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Abstract. According to a standard definition of Penrose, a space-time admitting
well-defined future and past null infinities J+ and J>~ is asymptotically simple
if it has no closed timelike curves, and all its endless null geodesies originate
from J~ and terminate at J>+. The global structure of such space-times has
previously been successfully investigated only in the presence of additional
constraints. The present paper deals with the general case. It is shown that </ +

is diffeomorphic to the complement of a point in some contractible open
3-manifold, the strongly causal region J§ of =/+ is diffeomorphic to § 2 x U,
and every compact connected spacelike 2-surface i n / + is contained in JQ
and is a strong deformation retract of both J% and , / + . Moreover the
space-time must be globally hyperbolic with Cauchy surfaces which, subject to
the truth of the Poincare conjecture, are diffeomorphic to IR3.

1. Introduction

Consider a space-time which develops from initial data on an U3 Cauchy surface,
and models an isolated, massive body. Suppose that the gravitational field strength
is insufficient to cause collapse or to give rise to orbiting null geodesies akin to
those at r = 3m in Schwarzschild space-time. One may then reasonably assume
that all endless null geodesies originate from a past null infinity J~ and escape to
a future null infinity J>+. As the space-time evolves, J>+ is exposed to data on an
increasingly large region of the Cauchy surface, and may be expected to respond
by exhibiting increasingly complicated behaviour. What can be said about the
general structure of , / + , and about its global topology in particular?

In order to answer such questions, it is first necessary to specify more precisely
the class of space-times to be considered. The only assumptions that will be
necessary are that there are well-defined future and past null infinities J+ and «/",
that all endless null geodesies originate from J~ and terminate a t / + , and that
there are no closed timelike curves. The existence of an U3 Cauchy surface can,
subject to the truth of the Poincare conjecture, be derived from these hypotheses.

According to Penrose [1] one could, on physical grounds, assume that J> +
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always has the same topology as for Minkowski space, namely § 2 x PL He
attempted to substantiate this view with a sketch of a proof that no other possibility
could arise. But his argument is incorrect for reasons described later. Subsequently
Geroch [2] gave a correct argument on the basis of a presupposition that J> +

would be of the form K x IR for some compact 2-manifold K. A result of Hawking
and Ellis [3] elaborated on Geroch's technique, presupposing instead that strong
causality would hold at all points of J+ and J>~ in the unphysical conformal
completion of the space-time. It will be shown that a physical interpretation of
strong causality at J ~ is that there is no null geodesic whose history can influence
every event in the space-time. The corresponding interpretation of strong causality
at J+ is that there is no null geodesic whose history can be influenced by every
such event. Unfortunately it is not clear that any reasonable constraints on the
initial data would result in the conditions of either Geroch or Hawking and Ellis
being fulfilled.

The present paper presupposes nothing about J+ or </", but seeks to determine
what restrictions arise as consequences of the development of the initial data.
Subject to the truth of the Poincare conjecture it is concluded that the topology
of </+ may, in general, be described as the complement in U3 of the intersection
of a sequence of cubes-with-handles, each of which is contained and deformable
to a point in the interior of its predecessor. Apart from the trivial case realised by
Minkowski space, for which J>+ and J>~ are both homeomorphic to the
complement of a point in ίR3, such topologies are impossible to visualise. The
associated space-time physics must be most intriguing.

Although the space-times considered here are accurately identified by Penrose's
definition of asymptotic simplicity [1], in the case of a null conformal boundary,
there is a need to introduce new terminology. This is primarily because Hawking
and Ellis have given a definition of an asymptotically simple and empty space-time,
now commonly accepted in the literature, which includes their condition of strong
causality at J^+ and J~. But another reason is that the term "asymptotic simplicity"
is inappropriate as a description of structure which involves global constraints. A
space-time in which all endless null geodesies originate from a past null infinity
J~ and terminate at a future null infinity j ^ + , and which contains no closed
timelike curves, will henceforth be said to be simple. This objective of this paper
is to identify the principal causal and topological properties of simple space-times.

2. Notation and Terminology

All manifolds are Hausdorff and paracompact. They are also C00 unless otherwise
stated. For a manifold-with-boundary JV, the boundary and interior are denoted
by dN and N:= N — dN respectively.

The image of a function f:X-* Y is denoted by | / | , and its limit set by L(/, 7).
The positive and negative limit sets of a curve μ: ίR => / -• Y are denoted by L+ (μ, Y)
and LΓ (μ, Y) respectively. Clearly L(μ, Y) = L+ (μ, Y)KJLΓ (μ, Y).

A space-time is a pair (M, g), where M is a connected 4-manifold and g is a
smooth time-oriented Lorentzian metric on M. All causal curves in (M, g) should
be understood to be future-directed unless stated otherwise. A causal curve of the
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form μ: IR ZD [a, b~\ -> M, whether future or past directed, is said to be a causal curve
from μ(a)eM to μ(b)eM. Also, if μ(a)e^/ cz M and μ(b)e& a M, then μ is said to
be a causal curve from si to J*. Let ^ , ^ ~ c z M . Then J + ( ^ , ^ ) (respectively
J+(£f9&~)) denotes the set of all pe$~ such that there is a timelike (causal) curve
in ?r from Sf to p. Clearly, if Sf n ^ is empty then so are / + (Sf, F) and J + (^, F).
Sets I~(Sf,&~) and J~{^,3Γ) are defined analogously. A set 5^ cz M is said to be
locally acausal if, for each p e ^ , there exists a neighbourhood yKp of p in M such
that there is no non-degenerate causal curve from £f to 9> in J ^ p . For any set
^ cz M, the future boundary of 2Γ in M is defined to be the set of all g e # admitting
a neighbourhood Jίq in M such that J+{q, Jf q)c\?Γ = {g}. The past boundary of
^ is defined analogously. Both the future and past boundaries of 5^ are necessarily
locally acausal.

A homeomorphism is denoted by «, and a diffeomorphism by « d i f f . Neither
should be assumed to respect additional structure. A group isomorphism is denoted
by ^ , and a bundle equivalence by ~. Finally, coefficients for singular homology
and cohomology modules are in the integers Z, unless stated otherwise.

3. Null Asymptotes

A space-time may be equipped with future and past null infinities as follows.

Definition 3.1. A C null asymptote of a space-time (M,g) is a pair (M,g), where
M is a C00 4-manifold-with-boundary extending M, and g is a Cr Lorentzian metric
on M, for some r ^ 0, such that

(I) M = MudM;
(II) g |M is conformal to g;

(III) dM is a null hypersurface of (M, g);
(IV) each null geodesic of (M, g) having an endpoint in M at a point of dM has

infinite affine length with respect to g.

Denote by J+ (respectively «/") the set of all pedM for which there
exists a future- (respectively past-) directed causal curve μ:[0,1)->M of (M,g)
having an endpoint at p in M. Since 5M is C00, for every qedM there exists
either a future- or past-directed causal curve v: [0,1]->M of (M,g) such that
v([0,1)) cz M — δM = M, v(l) = q. Since condition (II) gives that the causal curves
of (M,g|M) are precisely the causal curves of (M,g) there follows dM = </+ uJ~.
Condition (III) now implies that J+ and «/" are disjoint and relatively open in
dM. Each of J+ = 5M —,/" and ,/" = 5M —,/ + is therefore a relatively open
and closed submanifold of dM and hence is a union of components of dM.
Conditions (III) and (IV) justify their being termed the future and past null infinities
of (M, g) respectively. Through any point of,/+ (respectively J~) there is a unique
endless null curve of (M, g) in , / + ( t /~) called a generator of <f + (J>~). By (I) and
(II), if g is Cr for r ^ 1, then a curve σ IRz)/—>Misa null geodesic of (M, g) iff σ|/
is a null geodesic of (M, g) or σ is a generating segment of,/+ or «/". In the case
r = 0, the null geodesies of (M, g) may be sensibly defined by the requirement that
the same is true.
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The presence of a boundary to M complicates the causal structure of (M, g).
Nonetheless there are two basic results for space-times-without-boundary which
carry over directly:

(1) for any set £f c M the set 7 + (^, M) is open in M;
(2) if there is a causal curve from xeM to yeM which is not a null geodesic, then

there is a timelike curve from x to y.

