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Abstract. We study a class of two-dimensional spin-1/2 Heisenberg anti-
ferromagnets, introduced by Klein [1], in which the nearest-neighbor term
is supplemented by next-nearest-neighbor pair and four-body interactions,
producing additional frustration. For certain lattices, including e.g. the hexa-
gonal lattice, we prove that any finite subset which admits a dimer covering
has a ground state space spanned by valence bond states, each of which consists
only of nearest-neighbor (dimer) singlet pairs. We also establish linear indepen-
dence of these valence bond states. The possible relevance to resonating-valence-
bond theories of high-temperature superconductors is briefly discussed. In
particular, our results apply both to regular subsets of the lattice and to subsets
with static holes.

I. Introduction

The purpose of this paper is to provide a concrete realization of short-ranged
valence-bond state in a two-dimensional spin-1/2 Heisenberg antiferromagnet.
Since this work is motivated by recent theories of high-temperature super-
conductivity, we will begin by presenting a brief review of the relevant theories,
and, in particular, the resonating-valence-bond (RVB) approach [2]. We will then
describe the model we consider and our results.

(a) High-Temperature Superconductors and the RVB State. The mechanism for
high-temperature superconductivity in materials such as La2_xSrxCuO4 and
YBa2Cu3O7_x is a subject of current interest. A host of theories have been
proposed. These range from modifications of conventional, phonon-mediated
BCS theory [3] to more exotic theories in which the electron-pairing mechanism
is based not on phonons, but on excitons [4,5] or on antiferromagnetism
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[2,6-31,43-46,48-51,53-59]. Although many careful experiments have been
performed, the interpretations are often contradictory and hence do not provide
conclusive evidence for a particular mechanism.

Among the theories based on an antiferromagnetic mechanism, a good deal of
work has concerned the resonating-valence-bond pictures [2,6-9,12-14,16,18-24,
29,53,56,57]. Here one assumes that a typical copper-oxide plane of the undoped
insulator (e.g. La 2 CuO 4 ) is described by a (single-band) half-filled Hubbard model
with large repulsion energy U. This is then roughly approximated [32,33] by a
two-dimensional spin-1/2 Heisenberg antiferromagnet with Hamiltonian

J f=Σ Jscsj, (1.1)

where the nearest-neighbor coupling is related to the standard Hubbard parameters
via J = Λt2/U. In the simplest version of the theory, planes of the doped material
are described by a Hubbard model off half-filling; in the large U limit, one studies
a Heisenberg antiferromagnet with (dynamic) holes.

The first step in this theory is a characterization of the ground state properties
of the undoped insulator and hence of two-dimensional spin-1/2 Heisenberg
antiferromagnets. Although much recent work has focused on the nature of the
ground state in the pure nearest-neighbor model (1.1), it is useful to consider a
larger class of short-ranged two-dimensional spin-1/2 Heisenberg antiferromagnets,
with additional-neighbor couplings and possibly also local higher-body inter-
actions. Such Hamiltonians can be obtained as the large U approximations to
single-band Hubbard models with additional-neighbor couplings or as approxi-
mations to two-band Hubbard models. In the space of all such Hamiltonians, one
can conceive of at least three distinct types of ground states. First, the ground state
could be Neel-ordered, by which we mean a state with broken spin-rotational
and translational symmetries. The Neel state is gapless to spin excitations. Second,
the ground state could be what is called a quantum-spin-solid or spin-Peierls state:
by this we mean a "crystalline" state with more than one spin per unit cell (i.e. a
state with broken translational symmetry), but with spin-rotational symmetry. The
quantum-spin-solid has a gap to spin excitations. Finally, the ground state could
be a quantum-spin-liquid state, by which we mean a disordered state with both
translational and spin-rotational symmetries. Some time ago, Anderson [34,35]
proposed a quantum-spin-liquid state in the form of a so-called resonating-valence-
bond state: a superposition of wavefunctions in which each spin is singlet paired
to another spin, this pair being represented graphically by a "valence bond." Implicit
in many RVB theories of high-temperature superconductivity is the assumption
that there are short-ranged two-dimensional spin-1/2 Heisenberg antiferromagnets
with quantum-spin-liquid ground states. In this paper, we take the first steps in
addressing the question of existence of such states.

Let us briefly review what is known about one-dimensional spin-1/2 Heisenberg
antiferromagnets. The exact solution of the nearest-neighbor spin chain gives a
gapless ground state with power-law decay of correlations [67,36,68]. Due to
some rather peculiar properties of one dimension, this state has been interpreted
in various fashions. First, the state is in some sense as close to a Neel-ordered
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state as is possible, given the constraints of one dimension; in particular, the
magnetic susceptibility has been calculated [69] and is consistent with this
interpretation. On the other hand, this state has recently been identified as a
one-dimensional analogue of the quantum-spin-liquid states described above [2].
Finally, it is also worth noting that this state dimerizes—i.e. forms nearest-neighbor
valence bonds—in a weak dimerizing field; the field exponent for the dimerization
susceptibility has been calculated by a mapping to a continuum model [70,71].
Another one-dimensional model, the Majumdar-Ghosh model [64], has anti-
ferromagnetic next-nearest-neighbor and higher-body terms, in addition to the
nearest-neighbor Heisenberg term (1.1). The ground states of this model have two
spins per unit cell [64] and a gap to spin excitations [60], and thus may be
interpreted as one-dimensional crystalline states.

In two dimensions, there is increasing evidence for a Neel-ordered ground
state in the spin-1/2 nearest-neighbor Heisenberg antiferromagnet (1.1). Early
diagonalizations [42] of small systems (16 sites) indicated long-range order. This
result is supported by more recent work based on variational calculations [43-47],
Monte Carlo simulations [48-50], and series expansions [51]. There is also recent
evidence for two-dimensional order based on a sophisticated theoretical analysis
[26] of the results of neutron scattering experiments on La2CuO4 .

The above evidence, of course, does not preclude quantum-spin-liquid ground
states in two-dimensional spin-1/2 Heisenberg antiferromagnets with additional
interactions, although, to our knowledge, there have been no previous attempts
to rigorously identify such states. On the other hand, it is worth noting
that two-dimensional higher-spin antiferromagnets, introduced by Klein [1] as
generalizations of the Majumdar-Ghosh model [64], do have ground states which
satisfy our definition of a quantum-spin-liquid. The ground state of the two-
dimensional higher-spin Klein model has both spin-rotational and translational
symmetries [1], and (on the hexagonal lattice) has recently been shown to have
both a spectral gap and a gap to spin excitations [60]. Although the ground state
appears ordered in the set of variables defined by Klein [1], it is disordered in the
original spin variables.

In this work, we seek to identify RVB-type quantum-spin-liquid ground states
in the space of two-dimensional spin-12 Heisenberg antiferromagnets. In this
regard, it is important to note that the term RVB has been used to designate two
macroscopically distinct quantum-spin-liquid states: 1) the original RVB state, or
short-ranged RVB, and 2) the newer, long-ranged RVB. The short-ranged RVB
consists of a linear superposition of short-ranged valence-bond states, of which a
superposition of only nearest-neighbor valence-bond states is the prototypical
example. This state corresponds closely to the chemist's notion of an RVB state
[36,37]. It has been studied in the context of magnetism by Anderson [34,35]
and others [38], and sepcifically in the context of superconductivity by several
groups [6,12,16,18-22,29]; the present work concerns only the short-ranged RVB
state. The majority of work on RVB superconductors is based on the longer-ranged
RVB states [2,7-9,13,14,23,24]. Here one begins with a superposition of
wavefunctions in which states with valence bonds of all lengths make significant
contributions. However, the relative coefficients of these wavefunctions are



56 J. T. Chayes, L. Chayes and S. A. Kivelson

generally not specified explicitly. Thus one often distinguishes short- and long-
ranged RVB states not on the basis of the length of their valence bonds, but instead
on the basis of the expected behaviors of their correlation functions: the former
is believed to have exponentially falling spin-spin correlation functions and,
presumably, a gap to spin excitations [29,34,35,6,12], while the latter is expected
to be gapless and have power-law correlations [7].

