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Abstract. We consider the nonlinear Schrδdinger equation:

ίdu/dt =-Δu- \u\4/Nu and w(0,.) = φ(.), (1)

where u: [0, T) x UN -> C. For any given points x1? x2,..., xfe in (RN, we construct
a solution of Eq. (1), u(t\ which blows up in a finite time Tat exactly xί9 x2,..., xk

In addition, we describe the precise behavior of the solution u(t) when t -> T,
at the blow-up points {xί9x2, - - -, xk} and in RN - {xi9 x2,..., xk}.

I. Introduction and Main Results

In the present paper, we consider the Schrόdinger equation:

idu/dt=-Au-\u\p~lu and w(0,.) = φ(.), (1)

where A is the Laplace operator on (RN, w:[0, T) x (RN->C, p = l + 4 / J V , and
φeHl(UN). More precisely, we say that w(.) is a solution of Eq. (1) on [0, T) if
Vίe[0,Γ),

u(t) = S(t)φ + if S(f - 5){|w(5)|4/ΛrM(5)}^,
0

where S(.) is the group with infinitesimal generator iΔ (the Schrodinger group)
and for each ί, u(t) denotes the function x -> w(ί, x).

For pe(l,2* - 1) (where 2* = 2ΛΓ/(ΛΓ - 2) if N > 2, otherwise 2* = + oc), it is
well known that Eq. (1) has a unique solution u(t) in H1 and there exists T>0
such that Vίe[0, T), u(i)eHl and either T= -f oc or lim | | t t(ί)l lHi= + oc (see

t^T

Ginibre and Velo [4,5], Kato [7]). Furthermore, we have Vίe[0, T),

W ί ) l l ^ = l l φ l l L ^ (2)
E(u(t)} = (1/2) II Vu(t)\\2

L2 - (\l(p + l))f Iw(ί,x)|" + 1 d x = E(φ). (3)
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When p = 1 + 4/JV, we have

(d/Λ)f I x |2 1 u(ί)|2 - 4 Im jYw(f, x)ΰr(ί, x)dx,

(d2/dt2)l\x\2\u(t)\2 = 8E(φ), where r = \x\andur = du/dr. (4)

For p < 1 + 4/N, the conservation of the energy (3) implies that blowing-up in
finite time never occurs (Ginibre and Velo [4]). On the other hand, it is well known
that for p ̂  1 + 4/N9 there are singular solutions of Eq. (1) for suitable initial data
(see Zakharov, Sobolev and Synach [17], Glassey [6]). That is, there exist solutions
u(t) of Eq.(l) such that w(.)eC([0, T), tf1) and lim ||w(ί)||Hl = |lim| ||ϋ(ί)||L2 + 4/N =

t-^T t->T

+ oc. Our aim is to have a better understanding of the blow-up solutions' behavior
and in particular of the local behavior of these solutions, in the critical power case
p = 1 + 4/ΛΓ. For N = 2, this model has a physical interest: it can be considered as
a first approximation to a model of a planar laser beam which is propagating
along a single direction t in IR3.

The phenomena which occur in the case where p = 1 -f 4/N seem to be quite
different from those where p > 1 + 4/N.

Indeed, in the supercritical case 1 + 4/N < p < (N + 2)/(N — 2), numerical
computations (Lemesurier, Papanicolaou, C. and P. L. Sulem [9]) and some
mathematical analysis (Merle [11]) suggest that every blow-up solution has a
strong limit in L2 at the blow-up time.

In contrast, for p = 1 + 4/N Merle and Tsutsumi ([13]) show that a blow-up
solution never has a strong limit in L2 at the blow-up time. In addition, if the
initial data φ has a spherical symmetry, then an L2-concentration phenomenon
occurs at the origin at the blow-up time (see also [16,8]). More precisely, for all
R > 0, we have lim inf || u(t) !IL2(B(0 R» ̂  I I 6 \\L29 where Tis the blow-up time and Q is

f->Γ

the ground state solution of the equation

-Δu + u-\u\4/Nu = Q (5)

(for the existence of the function β, see for example Weinstein [15]).

In this paper, we are interested in the local behavior of the solution of Eq. (1)
at the blow-up time and in particular we are interested in what the blow-up sets
BHl and BL2 + 4/N look like.

Let us first define the blow-up set BF for a functional space F.