The proofs are adaptations of the corresponding proofs for space-times without
boundary. Note that neither (1) nor (2) is true for general space-times-with-
boundary.

Lemma 3.2. J± = δM nI±{M,M) = dM - r {M,M).

Proof. Immediately by (2) and since J>+ and J~ are null. •

For the space-time (M,g) and any set <f c M one has T+ (£f, M) = J+ (£f, M)
and 7 + (y ,M) = j + (<?,M). For the null asymptote (M,g) the corresponding results
are less straightforward.

Lemma 3.3. // 9> c M - J + , then

(I) T+(y9M) = J + (^,M);
(II) i + (όf,M) = J + (^,M)vJ+(y,Jf-).

Proof.
(I) The inclusion I+{#\M) a J+{6^,M) implies T+{^,M)c:J+{^,M). For the
converse, let p e J + (^,M) and let Jίv be an open neighbourhood of p in M. Since
Jίv intersects J + (6f,M) there exists a causal curve μ from some xeϊf to some
y e ^ . lϊyφJ+ there exists zeZ + C y , ^ ) cz/ + ( ^ , M ) n y Γ p . lίyeJ+ there exists
a non-degenerate generating segment v o f / + in yΓp from y to some z e , / + n y Γ p .
Since the concatenation of μ and v is a causal curve from xeϊf c M —,/ + through

to z e / + , and cannot therefore be a null geodesic, one again has
+ {£f,M)nJίp. There follows peT+{Sf,M).
(II) Let pe J + (Sf, M). Then pe J+ ψ>, M) = T+ ψ>, M) and every neighbourhood

of p intersects 7 + (^,M). Since I + (^,M) is open one cannot have psI + (^,M)
otherwise there would exist a neighbourhood of p contained in I+(£f,M)a
J+(^,M) and p would be an interior point of J+ (&>,M). Hence peM-I+(^,M)
and consequently J+ (&>, M) c ί+ (#>9 M).

Let p e J + ( ^ , / " ) . Then for every open neighbourhood Jίv of p there exists
p'eI + (p,Jίp)^I + {6f,M)πJr

p. Since I + (^,M) does not intersect «/" one has
- / + ψ, M)<mά there follows pei+(όf, M). Thus J + (^, J~) c / + (^, M).

Let qei + (^, M) — J>~ and let yΓ^ be an open neighbourhood of q in M. Then
^ intersects I + {^, M) and therefore intersects J+ (&>, M). If Jίq c j + ( y , M) then
for any q~ eI~(q,J^q) one would have qeI + (q~,J^q) cz/ + (y, M). Since this is
incompatible with qel + (^,M), Jίq must intersect M — J + (5^, M). There follows
qeJ+{y,M) and hence 7 + ( ^ , M ) - ^ " c J + ( ^ , M ) .

If rG(/ + ( ^ , M ) n ^ " ) — J + (βf,M\ then every neighbourhood of r intersects
7 + (^,M) and therefore intersects J + (6f,M). Since J + (^,M) does not contain r
one therefore has reJ + (6?,M). Hence ( / ^ ( y , M ) n / ~ ) - J + ( y , M ) c j + ( ^ M )
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and consequently i+(y, j

One now has / + (y,M) = J + ( ^ , M ) u J + ( y , / - ) as required. •

Corollary. If 6? c M then T+ ψ>, M) = J + (9>, M) and / + (^, M) = j + {Sf, M). •

In order to see the necessity for the restriction Sf czM — J+ in Lemma 3.3,
observe that for Sf = {/?}, peJ+, the set I + (&>, M) is empty, whilst both J + {&>, M)
and J(^,M) are non-empty. In this case therefore, neither (I) nor (II) hold.

A future set in (M, g) is conventionally defined as a set <F c M such that
/+(#',M)cz#'. For the purposes of this paper, the slightly more restrictive
condition J+(^F,M) c $F is imposed. A future set in (M,g) is defined analogously.
If 3F is a future set of (M, g) then so is # , with a similar result holding for (M, g).
For any future set $F of (M, g) one has that <F is a closed achronal embedded
topological 3-submanifold of M. The following is the corresponding result for (M, g).

Lemma 3.4. Let 3F be a future set o/(M, g) such that f n / + and Φn/" are acausal.
Then J Γ , # n ί / + and # ' nJ~ are closed achronal embedded topological 3-submanί-

folds-wίth-boundary of M such that d& = 3 ( # n / + ) u a ( # n / " ) = Φ

Proof Since M is Hausdorff and paracompact, the sets #", f n / + and
are Hausdorff and paracompact in their relative topologies. Clearly &,
and β' c\J>~ are closed and achronal in (M,g).

Let qe& — <3M, let Jί be a globally hyperbolic open neighbourhood of g in M,
and let Jf be a Cauchy surface for Jί such that qetff. Let X be a timelike vector
field on Jί. The integral curves of X define a continuous open mapping φ: Jί -+ ffl.
The restriction φ:= φ\3Fc\Jί is a continuous injection. Let ̂ ' c Jί be open in M
and have non-empty intersection with Φ. Let q'eψ(&nΨ) c jf. Let y c ^ ' be
an open neighbourhood oϊψ~1(q')elFnW in M such that the only integral curves of
\\Jί from ^ ' to ̂ ' are those in V. There exists an open neighbourhood W c f
of φ~ι{qf) in M such that every maximal integral curve of \\Jί which cuts ^ '
also cuts I+(ψ-ί(q'),'r'f)c#rn1rf and /"(ι/f~ V ) * ^ ^ ^ ' - ^ - E v e r y s u c h integral
curve therefore cuts &CΛ'V' a &c\°U' and it follows that ψ(&nΨ) contains the
relative open neighbourhood φ{W) of q' in ffl. Thus ψ(& n%') is a relative open
neighbourhood in ffl of each of its points and so is relatively open in ffi. One
now has that φ: & CλJί -+ Jf is an open continuous injection, and therefore a
homeomorphism, onto φ(Φ' r\Jί) which must be a relative open neighbourhood
of q in Jf. For any relative open neighbourhood Θ ̂ U3 of qin φ(Φ' c\j\ί) the set
φ~1(Θ)^ U3 is a relative open neighbourhood of q in # n y Γ , and therefore in
Φ — dM. Thus & — dM is a topological 3-manifold. Moreover, since dM is closed
in M, the set # n dM is relatively closed in Φ, and so the pair (#", # n δM) is a
relative topological 3-manifold (Spanier [4, p. 297]).