It is worth noting that although the RVB state was proposed as an alternative
to a Neel ordered state, it is not the case that RVB states and Neel ordered states
are mutually exclusive. Indeed, it is rather clear (and, in fact, easy to prove) that
all wavefunctions composed of valence bonds of arbitrary length span the singlet
sector; since the ground state of the Hamiltonian (1.1) lies in this sector [39-41],
it certainly can be expressed as a superposition of some set of valence-bond states.
Thus, the question of a long-ranged RVB states vs. a Neel ordered state is rather
subtle; it is not clear what restrictions on the distribution of long valence bonds
ensure the absence of Neel order. On the other hand, the number of nearest-
neighbor valence-bond states [62,63] is substantially less than the total number
of singlet states. Thus the statement that the ground state of a particular model
consists only of nearest-neighbor valence-bond states is certainly a stronger
statement than simply the fact that it is a singlet.1 Of course, even this does not
rigorously settle the question of a short-ranged RVB state vs. Neel order, although
it is widely believed that a state composed exclusively of wavefunctions with
finite-range valence bonds will not have long-range magnetic order.

Assuming that quantum-spin-liquid RVB states do exist, many workers agree
that they provide a good starting point for the analysis of high-temperature
superconductivity. As originally argued by Anderson [2], a quantum-spin-liquid
of singlets provides a reservoir of preformed Cooper pairs; the charged vacancies
corresponding to the dopant may have a natural tendency to undergo Bose
condensation, yielding a superconducting state [6]. Beyond these basic points,
there is controversy even among the proponents of an RVB picture: assuming the
existence of an RVB ground state, there are serious disagreements concerning the
nature of this state, as well as the exact mechanism for Bose condensation. In this
regard, it should be noted that even a Neel ordered ground state does not preclude
all RVB explanations: if Neel order exists but is tenuous, it can be broken either
by factors which have not yet been incorporated in the ground state description
of the insulator or by the introduction of dopant. For example, Anderson and
collaborators [8] have argued that a small concentration of dopant would favor
the RVB state, since according to the work of Brinkman and Rice [52], holes have
low kinetic energy in the antiferromagnetic state (see, however, [53-59]).

Given the large body of work on resonating-valence-bond descriptions, it is
of interest to know whether a (short-ranged) quantum-spin-liquid is an appropriate
description of the ground state in some reasonable two-dimensional spin-1/2
Heisenberg antiferromagnet. For this purpose, it is useful to reconsider the

1 In fact, it is not difficult to prove that the space spanned by all valence bonds states with valence
bonds of any given finite range is a strict subset of the singlet sector
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conclusions of the original work on the RVB state [34,35]. The arguments
presented there for an RVB ground state in the pure Heisenberg antiferromagnet
(1.1) were rather cautious; on the other hand, it was strongly argued that if additional
frustration is introduced into the system, e.g. in the form of next-nearest-neighbor
interactions, then the ground state should be RVB. In this paper, we consider a
Hamiltonian introduced by Klein [1] (and described in subsection I.b below) which
contains additional frustration. On certain lattices, we show that this Hamiltonian
has a valence-bond ground state in the strongest sense: the ground state space is
spanned by wavefunctions composed exclusively of valence bonds of length one,
the so-called dimer states.

It is important at the outset to make clear the underlying philosophy of studying
this model. The Klein model provides an analyzable point in what we expect is a
large region of the ground-state phase diagram of short-ranged spin-1/2 quantum
antiferromagnets: namely a region characterized by short-range valence-bond
ground states, presumably without Neel order. However, this special point possesses
symmetries which are not shared by "nearby" models, and which we believe to be
responsible for its extensive ground state entropy. Classes of perturbations which
break this symmetry in different fashions will presumably lead to distinct
behaviors—i.e., the spin-1/2 Klein model is presumably a multicritical point. Thus,
we expect that the low-lying states of nearby models should lie largely in the
ground state subspace of the Klein Hamiltonian, so that they can be studied using
first-order degenerate perturbation theory; the resulting dimer Hamiltonian
provides a concrete analyzable model (see e.g. [21,22]). For certain types of
perturbations, it is likely that the ground state will be a coherent superposition of
short-ranged valence-bond states, i.e. an RVB state. We therefore feel that the
results of this paper provide a good starting point for the study of spin-1/2
quantum-spin-liquids, and thus also provide circumstantial evidence for those
aspects of an RVB picture which rely on the assumption of quantum-spin-liquid
ground states.

(b) The Spin-ί/2 Klein Model In a remarkable paper [1], Klein introduced a
class of antiferromagnetic Heisenberg models with short-range interactions. By
expressing the Hamiltonians as sums of projection operators onto various spin
states, Klein obtained exact ground states for his models. Some of the Klein
Hamiltonians had large enough spin, depending on the coordination number, to
produce (essentially) unique ground states; these were recently investigated in the
work of [60] where it was not realized that Klein had previously introduced the
models and obtained the relevant ground states. Further work on the higher-spin
Klein models is contained in [61]. The spin-1/2 models have an entirely different
character: the extreme quantum limit produces substantial frustration in the system
which manifests itself in a large degeneracy of ground states. It is the latter models
which are of relevance to the RVB theories of high-temperature superconductivity.

The spin-1/2 Klein models are defined in some detail in Sect. II, to which the
reader should refer for a more precise discussion. For the purposes of this
introduction, consider a quantum spin-1/2 magnet on a finite lattice. The Klein
Hamiltonian may be written in the form
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Jf = Σh (1.2)
i

where % projects the set of spins at i and in its immediate neighborhood onto their
maximum possible spin state. If zt is the local coordination number (which for
many lattices is a constant except near the boundary), this maximum possible spin
state is just S = zt+ 1/2.

Surprisingly enough, the spin-1/2 Klein Hamiltonian (1.2) is in some sense close
to the pure nearest-neighbor spin-1/2 Heisenberg antiferromagnet (1.1). Indeed, a
straightforward calculation shows that the Hamiltonian (1.1) is the leading term
of the Klein Hamiltonian. This term is supplemented by other antiferromagnetic
finite-ranged pair interactions and local higher-body terms, all of which have
coefficients of order unity. (See Eq. (2.6) for an explicit calculation on the hexagonal
lattice.)

Now consider the dimer states which, by definition, are wavefunctions where
every spin is singlet-paired to one of its nearest neighbors. These are trivially in
one-to-one correspondence with the dimer coverings of the lattice. Furthermore,
it is easy to show that the number of dimer coverings of a regular subset of a
regular lattice (e.g. the square or hexagonal lattice) and the number of distinct
ground states grow exponentially with the size of the system.2

Klein [1J proved the simple, but very nice result that all dimer states are ground
states of the Hamiltonian (1.2). Indeed, (1.2) is a sum of non-negative operators,
so that the energy of any state is bounded below by zero. On the other hand, a
singlet pair between the site i and one of its nearest neighbors ensures that the
collection of spins at i and its immediate neighborhood cannot be in their maximum
spin state. Hence, on any dimer state, each term in (1.2) vanishes individually and
the total energy achieves its lower bound.

The major question we address in this paper is whether the dimer states are
the only ground states of the Klein Hamiltonian: i.e. do they span the ground state
space? Clearly, only an affirmative answer would allow us to assert that any ground
state is expressible as a linear combination of dimer states and hence a (dimer)
RVB state. For certain lattices, e.g. the two-dimensional hexagonal lattice, we will
show that this dimer RVB picture is indeed correct. However, the question is
somewhat more subtle than it might initially seem in that the answer depends not
only on the spin-1/2 nature of the particles, but also quite sensitively on the lattice
geometry.