Definition. Assume that there exists T>0 such that Vfe[0, T), u(i)eHl and
lim || u(t) || H1 = + oc. We denote by BF the set of points x0 such that for all R > 0,
r-*T

there is a sequence ίπ->Γsuch that \\u(tn)\\F(B(XQfR))^ + <*> where IMlF<*<*0,κ)) is

the norm in F of the restriction of v at the ball of center x0 and radius R.
Nothing is really known about these sets. For example, we do not know if

BHl = BL2 + 4/N. In the particular case where p = 1 + 4/Λf, we have more information
on Eq. (1). Equation (1) has a pseudoconformal in variance law; if u(t, x) is a solution
of Eq. (1), then \t\-N/2e(i^2)/4tu(l/t,x/t) is again a solution of (1) (see [14]). This
invariance law yields explicit blow-up solutions:

ί, x) = I T - 1\ -^e

[(-l'(T-^+(i^2^T-^R(x/(T - 1)),
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where R is a stationary solution of Eq. (1) in the sense where R satisfies the
following Eq. (5) (see [2]). These are the only explicitly known blow-up solutions.
In this case, we check that

—the origin 0 is the only blow-up point,

—for all R > 0, lim || u(t) llL2(mR)) = II <P IIL2,

—J|x | 2 |w(i,x) | 2-»Oasi-»T.

Therefore it is natural to ask if there exist blow-up solutions of Eq. (1) such that
the set of blow-up points is different from a single point and what behavior we
can expect at such points.

Our result is the following: for any given points x l 5 x2,..., xfe in IRN, we construct
a solution u(t) of Eq. (1) which blows-up in finite time Tat exactly x1,x2,...,x f c.
In addition, we have the precise behavior of u(t) at the points xf, for i= l , . . . ,/c.
We prove for these particular solutions the existence of an L2-concentration
phenomenon at the points x^: for all R>Q, and for i = l , . . . , f e , we have
lim \\u(t)\\L2(B(XιR)) = H β ι l l L 2 > where for i= l , . . . ,/c, Qt is a solution different from

zero of Eq. (5). More precisely, we have the following result:

Theorem. Let xl9x2,...,xk in IRN and Qι, ,Qkbe radially symmetric solutions of
Eq. (5).

Then there is a constant ω0 such that for ω1 >ω0,...,ω fc>ω0, there exists a
solution u(t) of Eq. (1) which blows-up infinite time T and such that

—the set of blow-up points in L2 + 4/N and H1 is {x1,x2,...,xj,
— fo r i = 1,..., fc, and all R > 0 such that the balls B(xh R) are disjoint,

lim || u(t) \\L2(B(Xι R}) = || Qi ||L2,
f->Γ

— II ' ί N V
t-+T \ /=!,. . . ,* /

In addition, there is a constant y > 0 such that

u(t)-
. i = l

<e-vl\τ-t\

on [0, T).

Remark 0. Schoen has obtained similar results for elliptic equations with critical
power in [13'].

Remark 1. The main point of the theorem is fact that the result is true for any
given points x l 9 x2,..., xk in RN.

Remark 2. We only need that the functions β, are solutions of Eq. (5) and decrease
exponentially at infinity.
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Remark 3. We remark that the behavior of the solution u(t) obtained in the theorem
at the blow-up time is the same (except for the number of blow-up points) as the
behavior of the explicit blow-up solutions (see above).

There is a concentration of mass (in the norm L2) at the blow-up points
x1,x2,...,xk. Since for all solutions of Eq. (5), β' different from zero, we have
II6' I I L* ̂  II β I I L* (by definition of the ground state); for all R > 0 and i = 1,..., fe,
we have lim inf || u(t) \\L2(B(x.tR}} έ II β IIL2. This result is connected to the one obtained

by Merle and Tsutsumi in [13]: if φ has a spherical symmetry, for all R > 0, we
have liminf ||M(ί)||L2(mR))^ ||β||L2 (where Γis the blow-up time).

On the other hand, at the blow-up time all the mass concentrate around the

blow-up points. That is for all R > 0, lim || u(t) \\ Ll RN\ (j B(xh R)} = 0.
t-^T \ i=l , . . . , f c /

Remark 4. For the heat equation in dimension one on [0,1],

du/dt = Δu + \u\p~lu on [0,1] and w(0) = w(l) = 0,

Chen and Matano ([10]) show that when the blowing-up in finite time occurs,
there is only a finite number of blow-up points. Open problems are first to show
the existence of a solution which blows up at exactly k points, and whether or
not we can choose these k blow-up points arbitrarily.

An important open problem is to find for any blow up solution what the
blow-up set looks like. We can expect that the blow-up set is a finite union of
manifolds. In the special case of an initial data φ with spherical symmetry, consider
the solution of the Schrόdinger equation, u(t) and assume that u(t) blows up in
finite time. Can we show that the origin is the only blow-up point in H1.

The theorem has the following corollary.

Corollary 1. It is false in general that at the blow-up time, we have

lim < inf J|x — y | 2 |w(ί,x)\ 2 c

On the other hand, the theorem has a "dual" version. Indeed, we now remark that
using the conformal in variance law of Eq. (1) on the solution obtained in the
theorem yields the corollary

Corollary 2. Let Qι,. .,Qkbe radially symmetric solutions ofEq. (5). Then for ω > 0,
there is an initial data φ such that the solution of Eq. (1) u(t) is globally defined. In
addition, there exist yι(.)9...,yk(.)eC(R, RN), ω ι(.),...,ωk(.)eC(UN +\ R) such that

(i=k }
MW ~ ϊ Σ O)NI elt0i(Xtt)Qi(o}(. + yi(t)) > ->0 and inf | yt(t) — y/OI -> + oc

u=ι J H1 i*j
as ί-> + oc.

