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Quantum Field-Theory Models on Fractal Spacetime

I. Introduction and Overview
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Abstract. The present work explores the possibility of giving a non-
perturbative definition of the quantum field-theory models in non-integer
dimensions, which have been previously studied by Wilson and others using
analytic continuation of dimension in perturbation integrals. The method
employed here is to base the models on fractal point-sets of non-integer
Hausdorff-Besicovitch dimension. Two types of scalar-field models are
considered: the one has its propagator (= covariance operator kernel) given by
a proper-time or heat-kernel representation and the other has a hierarchical
propagator. The fractal lattice version of the proper-time propagator is shown
to be reflection-positive. The hierarchical models are introduced and their
properties discussed on an informal basis.

1. Introduction

In a classic 1973 paper, “Quantum Field-Theory Models in Less Than 4
Dimensions,” Wilson studied the scalar interaction ¢* and Fermi-type (G{py)?
interaction for spacetime dimension between 2 and 4 [45]. His method was
perturbative (although in some cases infinite classes of diagrams were summed
within a 1/N expansion) and the integrals associated to the Feynman-graphs were
extended to noninteger d by the analytical continuation procedure introduced
earlier as a regularization method for gauge theories [10, 33]. Since that time the
question of what non-perturbative significance might be given to these models — if
any — has remained open. However, more recently Gefen, Aharony, Mandelbrot
and collaborators have made a relevant investigation of the possibility of
achieving statistical-mechanical spin models, with the critical properties predicted
by the e-expansion method, by employing fractal lattices [25-30]. In this paper the
same method is exploited to give a non-perturbative definition of quantum field-
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theory models in non-integer dimensions. These models are interesting as
theoretical toys to illuminate the possibilities of quantum field-theory, as argued
by Wilson in the conclusion of his paper:

“... it seems likely that a thorough study of these models in less than four
dimensions will generate new ideas about the nature of field theory that do not
depend on dimensionality and may apply to four-dimensional theories as well. It
should be instructive to study the behavior of high-energy scattering, deep-
inelastic scattering, bound states, etc. in these models.”

Wilson himself discovered a number of interesting phenomena in these models.
For example, he exhibited the possibility of anomalous scaling at high energies due
to a non-Gaussian ultraviolet renormalization-group fixed point. Also, he argued
for the equivalence — in dimension d just less than 4 — of four-fermion (py)? theories
and Yukawa theories when these are defined by unconventional renormalizations.
It is indeed possible that these models in 4 —¢ dimensions are actually physically
relevant. In [14] Crane and Smolin motivate the consideration of fractal
spacetimes, or “fractal spacetime foam,” by quantum gravity considerations.
Elsewhere the relevance of such models to problems of particle physics,
particularly the Higgs sector of GUT’s models, is considered [17]. However, in the
present paper and its companion [19] we shall simply introduce and study two
scalar-field “Euclidean” theories on fractal point-sets. We hope by this investi-
gation to have demonstrated that fractal sets provide an effective and feasible
method of realizing quantum field-theory in non-integer dimensions, at least for
the scalar theories. The case of higher-spin fields, e.g. gauge fields and fermions,
pose a vastly more difficult problem. Although some progress can be made on this
problem by purely formal considerations [18], at this time there is really no
rigorous framework for introducing spin structure into fractal sets. It is not clear
therefore whether the fractal continuation applies to all the physical theories for
which the usual analytical continuation is effective. The plan of this paper is as
follows: in the following Sect. 2 the fractal sets employed in this work — which are
amenable to a rigorous mathematical treatment — are introduced and discussed. In
Sect. 3, scalar field theory models on fractal sets with propagator given by a
proper-time or heat-kernel representation are defined. It is shown that this
approach leads to actual quantum-mechanical models with positive-norm Hilbert
space. The scaling and renormalizability properties of these models are then
discussed. In the final Sect. 4, hierarchical-type scalar field-theory models on
fractal sets are introduced, for which the renormalization problem can be solved in
a rigorous fashion, employing the large-field and analyticity techniques of
Gawedzki and Kupiainen [22-24]. We content ourselves here with an informal
discussion of the model and its analysis. Precise statements of results and complete,
rigorous proofs for the hierarchical model approximation are contained in the
companion paper [19].

2. Fractal Spacetimes

The purpose of this section is to introduce and briefly discuss the fractal point-sets
employed in this paper and also to set the notations.
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Fig. 1. Three stages in the construction of a
Sierpinski carpet IF%(d, L, %), with d=2, L=3 and
%={(1,1)}. The set has fractal dimension
d=log8/log3. The origin is labelled as 0

The most important class of fractal sets for our purposes are the Sierpinski
carpets [42], which are two-dimensional generalizations of the well-known Cantor
middle-thirds set. As a simple case, consider the set obtained from the unit square
[0,1]? by partition into 9 subsquares and removal of the central open subsquare,
repetition of the same operation on the 8 remaining closed subsquares, etc.

Generalization is possible both with respect to the Euclidean dimension d, the
(integral) scale factor L, the edge-length L¥ of the initial hypercubes, and the set
of sub-hypercubes removed at each stage. The various sub-hypercubes are labelled
by d-component vectors with components ranging from 0 to L—1. We denote the
corresponding fractal set by IF¥(d, L, %). It has Hausdorff dimension

d=log(L!— C)/logL, 2.1

where C=|%|. We allow the possibility that N is infinite.

The Sierpinski “hypercarpet” IFV(d, L, %) has an analytic description which is
extremely useful. A point x e R? belongs to IF¥(d, L, %) if and only if for at least one
base-L expansion of x,

N—-1
x= ¥ xlf, x=2Z¢!={0,..,L—1)", 2.2)
k=—o

none of the coefficients x, belong to the distinguished subset € CZ¢. From the
previous geometric description it is obvious that IF¥(d, L, %) is closed, since it is a
countable intersection of closed sets. From the analytic description it is obvious
that it is perfect as well. Since IF¥(d, L, %) is a closed, perfect and, therefore,
uncountable set, it may plausibly be described as a continuum. For d=2 and
reasonable choices of %, it is possible also to see that the hypercarpet is at least
path-connected. There are also discrete approximations to these sets, so-called
lattice Sierpinski hypercarpets. The simplest of these is defined by

FY(d, L, %)=F"(d, 1, 4)n L MZ°. (2.3)

An example is illustrated in Fig. 2.