Let Y be a nowhere-zero vector field o n / + such that each integral curve of
Y is a future-directed generating segment of J>+. Let qeΦ'nJί+ and let , / b e a
relative open neighbourhood of q in J>+ admitting an embedded 2-submanifold
3^3q such that each maximal integral curve of Y\Jί cuts J*f at a single point.
These curves define a continuous open mapping φ\Jί-±2tf. The restriction
φ\— φ\Φr\Jί is a continuous injection. Let °U' a Jί be relatively open in ,/+ and
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have non-empty intersection with &. Let qfeφ(ΦnΨ) c=jf. Let i^'^Ψ be a
relative open neighbourhood of φ~ί(qf)eΦ nJ^ in </+ such that the only integral
curves of Y | Jί from V to y are those in Ψ*'. For any integral curve μ: [ — (5, <5] -» Ψ*'
of Y such that μ(0) = φ"1 (q')> the hypothesis that & c\J+ and # n / " are acausal
implies μ{u)emt{3?) for all ue(0,<5] and μ(w)eM - # for all we[-5,0). It follows
that there exists a relative open neighbourhood iV' a ψ'1 of φ~1(q/) i n / + such
that every maximal integral curve of Y | Jί which cuts iV' also cuts both int (#") n f
and y — # . Every such curve therefore cuts & n y c= # n ^ and it follows that
φ(ΦnΨ) contains the relative open neighbourhood ΦW) of q' in Jf. Thus
φ{ΦnΨ) is a relative open neighbourhood of each of its points and so is relatively
open in J f. Hence φ: Φ n Jί'-> Jf is an open continuous injection, and therefore
a homeomorphism, onto φ{βF c\Jf) which must be a relative open neighbourhood
of q in J'f. Since J f is a topological 2-manifold it follows that there exists a relative
open neighbourhood oϊqinΦ' rλJίaφ ' n,/ + homeomorphic to U2. Thus Φ n / +

is a topological 2-submanifold of J>+. Similarly, since ^ : = M — J* is a past set of
(M,g), the acausal set Φ c\J>~ =ΦΓΛJ>~ is a topological 2-submanifold of./".

Let re& CΛJ* and let ^ ^ R 2 be a relative open neighbourhood of r in
ΦnJ + , with compact closure in / + . There exists a topological embedding
Φ : ^ x (-ε,ε)-+Jί+, for some ε>0, such that Φ(s,0) = s for all se&, with each
μs:= Φ(s, ):( — ε,ε)-></+ an integral curve of Y. Invariance of domain gives
that Jί\— Φ{M x ( — ε,ε)) is relatively open in J>+, so Jί n^ is relatively open
in &r\J + . For each se<^ one has μ ^ ^ e i n t ^ ) for all we(0,ε), μs(u)eJ+ - #
for all we(-ε,0), and hence y Γ n # - Φ(β x [0,ε)). There follows Jf CΛ& π
M x [0,ε)^^[R3. This showsjhat &nJ+ is a topological 3-submanifold-with-
boundaryof,/4" such that d{& CΛJ+) = Φ c\J +. Similarly & ΓΛJ~ is a topological
3-submanifold-with-boundary of J>~ such that 3 ( # n / " ) = &r\J~.

Let Z be a timelike vector field on M. Let qeΦnJ^+ and l e t ^ c M - / " be
an open neighbourhood of g in M such that each point of Jί may be connected
to a point of # n / + by an integral curve of ί\Jί. The integral curves oiZ\Jf
define a continuous open mapping 0:J/'-->J/*n</-. Since # is a future set of
(M,g) one has ψ f f n / j c f . The restriction φ:=φ\β'nJί is therefore a
continuous injection into # n , / + . Let ^ ' c Jί be open in M and have non-empty
intersection with &. Let qfeφ(Φnjrf)d^nJ + . If φ~1{q')eM then qfemt(^)
and arguments analogous to those employed previously give that φ~1(qf) admits
an open neighbourhood W a<%' such that φ{if') a φ(Φ nΨ)nint(^). Then

Φ ) contains the relative open neighbourhood φ(iΓf)n^ = ΦW) of q' in
+ . Now suppose ψ~1(q') = q'eJ + . In this case let ΊΓ'aψ be an open

neighbourhood of φ'1^) in M such that every maximal integral curve oϊ Z\Jί
which cuts W also cuts l~(c(,Jί) and has a future endpoint in J+ nif'. Let
yeφ(if'). If yφφ(Φ' r\ifί') then the maximal integral curve μy of Z ^ ' to y does
not cut #\ Since μy cuts /"(<?',^Γ) c M - # one has y ^ # and thus φ(ΦnW) =>
φ(W')nβ'. Hence in this case φ{Φn°U') =) φ(ΦnW) contains the relative open
neighbourhood φ(1f)r\tF oϊ qf in β n<f + . In general therefore, φ(Φ nW) is a
relative neighbourhood in # n / + of each of its points and is therefore relatively
open in # n J +. Hence f.«f n e / - ^ # n / + is an open continuous injection, and
therefore a homeomorphism, onto φ(βF c\Jί) which must be relatively open in
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Since # n , / + is a topological 3-manifold-with-boundary, the point
q = φ(q)eβrnt/

+ = <9(# nJ>+) admits a relative open neighbourhood Θ &^U3 in
# n / + contained in ^ n / + . The set φ'^Θ)^^3 is a relative open
neighbourhood of qe&nJ>+ in Φ' c\Jί, and therefore in &. Similarly each
qe&c\J>~ has a relative open neighbourhood in & homeomorphic to ^[R3.
It follows that & is a 3-submanifold-with-boundary of M such that δ#" =

In order to see the necessity of the hypothesis that ,f n / + and J ^ n / " are
acausal in this result, observe that for any p e / + , the future set J* = J+(p,M) of
(M,g) is such that βr = ̂ raj+isa non-acausal immersed 1-submanifold-with-
boundary of M and need not be closed.

According to Penrose [5], strong causality is said to hold at a point peM iff
every neighbourhood Jί of p in M contains a neighbourhood Jί' of p in M such
that the only causal curves of (M, g) from Jί' to Jί' are those in Jί'. For present
purposes however, strong causality is defined as follows.

Definition 3.5. Strong causality holds at a point p if every neighbourhood Jί
of p contains a neighbourhood Jί' of p such that the only causal curves from Jί'
to Jί' are those in Jί.

Clearly strong causality at p in the sense of Penrose implies strong causality
in the sense of Definition 3.5. Conversely, in the space-time (M,g), the existence
of convex normal neighbourhoods may be invoked to show that strong causality
at p in the sense of Definition 3.5 implies strong causality in the sense of Penrose.
The argument may be adapted to apply to (M,g). Definition 3.5 has the advantage
that it does not depend upon the existence of convex normal neighbourhoods, or
their analogues for null asymptotes, to ensure that strong causality relates purely
to global structure. It is consequently easier to work with.

In the space-time (M, g), if strong causality holds at every point of a compact
set JΓ cz M, then M ψ /~(Jf, M). For the null assumptote (M, g) the corresponding
result is as follows.

Lemma 3.6. Let X a M be compact. If strong causality holds at every point of
Jf in (M,g) then MφΓ(Jf,M).

Proof Suppose M cz I~(Jf, M) and also that strong causality holds at every point
of Jf in M. Since the strongly causal region of M is open, there exists a compact
neighbourhood Jί of Jf ̂  in M such that strong causality holds at every point of
Jί. Let Jr

i c / b e a decreasing sequence of open neighbourhoods of Jf in M
such that f]jVi = X. One has Mc/~~(yfΛ,M) for each i. Choose qιeJί1c\M.

i ^

Since Jί cannot totally future imprison any future endless causal curve of (M, g),
there exists a causal curve of (M,g) from qxeM to the open set M — Jί. It follows
that there exists a timelike curve from q1to M — Jί, and hence a timelike curve λ[
from qγ to some rγeM- Jί. The inclusion M aI~(Jί2,M) now gives that there
exists a timelike future extension λf of λϊ from qγ through r^eM — Jί to some
q2eJί2- Since Jί2 is open, λ\ admits a segment λγ from qι through rί to some
q2eJί2nM. Continue inductively to find, for each i, a point q{eJί{c\M ^. Jί
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and a timelike curve λt from qt to qi+ί which cuts M — Jf. Since Jί is compact,
the qt admit a cluster point qeJί. In fact the condition f]^t — Cfr ensures qetf\

The concatenation of the λi is a future endless timelike curve λ from qί such that
geL+(Λ,,M)nJf\ It follows that strong causality is violated at qeJf and one has
a contradiction. •

4. Simple Space-Times and Their Causal Structure

The class of space-times of central interest in this paper are identified by the
following.