Remark 5. As before, we only need the exponential decay of functions Q{ at infinity.

Remark 6. Therefore we obtain a solution which behaves like a sum of periodic
functions travelling with different constant speed. Of course using rescaling
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arguments on the functions Qί9 we can obtain a function u(t) which behaves like
a sum of periodic functions with different periods. Similar results can be also
proved with some type of /c-coupled nonlinear Schrodinger equations.

Moreover there is an application to the Cauchy problem of Eq. (1). Indeed,
we have

Corollary 3. Let xί9 x2, . . . , xk in UN and Qί9...,Qkbe radially symmetric solutions
of Eq. (5). Then there is a solution u(t) of Eq. (1) such that u(t) is solution of(l) on
(0,T)/or T>0, and

In fact, there is a k parameters' family of solutions.
The interest of this paper is twofold.

i) We construct explicit examples of blow-up solutions with a blow-up set different
from a point.
ii) We introduce a new method to construct solution of Eq. (1). We proceed as
follows. We remark that the function

Qτ(t)= Σ IΓ-ίΓ^β-'^-^+^^^-^ί.-xMΓ-ί))
i = l

is almost a solution of Eq. (1), since it is a sum of functions which are "decoupled,"
at time T. Therefore with techniques of a priori estimates on exact solution of
Eq. (1) with one approximate solutions of Eq. (1) and compactness arguments, we
construct a solution which behaves like Qτ(t) at time T.

The paper is organized as follows:

In Sect. 2, we give a precise outline of the method.
In Sect. 3, we establish crucial a priori estimates on a class of solutions of Eq. (1).
Section 4 is devoted to the proof of compactness results.
In Sect. 5, we finally prove our main result.

We conclude this section by giving several notations. We abbreviate D(RN)
and || . ||Lβ(RW) by Lq and || . \\Lq. We put σ = 2(N + 2)/N = (1 + 4/ΛΓ) + 1. For 5 > 1, we
define s such that 1/s + 1/s = 1.

II. Outline of the Proof the Theorem

Let x1? x2> j *k be in RN, and Qί9 . . . , Qk be radially symmetric solutions of Eq. (5).
For convenience, using the autonomous character of Eq. (1), we have to find an
initial data φ, ω> 0 and an α > 0 such that the solution u(t) of the following
equation:

u(-a) = φ and idu/dt = -Δu-\ u\4/Nu, (6)

blows-up at time 0 such that

— the sets of blow-up points in H1 and L2+4/N is {x1,x2,...9xk},

—for i = 1, . . . , k, and small R > 0, lim || u(t) ||L2(Λ(jeίfjR)) = II Qι I I L2,
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i-k

Σ l ( τ - i
ί = 1 J I £2 + 4/N

£-y/|Γ-ί| on [̂ 0, T).

The proof in the general case will be the same.

Let us consider the function Qτ(t) = £ | tΓN/2β-ί/t+ίW2/4rβi((. - x,)/t), for ί < 0

(ω = 1). We first remark that Qτ(t) has the behavior we want at the blow-up time.
Unfortunately, it is not an exact solution of the Eq. (6), but a computation yields
that it is "almost" a solution of Eq. (6) for t near zero. In fact, there is a
competition between two phenomena. Indeed, for a fixed z, the function
1 1 1 -N/2 e i/ t+ ' 'W 2 /2ίg.((. _ x .)/£) is concentrated at the point xt as t -> 0 and is decoupled
with the others. On the other hand for ί->0, the function \tΓN/2e*lt+iM2l2tQj(. - xj/ί)
goes out of space H1, where we solve the Cauchy problem of the Schrόdinger
equation. Our aim is to find a solution u(t) of Eq. (6) such that Vίe[ — 0,0), we
have \\u(t)- Qτ(i)\\Lσ^e~7/|ί| (where 7 is a constant which does not depend on ί).
We then verify that a function u(t) which satisfies such a property has the behavior
we want at time zero. The fact that the solutions Q, and the blow-up phenomena
are strongly unstable ([3]) imply that it is difficult to have the same local blow-up
time at points xl9...9xk. To illustrate this fact, for example, we do not obtain a
solution with the behavior we want by taking for ε > 0 and small, the solution of
the equation

u(-ε) = Qτ(-ε) and idu/dt = -Δu- \u\4/Nu.

Rather, we use two steps to find such a solution u(t). We consider wε(.), the
solution of the following problem:

u( - ε) = Qτ( - ε) and idu/dt =~Δu-\u\4/Nu. (ε)

In a first step, for a fixed number a > 0, we seek estimates on uε(t) for t e [ — a, — ε)
uniformly on ε. For this purpose, we work in the space Z? which is a natural space
in which to solve the Cauchy problem of Eq. (1). We obtain these estimates using
a fixed point formulation in I? of equation (ε) and techniques of a priori estimates.