-

N i Fig. 2. The lattice Sierpinski carpet IFY(d, L, %) for N=2, M =0, and
I ] I d=2,L=4and ¥={(1,1), (1,2), (2,1), (2,2)}
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An analytic description of this lattice is that it consists of those points ne L™ . Z*
such that for at least one base-L expansion of n,

N
n= Y nlr, neZi, (2.4)
k=—M

none of the coefficients n, belong to ¥ and the only possible components of ny, are
0’s and 1’s. This lattice description associates lattice sites to the vertices of the
elementary hypercubes of edge-length L™™. An alternate lattice description is to
associate lattice sites to the center of each elementary hypercube of edge-length
L~™- This lattice is dual to the previous one and is denoted *IF\(d, L, ). An
analytical description of this set is that it consists of those points ne L™ M(*Z*)
=L"MZ"+(1/2,...,1/2)) such that in its representation of the form

ne S I LM, 1)) 2.5)
k=-M

none of the coefficients n, belong to €. An example is illustrated in Fig. 3.
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Fig. 3. The fractal lattice *IFY(d, L, %) for N=2, M =0,
and d=2, L=4, ¢={(1,1), (1,2), (2,1), (2,2)}. A block of
sites is distinguished in outset

Another class of fractals which is useful for examples if not for serious work is
the Sierpinski hypergaskets in Euclidean d-space, d =2, generalizations of the
original Sierpinski gasket in d =2 [41]. The construction of the members of this
class is similar to that of the Sierpinski carpet except that it is based upon the unit
d-simplex rather than upon the unit d-hypercube. Partitioning the unit d-simplex
in R? into (d +2) sub-simplices of edge-length 1/2, one removes the open central
sub-simplex, repeats this same operation on the (d+ 1) remaining closed sub-
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simplices, etc. Clearly, the d-dimensional hypergasket has
d=1log(d+1)/log2. (2.6)

An example is illustrated in Fig. 4.

Fig. 4. Fourth stage in the construction of the Sierpinski
gasket GY(d), d=2, N =0. G¥(d) has finite volume but an
infinite volume version G“ can be obtained by dilation
through the origin 0. d=1log3/log2

The (hyper)gaskets are also clearly closed, perfect, connected, uncountable
pointsets. The gasket in IR with largest edge-length 2~ will here be denoted by
G"(d). The gaskets have also discrete approximations, the lattice Sierpinski
hypergaskets G}, with largest edge-length 2V and shortest edge-length 2™,
consisting of all the vertices of the elementary d-simplices of edge-length 2~ in the
(M + N)™ stage of construction of the gasket from an initial d-simplex of edge-
length 2V. An example is illustrated in Fig. 5.

Fig. 5. Lattice version Gyy(d) of the Sierpinski gasket:

JAvS AT NAVAY
AN NNMNNNED = 2, M=4, N=0

It is already apparent from these few examples that the fractal continuation of
dimension is highly non-unique: there are many fractal sets in R¢ with the same
Hausdorff dimension d. In the studies of Gefen, Aharony and Mandelbrot (GAM)
it was shown that the critical properties of statistical systems on fractal lattices
depend, in general, on these additional geometric properties. Of particular
importance is the order of ramification at P, defined by Urysohn and Menger [36],
or [35, Chap. 14], as the minimum number of points which must be removed from
a set in order to disconnect an arbitrarily large or small, bounded set of points
connected to P. In the case of the above examples, it is not difficult to see that the
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gaskets have finite order of ramification at every point while the carpets have
infinite order of ramification at every point. Fractals with finite order of
ramification at every point are essentially quasi-linear. It was found by GAM that
phase transitions occur on finitely-ramified lattices only at T'=0, as one would
expect from a Peierls droplet argument. It is for this reason essentially that the
carpets are interesting for field-theoretical construction, whereas the gaskets are
only a toy example.

The infinite-volume versions of both the carpets and the gaskets, IF(d, L, %) and
G(d), are invariant under a group of discrete scale transformations through the
origin O:

[F-F(d,L,%)=Fd,L,%), 2.7

2 G(d)=G(d). (2.8)

This makes the models based on these sets particularly convenient to study by
renormalization group methods. However, the price is lack of translation invari-
ance. Clearly, any set & CIR? which is simultaneously (1) closed, (2) invariant
under a scale transformation L>1, and (3) invariant under an n-dimensional
lattice group of translations generated by a set {vy, ...,v,} of linearly independent
vectors in R%n < d) can be written as a Cartesian product &' x {v,, ...,v,>, where
{vy,...,0,), the linear span of {v,...,v,}, is an n-dimensional hyperplane
isomorphic to R”, and &’ is some subset of the orthogonal complement
R‘©<vy, ...,v,). In the above cases there is no remnant of translation-invariance.
For a physical interpretation it is sometimes convenient in the case of the carpets to
keep translation invariance in one direction — the “time-direction” — so that one
may define a Hamiltonian or transfer-matrix. One can therefore introduce
“Hamiltonian” carpets, distinct from the “Euclidean” carpets previously defined, as

F,(D,L,6)x L"MZ 2.9)
in the lattice case, or
FD,L,%¢)xR, (2.10)
in the continuum case. The latter set has Hausdorff dimension
d=D+1, D=log(I?—C)/logL. 2.11)

Another symmetry which it is desirable to restore is reflection-symmetry, i.e.
invariance under reflection through a coordinate hyperplane, the “time-zero”
hyperplane in the case of the Hamiltonian lattice. For this purpose, one introduces
the fractal sets obtained from IFy(d, L, ) by reflection through the d coordinate
hyperplanes, denoted simply by IF)(d), where d is given by (2.1). In the
Hamiltonian case, one considers IFy(D, 1) =IFY(D) x (L”MZ~[ — ¥, + I¥]) for the
lattice version or IFFY(D,1)=IF¥D)x[—~IN, +[¥] for the continuum. See
Figs. 6 and 7 below.

