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Abstract. Bounds are given for the unstable eigenvalue of the period-doubling
operator for unimodal maps of the interval. These bounds hold for all types of
behaviour |x|r of the interval map near its critical point. They are obtained by
finding cones in function space which are invariant under the tangent map to
the doubling operator at its fixed point.

1. Introduction

One-parameter families of maps of the interval, such as

μ\-+l-μ\x\r,

with r > 1 fixed, exhibit sequences of bifurcation points for period doubling, which
accumulate at a universal rate δr, [F, CT]. For example, for families of quadratic
maps (i.e., for r = 2), it is well known that δr = 4.66920.... A rigorous bound on <52 is
given in [EW2]. The aim of this paper is to give rigorous bounds on δr for all r > 1
by using a convenient reformulation of the tangent map to the doubling operator.

To state these bounds, we need some notation. Consider the Cvitanovic-
Feigenbaum equation

()

with the conditions g(0) = 1 and λ= — g(l). We consider this equation on several
classes of functions, labelled by r. Namely, we require g to be of the form g(x)
=/(M r) with / analytic in a neighborhood of [0,1]. A solution of this equation is
then denoted by gr. Solutions having some additional properties (we shall spell
them out in the next section) are known to exist for all r > 1. In this paper, we show
that these additional properties have the following consequence: Denote fr(z)
= gr(zr) for ze [0,1], and λr = — gr(l). Then, δr satisfies the inequality
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To prove the above statement, we show that the tangent map of the doubling
operator preserves a certain cone in function space (improving thus on a previous
similar result of [CE] valid only for r ̂  2). Below, we begin by fixing the notation
and performing changes of variables in function space. Then we develop the
subject proper of this paper. Throughout the paper, r is a fixed constant, r > 1, and
we drop henceforth the index r.

2. General Notations

We denote by g a fixed point of the doubling operator, with the following
properties:
1. g is a continuous, strictly decreasing map of [0,1] into (—1,1], satisfying the
Cvitanovic-Feigenbaum equation:

g(x)=-\g(g(λx)) Vxe[0,l],g(0) = l . (2.1)

Here, A=-g(l)e(0,1).
2. There is a function /, holomorphic on a complex neighborhood of [0,1]
such that

g(x)=/(*'), /'(*) < 0 Vx e [0,1]. (2.2)

3. The inverse functions of / and g are respectively denoted U and u. The
function U extends to a function which is holomorphic in the domain

j(-A-1,/l-2), (2.3)

= - C _ = {zeC:Imz>0}. (2.4)

The function U satisfies

(7(C+)CC_, l/(C_)cC+. (2.5)

Remark. It is extremely likely that all solutions of (2.1) with the properties 1) and 2)
also have the property 3), since solutions having all three properties have been
proved to exist for all r > 1 (see [E3] and [E2] where a list of proofs of existence is
given) and since, on the other hand, it is extremely likely that there is only one
solution (for each r) having the properties 1) and 2). The validity of 3) can also be
inferred from the "hyperbolicity" of g if it holds. Finally it is in the process of being
proved in a more general setting by D. Sullivan. In any case, we restrict henceforth
our attention to those g having the properties 1), 2), and 3). All other facts used in
the sequel are proved consequences of these properties.

Simple Consequences

a) The equation g(λx) = x has a unique solution xQ in [0,1]. It satisfies

g(*o) = 0, g'(λx0) = - 1 , λ < x0 < 1. (2.6)

The inequality λ<x0 holds since otherwise g(xo/λ)= —1/λ would be in [ — 1,1].
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b) The function U is injective and bounded in Ω(λ), vanishes at 1, and has
continuous boundary values [E2]. We denote A = U(Ω(λ)).

c) The function u is anti-Herglotzian * and holomorphic in C + uC_
u(-λ~\ 1), where it satisfies u(z)= U(z)1/r. For all zeΩ(λ),

U{z)=jU{u{-λz)). (2.7)

As r->oo, the constants λ and x0 tend to 1, and U/U(0) tends to 1 uniformly on
every compact in C + uC_u(-1,1) [El]. However, as shown in [EW], some
objects have a non-trivial limiting behavior. Among them are the functions L±

defϊned below and the two quantities τ and y0 which are given, for fixed but
arbitrary r, by

τ = λ\yo = xr

o. (2.8)

Note that yo>τ. There are crude but uniform bounds on τ and y0, e.g. 3<l/τ
<144/λ,e-λ<y0<l/(l+λ)(ΐEll).