In the second step, using the conservation law (2)-(4), we obtain compactness
results on the set {uε( - a)}. Lastly, we verify that the solution u(i) of Eq. (1) obtained
with an initial data φ such that there is a sequence εn->0 such that uεn(-a)^φ
when w-» + oc, has the behavior we want at blow-up time.

III. A Priori Estimates

In this section, for a number a > 0, we estimate uε(t) on [ — α, — ε] when ε -> 0 and

more precisely the quantity uε(ί)-βΛO = ̂ 0-1'̂
u=ι J

when inf |x f — X j l is large. This assumption is technical and has no consequences

on the conclusions of the theorem. Our main tools are, on one hand, the fixed
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point formulation on I? of equation (ε) and the fact that Qτ(t) is "almost" a solution
of Eq. (1) for t near the "blow-up time."

We use a priori estimates techniques. We remark ([14]) that there is a constant
α > 0 such that Vίe[ - 1,0), || QrWIL- ̂  α/|ί|2/σ. Therefore, we want to prove that
for a fixed ε,
if for se[ί, -ε), ||ιφ)||L.^(α+ l)/M2/σ, we have

II wε(0 — 6r(0 IIL σ = £~w|ί | (where y is a constant which does not depend on ε).

Proposition 1. Let Qι,.. .,Q k be radial symmetric solutions of Eq. (5) with a finite
number of zeros (in spherical coordinates).
i) There exists a constant βQ k > 0 such that for inf \xt — Xj\ ^ βQ k, there is an ε0

ί*j *'
such that for all — ε0 ̂  t g — ε,

Vse(ί,-ε), ||ιφ)||Lff^(α+l)/|s|2/σ implies that \\uε(t)-ρτ(ί)||L,^-y/|ί| (where y
is a nonnegatίve constant which does not depend on ε).
ii) Assume that inf I*,-*,-! ^βQι tk. There exist 0>0, K>0, y > 0 such that for

εe(0,ε0] we have \\uji-a)\\L.£K9 and for fe[-α, -ε], \\uε(t)-Qj{t)\\Lσ^e-^.

Let us first establish some lemmas and preliminary results.

Lemma 1. i) Assume that uεϋ, then Vί ^0, S(t)ueϋ
and ||S(Ow||Lff^ΦΓ1/(1 + 2/N) | |w||L& (where c does not depend on t and u).
ii) Assume that weL2, then VίS(ί)weL2 and ||5(ί)w||L2 = | |w||L 2.

Proof. See Ginibre and Velo [4].

Lemma 2. Assume that u and v belong to 17. Then we have for t Φ 0,

l|S(f){|ι<|4/NιM

Proof. See Ginibre and Velo [4].
We state a simple result on solutions of Eq. (5) which is fundamental in the

proof of the theorem.

Lemma 3. Let be Q a radial solution of Eq. (5) with a finite number of zeros (in
spherical coordinates). Then there are constants c>0 and θ>0 such that

Vr>0, IβWI + lβ'ίr)!^-*.

Proof. This is a classical result. In the case where Q has no zero, we refer to [1]
(Berestycki, Lions and Peletier). The proof in the general case is exactly the same.

As a corollary, we have the following lemma:

Lemma 4. Let be R > 0 and Q1 and Q2 radial solutions ofEq. (5) with a finite number
of zero (in spherical coordinates).
i) Then ||β-^+ίW/4WQ(x/|ί|)||L.(W>Jl)^0 and ||^+|Wa^β(x/|t|)||βl(W>Jl)^0 as
ί->0.
ii) Let s ̂  1. There exists a constant c> 0 such that for t near zero

II flι((- - Xι)/t)Q2((. - x2)/t) \\LS < ce-c^ -*2'/'",

II 6Γ(( - *ι)Λ)β2(( -
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and

II βι(( - *ι)A)βΓ((< - *2)A) Hi, < <*'"*' -«'"".

Proof. From Lemma 3, some calculations yields

l l e - ' / l ' l + 'M'^'lρίx^ and part i) follows.

Let 5^1 and ί>0. We have now to estimate the quantity ||βι((.-Xι)/f)
CM- - *)A)llι, Lemma 3 implies the existence of constants c> 0 and θ> 0 such
that Vr>0, \Q^(r)\ ^ce~θr and |β2(r)| ^cέΓ* Therefore we have also Vr>0,
\Q,(r}\s^ce-θr and \Q2(r)\s ^ce~θr.

Hence we have

II βι(( - *ι)A)β2(( - *2)A) III- ̂  f lβι((* - *ι)A)l5lfi2((* - *2)A)N*
g c Jexp {- θ{\x - xl I + |x - x2\}/t}dx.