One should observe from Egs. (2.1) and (2.11) that the carpets allow one to
discuss the approach back to integer dimension d =4. Indeed, if one takes L / + o0
but holds C fixed in (2.1), then

d=d+log(1—C/I#flogL ~d. (2.12)



Quantum Field-Theory Models on Fractal Spacetime. I 619

1 TITTIIT TTITTTIT

J—J_ILIJJ_L_I_‘_IL_ TOT H H
E H H T an T H E H
S | _—
SN RN S ANEENANNAERNEEERANENERENENE Fig. 6. A portion of the “Euclidean” lattice

NN NS NN NNER R AR Sierpinski carpet IF3, d=1og12/log4, constructed

: -- i g FH ~:JL_* from Fy(d, L, %) with d=2, .L=4, ¢={1,1), (1,2),
H H F HH (2,1), (2,2)}. The two coordinate hyperplanes (axes)
EEE EEH EEE are distinguished by heavy lining. The portion of
A T H anas the lattice ShOWI‘liS just IF“(‘,mA(Z’, A(Z)E [—Lz,

R _!IIILH H +L2]d=[—'42, +42]2

Fig. 7. A portion of the “Hamiltonian™ lattice
Sierpinski carpet IF2 x Z!, D=1, constructed from

is labelled “t” and the coordinate hyperplane
orthogonal to the time axis (here, the spatial axis) is
labelled “x”. The portion of the lattice shown is just
the intersection with AP =[—1I12, + [*]=[—42,
+4%]2

é é x  IFo(D,L,%) with D=1, L=4, #={1,2}. The time axis

It is also easy to arrange that IF? #IR*: e.g. choose L,=R?", R>1 and the set
%,SZ; , so that at each stage of construction the central hypercube of B?
elementary hypercubes is removed (B + D even). Since GAM found that the results
of the e-expansion are reproduced when the lacunarity % (a measure of the spatial
inhomogeneity of the fractal) is taken to zero, it may be desirable to arrange this.
& 70 can be accomplished as d ~ d by spreading the removed hypercubes evenly
throughout the initial hypercube. For details see [27].

A final feature of each of the above continuum fractal sets is that they admit a
d-dimensional Hausdorff measure H* on a g-algebra of measurable sets .# (which
includes the Borel sets in the subspace topology), o-finite in the infinite-volume
cases [20, 40]. This measure has the simple scaling property

H%sE)=s"HYE), s>0, Ee.. (2.13)

The integral of an H 4_measurable function f with respect to H 4 over a fractal set IF
will be denoted simply by _
[ f(x)dx. (2.19)
F

We observe that where the set IF has scale-invariance, L-IF=TF, for some LeZ™,
the integral obeys a simple scaling law

[ f(Lx)d*x=L""* ;L fx)d%x . (2.15)
F
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Although we do not actually employ this fact, we remark that fractal lattice sums
Y L Mfm) (2.16)
nelF (@)
converge in the limit M — + oo to the integrals with respect to Hin (2.14), when the
function is continuous with compact support: see [5, 6].

We may now compare the usual analytic continuation of dimension with the
fractal continuation of dimension considered here, particularly as accomplished
with the class of Sierpinski hypergaskets. In the first place, it is clear that a field-
theory on a fractal continuum will have ultraviolet divergences, since no points of
the set are isolated, whereas the analytic continuation is a perturbative regulariza-
tion. As we shall see later, the expected divergences on the fractal set do indeed
occur. Secondly, the fractal continuation in general destroys translation invari-
ance and, generally, Euclidean symmetry, except the time-translation invariance
restored in the “Hamiltonian” case. Of course, the analytic continuation formally
preserved these spacetime symmetries. On the other hand, the behavior under
scale transformations is similar. The transformation law like (2.15) is one of the
properties postulated by Wilson in his axiomatic definition of the analytically-
continued integration [45]. The chief difference here is that the scale transforma-
tions are restricted to those in a discrete group. With respect to positivity
properties the fractal continuation is superior: the Lebesgue-Hausdorff integral
(2.14) is a positive operation, whereas, as noted by Wilson, the formally defined
d-dimensional integration need not be. Finally, both methods allow one to take the
limit as d 74 and, furthermore, one can expect some restoration of the effects of
Euclidean symmetry in the case of the fractal continuation in that limit.

To conclude this section we wish just in passing to point out the possibility of
using random fractals to achieve quantum field-theory models in non-integer
dimensions, similar in spirit to the random-lattice technique of Christ, Friedberg,
and Lee [14]. Such an approach would maintain more spacetime symmetry than a
fixed lattice and allow a continuous adjustment of dimension as well.

3. The Standard Models (The Proper-Time Propagator)

With the preliminaries completed, we can now begin to consider certain quantum
field-theory models defined on the fractal sets introduced above. The class of
models we consider in this section are a natural analogue of the standard scalar
quantum field-theories in ordinary Euclidean space. The propagator (covariance
operator kernel) of these models is given by a proper-time or heat-kernel
representation. We here recall this representation of the ordinary Euclidean scalar
propagators both for the continuum and lattice cases [43, 31, 11]

Continuum T=e4? (3.1a)
em? (3.2a)
(—A +m2)—1= f die-mZz/zTr (3.33)
0 2
d ©dt —m2t/2 pd
Gy m)= | 5 e PP, ) (3.42)
0
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Lattice
T=1+4/2d (3.1b)
2 =1+m?2d (3.2b)
(—Atm?) e 1 3 NeITN (3.3b)
2d n=o
Gi(n,m; z)= id § ZN 1P (n, m) (3.4b)

In the continuum column, 4 represents the usual Laplacian Z 0%, GY(x, y; m) the

propagator {x|(—4+m?)~!|y), and P¥x, y) the heat- dlffusmn kernel (x| e 2 |y>.
The adjacent column gives the lattice analogues. T is the Markov transition
probability (or stepping) matrix of the symmetric random walk on Z‘: for all
n,meZ’,

1/2d if |n—m|=1
Tn= . .
" {0 otherwise 3:5)
Now 4 is the lattice Laplacian operator: for f e LX(Z°),
(4f)(n)= ; lelf(m)—2df(n)~ (3.6)

Finally, G4(n,m; z) is the lattice propagator {n|(—A4+m?*)~*|m) and P%(n,m)
={n| T¥|m) the matrix of N-step transition probabilities.