Definition 4.1. Let (M,g) be a space-time satisfying the chronology condition (i.e.
having no closed timelike curves). Suppose (M, g) admits a Cr null asymptote (M, g)
such that every null geodesic of (M, g) admits future and past endpoints in M.
Then (M, g) is a simple space-time and (M, g) is a Cr asymptotic null completion
of(M,g).

Penrose's definition of an asymptotically simple space-time, in the case of a
null conformal boundary, is more restrictive than the preceding definition of a
simple space-time in one minor respect. Here the conformal equivalence of the
metrics g |M and g on M is required to satisfy only condition (IV) of Definition 3.1,
this being sufficient to guarantee that any simple space-time is null geodesically
complete. However Penrose imposes the more stringent requirement that there
exists a C 1 function Ω:M^U+ such that g\M = Ω2g, with Ω\dM = 0 and
VΩ\dM ΦO. In doing so he is able to obtain important results concerning
asymptotic geometric structure, a topic not considered in this paper.

A theorem of Geroch [6] would appear to adapt to the present situation to
give that any simple space-time (M,g) must admit a unique asymptotic null
completion which extends every other asymptotic null completion of (M,g).
(Every asymptotic null completion automatically satisfies his regularity condition.)
Unfortunately Geroch's argument is incorrect since it does not properly take
account of the fact that, if two future (respectively past) endless null geodesies of
(M, g) have a common future (past) endpoint in one asymptotic null completion,
they may have distinct future (past) endpoints in another. To understand the
possible pathologies in more detail, let M be the union of all point sets of all
underlying manifolds-with-boundary of all C asymptotic null completions of (M, g)
and, following Geroch [6], for any two asymptotic null completions (M',g') and
(M", g") of (M, g) and any points pΈMf, p'ΈM", write p' ~ p" iff the null geodesies
of (M, g) which have future (respectively past) endpoints at p' in M' are the same
as those which have future (past) endpoints at p" in M". Let π:M-+M/'~ ^ M^
be the natural projection. Clearly M^ inherits a projective topology with respect to
which it is paracompact. However M^ needed not be Hausdorff. For if μ and v
are two null geodesies having a common future endpoint pί edM1 in one asymptotic
null completion (M^gj), and distinct future endpoints p^μ^Viv^^-i i n another
(M2,g2), then the distinct points n{p^) and π(p2μ) of M^ are both endpoints of μ
in M M . Moreover M^ need not admit the structure of a topological manifold-with-
boundary. For if (M1, gx) and (M2, g2) are the only two asymptotic null completions
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of (M,g), and there is just one pair of points qίeδM1, q2edM2 such that q1~q2,
then M^ may be obtained by the identification of (M^ 0 with (M2)° a n d of q1eδMί

with q2edM2. Thus there can be no result that M^ underlines a unique maximal
asymptotic null completion of (M, g). Presumably such a result would hold for a
generalization of Definition 4.1 which required that M need be no more than a
paracompact topological space. But a definition of this type would be of little use.
The present definition will therefore be retained, along with the associated
possibility of non-uniqueness.

Henceforth (M, g) will denote any simple space-time, and (M, g) a Cr asymptotic
null completion of (M, g) for some fixed r ^ 0. The following result is basic.

Lemma 4.2. Let μ be a future endless causal curve o/(M,g) other than a generating
segment of'«/". Then M e J~(|μ|,M).

Proof Since μ cuts MKJJ+ the set J~(|μ|,M) has non-empty intersection with M.
Since J~(|μ|,M) does not intersect </+, the set /~(|μ|,M) is non-empty. Let
pe/~(|μ|,M) and let 7 be a null geodesic generator of JΠ(|μ|,M) through p. Then
y either has a future endpoint at some qε\μ\ or is future endless in M.

Suppose y has a future endpoint qe\μ\. Let / be the segment of y from /? to q.
Let ^ 6 | μ | be a sequence converging to g. For each i let vf be a future endless
segment of μ fromj^ . Let v be a future endless causal cluster curve of the vf from
<?. One has |v| c |μ|. The concatenation of 7' and v is a future endless causal curve
σ from p through q. If σ was not a null geodesic there would exist re\v\nl+(p,M)
and hence r ' e |μ |n/ + (p,M), and one would have peI~(\μ\,M) giving a contradic-
tion. If σ is a null geodesic then, being future endless, it is a generating segment
of either J>+ or J~. In this case one has peJ+ KJJ>~= dM.

Suppose y is future endless in M. Being a null geodesic, y is a generating segment
of either J+ o r / " and one again has pedM.

One now has / ~ (| μ |, M) c dM. Since / ~(| μ |, M) n M is non-empty there follows

Although Definition 4.1 requires that (M,g) satisfies only the chronology
condition, the following result shows that strong causality must always hold.

Proposition 4.3. (M, g) is strongly causal.

Proof. Since (M, g) satisfies the chronology condition, and no closed timelike curve
of (M, g) could cut <3M, (M, g) must satisfy the chronology condition. If (M, g)
violated the causality condition at some point peM, there would exist an endless,
closed null geodesic of (M, g) through p. This is impossible since every null geodesic
of (M, g) which cuts M must have both future and past endpoints in M. Thus (M, g)
satisfies the causality condition at every point of M.

Suppose (M,g) violates the strong causality condition at some point qeM. Let
reI + (q,M). There then exists a neighbourhood Jί of q in M such that, for every
neighbourhood Jί' aJίoϊq, there exists a causal curve λt of (M, g) from Jί' to Jί'
which cuts M — Jί. Let Gi c Jίc\l~(r,M) be a decreasing sequence of neighbour-
hoods of q such that P)0; = {g}. For each i there exists, from some q^eGt to

i

some q*e(9i9 a causal curve λt of (M,g) which cuts M — Jί. From g there is a



26 R. P. A. C. Newman

causal cluster curve λ of the λt in M having either a future endpoint at q or no
future endpoint in M. The former case gives rise to a contradiction because (M, g)
satisfies the causality condition atqeM. Thus λ is future endless in M. By Lemma 4.2
one therefore has M aI~(\λ\9M) and hence that there exists se\λ\ nI+(r,M).
Choosey > 0 such that there exists SjG\λj\nI + (r,M). Since A7 has a future endpoint
at qfeΘjdl' (r,M), it follows that (M,g) violates the chronology condition at
reM and one again has a contradiction. Thus (M,g) is strongly causal. •

Since (M, g) is strongly causal, one has that (M, g) satisfies the strong causality
condition at every point of M. However this does not prevent (M, g) from violating
strong causality at points of J^+ and J~. The next result gives a necessary and
sufficient condition for strong causality violation at a point of </ + . A stronger
result will be obtained later.

Lemma 4.4. Let qeJ>+. Then strong causality is violated at q iff'M a I~' {(9φ M)for
every neighbourhood Θq of q in M.

Proof. Suppose strong causality is violated at q. Then there exists a neighbourhood
Jί of q such that, for every neighbourhood Jί' a Jί of q, there exists a causal
curve from Jί' to Jί' which cuts M — Jί. Let Θq be a neighbourhood of q. Let
(9{ a Jί n d^ be a decreasing sequence of neighbourhoods of q such that f] Θ{ = {q}.