In our proof, it was required that the lattice be devoid of triangles: that is, if
a and b are neighbors, there is no point c which is a neighbor of both a and b.
This condition is important in the sense that the result does not hold on e.g. the

2 The existence and non-triviality of (exponential) growth constants for both the number of dimer

coverings and the number of independent ground states of the Hamiltonian (1.2) is easy to demonstrate

for regular lattices. Obviously one must not be so perverse as to choose shapes which do not have a

dimer covering, e.g. shapes with an odd number of sites. Similarly, devious sequences of shapes can be

arranged which allow some dimer coverings, but severely inhibit the thermodynamic growth of their

total number. Exact growth constants for the number of dimer coverings of various lattices were

obtained some time ago by Fisher [62] and Kasteleyn [63]
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Fig. 1. A ground state of the triangular lattice

triangular lattice. To see this, regard the triangular lattice as a hexagonal lattice
together with an extra site in the center of each hexagon, this site being connected
to each of the six sites of the hexagon, thereby comprising a "hexagonal cell." Now
suppose that the lattice is generated in n stages by plating a single such cell with
successive layers of cells. Then the nth lattice can be viewed as n "rings" attached
together by "spokes." Each of these rings can be separately dimerized (in one of
two ways), thus producing a complete dimer covering of the hexagonal portion of
the lattice. (See Fig. 1.) However, the central spin of each hexagonal cell has at
least one dimer in its neighborhood; thus, in the context of the Klein Hamiltonian
is "free to do as it pleases." In particular, these spins can be symmetrized—and
thus we have a ferromagnetic ground state; or, perhaps even more disturbingly,
they can be arranged to form a Neel state.

(c) Results and Organization. Our principal results concern the ground state space
of the spin-1/2 Klein Hamiltonian (1.2) for arbitrary subsets of certain two-
dimensional lattices, the most familiar example of which is the hexagonal lattice.
Precise statements of our theorems for the hexagonal lattice are given at the end
of Sect. II. Basically the results are:

A) If the subset admits a dimer covering, then the set of all dimer states spans the
ground state space.

B) These dimer states are linearly independent (and hence form a basis for the
ground state space).

C) If the subset does not admit a dimer covering, then the ground state energy is
strictly positive.

It should be noted that these results apply to arbitrary finite subsets, and therefore
hold for the physically important case of lattices with (static) holes. Our conclusions
make it seem plausible that the model has a gap to spin excitations, but we have
not yet proved this. Another important open problem is the extension of result
A to the infinite-volume system.
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As explained earlier, results of the above type depend sensitively on lattice
geometry. It is therefore not surprising that our proof is also tailored to the detailed
lattice structure. The most important properties we use are relatively low
coordination number and relatively large minimum loop size, although certain
features are most easily handled on a case by case basis. In the Appendix, we
extend the proofs of results A-C to other lattices including the two-dimensional
octagonal-diamond lattice (depicted in Fig. 4) and the 2 x N square strip. Although
the strip is in some sense one-dimensional, it has many dimer coverings. In the
Appendix, we also show that result B (linear independence of dimer states) holds
for the two-dimensional square lattice.

Strictly one-dimensional results follow quite easily by our methods. In one
dimension, the Klein Hamiltonian (1.2) reduces to the Majumdar-Ghosh (MG)
model [64]. Here, the coordination number is sufficiently small that, even for
spin-1/2, the ground state should be essentially unique (i.e. have at most a
degeneracy of 0(1)). Such a result was recently proved for the open-chain MG
model with particular boundary conditions [60]. Since both open chains and
periodic chains are subsets of the hexagonal lattice, results A-C apply directly to
these cases.

The remainder of this paper is organized as follows: In Sect. II, we give precise
definitions and a statement of our results for the hexagonal lattice. In Sect. Ill, we
provide a proof of these results, prefaced by a subsection on the strategy of the
proof. Other lattices are treated in the Appendix.

II. Notation, Definitions and Statement of Results

Let A denote a finite lattice of points, which for most purposes we will take to be
a subset of a regular two-dimensional lattice. In any case, certain pairs of points,
UjeΛ, are deemed to be neighbors; this may be represented by drawing an edge
joining the sites ί and j . Without loss of generality, we will take A to be (edge)
connected in the sense that if i l s ikeΛ, there are points i2,...9ik-ίeΛ such that
(h>h\ (h^h\'"Xh-iJk) a r e neighboring pairs. For each ieΛ we define the
neighborhood of i, denoted by JV(I)9 as the set consisting of i and all points which
are neighbors of L Thus if zt is the local coordination number, then \^V(i)\ = zi + 1.

On each ieΛ, we place a spin-1/2 particle: that is, a copy, ξ>h of the
two-dimensional vector space C2. We will use the notation α(i) (spin up) and β(i)
(spin down) for an orthonormal basis of § t . As a linear basis for the operators on
9)h we may take the unit operator and the usual Pauli spin matrices (generators
of SU(2)) sf9 sj and sf. In this work, however, we will have essentially no need for
an explicit representation of these quantities.

The Hubert space associated with the full lattice is given by the tensor product

Operators on § Λ will be written as sums of products of various operators on the
§ f ; necessary unit operators will be implicitly understood and omitted. For example,
sf is notation for the operator H(x)1](χ) (χ)sf(χ) (x)1].
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A Hamiltonian on ξ)Λ is any self-adjoint operator. For the undoped magnet,
the Hamiltonian has the translation symmetry of the underlying lattice (modulo
boundary effects). However, in the presence of static holes, the appropriate
Hamiltonian is not translationally invariant. Here we consider the general case.

Given a Hamiltonian Jf, the energy of a φeξ>Λ is given by

A ground state is any φeξ)Λ (usually already normalized) which minimizes (2.2).
The spin-1/2 Klein Hamiltonian [1] is constructed as follows: For any ΦaA,

let Pφ denote the projection onto the maximum spin state of § φ . We take

^Λ=ΣPU,^ΣK (2.3)
ieΛ ieΛ

for the Hamiltonian on Λ.
As discussed in the introduction, JfΛ is a sum of projection operators; thus it

is clear that the energy of any ψeξ>Λ is non-negative. Indeed, for all i, the energy
at ί, < φ I hiφ >/< φ I φ >, is non-negative. However, if neighboring spins are in a singlet
state, it is impossible that the total spin of the neighborhood assumes its maximum
value. Thus the energy for both sites will vanish. For many lattices (those which
admit a dimer covering) zero energy can be achieved in this fashion at all sites
[1]. Hence it is possible to explicitly construct ground states for the Hamiltonian
(2.3).

Remark. As is apparent, the "boundary conditions" we impose force each site to
respect the local definition of neighborhood. It is for this and only this choice that
we establish our results. In fact, when JίfΛ is of the form (2.3) but the lattice has
periodic boundary conditions, one can often demonstrate the existence of additional
ground states.

The above projections can, of course, be written explicitly in terms of the spin
operators. Indeed, for general Φ a A, let us denote by S φ the spin vector

(2.4)
ieΛ

The operator S2

Φ has eigenvalues (s)(s + 1), s = ^\Φ\, %\Φ | —1,...,according to
the size of the spin. To project onto the maximum spin state, one need only kill
off the lower sectors in succession. For example, if | Φ \ is even, P φ is given
by the expression

Performing this calculation for the hexagonal lattice and resumming, the result for
interior sites is:

cxjtr = c2 + Σ Si-*! + i Σ sfsj + 1 Σ (*ϊ*j){*k*r), (2 6)

with C1 > 0 and C 2 irrelevant constants. Here, the first and third sums are over all
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nearest-neighbor pairs <ij>, and the second is over all next-nearest neighbor pairs
« i j » . In the above, ffl is exhibited as a familiar type of local Heisenberg
Hamiltonian. It is highly frustrated and predominantly antiferromagnetic.