There is no difficulty to introduce fractal lattice analogues of the proper-time
representations and we shall do this first, establishing certain relevant properties,
such as the reflection-positivity. To introduce propagators on fractal continua by
means of a proper-time representation requires the proper mathematical defi-
nition of “Brownian-motion processes” on these objects, a problem now much
investigated [5, 6, 32, 34]. We have fewer hard results in this case, but we shall
discuss it briefly with a view of explaining the significance for quantum field-
theories of known and conjectured results.

If T'is a transition probability matrix on any of the unit-spacing fractal lattices
IF earlier introduced, then the bounded operator T:[*(IF3)—I*(F%) defined by

(TNW= 3, Tmflm), [ e P(IFY) B.7)

is easily seen to be a contraction. If one further requires that T be symmetric,
Tn="T,., mnelF3, (3.8)
then T is self-adjoint, so that, if (3.1b) is made a definition,
—A=2d(1—-T), (39)

it follows that the operator — 4 is positive, self-adjoint on I*(IF%). Therefore the
definition is a reasonable one. Also, if T is a nearest-neighbor RW,

n—m|>1=T,,=0, (3.10)
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then —A has the same property, i.e. it is local. The set of symmetric, nearest-
neighbor RWs on the fractal lattices introduced above, IFy(d) and G,(d), is not
empty. In the case of Gy(d), every site of the lattice has precisely 2d nearest
neighbors (see Fig. 5). Therefore, one may define

T - {1/2(1 In—m|=1

0 otherwise . (3.11)

In the case of IF(d), points not on the boundary of a cut-out section (such as the
point I indicated in Figs. 6 or 7) have 2d nearest neighbors, whereas points on a
boundary (such as point B in Fig. 6 or 7) have 2d —1 nearest neighbors. We
therefore distinguish classes .# of internal points and 4 of boundary points and set

1/2d |n—m|=1
1/2d n=me%B (3.12)
0 otherwise ,

so that a random walker at a boundary site has probability 1/2d of remaining at
that site. This defines a symmetric, nearest-neighbor (in the sense of (3.10)) RW on
IF,(d). Each of these RW’s is obviously invariant under a large class of local
isometries of the fractal lattices G(d) and IFy(d). We further observe that the RW
on IFy(d) is invariant under the d reflections in the coordinate hyperplanes, in
particular, in the Hamiltonian case, under reflection through the “time-zero”
hyperplane. That is, if 6 is reflection through the coordinate hyperplane H, then

’I;hx,em:’]—;l,m' (313)

We refer to each of these as the standard RW on G(d) or IFy(d). )
Now, in terms of any of these RW’s we may introduce a lattice propagator G
by means of the analogue of (3.3b):

gsid 2 NN (3.14)
or (3.4b)
G4(n,m; z)_ 2y Z ZNH1Pd(n,m), (3.15)

with P4(n,m)=<{n| T" |m). In each case, the series converges absolutely for z<0
(or m*>0) and Gd=(—4+m?)~'. Simple exponential decay properties and
pointwise positivity of G4 are immediate. It is important also that, for the carpet
case, IF(d), this definition yields a reflection-positive G§, since this permits the
quantum-mechanical models to be defined with this propagator, with positive-
norm Hilbert-space and self-adjoint transfer matrix. The proof of this property
proceeds along rather standard lines [31]. We first consider operator monotonicity
of G¢ with respect to the introduction of Dirichlet boundary conditions. Let 4 be
the union of an arbitrary finite set of elementary hypercubes with vertices in Z¢ and

define B
Fi(d)=Fyd)nAa, (3.16)
IntF§(d)=Fy(d)nInt 4, (3.17)
IF(d)=F(d)noa. (3.18)
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Note in particular that with A¥=[—LV, + ],
FA@)=F@). (3.19)
For any 4, the Laplacian on IFg(d) with Dirichlet data on JIF§(d), or the Dirichlet
Laplacian, 4 4, is defined by
A =1y paa HImng(a) ) (3.20)

where I, is the projection onto [*(IntIFd(d)) as a subspace of I>(IF(d)). Clearly,
— A 420 for every 4. In the same way, one introduces the covariance operator on
IF with Dirichlet data on dIF&(d), or the Dirichlet covariance Go 4 as

Go, 4= HImIFg(a)GOHImlF{}(Z) . (3:21)
Then we observe the following
Proposition 1. For A,S4,, GS , <G ...

The proof is standard [31] and proceeds by interpolating between boundary
conditions on 04, and 04, by introducing a local mass perturbation MHIm,F,.l(,,)
of (G¢ 4,) 'and takmg M — + c0. With this result on operator monotomc1ty we
can now establish the reflection-positivity. If 0 is the reflection through H earlier
discussed and A is a union of elementary hypercubes with 84 = A, then we define

0 : 1X(IFo(d)~1*(IFo(d)) by
(Of)(n)= f(6n) (.22
and use the same symbol to denote its restriction to [2(IF2(d)). It follows from (3.13)
that
TO=0T (3.23)
and, therefore, similar statements hold with T replaced by 4, G2, 4, or G‘;‘,, 4 We

have

Proposition 2. Let T be a symmetric, nearest-neighbor, 6-invariant RW on IF(d)
(e.g. the standard RW ). Then for A= A" or for any other 6-invariant A, 04=A,
G 4 is reflection-positive, i.e.

1,6G} 1,20, (3.24)

where I1 .. are the projections onto the subspaces I*(IF3(d)) of I*(Int F&(d)) supported
on or above (respectively on or below ) the hyperplane H.