For each i there exists a causal curve μ̂  of (M, g) from ^ f to Θt which cuts M — Jί.
The μ̂  admit a non-degenerate causal cluster curve μ from q which is a
generating segment of J> + having either a future endpoint at q or no future endpoint
in M. In the former case the future endless generating segment of J*+ from
q is a concatenation μ00 of a sequence of copies of μ, and Lemma 4.2 gives
MczΓ(\μco\,M)c=:Γ(q,M)ciΓ(Θq,M). Suppose μ is future endless in M. Then
Lemma 4.2 gives M aI~(\μ\9M) and for any peM there exists r e | μ | n / + (p,M).
The set / + (p,M) is a neighbourhood of re |μ | in M and so is cut by some μ^ Since
this μj has a future endpoint in Θj cz 0 g there follows peI~(Θq,M), and one again

has McΓ(Θq,M)
Suppose M c^I~(Θq,M) for every neighbourhood Gq oίq. Let (Pf be a decreasing

sequence of compact neighbourhoods of q such that f]Θt = [q). For each i one
^ i

has M aI~(ΘhM) so by Lemma 3.6 there exists a point ^ 6 $ ; at which strong
causality is violated. Since the q{ converge to q, and the strong causality violating
set of M is closed, it follows that strong causality is violated at q. •

The set of points of J+ at which strong causality holds is henceforth denoted
by JQ . Since the strongly causal region of M is open, J^ is a relative open
submanifold of J>+.

Lemma 4.5. Let Jf a M be compact. Then

(I) J + ( j f , M ) is closed in M;
(II) J + (JΓ,M) is compact;

(III) J + (jf,M)nJί+ is a compact, acausal subset of JQ
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Proof.
(I) Suppose there exists reJ+(Jf, M) - J+(jf, M). Then there exists a past endless
null geodesic generating segment μ of J+(Jf,M) to r. The null geodesic μ,
being past endless in M, is a generating segment of either J>+ o r / ~ .

Suppose μ is a generating segment of«/ ~. Then Lemma 4.2 gives Jf cz / + (| μ |, M).
Let / c M b e a compact neighbourhood of X. Choose q1eJΓ and pxe\μ\n
I~(q1,M)aίf~. Let p^ eI~(q1,M)nI+(pι,M) — Jf. Since /^ is a point of
\μ\aj + (jf,M) one has p1

+e/+(JΓ,M), so there exists q2eJf nI~(p^,M). Let
Λ.x be a past-directed timelike curve from q1eJf through pfeM — Jf to q2etf.
Continue inductively to define a sequence q xeC/f c # such that for each ί there
exists a past-directed timelike curve λi from q{ to g i + 1 which cuts ίλ — Jf. The
concatenation of the λt is a past-directed past endless timelike curve λ from qγ.
Since Jf is compact, the q^Jf admit a cluster point qeJf. One must have
qeL+(μ,M). But this is impossible since strong causality holds at qeJf aM. It
follows that μ is a generating segment of J +.

One now has reJ^ + and more generally J + ( J f , M ) - J + ( j f , M ) cz*/*. Thus
J+(Jf, M)u J^+ is closed in M. Let yΓr cz M — Jf be a connected open neighbour-
hood of r in M. There exists r'eJ+ (Jf,M)r\Jfr. Since Jf" does not intersect
^ r u / + there exists a non-degenerate causal curve from Jf to r' which does not
cut e / + , except possibly at r'. Hence one cannot have jVr — J+ aM — J+(yf,M).
But neither can one have yΓr — J+ aJ+(jf,M), for then r would be an interior
point of J + (Jf,M). The set # r - / + , being connected, therefore has non-empty
intersection with J + (jf,M). Let ^ c M — Jf be a decreasing sequence of
connected open neighbourhoods of r in M such that f] Jf\ = {r}. For each i there

exists rie(jVi — tf
+)nJ+(X',M) and a null geodesic generating segment vf of

j + ( j f , M) from Jf to rf. Since the rf converge to r, the v£ admit a cluster curve v
which is a null geodesic generating segment of J + (Jf,M) from Jf having either a
future endpoint at r or no future endpoint in M. In the latter case v would have
to be a generating segment of </+ o r / ~ , and this is impossible since v has a past
endpoint in Jf c M. Hence v has a future endpoint at r and one has reJ+ (Jf, M)
contrary to hypothesis.

It now follows that J + (Jf, M) - J + (Jf, M) is empty, and hence that J + (Jf, M)
is closed.
(II) Suppose J + (Jf , M) is non-compact. Let tt be a sequence of points therein
without cluster point in M. Since J + (X,M) is closed there exists, for each i, a
generating segment λt of J + (Jf ,M) from some s^eJf to ίf. Since Jf is compact,
the st admit a cluster point seJf. Hence the λt admit a cluster curve λ which is a
generator of J + (Jf,M) having a past endpoint at seJf and no future endpoint in
M. But then λ should be a generating segment of either <f+ or «/", which is
impossible since λ has a past endpoint at seJf cz M. The set J + (Jf, M) is therefore
compact.

(III) Suppose Σ:= J + (Jf,M)n</+ is not acausal. Then there exists a non-
degenerate null geodesic generating segment σ+ oϊ J>+ from some ueJ + (Jf,M) cz
J+(jf, M) to some weJ + (Jf, M). If some υe\σ+ | c J + (jf, M) was an interior point
of J + (Jf,M) there would exist v'eΓ(v,M)n J + (J f ,M). But this would imply
weI + (Jf,M) which contradicts weJ + (Jf,M) = / + (Jf,M). It follows that σ + is a
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generating segment of J + (Jf,M). Let σ~ be a causal curve from JΓ to u. The
concatenation of σ~ and σ + is a causal curve σ from j f to w. Since σ + is a
non-degenerate generating segment of </ + , and the past endpoint of σ~ lies in
M —,/ + , σ cannot be a null geodesic. Hence there exists a timelike curve from
Jf to w. But this implies weI+(Jf,M) so one again has a contradiction. Thus Σ
is acausal.

Suppose strong causality is violated at some point yeΣ. By Lemma 4.4 one
has Mcz/-(yΓ,M) for every neighbourhood JT of y. Let x e / + ( X , M ) n M . Then
there exists a sequence of points yt converging to y such that, for each i, there
exists a timelike curve λt from x to yt. The Af admit a causal cluster curve λ to y
which is either past endless in M or has a past endpoint at x. If λ had a
past endpoint at x one would have yeI+(Jf, M) which is incompatible with
yeΣ c j + (jf, M) - /+(jf, M). Thus A is past endless in M. The closed set J + (Jf, M)
contains \λt\ for each i, and so contains \λ\. Moreover λ, having a future endpoint
at yeJ + (Jf,M), cannot cut the interior of J + (JΓ,M). It follows that λ is a null
geodesic generator of J+(Jf, M). But λ is past endless in M with a future endpoint at
yeJ> +, and so must be a generating segment of J>+. One thus has \λ\ a J+(jf, M)r\
J>+ = Σ. This is impossible since Σ is acausal. Hence Σ c «/̂ ". •

If JΓ is a compact set of M, then J+(Jf, M) is a future set of (M, g), and it follows
by Lemmas 3.4 and 4.5 that J + (Jf, M) is a compact achronal embedded topological
3-submanifold-with-boundary of M such that d(J+(Jf,M)) = J + (yΓ,M)nJ + .

The use of Lemma 4.5 facilitates a generalization of Lemma 4.4.

Proposition 4.6 For any qe<f+ the following conditions are equivalent:

(I) strong causality is violated at q;
(II) M cz I~(Jί, M) for every neighbourhood Jί of q in M;

(III) MaΓ(q,M).