What is crucial to the mathematical analysis of this problem is not so much
the size of the spin, but the degree of symmetry that various spin states enjoy. In
particular, the highest spin state for a collection of particles is the state of complete
symmetry. Thus, ht can also be expressed as the symmetrizer (i.e. sum over
permutations) for the neighborhood of i. Since this perspective turns out to be
useful, we will pause to introduce some relevant notation. Consider first the two-site
problem, i.e. suppose that φeξ>i(g)ξ)j. We use Efj to denote the exchange operator:

EuΨ(i,j) = ΦU,ί) (2.7)

(Thus φ is symmetric if EtJφ = φ and antisymmetric if E^φ = — φ.) The symmetrizer
for φ is just

S ^ E E ( 1 + E 0 # , (2.8)

while

A;> = ( l - E i 7 # (2-9)

is the antisymmetrizer. Notice that we have omitted the customary factor of \.
Usually one can symmetrize or antisymmetrize whole collections: The

symmetrizer for three particles is simply

Syfc = S£/1 + Eifc + Eifc), (2.10)

and, in general,

For antisymmetrizers, analogous formulas may be written down with the Enm replaced
by — Enm. However, for spin = 1/2, things can only go as far as two particles: for
two particles, there is a unique antisymmetric function; antisymmetrization
(sometimes called alternation) with additional particles will destroy the wave-
function.

The above notation allows yet another expression for the Hamiltonian (2.3):

*Λ = Σ^A<f>> (2 1 2 )
i

where the λΛ^= l/\jV(i)\l are unimportant constants. The obvious fact that
wavefunctions which are antisymmetric on ί and some JEJV(I) have zero energy
at the site / can now be expressed in a different—but of course equivalent—
language.

Since, as mentioned above, there is only one (independent) antisymmetric
function between any pair of spin-1/2 sites, it pays to have explicit notation. We
thus define

ί(ϊ)β(J)β(MJ)l (2.13)
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Evidently, if ψeξ>Λ is antisymmetric on UjeΛ, then φ may be factored into

(2.14)

where φeξ)Λ^{ιj). Thus, it is seen that antisymmetrization of a wavefunction φ—that
is, operating on φ with ^A o —is a projection which amounts to the contraction
of φ with ζij9 thereby obtaining a φeξ>Λχ{iJ), and "multiplication" of said φ with
ζij. The latter perspective is not only of conceptual value; it is essential for
performing calculations.

According to (2.14), we may (modulo a phase) graphically represent any
wavefunction known to be antisymmetric on a pair (i,j) by drawing a bond between
i and j 3 . Fully bonded graphs, G, i.e. graphs where each ί is paired to some j , are
thus in one-to-one correspondence with the valence bond states, φG, which are
antisymmetric on all (iJ)eG. It is also seen that these graphs have zero total spin.
Bonds between neighbors will hereafter be called dimers. A fully bonded graph on
A composed entirely of dimers will be called a dimerization of A, and will typically
be denoted by A. The corresponding wavefunction, φΔ, is a zero-energy state of
the Hamiltonian JfΛ defined in (2.3).

It is worth observing that if A is a dimerization of A, and b is any bond of
Δ, then Δ\b is a dimerization of Λ\b. Writing φΔ as ς&φ^, ^ *s s e e n that φΔ^h

is a zero-energy wavefunction for the "reduced" Hamiltonian J^Δ\b. The above
turns out to be a general property of zero-energy wavefunctions of the J^Λ on
"untriangulated" lattices4: that is, for any zero-energy wave-function of J4?Λ which
is antisymmetric on the bond b9 the piece that lives on Δ\b is also a zero-energy
wavefunction according to the Hamiltonian #?A\h. This will be proved in Lemma
2. Interestingly, such a property fails for triangulated lattices, as does our theorem.
However, for e.g. the hexagonal lattice, this is strongly suggestive of the possibility
that such wavefunctions must be composed of dimer graphs which contain the
bond b—our principal result. We conclude this section with a formal statement
of what we ultimately derive:

Theorem A. Let H 2 denote the two-dimensional hexagonal lattice and suppose that
A cz H 2 is dimerizable. Let JtfA denote the Klein Hamiltonian (2.3) or (2.6% and
define Ωo = Ω0(Λ) to be the ground state subspace of 9)Λ. Let Q) = Q)(A) denote the
set of dimerizations of A and consider the space Ω9 defined by

Theorem B. For A, J4?A, <3)(A) defined as above, the functions

are linearly independent.

3 For the case of nearest-neighbor bonds on a bipartite lattice, a definite sign convention can be

adopted by insisting that valence bonds "start" on red sites and "end" on black ones. Thus, a graphical

representation of a wavefunction can be understood as a product of the corresponding ζtj with "Γ the

red site and "/' the black
4 An untriangulated lattice is a lattice with no triangles of nearest-neighbor sites
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Theorem C. If Λ <= H 2 does not admit a dimer covering, then the φeΩ0(Λ) have
strictly positive energy.

Remark. Note that even as stated, a special case of these results is a strictly
one-dimensional chain, the so-called Majumdar-Ghosh (MG) model [64], with
either free or periodic boundary conditions. Some results on the open-chain
problem with different boundary conditions were obtained in [60] using different
methods.

We believe that Theorems A-C hold under much more general circumstances.
For certain reasons (some technical and others fundamental), we have had to focus
on lattices with low coordination number and relatively long minimal loops.
Although the hexagonal lattice is the most familiar lattice we can handle, in the
Appendix we will establish Theorems A-C on the 2 x N square strip and on the
two-dimensional octogonal-diamond lattice (depicted in Fig. 4). Unfortunately,
due to various technical annoyances, we have, as yet, been unable to establish
Theorems A and C for general subsets of the square lattice Z 2 . (However, for this
case, we can prove Theorem B.) At present, we are actively investigating this
problem.

III. The Quantum Mechanics of Dimers

(a). Strategy of the Proof As has been stated on several occasions, all dimer
wavefunctions are ground states of the Hamiltonian (2.3), i.e. Ω9czΩ0. Thus, to
prove Theorem A, it is necessary to show that any zero-energy wavefunction has
non-zero projection onto some dimer state. Formally: if φeΩ0, φ Φ 0, then 3A e$)
such that PΔφ ^ 0 , where we have used the notation PΔ for projection onto φΔ.

Due to the factorization property (2.14), it is seen that PΔ may be written as
a product of commuting5 operators:

Thus a reasonable strategy is to project a φeΩ0(Λ) along some chosen bond and
reduce the original problem to a similar one posed on a smaller lattice.

The initial step is straightforward. Indeed, if φ has zero energy at some ieΛ,
then, by definition, φ is not symmetric on Jf(ΐ). It is therefore evident that one
can find 2LJEJV(I) such that

Aijψ φ 0, (3.2)

i.e. one can begin to dimerize any zero-energy wavefunction. After this first step,
one may decompose:

j (3.3)

where φ is defined on the reduced lattice, and attempt to repeat the argument. In

5 \ϊb,bΈΔ,bΦ b', the projection operators which antisymmetrize on b and b' commute because they
operate on disjoint coordinates
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fact, if φ had zero energy and φ oc Afj ^, then φ would have zero reduced energy,
i.e. $?A\{i,i) Φ = 0 (Cf. Lemma 2 for a proof.) Here one would be free to dimerize again.

Unfortunately, without substantial modification, the above program will soon
run into trouble. Indeed, if φ is not antisymmetric along the chosen bond, l\^φ
will in general have positive energy at all the remaining neighbors of i and j . Let
us illustrate this point with an explicit example. Consider a single hexagon and a

wavefunction φ given by

2 . 2 ,

(3.4)

where, as described in Sect. II, a bond between any pair of sites indicates
antisymmetry of the wavefunction on that pair. Now any projection scheme must
ultimately bond site 1 with one of its two nearest neighbors. However, it is easy
to show that

i ;:••:: i

2

2CB

1 I I (3.5)

3 '

3

while
2'

+ cBψB (3.6)
3'

In either case, the result is a positive energy wavefunction on the relevant reduced
lattice. Thus an unadorned projection scheme in which the energy of the resulting
wavefunction remains zero is not, in general, possible.

Nevertheless, projections of this sort are central to the problem at hand. The
ultimate goal is to find a PΔ which does not destroy the candidate φ. Given that
any PΔ factors into its constituent bond operators, it is arguable that some form
of a successive projection scheme must enter into a proof of Theorem A.