Proof. Before we begin the proof proper, we note that we are proving here a version
of reflection-positivity for reflection through a hyperplane H containing sites. If
desired, it is not difficult to modify the definition of IF(d) so that it is invariant under
reflections in d hyperplanes, each parallel to and midway between two lattice
hyperplanes, and similar proofs carry through in that case. We define, as implicitly
above,

A={points of IntA4 on or above (respectively on or below) H}, (3.25)
A% = {points of IntA above (respectively below) H=4,/H},  (3.26)
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and let I, IT1%, I, be corresponding projection operators in [*(IntIF*(d)). Since

M,60G} 4, =1.[Go ,—(1—0)Gj 1M, (3.27)
it suffices to show that
M,(1— )G} (1 =11,G§ 4ull;, (3.28)

for then (3.24) follows by the operator monotonicity, G} ,—G& 4u=0. In fact,
both the left-hand side and right-hand side of (3.28) are equal to G§_4¢.
For the right-hand side this is obvious since G§ 4 z=I5G§ 41y, and thus

:G§ yyull s =1%.G5 411 =G5 4o (3.29)
For the left-hand side, note first that
(1 8)G} 4115 =M%(1—O)G§ ,I1%, (3.30)
since
Iy(1—-0)=1—-0)II;=0. (3.31)
Therefore, to show that
M, (1—6)G§ 411 =G§ 43, (332)
it only remains to establish that
no.(—A+m*»I%(1—-0)GE 1% =115 . (3.33)
We now invoke the locality of 4 ,, which implies
m%.4,0% =0. (3.34)

Also, we again use (3.31). Thus,

I%(— 4,4 +mA)I%(1— 6)GS 115
=I1%(— 4, +m?) (IT% + IT° + IT) (1 — ©)G2,_,IT%
=I1%(1—0)(—A4,+m?)G 41$ since [0,4,]1=0
=11 -es =%,

(3.35)

which is (3.33). This gives (3.32), completes the identification (3.28), and ends the
proof. []

Before turning to the continuum models, let us just briefly comment on the
fractal lattice field theories associated to these propagators. In the finite volume
case, these have Gibbs measures of the form

A, 68, ($)=Z""exp [ - X v(¢(n))] dpgd ~(9), (3.36)

nelntFY (d)

where pga ., is the Gaussian measure on R'"™F@! with covariance G§ 4~ and Z
normalizes the measure to unity:

z7'= exp[— )y v(¢>(n»] dugs (). (3.37)

RIntFY (@) nelntFY (d)
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On the other hand, this is obviously the same as

a3 n($)=Z""exp [ + X J nm¢(n)¢(m)] [Tdvigm),  (3.38)

n,meInt FY (@)
with v the spin-weight measure
dv() =4I v g, (3.39)
and
Jo=d-T,,. (3.40)

We see therefore that these are nearest-neighbor, ferromagnetic continuous-spin
models, similar to the Ising spin models on fractal lattices investigated by GAM. It
is expected from simple renormalization-group considerations if d=4—¢, £¢>0,
and if the lacunarity % goes to zero as ¢\ 0, then the critical properties of these
models should be governed by a Wilson-Fisher non-Gaussian fixed point as
predicted by the e-expansion [44]. It would be interesting to test this conjecture
numerically by determining critical exponents of fractal lattice Ising models with
d=4—¢ using the Monte Carlo renormalization-group method, such as was
already done some time ago by Blote and Swendson for the d =4 Ising model [11].
This would not only test our theoretical understanding of these models, but also it
would be a check whether non-integer dimensions can be effectively realized for
computer simulation by the fractal continuation method.

There is much less that can be said with certainty about the continuum models,
because the diffusion processes on fractal spaces, in terms of which the continuum
propagator would be defined by the analogue of (3.4a):

d . ©dt —m2t/2 pd
G*(x,y; m)= ([) 5 Pix,y), (3.41)
are only now beginning to be rigorously investigated [5, 6, 32, 34] (for earlier non-
rigorous studies see [4, 38, 39]). We shall not have much to contribute to these
efforts, only outlining an approach to the construction of such processes and
illustrating it with a simple existence result for the Sierpinski gasket. We then go on
to consider the field-theoretic implications of the known and conjectured results.

On a scaling fractal IF* with a discrete group of scale invariances, s=I*, keZ,
where L-IF*=1F it is natural to conjecture that the propagator G obeys a scaling
law

G¥o’x,6%; 07 m)=0"2*2GYx, y; m), (3.42)

analogous to the corresponding scaling law for the standard Euclidean propagator
G% withd=d, 0=1. For our purposes, the exponent d — 2 in this scaling law defines
the spectral dimensionality associated to the heat-diffusion process on the fractal.
This dimensionality, originally introduced in [3, 38], characterizes a variety of
properties of physical systems on fractal sets. We note that generally d=+d. The
exponent 6, however, is not an independent parameter, if one assumes for the heat-
diffusion kernel a scaling law also, which leads via (3.41) to (3.42):

P, (0%, 0°y)=0""P(x, ). (3.43)
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Since, however, one has the normalization condition
[ d*xPx,y)=1, >0, (3.44)
Fé

it follows that
0=d/d. (3.45)

A more constructive way of stating these scaling conjectures is as existence of
the scaling limit of the lattice Green’s function pointwise for

Gi(x,y; m)= lim IM@~2OGY([IMx], [LMy]; z0), (3.46)
M-
for some choices of d and 6, where also
1
M) t=14 ﬁmzL~ M p?5Q; (3.47)

or, likewise, existence of the limit

Pix,y)= lim DPyy. pasen([LYx], [LV]), (3.48)

for 7> 0. In these formulas, [x] is the element of IF nearest to x e IF according to
some conventional assignment. Obviously, these limits, if they exist and are non-
trivial for some d, 6, imply (3.42), (3.43).