Proof Since (III) implies (II) which, by Lemma 4.4, implies (I), it suffices to show
that (I) implies (III).

Suppose strong causality is violated at qeJ + , and suppose there exists
peM — I~(q,M). Let p + e / + (p,M)nM. One cannot have qeJ + (p + ,M) for this
would imply pel~(q, M) which is contrary to hypothesis. Hence qeM — J+(p + ,M).
Since Lemma 4.5 gives that J+(p + ,M) is closed, the point qeJ>+ therefore admits
an open neighbourhood Jί\ which does not intersect J+(p+,M). There follows
p+ eM — I~(Jfq,M) which is impossible since Lemma 4.4 gives M c I~(J^q,M).
Hence if strong causality is violated at qeJ>+ then M czI~(q,M). •

Corollary. Let μ be an endless null geodesic of(M,g) and let peJ+ be the future
endpoint of μ in M. Then strong causality is violated at p iff M a I~(\μ\,M).

Proof Strong causality is violated at p iff M czI~(p,M)nM = I~(\μ\M)nM =

This corollary relates the causal structure at J+ to intrinsic properties of
(M, g). It shows that strong causality holds at / + iff no null geodesic of (M,g)
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cuts the causal future of every point of M. Similarly strong causality holds at J ~
iff no null geodesic of (M, g) cuts the causal past of every point of M. These
observations give rise to the physical interpretations offered in the Introduction
for strong causality violation at J^+ and J~'.

Another consequence of the corollary to Proposition 4.6 is that, if (M,g) admits
an asymptotic null completion which is strongly causal at J^+, then every asymptotic
null completion of (M,g) is strongly causal at J +. On the other hand, if (M,g)
admits an asymptotic null completion which violates strong causality at J^+, then
every asymptotic null completion of (M,g) must violate strong causality at J>+.

The next result is of central importance.

Proposition 4.7. (M, g) is globally hyperbolic.

Proof. Suppose there exist points p,reM such that J + (p,M)nJ~(r,M) is a non-
compact set of M. Then there exists a sequence qieJ + (p,M)nJ~(r,M) without
cluster point in J + (p,M)nJ~(r,M). The qt are contained in the set J + {p,M)n
J~(r,M) c M which, by Lemma 4.5, is closed in M. The q{ are therefore without
cluster point in M. For each ί let μt be a causal curve of (M, g) from p to qt. The
μt admit a future endless causal cluster curve μ in (M,g) from p. The closed set
J~(r,M) of M contains \μt\ for all i and therefore contains |μ|. Hence by Lemma
4.2 one has reM cz/~(|μ|,M) cz J~(r,M). This gives a contradiction since (M,g)
satisfies the strong causality condition at reM. Hence J + (p,M)nJ~(r,M) is
compact for all p.reM, and (M, g), being strongly causal, is globally hyperbolic. •

It follows that the space-time (M, g) admits Cauchy surfaces. The next result
identifies the basic properties of an arbitrary Cauchy surface ^ of (M, g) in relation
to(M,g).

Proposition 4.8. Let ^ be a Cauchy surface of(M,g). Then

(I) ^ is closed and acausal in (M, g);
(II) J+ cI + (%,M% J- aM-J + (V,M);

(III) J + ( ^ , M ) is closed in M.

Proof.
(I) A non-degenerate causal curve of (M, g) from ^ c M to ^ c M could not
cut J+ or J~. Any such curve would therefore be a non-degenerate causal curve
of (M, g) from ^ to #. Since ̂  is acausal in (M, g) it follows that %! is acausal in (M, g).

Suppose there exists reM — %? such that every neighbourhood of r in M
intersects (€. Since # is relatively closed in M one must have r e / + u , / ~ . Suppose
reJ>+. There exists a null geodesic V of (M,g) from / " to r and this may be
deformed to a timelike curve v of (M,g) from J~ to r. The maximal segment of v
in M is an endless timelike curve of (M,g) cutting ^ at some point qeΉ. But then
I+{q, M) is a neighbourhood of r and must intersect ^. This is impossible since #
is acausal in (M, g). A similar contradiction is obtained for re^~. Hence Ή is
closed in M.
(II) Let te<f +. Let p be a timelike curve of (M,g) from «/" to ί. The maximal
segment of p in M is an endless timelike curve of (M, g) cutting # at some point

^. There follows ίe/ + (s,M) c / + (^,M) and more generally J^+ c / + (^,M).
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The inclusion«/" cz M — J + (#, M) is an immediate consequence of # n « / ~ = 0.
(Ill) Suppose there exists w e J + ( ^ , M ) - J + (^,M). If ueM then ueM-
J+ (#, M) c M - J + (#, M) = / " (#, M), whence / " (#, M) is a neighbourhood of u
and must intersect J + ((£,M). This contradicts the acausality of ^ in (M,g). Since
(II) gives J>+ cz/+(^,M)cz J + ( ^ , M ) , it only remains to consider the possibility
ueJ>~. Let λ be a timelike curve of (M, g) from ueJ>~ t o , / + . The maximal segment
of A in M is an endless timelike curve of (M,g) cutting # at some point ue#. But
then I~(v,M) is a neighbourhood of u and so must intersect J + (^,M). It follows
that J~(ι;,M) intersects <€ and one again has a contradiction to the acausality of
# in (M, g). Thus J + (#, M) is closed in M. •

The next result is somewhat out of place in the present context since it is
entirely topological in nature. However it is essential to the proofs of some of the
subsequent results on causal structure.

Proposition 4.9. M,#, M ) t /
+ and J~ are all connected and non-compact.

Proof. M is connected by hypothesis, and is dense in M. Therefore M is connected.
Since M is homeomorphic to Ή x U one has that # is connected and that M is
non-compact.

Let Ny be the bundle of all future-directed null directions over #, and let N +
be the bundle of all future-directed null directions not tangent to J+ over J^ + .
The fibres of N^ are homeomorphic to § 2 whilst the fibres of N+ are homeomorphic
to S 2 - {pi.} « U2. The future-directed null geodesies of (M, g) from # to J+ define
a homeomorphism of the total space of N% = <β x § 2 onto the total space of
N+ =J+ x U2. Thus # is non-compact. And since ^ is connected, , / + must be
connected. Similarly J~ is connected.

Let V be a timelike vector field on M. The integral curves of V all cut ^ and
so define a homeomorphism of J>+ onto a non-empty open submanifold of ^ .
Since # is connected and non-compact, every non-empty open submanifold of ^
is non-compact. Hence J+ is non-compact, and similarly J~ is non-compact.
Since J^+ and J^~ are closed in M it follows that M is non-compact. •

Remark 4.10. For any compact set Jf of M the sets j + (jf, M) and j + (jf9 M)nJί +

in statements (II) and (III) of Lemma 4.5 are non-empty.

Proof. Since the closed set J + ( J Γ , M ) contains Jf and does not intersect </", the
set J + (Jf,M) is non-empty and does not intersect J>~.

Suppose J + (jf,M) does not intersect f*'. Since J + ( J f , M ) is a future set of
(M,g), it follows by Lemma 3.3 that J + (JΓ,M) is a non-empty compact achronal
embedded topological 3-submanifold of (M, g). Let V be a timelike vector field on
M. The maximal integral curves of V all cut the Cauchy surface ^ of (M, g) and
so define a homeomorphism of J+(Jf,M) onto a non-empty compact open
submanifold of (€. But ^ is connected and non-compact, and so all its non-empty
open submanifolds are non-compact. One thus has a contradiction. Hence
j + (jf, M)c\J+ is non-empty. •

Provisional Definition 4.11. A non-empty compact acausal embedded topological
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2-submanifold of JQ is a slice of / + . A slice of / + of the form J+(J
for some compact set Jf of M is a good slice of / + .