On ther other hand, we have the following inequality |x — x j + lx — x2 |^
(1/2){|x— (xx + x2)/2\ + \xλ — x2 |}. Thus some computation yields

With a similar proof, we can obtain the two last estimates and Lemma 4 is proved.
Lemma 3 yields exponential estimates for ί near zero on the function

Ci=k

l i = l

which allows us to find a good estimates on uε(t) with the fixed point formulation
of Eq. (ε). More precisely, we have

Lemma 5. Let us assume that the assumptions of the theorem are satisfied.
i) There exist c> 0 and y > 0 such that we have for ίe[ — 1,0),

Γ i = k
ID (tM4/Nn (t\ 1 V I H ~ ~ /v/2^~// ί) + ( i | J c l 2 )/ 4 i t l l f l~ /v/2/Ί (( v \/A\4 INn (( v VΛ
\\lτ\l)\ Y,T\l)~\ 2-ι I Γ I e M Γ I V^iU ~*ΐ)/^l \ίi(( ~~xi)/t)

ii) Then there exist c and y such that we have for te\_— 1,0),

i = k

/ \\\t\ e
ί-^ M I I

iii) In addition, assume that k and the function Qt are fixed. Then y goes to infinity
when i n f | X j —x7 | goes to infinity.
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Proof. The proof is based on the exponential decay of the functions β, at infinity
and on the concentration phenomenon at the point xf of the function β;((. — x,)/t)
when t goes to zero. This proof is somewhat technical. For simplicity, we consider
the case of k = 2, the proof in the general case will be the same.

Let us consider the quantity

= w/2 (βι((. -χl)/t)+Q2(. - χ2)/ί))i*'%rw'2{βι((. - *ι)Λ) + e2(. -

= |ίΓw{{l(βι(. - χ1)/t)+Q2((.~χ2)/t))\4/N-\Q1((. - xΛ/or}
βι(( -*ι)/t) + {l(βι(( -*ι)/t)+β2(( -x2)/t))\4IN-\Q2((. -*ι)
β2((.-x2)/t)}.

Consider for example

, 0= I * ΓN{l(βι(* - *ι)A) + fi2((* - χ2)A))l4'" - |βι(*. -

If l(βι((* - xι)/OI ̂  (1/2)1 (M* - ^2)A))I> then applying the mean value theorem
(even if Λ/N — 1 g 0), we obtain

\B(x, t)\ £ c\t\-*{ \Q,((x - x2)/ί)l(4/N)' l + |β2P - *ι)Λ)ΓN)~ l} \Qι((x ~ *ι)

-Iβ2((χ-χ2)/ί)|.

If (1/2)1 Q2((x - x2)/ί))l ^ l(βι((x ~ Xι)Λ)l» a direct estimation yields

|B(χ, 01 ̂  c|ίrΛΓ{lβ2((χ - *ι)/f)l4/"} lflι((χ -
Thus

II^IL^ciίi-^llfliίC -χ2)A)4/Λrfi2(C -χ2)A)HL*+ Ilfl2(( - 2̂)
We have from Lemma 4, ||A||^^c|ίΓV(-2θ/(σί)) |xι-χ2l} ^Ce{(-0/(σί))|xι-χ2|} for
— 1 :g ί < 0 (with the same notations as the ones in the proof of Lemma 4) and
part i) follows.

Part ii) is consequence of calculations similar to the ones done in part i). Part
iii) follows from the proof of part i).

We now state and prove a fundamental inequality to obtain crucial a priori
estimates for the proof of the theorem.

Lemma 6. Let cί > 0. For y large, there is a constant τ > 0 such that

Vfe[0,τ], \(t-sΓ(1 + 2/Nrls-2(*-2}ί°e-™'}ds£c1e-W}.
o

Proof. The proof is somewhat technical. Showing that

j( ί_s)-(H-2/Λr)-is-2(σ-2)/^-(v/s) ί/s^Cιβ-v/r

0

is equivalent to showing
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If we put s = tu, we obtain after some computation

i
m —u)~(l + 2IN]~ίu~2(σ~2)lσe~(y(ί~u)lut)du<c1t

2l(N+2\
o

On one hand, we have for t near zero,

1/2 1/2
f (i -u)~(1 + 2/Nrlu~2(σ~2)/σe~(y(1~u)/ut)du<c f u~2(σ~2)/σe~(y(1~u)/ut)du.
o o

Since Vwe(0, 1/2), 0 < t g 1 and 7 > 1 we have 7(1 - u)/ut ^ 7(1 - u)/2ut + 7(1 - w)/2wί ̂
7/2ί + l/4w.

Thus

1/2 1/2
f π _ u)~(1+2/N)~ίu~2(σ~2)/σe~(y(1~u}/ut)du<c f w~2(σ~2)/σe~1/4"e~(v

o o

(where c is a constant which does not depend on ί).
On the other hand, we have

- u - 2 ( σ - 2 ) / < r e - ( y ( l - u ) / u t ) d u ^ c (j _ „)-(! + 2/N)~ ^-(

1/2 1/2

(from the fact that Vwe(l/2, 1), (1 - u)/u ^ (1 - w)).
We remark that

1

J (l-w)~ ( 1 +

1/2

1/2
2/N)-1£-(y(l-κ)/ί)^M = c f /w>

0

l/2t
= C J (5)

0

^ c(y)t2/(N+2) (for ί near zero),

where c(γ) goes to zero when 7 goes to infinity.
Using these two estimates, it is easy to conclude the proof of Lemma 6.
We are now in position to prove Proposition 1.