In the case of the Sierpinski gasket we can carry out a version of this scaling
limit and establish the scaling law (3.42). This relation as well as the existence of the
heat-diffusion process and many fine sample-path properties have already been
established in [5]. However, since the Sierpinski carpet case appears more difficult,
it may be useful to record an alternative approach. The present proofis based upon
an exact renormalization-group equation for the lattice Green’s function,
Gy(n,m; z), due to Rammal [39]. We simply quote here the result (for d=2):

Go(n,m; 2)={"Y2)Go(2n,2m; z) (3.49)

with
Z'=7%/(4—3z) (3.50)

and
(Y 2) =22+ 2)/(4+2)(2—2). (3.51)

The RG transformation (3.50) has two fixed points on the unit interval [0,1], a
stable fixed point z* =1 and an unstable fixed point z*=0. For z=1—¢, 0 <e <1,

one obtains
¢ =5e+0(e?). (3.52)

Let us make a conventional assignment [ x] as follows: every point x € G belongs
to a unique elementary triangle T, of G} if x¢ G2 and to two adjacent triangles if
xeG3. We define

if xe@G}

X
= 3.53
[x] {highest point of T, if x¢@Gj . (3:53)
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Now, on the basis of the RG equation (3.49), (3.50) one expects the limit

~_—2-r
Gl yim)= Tim 207G ([204], [22y]; 20

M
_ fim @ Go([2%x], [24]; 2) (3.54)
M-
with ) 1
=14 5-m (3.55)
= 2d ’ '

to exist and be nontrivial. In fact, the proof of the limit requires a slight
modification of (3.54), (3.55) to

G(x,y;m= lim (3 Go([2"], [2"]; ") (3.56)
M-+ ©
with
m2 -1
20 = (1 + 2 57My E%}“) ,  EM=0(m*57 M) (3.57)
and
GO=@MA+A), =05 ™). (358)
Iteration of (3.49) gives, for k< M,
G Go([2Mx], [2My]; 287 =02 - Go([25x], [2*y]; 2, (3.59)
where

240, = (04— 34),
0 =L L) = L0 (44 ) 2 — )/ AD2 +24). (3.60a,b)

If M, k are sufficiently large, then z{™ =(1+z")~! 0 <™ < 1,forall 1,k<I< M,
and the iteration equations simplify to

£, = 5e™) 1 O((&M))?) (3.61)
and
(9 =" 3(1 +0E™). (3.62)
Defining &™), 7™, generally for kSIS M,
m2
e (3.63)
(M =@ (1 +7*), (3.64)
it is now possible by a “fine-tuning” of &, 74 to achieve the bounds
|E*)| < Bm*5~ 2 (3.65)

and

i< Cm?5™", (3.66)
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as well as existence of the limits

zy= lim z{® (3.67)
M-+
and
(= lim (Y. (3.68)
M-+ o0

This strategy is exhaustively discussed in the companion paper and we refer the
reader to that discussion to avoid needless reduplication of arguments. Therefore,
with the analyticity of the resolvent kernel for |z] < 1, the existence of the limit (3.56)

follows:
Glx,y;my= lim (M- Go([2x], [2*y]; ™)
M-+

= Go([2*x], [2*y]; i) - (3.69)

One can then also use the lattice resolvent identity to argue that the limit obeys the
appropriate scaling law:

G(2x,2y; 5'*m)— gG(x,y; m)

2 -1
" G0<[[2k+1x]],{[2k+1y]];<1+ mTS_(k+1)+gk> )
= 1 Z
o <5> k+1 k+1 m2 —(k+1) 4 & o
—Go | [2°"'x], [2**1]; I+ 5 + 81

k— + o
3 k
lim <§> (Err1—8) %

k= + o0

It

> ) Go([2k+ lx]], P; Zk+ 1)Go(D; [[2“1}’]]; Z)

reGj

k
lim <§> 0(m45—2k)3k+1 Z 3_k+1G0([[2k+1]],[[2k+1]];Zk+1)

k= + oo 5 zeGh 4y

X G()(I[2k+ 12]]’ [[2k+ ly]]; Zk)
lim Om*5™%) | d%zG(x,z; m)G(2z,2y; 5~ >m)=0, (3.70-73)
G2

k= +ow

assuming that the Green’s function is such that the lattice sum is at least majorized
by the continuum integral. Therefore,

G(2x,2y; 512 m)=3G(x, y; m), (3.74)

as expected.

To establish similar results in the case of the Sierpinski carpet, which is
infinitely ramified, appears, however, to be much harder. At the time of writing,
verification of the scaling law of the Green’s function on the carpets is an
apparently open question.

Let us therefore simply discuss the consequences of the scaling law (3.42) in
those cases where it can be verified. We observe that (3.42) implies for the free scalar
field with covariance G“ a scaling dimension

d,=(d—-2)20=(/2)—0"". (3.75)
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There is no difficulty at a formal level in setting up a perturbation theory for

theories with polynomial interactions v(¢p)=Y (Ay/N!)@" and applying the
N

standard power-counting arguments. One finds as the condition for superre-
normalizability of the ¢* interaction that

Nd,<d, (3.76)

or
Nd—2)20<d)8, (3.77)
e N@-2)2<d. (3.78)

This is precisely the familiar superrenormalizability criterion, but with the
Euclidean dimension replaced by the spectral dimension: rather surprisingly, the
renormalizability is determined by the spectral dimension d rather than the fractal
dimension d.

One point which should be emphasized is that there are ultraviolet divergences
in these fractal theories. For example, by power-counting one finds that the
integral corresponding to the self-energy graph in the ¢* theory has superficial
degree of divergence w =2(d — 3)/0 and is therefore divergent for d > 3. In contrast,
the analytically continued integral corresponding to this graph is a meromorphic
function of the complex dimension parameter d with poles only at d=4, 5,6, ...:in
particular, it is finite for 3 <d<4. Therefore, the fractal continuation is not a
regularization as is the analytic continuation. On the other hand, one expects that
the model on a fractal space is perturbatively renormalizable for d <4. At present,
this appears difficult to demonstrate. Nonperturbatively, one expects that the ¢*
theories have only trivial continuum (scaling) limits when d > 4 (and the coupling is
positive) [1, 2, 21], whereas for d <4 there should be two families of solutions: a
two-parameter family of superrenormalizable, asymptotically-free solutions and a
one-parameter family of solutions with a non-Gaussian UV fixed point [45]. The
explicit construction of the theories with non-Gaussian fixed points for d<4 is
outlined in the following section for a simplified choice of the propagator.