Lemmas 3.3 and 4.4 with Remark 4.10 together establish the existence of slices,
and of good slices in particular. Some of the results in the remainder of this section
pertain only to good slices. In the next section it is established that all slices of
/ + are connected. This fact will enable results for good slices to be generalized
to apply to all slices.

Lemma 4.12. Let Σ be a slice of' J +. Then

(I) J~(Σ9M) is closed in M;
(II) J~(Σ,M) is non-empty compact and achronal;

(III) J~(Σ,M)nJ+ = Σ.

Proof. It will be convenient to break (I) into two parts:

(la) r(I,M)-J-(I,M)c/-;
(Ib) J-(Σ,M)-J-(Σ,M)aM-jf-.

The approach will be to first prove (la) which will then be used to prove (III).
These will then be used to prove (Ib). Finally (I) and (III) will be used to prove (II).
(la) Suppose there exists peJ~(Σ,M) —J~(Σ,M). Then there exists a future
endless null geodesic generating segment μ of J ~ (X, M) from p. The null geodesic
μ, having only one endpoint in M, must be a generating segment of J>+ o r / " .

Suppose μ is a generating segment of / + . Then Lemma 4.2 gives M a I~ (|μ|, M).
Together with \μ\aj~(Σ,M) this implies that, for any reM, the open set
I + (r,M) intersects J~{Σ,M\ and hence that I~(Σ,M) contains r. There follows
M czI~(Σ, M) and so, by Lemma 3.6, strong causality must be violated at some
point of Σ. This is contrary to the definition of a slice.

One now has that μ is a future endless generating segment of / " . The
past endpoint p of μ therefore lies i n / " . More generally one has J~(Σ,M) —
J-(Σ,M)aJ~.
(Ill) Let peJ~{Σ,M)nJ? + and suppose pφΣ. By (la) one has peJ~(Σ,M)nJ+ =
J~(Σ,Jί + ). Since Σ is an acausal 2-submanifold of / + , and because p does not
lie in Σ, the set J~(2 ' , / + ) is a relative neighbourhood of p in / + . But then
J~(J~(Σ,J>+\ M) = J~(Σ,M) is a neighbourhood of p in M. This contradicts

(Ib) Suppose there exists pe(J~(Σ,M)-J~(Σ,M))nJ~. Let jrpaM-Σ be
a connected open neighbourhood of p in M. There exists p'eJ~(Σ,M)c\Jfp. Since
Σ does not intersect Jίv there exists a non-degenerate causal curve from p' to Σ.
This may be deformed to a causal curve from p' to Σ which does not cut / " ,
except possibly at p'. Hence one cannot have Jίv — J>~ c M — J~(Σ,M). And
neither can one have Jίp — J>~ aJ~(Σ,M) for then p would be an interior point
of J~(Σ,M). The set Jfv — / " , being connected, therefore has non-empty
intersection with j ~ (Σ, M). Let Jί x c M - I b e a decreasing sequence of connected
open neighbourhoods of p in M such that f] J/'\ = {p}. For each ί there exists

PiβiJ^i — Jί~)nJ~(Σ,M) and a null geodesic generating segment vf of J~(Σ,M)
from pi to X1. Since the pt converge to p, the vt admit a cluster curve v which is a
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null geodesic generating segment of J ~ (Σ, M) to Σ having either a past endpoint
at p or no past endpoint in M. In the former case one would have peJ~(Σ,M),
contrary to hypothesis. In the latter case v, having a future endpoint i n l c / + ,
would be a generating segment of J +. Since Σ is acausal, it would follow that
v| — Σ is a non-empty subset of J~(Σ,M)nJ>+ — Σ. This is contrary to (III).

(II) Suppose J~(Σ, M) is non-compact. Let pt be a sequence of points therein,
without cluster point in M. Since J'{Σ,M) is closed there exists, for each ί, a
generating segment yt of J~(Σ,M) from p{ to some qteΣ. Since Σ is compact the
qt admit a cluster point qeΣ. The γt therefore admit a cluster curve γ which is a
generator of J~(Z;M) to qeJ+ having no past endpoint in M. It follows that y
is a past endless generating segment of J>+. Hence \y\ — Σ is a non-empty subset
of J ~ ( Σ l , M ) n . / + —X. One now has a contradiction by (III).

The set J~(Σ,M) is non-empty since, by (III), it contains Σ. •

Proposition 4.13. Let y be a generator of JQ . Then

(I) y is endless in M;
(II) L"(y,M) = 0 ;

(III) y cuts every good slice of J*+.

Proof
(I) Suppose y admits a past endpoint p in M. Then strong causality is violated
at p. For any qe\y\ one has M c: /~ (p, M) c I~(q,M) and hence that strong causality
is violated at g. This contradicts |y| c J%. Hence y is past endless in M.

Suppose y admits a future endpoint s in M. Then strong causality is violated
at 5 and one has Mcz/~(s,M). Let teJ+(s,M)-{s} czj + . Then M c z / " ( 5 , M ) c
I~(t,M) and strong causality is violated at t. Let Jίt be a neighbourhood of t not
containing 5, and let t^Jί^M converge to t in M. For each i there exists a
timelike curve λi from ίt to s. The Λ,f admit a causal cluster curve λ to s which
either has a past endpoint at teJ>+ —J>o or is past endless in M. In the former
case one would have te\λ\ — {s} c \y\ a J^ which gives a contradiction. Thus λ
is past endless in M. Let J ^ be an open neighbourhood of s not intersecting
JίtuJ~. Let reflλl - {s])nJίs c |y| u M cz ./J" u M . Then strong causality holds
at r. Let Jί'r a Jfs be a neighbourhood of r in M. For any r~ el~(r, Jf'r) one has
teI + {r~,M). Hence I + (jV'r, M) is a neighbourhood of t in M and there exists / > 0
such that ttel + (Jf'r,M) for all i>I. Choose j>I such that λj cuts Jf'r. Then one
may join a timelike curve from Jί'r to ίy to a segment of A7 from tj to J^^ to obtain
a causal curve from Jf'r c eyΓs through tjeJr

t a M — Jί\ to Jί'r c= J^"s. It follows
that strong causality is violated at r and one has a contradiction. Thus y is future
endless in M.

(II) Let re\y\. Since strong causality holds at r one has M φI~(r,M).
And since I~(r,M)nM is non-empty there exists qei~(r,M)nM. The null
geodesic generator of ί~(r,M) through qeM cannot be future endless in M, and
so must have a future endpoint at r. There follows reJ + (q,M) and hence
reT+(q,M) by Lemma 3.3. One cannot have reI+(q,M), since this would imply
qEl~(r,M) which is incompatible with qeί~(r,M). Hence r is a point of the good
slice Σ\= I + (q,M)nJί+ of J>+. Let yr be the past endless segment of y to r.
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Suppose there exists peL~ (γ, M) = LΓ (yr,M). Then strong causality is violated
at p. Since |yr| is contained in the closed set J~(Σ,M) one has pe\yr\ a J~(Σ,M).
Hence there exists a generating segment of «/ + from p to some r'eΣ. But strong
causality holds at r' and so should also hold at p by (I). This establishes a
contradiction.
(Ill) Suppose there exists a compact set J ί c M such that y does not cut the
g o o d slice Σ:= i + (Jf,M)nJf+ of J + . T h e n e i t h e r \γ\ czI + (jf,M) o r | y | c = M -
/ + (jf\M). In fact, since γ is endless in M and Lemma 4.2 therefore gives
jf* cz M a I ~ (I y I, M), the only possibility is | γ \ a I+ (jf, M). Let μ be a past endless
segment of y to some point re\y\. Construct the closed past set SP\= f] T~(x,M)

xe\μ\

of(M,g). __
Suppose there exists qe\μ\ n&>. Since (II) gives L~(μ,M) = L~(y,M) = 0 , the

set IμI is closed and one has qe\μ\n0>. Let peJ~{q, |μ|) be distinct from q. Then
qeT~ (p, M). Let Jίp be a closed neighbourhood of p not containing q. Let Λ^ cz Jf v

be a neighbourhood of p. Then Λ^:= I+(J^'p, M) — yΓp is a neighbourhood of q
and there exists q'eJ^'qnI~(p,M). It follows that there exists a timelike curve from
J^'p through qfeJ^'q ̂ M - Jίv to peJί'p. This gives a contradiction since strong
causality holds at pe\μ\ c / 0