Definition. We denote by q the map from R to R given by:

q(x) = sign(x)\x\r.

We then define L by:

L(z) = q(f(z)) Vze[0,1], i.e. L=qogoq~\ (2.9)

Note that L has a zero of order r at y0. We shall also use:

L+(z) = L(z) on [0,y0], L.(z)=-L(z) on [yo,l]. (2.10)

These functions satisfy the identities

L{z)=-ί-UL{τz)) Vze[0,l], (2.11)

or, equivalently,

L+(z)=-L_(L+(τz)) VZG[0,J;O],

(2.12)

L_(*)=-L+(L+(τz)) Vze[j;0,l].

The functions L+ and L_ are respectively holomorphic on complex neighbor-
hoods of [0,y0) and (y0,1] and they are W at yo They satisfy:

L+(0) = 1, L±(yo) = 0, L+(τy0) = y0, τL+(τy0)= ~λ. (2.13)

Their inverse functions are respectively denoted S+ and 5_,

(2.14)

1 A complex function h is called a Herglotz, or Herglotzian function if it is holomorphic in C +

uC_, h(z*) = h(z)*, and h(C+)cC + ; then — h is an anti-Herglotz or anti-Herglotzian function
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S + is holomorphic and anti-Herglotzian in C+uC _ u(0, τ " 2). It is continuous and
strictly decreasing on [0,τ~~2]. S_ is holomorphic and Herglotzian in C+uC_
u ^ τ " 1 ) , continuous and strictly increasing on [O,!" 1]. The domains of
analyticity of L+ are just the images given by S+ of their respective cut-planes of
analyticity. The identity

L+(τU{z))=U{-λz) (2.15)

holds for all z e Ω(λ).

3. The Tangent Map to the Doubling Operator

Here we adopt the point of view that, given g,/, etc. satisfying all the assumptions
of Sect. 2 for some fixed r, with the corresponding values of A, τ, y0 etc., we can e.g.
regard / as a fixed point of a doubling operator 01, defined by

f:Fh->--Fo^Foτ. (3.1)
A,

Here, λ and τ have values independent of F. Note that rewriting the doubling
operator in terms of / (or L, or U) is merely a change of coordinates in function
space. On the contrary maintaining λ fixed [instead of taking it to be — F(l)]
means a significant alteration of the "correct" doubling operator. This causes well-
known troubles (see e.g. [CEL], where the cure is also indicated) but it simplifies
the task at hand in this paper. If we formally write F=f + δf, with δf an
infinitesimal variation of/, the corresponding variation δ$fF is given by:

9fF(z)= - jδf(L+(τz))- j

(3.2)

It is the spectrum of the linear operator D0tf which we study in this paper.
Our bounds will crucially depend on the more convenient representation in

terms of δf/f. Dividing both sides of (3.2) by

we see that, considered as acting on δf/f, the linear operator of (3.2) takes the
form:

This relatively simple form of (3.4) is easily seen from the identities

δf δf f δL rL δL δf rr (3.5)

Let us spell out in more detail the relationship between the operator T as
defined in (3.4) and the operator of (3.2), which, in less heuristic notation, can be
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written as

(D<Xφ)(z) = -jφ(L+(τz))- ^/XL+(τz))/(τzΓ >(τz). (3.6)

If we define the linear operator Q by

(Qφ)(z)=^\, (3.7)

then

QD@=TQ, T=QDMQ-1. (3.8)

The domains of these operators will be chosen to be certain spaces of functions
holomorphic in complex neighborhoods of [0,1] in such a way that these
equations make sense. The spectrum of DM will then be the same as that of T.