N
N

Fig. 8. See text

4. The Hierarchical Models: Informal Discussion

The model we deal with here is a hierarchical one, such as was first introduced by
Dyson [15, 16], in a version which has been much studied in the last few years by
Gawedzki and Kupiainan [22-24]. The model is based in our case, however, on a
unit lattice Sierpinski carpet of the dual form *IF)(d, L, %) (see (2.5) and Fig. 3),
which is particularly adapted for block-spin [46] renormalization-group (RG)
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transformations. The Gibbs measures are therefore given by
A, Go(s)=Z"" exp [ - ZF N W(Sn)] dpigo(s) (4.1)
ne*EQ
and g, is the Gaussian measure on RI"®'! with mean O and covariance G,:

Go(n,m)= kZ'o L™ ™81 tev v, g1, - 0+ 0 A1) A(my) (4.2)

We choose I/ —C=1¢ to be even. In (4.2), n,, m, denote k™ place coefficients in

base-Lexpansions of n,m as in (2.5). [ - ] denotes the d-integer part of an element of

IR% and A is a function on Z{/% with values in { + 1}, each value taken (L' C)/2
number of times. If we introduce the usual BS-field,

Sp=(Bs),=L*>"4 Y s, (4.3)

n:[L~'n]=m

and note the decompositions

dite,(s)=dic,(s) 11 dmi(Zy) (4.4)
with
s,=L" a/zs{[L -1t A(nO)Z[?L‘ n]> (4.5)

then integration of fluctuation fields Z° leads to the following recursion formula
for the spin weight-exponent w(s):

e 9= [exp[ — LWL *2s+2)+ WL~ *2s— 2))]dp,(2)/{ exp[ — L'w(z)]dp,(z).
~ (4.6)

This is just the celebrated approximate recursion formula of Wilson [46], as it arises
in the usual Euclidean case, except that here the Hausdorff-Besicovitch or fractal
dimension d appears rather than the Euclidean dimension d. This is the crucial
point for the analysis of these models. In addition to the trivial Gaussian fixed
point w(s)=0, it was discovered by Wilson and Fisher [44] and subsequently
rigorously verified [7, 8, 13, 22] that the recursion formula has for d=4—¢ a
second non-Gaussian fixed point

w¥(s)=a*s® + A*¥s* + W*(s) 4.7)

with A* = O(e). This fixed point governs the critical behavior of the model for d < 4.
As an aside, we remark that formula (3.6) already shows that the critical properties
of hierarchical models on lattice Sierpinski carpets depend only upon the
Hausdorff-dimension. This is in contrast to the Ising models on fractal lattices
studied by GAM [25, 27-30], whose critical exponents depend strongly on a host
of geometrical properties of the lattice but in agreement with a recent conjecture of
Penrose [37], that a simple form of universality might hold for statistical models
with long-range interactions on a fractal.

However, our interest here is in the renormalization problem of quantum field
theory, which Wilson has related to the RG transformation of unit lattice
statistical theories [46]. As preliminary to the rigorous discussion of this problem
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in the follow-up paper and to set our notation, let us consider the RG flows of the
model in a formal, perturbative approach. It is convenient to represent the RG
transformation (4.6) in the form:

w(s)=y'(s)—y'0), (4.8)
y'(s)= —log | du(z) exp[ — L'q(s, 2)], (4.9)
q(s, z)=3[w(L™*?s + z) + w(L™*?s—z)]. (4.10)

Then, y" may be written as a cluster expansion
) 1 ..
y(s8)=L<q(s,)) — 21 L2 g¥(s, )" + L3"<q3(s N+ (4.11)

where the expectations are with respect to du(z)=e‘zz/2dz/(2n)”2. We take our
initial spin weight exponent w in the form

1
6!

Here, : F(s):g, denotes the normal-ordering with respect to covariance G,:

—uistig + —t:s%ig,. (4.12)

1 1
w(s)— rs 6ot a1

1
:F[s]:6,=¢xp l: -3 Y Goln, m)aZ/as,,asm] F[s]. 4.13)
n,me*IFY
We drop the subscript G, as convenient.
In this form, it is easy to see that the RG transformations diagonalizes to first-
order:

1
L“<q>— S Lu:s*: + 61—'L_2“'5)t:s6:. (4.14)
The second-order contribution is also easily calculated from (3.9-12) and yields
1 1
y(s)= y(0)+—r s? +Iu :s* +%t’:sﬁz+... (4.15)
with r'=Lr—(o,u® + o ru+asr* + Ry)], (4.16)
u,=Ij[u"‘(ﬁ2u2+Blru+U2)], (4.17)
' =L"21"9t—(5,u*+ T,)]. (4.18)

The ... in (4.15) represents higher-order induced terms, like %h/:s8 :, which,

however, on assumptions on the initial weight (4.12), will be seen to be negligible.
R,, U,, T, are homogeneous, second-order multinomials in r, u, t representing
quadratic contributions other than those distinguished. The coefficients o, o, a3,
B1, Ba, 65, ete. are all O(L?) as L » + co and, in particular, o; >0, §,>0.
Let us assume initially that
u=0(eL *logL), (4.19)
r=0(cL *logL), (4.20)

t=0(2L %logL). (4.21)
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Itis clear from (4.17),(4.18) that (4.19),(4.21) are preserved under iteration. Also, we
note that higher power couplings, like /’, are O(¢3L~?1og? L) at least. Because of the
relevancy of the variable r, we cannot automatically conclude that
r'=0(eL™?logL). However, this is true for r located initially on the critical
hypersurface, r=r/u,t). The critical surface must pass through (r,u,t)=(0,0,0)
and, since = O(Lu?), we conclude that r,(u, )= O(u). By this observation the RG
equations for r, u decouple from those of the other variables to O(L**?): in
particular, terms like o,rt =0(I*%>) may be neglected. If we parameterize the
critical hypersurface by:

rw)=ru+ru*+0(%) (4.22)
and use the stability condition
ru) =rlu)+ 0>, 4.23)
with (4.22) and (4.16-17), we find that
r =0 (4.24)
and
[A(ry,—ay)=ry [?* or ry=(1—L"20"9)"1g,, (4.25)
Only a single interaction equation is now of concern:
W = Lu—Bu +0(L12%3)]. (4.26)