Positive energy does not, of course, preclude the possibility of continued
projection; in fact, only unit energy (complete symmetry) at some site forces a halt
to all these proceedings. However, unit energy will occur eventually (often on the
last bond) if the candidate wavefunction is deviously constructed. In any case, a
positive energy problem—even on a smaller lattice—is somewhat different than
the original problem in which all site operators destroy the wavefunction.
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Ideally, one would like to treat the problem of a zero-energy wavefunction on
the reduced lattice, which as explained above will not, in general, occur after having
antisymmetrized a φeΩ0(Λ) on any given bond. However, unless Theorem A is
false, for eachje/l, there must be a bond b emanating from i such that /\bφ is
not orthogonal to all the zero-energy states of Λ\b. Thus, defining #^y> t 0

be the projection onto the zero-energy states of J^Λ\b

6, one might consider using
i^o

A\b/\h instead of Afc as our fundamental bond projection operator. Indeed, such
an operator would either

i) destroy the wavefunction (indicating that a different bond should be tried); or
ii) leave a zero-energy state (on ξ>Λ\b), which is therefore in perfect condition

for continued projection.

One can therefore envision finding a (sequential) dimerization {b1,b2,...,bk)
such that each of the successive operators of the above type does not destroy
what remains of the wavefunction. Explicitly, let us define Λί=Λ\bί, A2 =
A 1\Z>2,...,An = An^1\bn, etc. The above sentence amounts to the supposition that

n^nAb>#0. (3.7)
n

However, regardless of how plausible such a result may seem, it appears far removed
from our original intention. Indeed, we had wanted to show

PΔφ = (const) γ\\nφφ0 (3.8)
n

instead of (3.7), and the two expressions differ by the insertion of ̂ \Λ | highly
nonlocal operators. Nevertheless, it can be shown (Proposition 1) that the two
operators are identical; that is,iΐ(bί9b2,... ,bk) is a dimerization A of A, then

2(1/2^PΔ=γ[iro

Λnt\bn. (3.9)
n

The spin-1/2 nature of this problem is essential in the proof of (3.9), since it enables
us to decouple a singlet pair from the rest of the Hubert space.

If the reader is prepared to accept Proposition 1 at face value, "all" that remains
to be shown is that one can find a b such that A\b is dimerizable and that
^Λ\b^bΦ #0- The question of dimerizability is easy for the lattices we consider
(although it might require some work for lattices with large coordination number).
The real issue is to show W°Aχb/\bφ ΦQ\ this is the subject of Propositions 3 and
4, with some help from Lemma 2. Roughly speaking, the key ingredient in these
propositions is the construction of non-orthogonal projection operators which: (1)
have non-zero projection onto the naively projected φ, and (2) do not create positive
energy. The latter property is demonstrated by considering all points in the vicinity
of the antisymmetrized bond, and explicitly decomposing the wavefunction into

6 It is worth noting that this operator does not act on the coordinates of the bond b; thus it has an

interpretation as an operator on either the full or the reduced Hubert space. We will use these two

notions interchangeably in the hope that the relevant meaning will be clear from the context
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its various symmetry types with respect to these points. The proof of Proposition
4 relies, technically, on certain properties of the hexagonal lattice.

After these results have been established, the formal proofs of Theorems A-C
are easy corollaries.

(b) The Dimer Ground State Space. In this subsection, we prove Theorems A, B
and C for arbitrary subsets of the hexagonal lattice. We will establish these results
in a series of propositions, many of which hold in greater generality. Our starting
point is to establish a fundamental result concerning the reaction of a zero-energy
wavefunction to antisymmetrization. (See Sect. II for relevant notation and
definitions.)

Proposition 1. Let A denote any finite lattice which admits a dimer covering, and

let A denote one such covering. Order the bonds of A in any desired fashion:

(bί9b2,...,bN) with \Jbn = Δ. Define Λ1 = Λ\buA2 = A1\b2, etc. Let jfΛ denote
n

the Klein Hamίltonian (2.3) on A and #fAn the {reduced) Klein Hamiltonian on An

with boundary conditions as described in the Remark following (2.3). Finally, let
U^o

Λn denote the projection onto Ω0(An) (corresponding to the Hamiltonian J^Λn).
Then

Π^VV^ΓK-^P .̂ (3.10)
n n

Proof Observe that iV°An and \ n commute since they operate on disjoint
coordinates. Indeed, for the same reason, whenever m ̂  π,

[ * ^ m , A J = 0 , (3.11)

since the Λm are even smaller than An. Thus we may bring all the antisymmetrizers
to the rear, i.e.

2 " N Π i r v V = 2-wΠA»,.Π*roΛ. Ξ P J 1 ^ V (3.12)
n n n n

Hence if φe9)A is not destroyed by the above procedure, the result must be
proportional to φΔ.

Next observe that o n ^ itself, all of the operators iV\n and 2 " ^ ^ act like
the identity. Indeed, by definition, φΔ is antisymmetric on each bn, so these
antisymmetrizers are tailor-made to do nothing. Furthermore, the restriction of A
to any Λn (which may be regarded as Λ\({b1,b2,. .,bn}) is obviously a dimer
covering of An. Hence the piece of φ which lives on ξ>An represents a zero-energy
state for J>fΛn, which implies iV°AγxφΔ= φΔ.

By the above reasoning, we have

so that

V (3-14)
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Evidently, this operator is a projection with a one-dimensional range spanned
by φΔ. This does not yet prove that it is PΔ, because we have not established that
it is an orthogonal (self-adjoint) projection. For the latter result, we need to show
that for all φ with φLφΔ, Y\n^OΛn\n

ιl/ *s zero.
To this end, let φeξ>Λ satisfy (φ\φΔ) =0. Regardless of this condition, we

know that

Π ^°Λn\nΦ °c ΨΔ> (3.15)
n

let us call the constant of proportionality μ. Then

t

μ=(φ ΨA\Ψ), (3.16)

where "f" denotes the Hermitian adjoint. However, the adjoint of Y\ni^
OΛn\n is

given by all the same factors written in reverse order (individually, they are all
self-adjoint), each of which acts like the identity on φΔ. Hence

μ=<ψΔ\φ>, (3.17)

which vanishes by hypothesis. H

Armed with this result, it is clear how we must proceed. Starting with our
wavefunction ψ, we pick a site / and attempt to show that for some j which neighbors
i, A^φ is not orthogonal to the ground state space of the reduced lattice. Assuming
this has been done, we denote the successful bond bybl9 the reduced lattice, Λ\bί9

by Λl9 define φ1 via

and attempt to construct φ2, etc.
This is obviously more manageable when the site i has as few neighbors as

possible. In particular, the weak point of any subset of a regular lattice is found
at the boundary. When A c H 2 ) this is especially convenient since boundary sites
are (by definition) not fully coordinated, and thus have at most two neighbors.
(For the square lattice, we can also arrange a two-choice situation: we would
choose, for example, the lowest, leftmost site, which clearly has no more than two
neighbors.) Henceforth, we will only consider attacking in situations in which there
are at most two bonds onto which we can project.

As we will see below, the easiest case is when the selected site has only a single
neighbor in A —in these instances, our job is done. We will treat this case in two
stages, since we will need the more substantive half (Lemma 2) for our later analysis.

Lemma 2. Let A be any finite set which is devoid of triangles and let hk = hk(A)
denote the site operators corresponding to the Klein Hamiltonian fflA. Let (i,j) be
a nearest-neighbor pair in A and suppose that φeξ)Λ is antisymmetric on (ij). We
write φ = ζijφ with φEξ>Λ^ιjy Consider the site operators hk9 associated with the
reduced Hamiltonian £?AψtJy For those sites keΛ\(i,j) where φ is annihilated by hk,
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the corresponding reduced operators hk satisfy

hkφ = O.

Proof. The above is obvious unless ke^ii) or JV(J). Thus, we assume that
and consider only the non-trivial case \A \ > 3.