It is natural to expect (and true) that T will preserve the class of functions
holomorphic in the same domain as /. Indeed recall that U is holomorphic in Ω(λ)
which it maps bijectively onto a certain bounded open subset A of C, on which / is
holomorphic. By (2.7), τήcΔ. The identity (2.15) shows that L+ o τ is analytic on A
and maps it into itself. But L(τΔ)—U( — λΩ(λ)) is not relatively compact in A since
their non-real points are the same. We will therefore use a sub-domain of A to make
T analyticity-improving. A convenient choice is given by

ψj l)}). (3.9)

Note that A0(gA1 since

Lemma 3.1. // v is a real function on [0,1] which extends to a holomorphic function
on Ao, then Tv extends to a holomorphic function on Av For every A'<&AX one has

sup|(7ϊ>)(z)|^-sup( 1 +
zeA' 1 zeΔ'

1

L+(τz) yeAo

Proof We shall use the following simple fact: if a Herglotz or anti-Herglotz
function is holomorphic on a real segment (a, b) and maps it into the real segment
(a\ b'\ then it maps the disk with diameter (α, b) into the disk with diameter (a', b').
(See e.g. [E2].)

We claim now that τAίcA0 and L+^A^CAQ. Indeed, let z=U(ζ), for some
ICI < l/λ. Then τz = U{u{ — λζ)\ and u( — λζ) is contained in the disk with diameter
(0,w(— 1)); hence τzeA0. On the other hand, by (2.15), we have L+(τz)=U( — λζ)
and this is also in Ao. The derivative of L+ <>τ tends to zero near yo/τ. But its
reciprocal is' bounded in modulus in any Δf(ζΔv This completes the proof of the
lemma.

We denote by 88 the Banach space of holomorphic, bounded functions on Ao

which are real on [0,1], equipped with the "sup" norm. It follows from Lemma 3.1
that TJ*C & and T is a compact linear operator on 0& whose eigenvalues form an
exponentially decaying sequence.
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We use the following lemma to take advantage of the simple form of T:

Lemma 3.2. The function L+ is convex on [0, y0], and the function L_ is convex on

Proof By our general assumptions, the function U is holomorphic and anti-
Herglotzian in the cut plane Ω(λ\ described by (2.3). As such it has positive
Schwarzian derivative on the interval ( — λ~ι,λ~2\ i.e. φ = U"/Uf satisfies 2φ'/φ2

— 1^0. Integrating this inequality gives

By (2.14),

We now use the lower bound for r obtained in [El ] :

1+A2

r > i-λ2'

Forz = ζ1/r>0wefϊnd:

S"+(0 ^

(3.12)

This is positive for z < l . For z= —C1/r^0, we get:

This is positive for -λ^z^O. Thus:

]

To see that the inequalities (3.15) remain strict even in the limit r-> oo, we rewrite r
in (3.11) as log(l/τ)/log(l/A) and, using again the bounds (3.10), and log(l/A)
<\jλ—1, we find:

> -

and exactly the same inequality for S'L/SL on (0, τ]. This proves that L+ and L_ are
convex on [0,y0] and [y0,1] respectively. This completes the proof of Lemma 3.2.

Corollary 3.3. For all ze [0,1], we have L+(τz)>τz and L+(τz)< — 1.