The fixed points of (4.26), (4.22) in the chosen domain (4.19-21) are then seen to be
(r,u)=(0,0)=0 and (r*,u*)=F with

u*=pf5 (1 —L %+ 0(e*L %log? L)=0(¢sL™%logL), (4.27)

r* =r,(u*)? +0(e3L *log®L)=0(c* L *logL). (4.28)

The linearized RG flow diagram for the model in the small-coupling domain is
sketched in Fig. 9.

r

R
G A
c
F
(]
u
R
G' Al

Fig. 9. The RG flow of the hierarchical model for r, u= O(eL"?log L). The Gaussian fixed point, 0,
the W—F fixed point, F, and the critical hypersurface, OFC, are indicated
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Now, as usual, if we consider the “Euclidean” hierarchical scalar field-theory on
IFY, with path measure

Yy, 0,(P) =eXP [ - X L™ av(¢(n))] LT ()

ne*lFar
/ ' xexp[— ) L‘M%(qs(n))] dug,(9),  (429)
RI” Farl ne*Fay

where
GM(n, m) = . _Z_ . L ak5|[L —(k+ Dn L~ O+ 1)m],A(nk)A(mk) 5 (430)

one can relate the Green functions of (4.29) with the statistical correlation
functions of (4.1) by a simple rescaling

ln) =%, (4.31)
with the definition
w(s) = L™ May([M2). (4.32)
One finds
GM(xy, ..., x,; v, Ny=IMP2C([LMx, ], ..., [IMx,]; w, N+ M).  (4.33)

Clearly, the renormalization problem, to find a sequence of cutoff dependent
interactions v'™ so that the limit of the left-hand side of (4.33) existsas M ~ + o0, is
equivalent to the problem of finding a sequence of spin-weights w™, so that the
scaling limit, M / + oo, of the right-hand side exists. It is also useful to reformulate
the renormalization problem in terms of the Green’s functions
GM(ny, ...,n,; v™, N) of block-averaged fields

~kd me O{M)(n) m:[Lkm]=n

W=y T LMGm=L S g, @3

defined as

GI(CM)(nD seey np; U(M), N) = j ¢§cM)(n1)' . '¢§¢M)(np)d:uv, GM(¢) . (435)
RI* F{y!
Again, the limit as M # + oo is required to exist [24].

As realized by Wilson, the existence of the limits in (4.33) or (4.35) is guaranteed
by the appropriate approach of the sequence w'™ to the critical hypersurface and
by certain scaling relations for the correlation functions, which are a consequence
of the RG having a fixed point and a simple form near the fixed point like (4.16-17)
(see [46, Sect. 7.2]). In the hierarchical models discussed here the situation is
simplified because one can easily derive such a scaling relation without any
assumption about fixed points. If [L™'m,] % [L™'m,] for i=j, one finds that

C(my, ...,my; w,N)=L"""2C([L"'m],....,[L"'m,]; w,N—1)  (4.36)
and, by iteration, for —N <k =<0,

Clmy, ...,my; w,N)=L"2C([L'm,], ..., [L'm,]; w,, N+ k) 4.37)
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so long as [L*m]|%[L*m;] for i+ j, where w, is the result of (—k) RG transfor-
mations of w. Let Q=Q(x,, ..., x,) be the least integer such that [L2x;] # [12x,]
for all. Then

LM C([IMx, ], ... [0, 5 W, N + M) = L2 C([ i, ], ... [, ] Wi, N + k),
(4.38)

for all k, M =2 k= Q. Clearly, the scaling limit of the right-hand side of (4.33) exists if
it is possible to choose w™ = w0 in such a fashion that, for all k=0, the limits w,

= lim w exist, and, in that case,

M-+

G(Xq, ., Xp; N)= Ml—l}? GM([Mx,], ..., [IMx,]; v™, N)

=[*P2C([Lrx, ], ..., [I*x,]; w N +K). (4.39)
The same condition guarantees the convergence as M — + oo of (4.35) since
GM(ny, ...,n,; o™, N)=LP2C(Lkn,, ..., Ln,; wi, N + k). (4.40)

There is considerable latitude in choosing the sequence w'™. In the first place,
according to Wilson’s ideas, each of the RG trajectories emanating from a fixed
point corresponds to a quantum field-theory. In Fig. 9, there are several such
renormalized trajectories: O, OG, OA, OF, OG', OA’ and also F, FR, FR'. The
flowlines OG, OG’ correspond to the trajectory of Gaussian theories and the
flowlines like 04, OF, OA’ are asymptotically-free, superrenormalizable theories.
In our work, we are concerned with the theories corresponding to the trajectories
FR, FR’, with the non-Gaussian UV fixed point, and the massless, scale-invariant
theory corresponding to the fixed point F itself. Furthermore, for each of those
renormalized theories, there are a variety of renormalization cut-off prescriptions
w™ which suffice to yield that theory. In this work, we adopt essentially the choice

WD = 30 g My (4.41)

where w® is a sequence on the critical hypersurface tending as M— + oo to

wp=w¥, w, is the eigenfunction of the linearized RGT at F for the leading
eigenvalue IM", and 0 is a renormalized coupling corresponding to the strength of
the interaction w, in the renormalized theory at unit scale k=0.

The rigorous construction of the various hierarchical field-theory models,
particularly the theories with the non-Gaussian UV fixed points, is the subject of
the companion paper [19].
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