We claim that the following identity is valid for spin-1/2: Let Eij9 Ay etc. be
exchangers and antisymmetrizers as defined in Sect. II. Then (for iφjφ k)

A,, E;)iAϋ = A 0, (3.19)

Indeed, observe that

A y E t t A ϋ = - A y E Λ E y A ϋ . (3.20)

Now it is easy to verify that

E t tEy=EyE^; (3.21)

whence, substituting (3.21) into (3.20) and absorbing the — Ey into the Ay on the
left, we find that

AyEikAy = AyE7JkAy. (3.22)

Thus, we may write

AyEΛAy = i A y(EΛ + Eyk)Ay. (3.23)

Adding and subtracting the identity from the term in the parentheses, we see that

AyEΛA y = \ Aj>. - i A,/I - Eik - EiJk)Ay

= Ay-Ay f c . (3.24)

However, alternation on more than two particles results in the destruction of any
spin-1/2 wavefunction; hence the identity (3.19).

Now for keJί{i\ the site operator of JffΛ at k demands symmetrization on the
full neighborhood of k—including i:

^ ) (3.25)

while on A \(ij), i is no longer considered a neighbor of k:

w (3 2 6 )

Therefore our job is to show that S^(/.)V 0 = 0.
We start with the fact that φ has zero energy for the original Hamiltonian, so

that in particular

W (3.27)

Since φ is assumed to be antisymmetric on i and j , (3.27) permits

0 = < A £ > I S^k) A^φ } = <ψ\ AyS^ k ) Aytfr >. (3.28)

Next, we use Jf{k) as standing notation for the reduced neighborhood of Λ^fc):

(3.29)
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and rewrite the symmetrizer in Eq. (3.28):

+ Σ E t a W ( Λ ) A y Λ (3.30)
meJf{k) J I

Using the hypothesis that j does not belong to Λf (fc), we may commute S ^ and
A o ; this leaves us with

0={φ\Άij 1+ Σ Eim A y l S ^ ^ ) . (3.31)
\ \ meJf(k) J I

However, by the formula derived previously (Eq. (3.19)), the term in the middle
of (3.31) is proportional to Afj, which can be reabsorbed by <^|. Using the facts
that S^(jk) does not act (i.e. is the identity) on § f (x) §,- and that φ may be written
as ζijφ, the ξ>Λ\{Uj) statement of Eq. (3.31) may be expressed as

^k)φ> = 0. (3.32)

Since § ^ } is (proportional to) an orthogonal projection operator, the above means
S / W ψ = 0, the desired result, ϋ

The single-choice scenario now follows easily:

Proposition 3. Suppose that for some finite A there is an ieA which has only one
neighbor,]. Then any φeΩ0(Λ) is antisymmetric on (ij). Furthermore, decomposing
φ according to

with φeξ>Λχ{ij), φ has zero reduced energy, i.e.

φeΩ0(Λ\(iJ)).

Proof. If Jί(ί) is simply the pair (/,;), the site operator at / for 3tfA is just a constant
times § 0 . Thus if φ has zero energy, then in particular §tjφ = 0, which means
φ = jβ^ijφ. By Lemma 2, it is seen that all sites in Λ\(i,j) have zero reduced energy
(i.e. as measured by the Hamiltonian ^Λ\{ι>j)) We have evidently established, in
these single choice situations,

as claimed, ϋ

Corollary. For the open-chain Majumdar -Ghosh model with an even number of sites,
the only dimer state is the only ground state.

Proof. Applying Proposition 3, as we dimerize the chain from the left, it becomes
evident that if φ is a zero-energy state, then, up to a phase,

N

Φ= U^j-uij- m

As a consequence of Proposition 3, it is worthwhile, whenever possible, to rid
the current lattice of any singly-connected sites and their neighbors. Assuming this
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Fig. 2. Environment of site 1

has been done, we must face the two-choice problem: Here the result does not fall
so easily.

Our procedure will be to define a pair of operators which allows us to decompose
the current wavefunction into two pieces (one of which may vanish). These two
quantities correspond to the two prospective directions in which we are allowed
to project. Indeed, once Theorems A and B are rigorously established, the two
wavefunctions can be identified as the dimer constituents of the current φ which
contain one or the other of the two possible bonds emanating from the chosen
site. Regardless of this reinterpretation, Proposition 4 will establish that in the
two-choice situations, we can define two functions, one for each of the choices,
which:

i) add up to the current wavefunction,
ii) are antisymmetric along their respective bonds, and

iii) have zero reduced energy on their respective reduced lattices.

From (i)-(iii), Theorem A is almost immediate. However the proof of (iii) is
somewhat involved.

For the time being, we will drop the use of the word "current" when describing
the partial wavefunction or what remains of the lattice; we will simply refer to
these objects as φ and Λ (and assume, of course that φeΩ0(Λ)). To analyze the
two-choice scenario on the hexagonal lattice, we will adopt the site labelling
convention depicted in Fig. 2.

The two choices for the site 1 are, of course, the bonds (1,2) and (1,3). It need
not be the case that all the secondary neighbors—2', 2", 3' and 3" —are actually
present. The other lattices we can treat (corresponding to the cases where 2' = 3'
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while 2" and/or 3" are absent) are in fact easier, but will nonetheless be dispensed
with in the Appendix.

Proposition 4. Let φeΩ0(Λ). Suppose that the site leΛ has the local configuration
depicted in Fig. 2, with the possible absence of any of the secondary neighbors.
Consider the operators Y Ξ A 1 2 § 1 3 and Y' = A 1 3 S 1 2 , and define the projected
wavefunctions φΎ ~^Yφ and φΎ, = ^Y'φ. Then

(a) Φ = ΦΎ + ΦΎ>

and either

(or both).
(b) φΎ has zero reduced energy on Λ\(l,2), while φγ, has zero reduced energy on
/l\(l,3). Explicitly, both of the relations

and

hold.

Remark. Observe that the Y and Y' are just the Young symmetrizers corresponding
to the tableaux I i|3l and 1 i|2lrespectively. This perspective is the cornerstone of

our proof of Proposition 4.

Proof of Proposition 4(a). As is well-known [65,66], the operators Y and Y'
comprise the major part of a resolution of the identity; in general

^ έ A 1 2 3 + i § 1 2 3 + i Y + i Y ' , (3.35)

where ^ and ^ are unimportant constants. This particular resolution is constructed
in [66]; it is simple enough to verify explicitly.

For spin-1/2, A 1 2 3 is zero. For ψsΩ0 we have, in particular, h^ oc S123ψ = 0.
Thus, we have established

ψ = ψΎ + ψΎ,. (3.36)

Observe that if one of the Y's is the identity on φ—which occurs when φ is
antisymmetric on the corresponding bond—then φ is destroyed by the other
symmetrizer. In general,

l = <φ\φΎ> + <φ\φΨ>, (3.37)

so the terms cannot vanish simultaneously. Supposing e.g. that (φ\φΎ) ^ 0 , we
have
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> # 0 . (3.38)

If < φ I φΎ, > Φ 0, the same reasoning holds. H

The final job which lies ahead is to show that ^ V U ^ Y a n c ^ ^Λ\(\^)ΦV a r e

both zero. For \Λ | » 1, the majority of this statement is automatically true in the
sense that for k not a neighbor of 1, 2, or 3, the energy operator (hk) has not
changed in the lattice reduction and has not communicated with either of the
Young operators. Hence, if kφJV{\)κj JV{2)κj

hk(Λ\(1,2))ψΎ = ±hk{Λ\(1,2))Ύφ = ±Yhk(Λ\(1,2))φ = ±Yhk(Λ)φ = 0, (3.39)

and the same applies for ψΎ,. There are, however, a modest number of sites which
are potentially "hot"—including site 2 for φΎ and site 3 for φΎ. Since we can treat
these primary cases fairly easily and without reference to the rest of the environment,
we will attend to these sites immediately, and then deal with the secondaries.