Proof. By the monotonicity and convexity of L+ it suffices to prove this for z = 1.
Applying the functional equation (2.11) and its derivative at z = 0 gives

L ( l ) = - τ , L ' ( l ) = - 1 . (3.17)
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Reapplying them at z = 1 gives

L(L(τ))-τ2, L{L{τ)) L'(τ) = 1. (3.18)

It follows that L(τ) < y0, and also L(τ) > τ. Otherwise L(L(τ)/τ) would be in [ — 1,1],
contradicting

L(L(τ)/τ) = -L(τ2)/τ< -L(τyo)/τ= -y o /τ< - 1 (3.19)

The convexity of L+ implies -L'(τ)> -L'(L(τ)) and hence -L'(τ)>l by (3.18).
From the convexity of L± we can now derive, following an idea of [CE], the

existence of invariant cones for the operator T. However, the cones we define here
do not coincide with the cones defined there because of the use of v = δf/f instead
of δg. (The cones of [CE] could not be shown to be invariant under the tangent
map for r much above 2 because of the lack of concavity of g on (x0,1].)

Definition. Define Γx as the set of real Ή1 functions v on [0,1] for which
i) φ ) ^ 0 for all ze [0,1],

ii) ι/(z)^0for all ze[0,1].
We also define Γ = Γ1n&. Γ is a closed cone with non-empty interior in J*.

Lemma 3.4. The tangent map T maps Ft into itself. Furthermore, T2 maps any non-
zero vector in Γ into the interior of Γ.

Proof. Suppose veΓv Then, since (by Corollary 3.3) for any ze [0,1], L+(τz)>τz,
and since v is decreasing,

τ(Tv) (z) ̂  υ(τz) [1 + l/L'+(τz)] . (3.20)

This is non-negative since L+(τz)< —1 by Corollary 3.3. Furthermore

+ ι / ( τ z ) .

The point is now that all three terms of this formula are non-positive, so that Tv is
indeed in Γv The interior of Γ is clearly composed of those υ for which the
inequalities defining Γ are all strict. Suppose v e Γ is not 0. If φ ) vanished for some
z e [0,1), it would have to vanish on [z, 1], hence everywhere by analyticity, i.e. 1 is
the only place in [0,1] where v can vanish. But Tυ cannot vanish even at 1 by (3.20).
Furthermore the middle term in (3.21) cannot vanish in (0,1], and can vanish at 0
only if t?(l) = 0. Hence T2v is in the interior of Γ as claimed.

4. Inequalities and Numerical Bounds

Suppose i;βeΓ\{0} and Tve = ρve. Then ve is in the interior of Γ by Lemma 3.4, and

The last inequality uses — τL(0)>λ due to the convexity of L+. The middle
inequality is strict because υe is in the interior of Γ, so that ve(l)<ve{0). Finally,
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since υe(ί)>0, we get the inequality announced in the Introduction:

1 1 1 1 1

Applying the theorem of Krein and Rutman [KR] we obtain from Lemma 3.4:

Lemma 4.1. As an operator on 3%, T possesses an eigenvalue of largest modulus δ
which is real and positive. The spectral subspace corresponding to this eigenvalue is
one-dimensional and generated by an element of the interior of Γ which is (up to
rescaling) the only eigenvector of T in Γ. This eigenvalue satisfies the bounds (4.2).
The adjoint T* of T has a unique eigenvector φe in the cone Γ* dual to Γ (i.e., the set
of continuous linear functίonals on $ which take positive values on all elements of Γ)
and the corresponding eigenvalue is δ.

At r = o o , we can use the rigorous numerical bounds obtained in [EW1],
written here just as ordinary numbers, not as intervals:

^0 = 0.391132999351022542, τ = 0.033381055, L'+(0)= -67.42069.

This gives

- =29.957112,--1 =28.957112,-(1 + - M =29.5128,
τ τ τ\ L(0)J

to be compared with the following numerical estimate of δ:

(5 = 29.5763.

This shows that the bounds (4.2) become rather satisfactory at r = oo. They are
poorer at, e.g. r = 2, where

(5 = 4.669201609, while - =6.26454783121704,- - \ =3.7616,
τ τ λ

/'(0)= -1.52763299703630145, - ( 1 + -^Λ =4.2141.
τ \ Ml))/
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Note added in proof. Using the upper bounds on τ given in [El], it is easy to see that
(1/τ —1/A)>1 (and hence δ>l) for all r > l .






