bo, is the constant defined in Proposition 1). In
i#j

a second step, we prove the general case by reducing to the framework of the first

step using rescaling arguments.

Proof of the Theorem
Step 1: ?ilflxi —x;1 2 By i
t¥]

In this case, the conclusion follows from Propositions 1 and 2. Indeed, applying
these proposition, we obtain the existence of a a >0, y >0 and a sequence &,—0
such that
— () — Qr(®) . S e on [—a, —¢,], (6)
—u, (——a)—»q) in ’~I? and geH",

—”(P“Lz = Z “Q.”Lz
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Let us denote by u(t) the solution of the equation
w(—a)=¢ and iou/ot= — Au—|ul*Nu.
We claim that u(t) satisfies the conclusion of the theorem.

Let us check first that

llu(t) = Q=) .=

ult, x) — { iik e A A T (R x.-)/t)}
i=1

<e ™ on [—a,0]

Le

Let te[ — a,0). Since for n large, u, (.) is defined on [ — a,t], there is a constant
¢ such that Vse[—a,t], Vn>nq, |lu,(5)lly: <¢, and u,(—a)—¢ in 'nI* We
have that for se[ — a, 1], u, (s) - u(s) in L’ (since the Cauchy problem is well-posed
in the space L’ for initial data in H', we obtain this result using for example the
techniques in [12]). Thus for te[ —a,0), u, (t)—>u(t) as n— + oc in L°. Finally,

when n goes to infinity in inequality (6), we obtain

lu(®)— QI .=

.0~ { 5 e g i}

<e "™ on [—a0] @)

Le

We claim now that the conclusions of the theorem are consequences of this
inequality.

Let us show that u(t) blows up at time zero and that the blow-up set in [2**/¥,

By sian ={X1,...,%}. The inequality (7) implies that for te[ —a,0), —e ¥+
/It < u(t)| . < e "™ + ¢/|t]*/*. Therefore u(r) is defined on [—a,0) and blows
up at time zero.

In the same way, we have Vx, YR > 0,

—e” vl é ”u(t) "L"(B(x,R)) - "QT(t)”L"(B(x,R)) § e 7/|‘|. (8)

If x¢{x,,...,x,}, there is an R>0 such that {x,,...,x,}¢B(x,R). Lemma 4

implies then that there is a constant ¢ > 0 such that

Vi, Ve, |||t] N2t +ExA 0 ((— x)/1)|| Lese.Ry = ¢ and inequality (8) yields that

ll6() Il Le(px. Ry = € (Where ¢ does not depend on t). Therefore x is not a blow-up point.
If x =x; for a ie{l,...,k}, then for all R < Bo, s We have

”Itl—N/ze(_i/')HilxIZ)M'Qi((- _xi)/t)“L"(B(x,R))_) + o,

and for j # i, |[|f| ~N2e! ™0+ Q) (L — X )/0)| ogge.my = O
The inequality (8) implies that |u(t)| ..y = + oc and x is a blow-up point.

In conclusion, u(t) blows-up in the norm [**** at exactly {x,,...,X}.
Our aim now is to prove that the blow-up points in H' are also exactly
{x15...,%}. We want to check the existence of a constant K such that

IV{u(®) — Qr()}ll . S K for te[—a,0).
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We have
IV{u(t) — Qr{O)} 7. = | Vu®)| 7. + IV ()|}, — 2 Re [ Va(t)VQ1(2).

On one hand,
Re [Vi(t)VQ(t)= —Re[iu(t)AQ1(2)
~ _Re hwm{ T Mgt isrsg —xi)/t)}.

i=1

Then using Eq. (5), the inequality (7) and Lemmas 3, 4 and 5, we obtain after some
calculations that there exists a constant K such that |Rede(t)VQT(t) —
l]VQT(t)Ille < K. On the other hand, similar calculations, Lemma 5, and the
conservation of the energy yield that |||Vu(r) | 2. — |VQ(t)||2.) < K (where K does
not depend on ¢).

Finally, we prove that there is a constant K such that |[V{u(t) — Q(t)} | ,. < K
on [ —a,0). We then conclude as before.

We claim now that fori = 1,...,k, and small R >0, lim [|u(t) || L2(px, ry = 11 Qill 125

t—-T

and lim ||u(f)|| L2<RN\ J B, R)> =0, as a consequence of the inequality (7)
t—=T i=1,..., k
and the conservation of mass of the solution of Eq. (1) ((2)).

On one hand, the Hoélder inequality yields, for fixed i and R, that
” u(t) - QT(I) “LZ(B(x.-,R)) § ” u(t) - QT(t)"L”(B(x;,R)) ” 1 "L’(B(xi,R)) on [_ a, 0)
(where r = 2a/(c — 2)).
It follows from (7) that [u(t) — Qr(t)|| L2(pee,py S ce” "™ on [—a,0]. Lemma 4
implies that for R< f, ,/2,
“QT(t) “LZ(B(x.-,R))_’ “Ql”iz ast—0 and ”“(l)”fzw(x,.,m,—*“Qi“fz as t—0.
On the other hand, from the conservation of the L? norm, we can check that for

i=1,...,k and all R >0, lim [|u(t)|| 2~ U
t=>T i=1
in the case where inf|x; — x;| 2 B, ,-
i#j

six, &y = 0 and the theorem is proved
k

Step 2: inflxi =X S g i

We lcaieejerived the result in the general case using rescaling arguments. Let us
consider w > 0 such that w-inf|x; - x;| Z B, ,- Applying step 1, we obtain a >0
and @eH* such that u(—a) :fjo and
—idu/ot = — Au — |u|*Nu,

—u(t) blows up at time zero,
—the sets of blow-up points in L**** and in H' is {®wx,,wx,,...,0X},

—and for i=1,...,k and small R > 0, im ||u(t)|| .2(gex, 5y = 1 Qill 125
t—0
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—for all R >0, lim [ u(t) ]| 2™, U BoxR) = 0,

t—=0 =1k

—there exists y > 0 such that

<e "M on [ —a,0).
LG

u(t)— { iik o]~ M2l (NSO (. — wxi)/t)}

i=1

Considering now v(t, x) = u(tw?, xw)w™'?, we obtain a function such that

—idv/ot = — Av — |v|*M,
—u(t) blows up at time zero,
—the sets of blow-up points in L2**V and in H' is {x,X,..., %},

—and for i=1,...,k and small R >0, lim 1) L2(pxs.ryy = 11 Qill 25

t—>T

—for all R >0, lim [[o(t)]| 2™ U Bk = 0,
k

—there exists y > 0 such that i

1>T .

<e "M on [ —a,0).
LU

i=k
o(t, x) - { Y. ltal -"/2e<-*/'“’”H"x'”/“Qi((x—x.-)/rw)}
i=1

This concludes the proof of the theorem.

Remark 7. Of course to apply step 1, instead of rescaling on the points x,..., X,
we could rescale the functions Q,.
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