Proof of Proposition (4b) for the sites 2 and 3. We define h3 to be the energy
operator for site 3 associated with «^Λ\(12)5 and use an analogous definition for h2.
Here we will establish that

L ^ γ = 0 (3.40)

and

h2ψΎ, = 0. (3.41)

However, only one of the above relations need be demonstrated explicitly since
the two arguments are identical after relabelling.

We use the decomposition φ = φΎ + φy> and the fact that the original energy
at site 3 is zero to obtain

h3φΎ + h3φγ = 0. (3.42)

However, the leftmost operator of V is antisymmetrization on the bond (1,3),
while the operator h3 contains the symmetrizer for the bond (1,3), i.e.

h3κh3§13. (3.43)

Thus h3φΎ, = 0, which means that each term in (3.42) is individually zero.
We are now in a position to apply Lemma 2: φΎ is known to be antisymmetric

on the sites 1 and 2 and has zero energy at site 3. It therefore has zero reduced
energy at the site 3 and we have established (3.40). By the same reasoning, (3.41)
holds. H

An Interlude on Young Tableaux. It is tempting to write down a "complete set"
of Young diagrams by ordering the relevant particles: (1,2,3,4,...) and constructing
Young patterns via a binary tree. Explicitly, we start with CD, to which we can
addΞ in two ways:
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(3.44)

Particle 3 can now be added in both possible ways on both possible diagrams;
however, for spin-1/2, we cannot withstand more than two rows on any tableau:

ΠTΐUl

(3.45)

At this stage, up to constants, we have achieved our previous three particle
resolution. Continuing in this fashion, we develop a certain number of frames (that
is, shapes) within which our particles have been placed in various patterns. The
distinct frames correspond to different spin sectors and may be treated separately.
(For example, we could decide on a different ordering of the particles.) However,
within each sector, the various patterns do not, in general, sum up to a resolution
of the identity (nor, in the context of the full space, to a projection onto the
associated spin sector).

The reason for the above annoyance is completely obvious and relatively easy
to fix up. In the authors' opinions, this deficiency is misleadingly understated in
the standard textbooks. Let us illustrate in the case of interest, namely a collection
of spin-1/2 particles. Suppose a given frame has K overhanging boxes on the top
row. Then there are (2K + 1) possible wavefunctions according to the possible
values of Sz. Since the Young tableaux (as operators) preserve both S and Sz, we
might just as well focus on a definite state of Sz (e.g. the maximal) within a given
spin sector. Then there is a unique wavefunction which we can associate with a
given pattern. This wavefunction (with Sz = jK) may be found either by directly
reading the tableau—a singlet pairing on each column and an α for the remaining
K particles which overhang—or, in what amounts to the same thing, operating
on the entire S = Sz = ^K sector of the Hubert space with the tableau and seeing
what survives.

This procedure is satisfactory, in hindsight, because any given pattern (viewed
as an operator) is a projection. It is not, however, an orthogonal projection. On
the one hand, this necessitates the exercise of a certain amount of caution during
manipulations; on the other, it makes these objects an appropriate vehicle for the
valence bond descriptions of spin systems. Indeed, the valence bond wavefunctions
are inherently non-orthogonal.

An elementary counting argument shows that, for a given sector, we have the
right number of patterns. Let us call these patterns Q l 5 Q 2 , . . . ,Q L , ordered from
top to bottom as they emerged from the binary tree. We denote the associated
wavefunctions by yl9 y2,'-,yL It should be noted that, since the {Q7 } are not
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orthogonal projections, even if they resolve the identity, it is not generally true
that <7il77> = δij. What we are looking for is the statement that

j j j (3.46a)

or, equivalently,

QjQk = δJkQj' (3.46b)

If (3.46) were to hold, the {Qj} would manifestly result in a resolution of the
identity. Indeed, this would immediately establish linear independence of the {yt}
and, in particular, for φ in the correct sector, one could write

X (3.47)
j

with

Cj = <yj\Qjφ} (3.48)

The j = k piece of (3.46) is, of course, correct and it is not hard to see that for
k>j, QjQk = 0. (The lower pattern will antisymmetrize some pair on which the
upper pattern chose to symmetrize.) For k <j, QjQk will in fact vanish for a small
number of particles, but for five or more, QjQk is usually non-zero.

However, given that (3.46) holds for k ̂  j , it is not hard to construct operators
which satisfy the desired relations for all k and j. These are:

Q, = Q ; Π ( 1 - Q λ (3.49)

where the product is ordered so that the operators of lower index operate first. It
is easily verified that Eq. (3.46b) holds for the barred operators:

(3.50)

while the original y7- still enjoy Qyŷ  = ŷ . The {Qj}

of the identity.

Proof of Proposition (4b) for the secondary neighbors 2', 2", 3' and 3". We focus
only on the site 3'; the fact that 3' does not include the site 2 in its neighborhood—a
blessing of the hexagonal lattice—will enable a proof mutatis mutandis for the
other secondaries. We denote by u and v the (possible) additional neighbors of the
site 3'. As it turns out, the exact number of additional neighbors (if any) is quite
unimportant. We are going to need a resolution of the identity for Jfφ') and sites
1 and 2, that is the set {1,2,3,3', u, v). However, the best ordering turns out to be
(l,3,2,3',u,t?).

As usual, it suffices to establish that hyΎφ = 0 whenever φeΩ0(Λ), since this
gets us the corresponding result on φΎ, automatically. We do not, in the end, make
use of the fact that φ has zero energy at all sites. Indeed, we will prove the stronger
statement that hyYφ = 0 whenever h3>φ = 0 and h^φ = 0. Our method is as follows:
We take any φ in Ω0(Λ) (or in what ultimately follows, with zero energy at sites
1 and 3') and resolve the identity of the collection (l,3,2,3',w5ι;) according to the
previous discussion:
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Φ= Σ QjΦ-
7 = 1

(3.51)

We then demonstrate that for each j , h3ΎQjψ = 0.
Many of the Qj will annihilate φ because e.g. they lead off with symmetry

operators that contain energy operators known to destroy φ. On what remains,
we hit, from the left, with hyY. Armed with the hindsight of knowing which energy
conditions are important—i.e. what particle groups to resolve—and how the
particles must be ordered, the remaining Q φ are taken out.

In contrast to the original tableaux, the composite operators are much too
cumbersome to work with individually. However, if φ belongs to some subspace
(5 and T is any operator, it is easy to see that the relationship

0 = JQψ (3.52)

is satisfied for all j when the following can be arranged:

i) For j = 1,2,... ,n each Q7 destroys (5.
ii) For j = n + 1,..., N each Qj is destroyed by T.

Our operator T will, of course, be h3Ύ9 and the relevant subspace will be
wavefunctions with zero enery at sites 1 and 3'.

Let us begin by resolving up to the two particle stage:

, ma
m (3.53)

We need not continue the b o t t o m branch since all possible offspring operators
contain (in the back) instructions to antisymmetrize on 1 and 3. When these are
struck, from the left, with S 1 3 (the forefront of Y), the consequence is zero.
Cont inuing the t o p branch, we have:

ΓTT3T21

(3.54)

By definition, d i l l ] vanishes on any function with zero energy at site 1. Since
all offspring of this diagram are at the beginning of the list, by i) we need not
consider this branch any further. With regards toLΠΣIand its future generations,

Y acts like the identity and can no longer serve us. However, we still have hy at
our disposal.

AddingΞ to what remains, we see

(3.55)



Ground States of a Spin-1/2 Antiferromagnet 77

The lower branch contains a valence bond between 3 and 3' and is thus destroyed
by hy. The higher branch lives on. Continuing the argument, we see that as
additional neighbors of 3' are injected, they either go symmetrically with 3', in
which case the branch lives on, or end up pairing antisymmetrically with 3, whereby
the operator gets destroyed by hv from the back.

When we have exhausted all the neighbors of 3', the only diagram which has
survived the onslaught from the left contains the entire neighborhood of 3' on the
top row. The operator therefore first symmetrizes the neighborhood of 3' and thus
destroys any ψ with hyψ = 0.