Proof of Proposition 1. Part i) follows from the fixed point formulation of Eq. (ε)
and a priori estimates (Lemmas 5 and 6).

For convenience, as before we denote the function

We recall that computations yield ||QΓ(s)||L<7gα/|s|2/ίr. The assumptions of the
proposition imply that for t < s ̂  - ε, ||wβ(s)||Lff ^(α+ l)/\s\2/σ.

Since for i = 1,..., /c, \t\-N/2e^-iM+(ilx^/4tQi(. - xj/ί) is a solution of Eq. (1), we
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have

= S(ί + β){(|βΓN'V' -'l«l2/4«βl((. - X;)/-ε))} + J S(i-

Hence

= S(t + ε)QΊ{ - β) + i } S(t - sJlβΛs^βΛsίώ - i } S(t - s)
-ε -ε

iρr(s)|
4/"ρr(s)- 'f isi-'/v-^'W'/^iM-*'^. -χM4'H

1=1

On the other hand, since M£(— ε) = βr(— ε) we have

ue(t) = S(t + ε)ρr(- ε) + i f S(t - sϊliijίs)!*'^)*.
-ε

This yields

KW - Qτ(t)} = i \ S(t - s){\uε(s)\*/Nuε(s) - \QT(s)\4/NQT(s)}ds - i J S(t - s)
— e —ε

\Qτ(s)\4/NQτ(s) - Σ* IsΓ^V-'^'^llfΓ "^((.-x^^Q^-
i = l

Now taking the 17 norm of this equality and applying Lemmas 1, 2, we obtain

|ί|
^w^

Ul

Let us estimate the last term of this inequality. From Lemma 5, we have for

i = l

• w/22β,((. -
IΊ
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Hence the fact that for se[ί, - ε), ||Mε(s)||t, ̂  (α + l)/|s|2/σ implies that we have on
[ί, -ε),

'

We obtain a Gronwall type inequality. Unifortunately, the term |τ — s| ~ 1/u + 2/N)

does not allow us to directly apply the Gronwall lemma. We obtain estimates on
\\uε(τ) ~ Qτ(τ) I I L° by using a method of a priori estimates. Indeed, Lemma 6 implies
for 7 large (that is from Lemma 5, inf \xt — Xj\ ^ βQ. k) the existence of ε0 such that

i*j

for εe[0,ε0), we have for

— Vίe[-ε0, -ε],ce-y/|ί|

o

The fact that for all -ε0 > t > - ε,

and a priori estimate method implies that

for -ε0>ί>-ε, ||uβ(ί)-

and part i) of Proposition 1 is proved.

We can easily check part ii) of Proposition 1 from part i) and a priori estimate
techniques.

Assume that infix,- -x}\ ^βQί,k With the same notations as the ones in part
i*j

i), we can choose ε0 such that for ίe[— ε0,0), e~v/2 | ί | ^ l/|ί|2/<T. In this case, for
ίe[-ε0,0), \\uε(f)-Qτ(f)\\Lσ^e-^Λ implies that

\\uε(t) \\L. ̂  e«™ + || Qτ(t) ||L. g e-*™ + l/\t\2/σ ^ («

We consider now, for εe[— ε0,0),
the first ίβε(- 1, - ε) such that || uε(tε) ~Qτ(tε)\\Lσ = e~*2M.

Applying part i), we obtain that tε^— ε0 and for ίe[ — ε0,0), we have
KW ~ 6rίOllL = ̂ ~y/2 | ί | This ends the proof of Proposition 1.

IV. Compactness Results

In this section, we assume that inf \xt - xj\ ^ βQι Λ, where βQ.k is the constant defined
i*j

in Proposition 1 (see Sect. 3). Therefore we can check from Sect. 3 that there are
constants ε0 > 0, a > 0, y > 0, K > 0, such that for εe(0, ε0], we have

-||uε(-α)||Lσ^K,
^y/|t1' for ίe[-α, -ε).
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Our purpose is to have more information on the set {uε(— 0)}, and in particular to

have compactness results on this set in order to find a sequence εn -» 0 and a function
φ such that uεn( — a)-+φ in a suitable topology. Our main tools to obtain such
estimates are to use the conservation laws of Eq. (1), the fact that uε(— ε) — Qτ( — ε)
and for t near zero, the function \t\~N/2eί/t + (ίlxl2)/2tQi((.- xt)/t) is concentrated at
the point xt.