A summary (and complete proof of) the above can be found in equation (3.56).

energy
constraint
at site 3'

(3.56)

hy annihilates

Proof of Theorems A and C. Suppose A c H 2 is finite and ψeΩQ(Λ). We look for
our first site, which we will denote by su on the boundary of A. If possible, we
select an sx with only a single neighbor. In this case, by Proposition 3, φ is
automatically antisymmetric on sx and its neighbor, and has unit projection onto
the zero-energy space of the reduced lattice. We rename the wavefunction ψ1 and
call the dimer bt. If sί has two neighbors, antisymmetrization on at least one of
the two possible bond choices—which we would also denote by bx—followed by
projection onto / ^ ( / l ^ ) produces a 'tyi " Observe that, in either case, φ1 is
antisymmetric on bx, is in Ω0(Λ) and (after factorization) in Ω0(A\6X). We continue
the procedure, selecting singly coordinated sites whenever possible, and produce

the sequence i/^, ι//2, ψ$,
We claim that at every stage, the remaining lattice is dimerizable. Indeed,

assume this is not the case and that, say, A itself has no dimer covering. By
definition, this means that any attempt to dimerize A results in the isolation of
sites. Suppose then that our procedure picks a sequence of sites, sl9 s2 >... a n d
bonds, bu fe2,... (sj being an endpoint of bj), but that the nth step results in an
isolated point p. Obviously, just prior to the catastrophe, p had only one site in
its neighborhood and this must have been one of the endpoints of bn. If the sole
neighbor of p was sn9 then sn evidently possessed two neighbors which (at
best) implies there was a programming error—the nth site should have been p. On
the other hand, if p was a neighbor of the other side of bn (temporarily called sn)
this implies that both sn and p had as their sole neighbor the site sn. Now the
wavefunction ι/rM_1 was reported to be a zero-energy state of An_1 which, by
Proposition 3, implies the impossible (for spin-1/2) situation that ψn-i was
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simultaneously antisymmetric on both (sn9sn) and (p,sn). Evidently, if A has no
dimer covering, the only φeΩ0(A) is zero.

We have just proved Theorem C; let us finish off Theorem A. The above
reasoning allows us to proceed until A has been covered by some dimer graph A.
The final wavefunction that has been produced is, of course, proportional to φ Δ.
It is also the projection of the original wavefunction onto φΔ. M

Proof of Theorem B. Let A <= H 2 be dimerizable and let Aa\...,A(K) denote the
possible dimer coverings. For each AU) we may construct a dimer wavefunction;
let us call this φij\ We need to demonstrate that whenever

0= £ erf®, (3.57)

all the Cj are zero. We start by focusing attention on c1 and A(1\ Let us order the
dimers of A(1), A(1) = (b ι,..., bN), according to the strategy that was used in Theorem
A: b1 has an endpoint on the boundary of A, b2 has an endpoint on the boundary
of A\bi etc. For each n, this means that there is a site, sn9 on the boundary of
A\(bl9. ..,£>„_!) which belongs to the bond bn. In addition to the other end of bn,
sn has at most one other neighbor in A\(b1,...,bn_1). In the cases where sn has
only one remaining neighbor, define an operator Ow to be ̂ A&n. In the cases where
sn could give rise to an alternative bond in Λ\(bί,...,bn-ί), let us call this bond
b'n and define On to be the Young symmetrizer associated with the choice of bn over

Bn = i\βb>H. (3.58)

Observe that each Dn is the identity on φ{1)—or any φij) which contains the
bond bn—and, in the two-choice cases, Ow destroys the φij) that have a singlet pair
along b'n. In general, an individual Dn will neither destroy nor act like the identity
on a given φϋ\ but we have the right to apply the (O7 ) in succession: Operating
on 0 in Eq. (3.57) with O 1 ? we obtain

0= £ erf"*. (3.59)

We are now in a position in which O 2 destroys all remaining wavefunctions that
are not antisymmetric on b2, and the process continues. Since eventually each
Au\ j > 1, disagrees with A{1) on some bond, the inevitable conclusion is that
cί = 0. Repeating the argument, Eq. (3.57) is seen to necessitate c7- = 0 for all j .

Appendix. Results on Other Lattices

(a) Linear Independence of Dimer States on the Square Lattice

Proof of Theorem B for the square lattice. The argument that was used for the
hexagonal lattice applies almost directly to the square lattice, Z 2. The only apparent
difficulty is that not all sites on the boundary of a A a Z2 are two-fold coordinated.
However, for \A\ < oo, a certain subset of A is the "leftmost" portion:

&A = {χeΛ\XlS>y,VyeΛ}9 (A.I)

which contains a unique lowest site, xLL(A). The site xLL is manifestly two-fold
coordinated.
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We may repeat the previous proof by constructing the j t h " O " operator for a
given φΔ along the bonds of Λj_1 which emanate from x^Λj-^), the (current)
lowest, leftmost site. H

(b) The Ground State Space for Other Lattices. The lattice-dependent aspects of
the proofs of Theorems A-C concern the local configuration in the vicinity of the
projected bond. The major simplification of the hexagonal lattice is that the
neighbors of the focal site have no neighbor in common. Such a situation typically
does occur on Z 2, and cannot, at present, be treated in full generality. Consider,
however, the local configuration depicted in Fig. 3. The common secondary
neighbor is the site 4. It is not difficult to see that the analysis of Proposition 4
holds for all sites except site 4. Here, however, the site 2 has no additional neighbors;
for this special case, the result at site 4 is easily obtained.

Proposition 5. Consider a finite lattice A with the local configuration at 1 eA as
depicted in Fig. 3, and define the operators Y and V as in Proposition 4. Suppose
that φeξ)Λ satisfies hγφ = h2φ = h4φ = 0. Then

h^Ύφ = h4Ύ'φ = 0.

Furthermore, such a relationship holds with the h4 replaced by the appropriate reduced
energy operators.

Proof To prove the above, it is only necessary to establish that

h^Ύ'φ = 0. (A.2)

Indeed, Eq. (A.2) and the fact that hγφ = 0 immediately give us h4Ύφ = 0; the
desired results for the reduced operators then follow from Lemma 2.

To prove (A.2) we resolve the identity for the first four particles in canonical
order. The branching diagram is:

energy constraint
at site 1

energy constraint
at site 2

Ψ
V the identity \ j—j—

tiki (A.3)
V annihilates /i4 annihilates

which, by reasoning identical to that of Proposition 4, gives Eq. (A.2). 11

Corollary 1. Theorems A,B and C hold for subsets of the 2 x N square strips. (See
Figure 4b.)

Proof. It is easy to see that at any stage of a dimerization program, at the extreme
left of the strip, a site is either singly coordinated or has a local neighborhood of
the type described in Proposition 5. Supplemented with this result, the previous
strategies may be employed, ϋ
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Fig. 3. Additional environment for site 1

Corollary 2. Theorems A, B and C hold for subsets of the octagonal-diamond lattice.
(See Fig. 4a).

Proof The octagonal-diamond lattice has coordination number 3, so any site on
the boundary has at most two neighbors. From this, linear independence of the
dimer states is easily established. However, not every boundary site has an
environment of the type just treated or of the type encountered in the analysis of
the hexagonal lattice.

Although site-wise the octagonal-diamond lattice is translation invariant, there
are two types of edges. Indeed, one may regard this lattice as living above the
square lattice with a diamond centered at each point. Thus, if A is a subset of the
octagonal-diamond lattice, it may be regarded as a collection of partial or complete
diamonds interconnected (often incompletely) as in Z2.

If any diamond is incomplete (i.e. does not contain all four sites), it is easily
seen that the analysis of Proposition 4 applies directly. Incomplete diamonds
should be finished off whenever possible. What remains, if anything, is a partially
connected collection of complete diamonds.

Fig. 4a and b. Other geometrices. a The octagonal-diamond lattice, b The 2 x N square strip
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Since the lowest leftmost complete diamond is not connected to more than two
other diamonds, it is seen that it possesses two sites satisfying the conditions of
Proposition 5. It can therefore be dissected.

Theorems A and C now follow as before. H
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