Lemma 7. Suppose uε(—a) is defined for εe(0,ε0]. Then

E(uε( - a)) ί -(.- x,.)),

ε->0

2 - 2

i i a ilk
- ί |x|2|uε( - α)|2

ε->0 i = l

Proof. The conservation laws yield for all εe(0,ε0],

E(uε(- a)) = E(uε(-ε)) = E(Qτ(-ε)) = E j
U=l

and

(-(. - xj/ε) ,

\\uε(-a)\\L2=\\uε(-ε)\\L2=\\Qτ(-ε)\\L2.

Lemma 5 implies that

£(βτ(-£)H Σ

and

\\QA-e)\\l-Σ

Σ*
ί=ι

as ε goes to zero.
Since for a fixed ί, the function

Eq. (1), we have

and

""*' ' β;(-( -Xι)/t) is a solution of

*|2)/4εβ, (-( -*,)/ε)} = £{e'-""|ϊ/4βί(-(. -x;))}

We have

E(ue( - a)) > £ E(ei~ilxl2/4Qi( -(.- *.)), and K(-0)||22 > £ ||β.||22.

The last conclusion follows from similar arguments and the conservation law (4).

We are now in position to prove the existence of a function φ and a sequence
επ->0 such that uεn(— a)^κp in Z/nL2. Indeed, the following compactness lemma
yields the result.

Lemma 8. Let C be the set defined by {u; \\u\\H1 ^ c and J |x | 2 |w | 2 ̂  c} where c is a
positive constant. Then C is a compact set in LσnL2.
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Proof. We can easily check that Vp>0, VweC, J \u\2^c/p2. Since VweC,
1*1 *P

II M I I HI = c' fr°m a classical argument, it follows that C is a compact set in L2. The
Holder and Sobolev inequalities (σe[2,2*)) yield the result.

Therefore we easily check

Proposition 2. Let βQ. k, a > 0 and y > 0 be the constants defined in Proposition 1.
Assume that inf \xt — Xj\ ^ βQ. k.

i*J

Then there are a sequence εn -+ 0 and a function φe//1 such that uεn( — a) -> φ in

Lσr\L2. In addition, we have \\φ\\l2=
i = k

Proof. It is consequence of Lemmas 7 and 8. Let us consider the sequence εn = \/n.
From Proposition 1, we check that for n large, u£n( — a) is defined. Lemma 7

implies, for n large, the existence of a constant c> 0 such that E(uEn( — a)) < c,
\\uEn( — a) || 2

L2 < c, f |x | 2 |w ε (- a)\2 < c. On the other hand, Proposition 1 yields that
\\^n(-a)-Qτ(-a)\\Lσie-^a. Thus ||uβιι(-α)||L.gc and from the energy
estimates, \\uεn( — a) \\Hί ^ c.

It follows from Lemma 8 that there is a φe//1 such that uEn( -a)^κpinLσnL2

(the subsequence of (επ) is also denoted (εn) for convenience).
In addition, the fact that Vn, ||w£n( - α)||Hl < c and J|x|2 |w£ n( - a)\2 < c implies

that IMIHι<c, $\x\2\φ\2<c and φeH1.

Finally, \\uεn(-a)\\2

L2^ \\φ\\2

L2 and \\uEn(- a)\\2

L2 = \\uεn(-εn)\\l^Σ ml*
i= 1

i = k

when n-^ + oc. The uniqueness of the limit yields that ||φ||£2= X 11611^- ™s

concludes the proof of Proposition 2.

V. Proof of the Theorem

We may now prove the theorem. We use two steps. We first consider the case
where inf \xt — Xj\ ^ βQ. k, (where βQ.k is the constant defined in Proposition 1). In

ί*j
a second step, we prove the general case by reducing to the framework of the first
step using rescaling arguments.

Proof of the Theorem

Step 1 : inf \Xi-Xj\^βQιk.
i*j

In this case, the conclusion follows from Propositions 1 and 2. Indeed, applying
these proposition, we obtain the existence of a a > 0, y > 0 and a sequence εn -> 0
such that

\\L^e-^ on [-a, -εj, (6)
— uεn(-a)-+φ in LσnL2 and φeH\

-\\φ\\2

L2=Σ\\Qi\\2

L2.
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Let us denote by u(t) the solution of the equation

u( — a) = φ and idu/dt = — Δu — \u\4/Nu.

We claim that u(t) satisfies the conclusion of the theorem.

Let us check first that

U = ι J \

se "'" on [-0,UJ.

Let ίe[ - 0,0). Since for n large, u£n(.) is defined on [-0, ί], there is a constant
c such that Vse[-0,ί], V n > n 0 , ||uβn(5)||H1 gc, and w£n(-0)->φ in LσnL2. We
have that for se[— 0, ί]> wεn(

5)~* u(s) in ^σ (since the Cauchy problem is well-posed
in the space Lσ for initial data in H1, we obtain this result using for example the
techniques in [12]). Thus for fe[-0,0), uεn(t)-+u(t) as π-> + oc in Lσ. Finally,
when n goes to infinity in inequality (6), we obtain

\\u(t)-Qτ(t)\\Lσ= w(ί,x) - I |f |fΓ"'V

^-v/l'l on [-0,0]. (7)

We claim now that the conclusions of the theorem are consequences of this
inequality.

Let us show that u(t) blows up at time zero and that the blow-up set in L2+4/]V,
£L2 + 4/N = {xι,...,x,J. The inequality (7) implies that for ίe[-0,0), -e~γM +
c/\t\2/σ^ | |w(ί)||L σ^e~y / | ί | + c/|ί|2/σ. Therefore u(t) is defined on [-0,0) and blows
up at time zero.

In the same way, we have Vx, VΛ > 0,

- e-*M ϊ ||u(t)|| W,Λ)) - \\QM\Lw*,R» ̂  β-γ/l". (8)

If xφ{xl9...9xk}9 there is an R>Q such that {xί9...9xk}φB(x9R). Lemma 4
implies then that there is a constant c>0 such that
Vi, Vί, |||ί|"N/Vί/ί)+(/|x |2)/4fQi((. -Xi)/t)\\Lσ(B(XίR))^c and inequality (8) yields that
II w(0 \\L (B(X,R» = c (where c does not depend on t). Therefore x is not a blow-up point.

If x = Xi for a ie{l,..., /c}, then for all R < βQ. k, we have

The inequality (8) implies that l|w(ί)llL«(i>(jc,κ))~>> + ̂  an(^ x ^s a blow-up point.

In conclusion, u(t) blows-up in the norm L2 + 4/N at exactly {x1,...,xk}.
Our aim now is to prove that the blow-up points in H1 are also exactly

{x l 5..., xk}. We want to check the existence of a constant K such that

for ίe[
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We have

On one hand,

= -Re$ΰ(t)Δ4 X |f|-"/V-//ί)+(/w2)

Then using Eq. (5), the inequality (7) and Lemmas 3, 4 and 5, we obtain after some
calculations that there exists a constant K such that |ReJVw(ί)VgΓ(ί)-
IIVQrWII^I = ̂  On the other hand, similar calculations, Lemma 5, and the
conservation of the energy yield that | ||Vw(ί)||^2 — l|VβΓ(ί)ll£2 | ̂  K (where K does
not depend on ί).

Finally, we prove that there is a constant K such that | |V{u(t) - Qτ(t)} \\L2 g K
on [ - a, 0). We then conclude as before.

We claim now that for i = 1,..., fc, and small R > 0, lim | |u(t)\\L 2 ( B ( x. f R } ) = \\Qi||L2,

and lim ||w(ί) 11,21 JRN\ I J B(xhR) ) = 0, as a consequence of the inequality (7)
r-r V f=ι:..,k /

and the conservation of mass of the solution of Eq. (1) ((2)).
On one hand, the Holder inequality yields, for fixed i and R, that

IWO-δτ<OIIL2(l^^ on [-α,0)
(where r = 2σ/(σ - 2)).

It follows from (7) that \\u(t)-QT(t)\\L2(B(XiM^ce-ylltl on [-α,0]. Lemma 4
implies that for R^βQ. k/2,

(β(,,κ))- \\Qi\\l ^ t-+0 and NWII^^-llβίll^ as ί-,0.

On the other hand, from the conservation of the L2 norm, we can check that for

i = 1, . . . , /c, and all R > 0, lim ||w(ί)llL2(iRN\ BU /?» = 0 anc^ the theorem is proved
'->r i=ιu..,fc "

in the case where inf |xf — Xj\ ^ j?Qι fc.

We derived the result in the general case using rescaling arguments. Let us
consider ω>0 such that ω inf |x£ — x7 | ̂ βQίk Applying step 1, we obtain α>0

i*j

and φeH1 such that u(— a) = φ and

—idu/dt= -Δu-\u\4/Nu,
— u(t) blows up at time zero,
— the sets of blow-up points in L2 + 4/N and in H1 is {ωx1,ωx2,...,ωxk},

—and for ί= l , . . . , / c and small Λ>0, lim ||t/(ί)HL2(β(ωJCi>R)) = | |βillL2,
ί-O
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—for all R > 0, lim || u(t) \\ L2(R*χ y β(ωx.>Λ)) = 0,

—there exists y > 0 such that

' i = k

on [-0,0).
L i = l

Considering now ι;(ί, x) = w(ίω2, xω)ωN/2

9 we obtain a function such that

—idv/dt =-Δv- \Ό\*INΌ,
—v(t) blows up at time zero,

—the sets of blow-up points in L2 + 4/N and in H1 is {x1,x2,...,x fc},

—and for i= l , . . . , / c and small K>0, lim MOIIL2(β(x,Λ)) = II6^

—foraUΛ>0,l imHί) | | L 2 ( R N N y β(Xι,Λ)) = 0,
r~*Γ ι = l k

—there exists y > 0 such that

\v(t,x)-
^ / = 1

This concludes the proof of the theorem.

Remark 7. Of course to apply step 1, instead of rescaling on the points xl9...9xk9

we could rescale the functions β/
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