+ . Hence |μ| n ^ is empty.
The inclusions | μ | c | γ \ c / + (jf, M) imply that 9 n JΓ = f) (/" (x, M) n jf) is

a monotone intersection of non-empty closed subsets of the compact set Jf and
is therefore non-empty. However & does not intersect |μ| so one must have
& Φ 0- Since a future endpoint of a generator of Φ would necessarily lie in
\'μ\nΦ <^\μ\r\gP = 0 , every generator of Φ is future endless in M and is a
generating segment of either J>+ or J^~. Hence ^ n M = 0 . The set ̂ , having
non-empty intersection with Jf c M, therefore contains all of M and, being closed
in M, is coincident with M. This contradicts \μ\n& = 0. •

Corollary. «/^ is an invariant open submanifold of the flow of the null geodesic
generators of J>+.

Proof. Immediate by Proposition 4.13(1). •

Note that the relative boundary of J% m J>+ may be badly behaved, so JQ
need not be a topological submanifold-with-boundary of J>*.

Lemma 4.14. Let c/f be a compact set of M and let Σ:= I+(Jf,M)nJ + . Then

Proof Let peJ+ -I+(Jf,M). Then jfφΓ(p,M) and hence MφΓ(p,M), so
strong causality must hold at p. Lemma 4.13(111) gives that the generator y of J>Q
through^ cuts Σ. If pφΣ = i + (jΓ,M)n<f+ then pφT+(jf,M) = J + ( J Γ , M ) =
J+(JΓ,M), by Lemma 3.3(1) and Lemma 4.5(1), and there can be no causal curve
from Σ czJ+(jt,M) to pφJ+ (Jf,M). In general therefore y admits a, possibly
degenerate, segment from p to Σ. There follows peJ~(Σ,J + ) and more generally
J+-I+(jf,M)^J-(Σ,J + ).

Let qeJ~(Σ,Jί + ). Then there exists reΣ r\J+(q,M). One cannot have
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q<=I+(jΓ,M) for this would imply re/ + (Jf,M) which is incompatible with
reΣ czi + (jf,M). Hence qφI + (^,M) and more generally Γ ( I , / + ) c / + -

Lemma 4.15. If Σ is a good slice of J+ then J~ aI~(Σ,M).

Proof Since /" (X, M) intersects . /" i t will suffice to show that /" (X, M) does not.
Suppose, to the contrary, that there exists p e / " ( I , M ) n / " . One cannot have
Mcz/ + (p,M) for this would imply Σ c:/+(p,M) and hence peΓ{Σ,M). Strong
causality must therefore hold at p. Let μ be the future endless generating segment
of e/~ from p. Proposition 4.13(1) gives that μ is a generating segment of JQ .

Consider the closed future set J^:= f] T+ (x, M) of (M, g). If there was to exist

re(J-(Σ,J+)-Σ)n^ then J~(Σ9M) would be a neighbourhood of reI + (p,M)
and so would intersect I+(p,M). This would imply peI~{Σ,M\ giving a
contradiction. Hence J~(Σ,Jί+)--Σ does not intersect #\

Suppose there exists se|μ| n # \ Since Proposition 4.13(11) gives L+(μ,M) = 0 ,
the set |μ| is closed in M and one has s e | μ | n # \ Let ίeJ + (s, |μ|) be distinct from
s. Then seT+(t,M). Let Λ^ be a closed neighbourhood of t not containing 5. Let
Jί't c Jft be a neighbourhood of ί. Then ^ := / " (̂ K1',, M) - Jft is a neighbourhood
of s and there exists sfe^'snI+(t,M). Hence there exists a timelike curve from
teJf\ through s'eJ^'s a M — Jίt to Jί't. This gives a contradiction since strong
causality holds at ίe|μ| CZ /̂Q". Hence \μ\n^ = 0.

By hypothesis one has Σ = J + (Jf, M)nJί+ for some compact set Jf cz M. Let
xe|μ| CZĴ Q" and let yeI + (x,M)nM. Since every generator of JQ cuts both 21

and Σy\— J + (y,M)n<fi c/+(χ,M), there exists a timelike curve from xeM —
J + (Jf, M)toJ + (Σ, M) c J + (Jf, M) and hence a timelike curve from x to j + (Jf, M).
Thus J Γ n J + ( J f , M ) = f) (7+(x,M)nJ + (Jf,M)) is a monotone intersection of

* e lμ|
non-empty closed subsets of the compact set J+(Jf,M) and so is non-empty.

However 3F does not intersect |μ|, so Φ must be non-empty also. Since a past
endpoint of a generator of Φ would necessarily lie in |μ| CΛΦ a |μ| nJ^ = 0 , every
generator of & is past endless in M and is a generating segment of either / + or
J~. Hence &c\M = 0 . If the closed set #" contained any point of the dense set
M of M one would therefore have $F = M, which contradicts Φ Φ0. Thus
J^ = ̂  c 5M. However a generator of <# through a point o f < # n Σ ' = # ' n Σ ' =
J^n(J + (X,M)naM) = ( ^ n ί M ) n J + (JΓ,M) = ^ n J + ( X , M ^
to cut J~(2',e/

 + )-2 ' . This is impossible since J~(Σ, J+)-Σ does not intersect
#" = #". •

It will be evident that the proofs of many of the previous results could have
been simplified if (M, g) was causally simple, that is if J + (p, M) and J~ (/?, M) were
closed in M for all psM. However this need not generally be the case. Suppose
first that the causality condition holds at a point peJ + , but that the future endless
generating segment y^ of «/+ from p is such that L + ( y ^ , M ) / 0 . Then strong
causality is violated at every point of L+ (γ*,M)aίf

+ and, since J+ (p,M) = \y+ \
is not a closed subset of M, (M, g) is not causally simple. Suppose now that strong
causality holds at both J+ and J>~. Let qeJ>~. Then every generator of J+(q,M)
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which cuts M^JJ>~ must have a past endpoint at q. However it is conceivable that
a generator of J+(q, M) could also be a past endless generating segment λ oϊ J>+.
In such a circumstance the set J + (q,M) would not intersect \λ\a J + (q,M\ except
possibly at a future endpoint of A, and so would not be closed in M. Thus, contrary
to a claim in [7], strong causality a t / + and J~ does not guarantee the causal
simplicity of (M, g).

5. Topological Structure of Simple Space-Times

There are various assertions in the literature of relevance to the topological structure
of simple space-times. However some are based on deficient or incorrect arguments.
Consider first Penrose's attempt [1, Appendix] to show that J>+ has topology
S 2 x U independently of any causality condition on J>+. Having chosen an
arbitrary point QeM, he considers the set Ή of all points of M lying on null
geodesies from Q to J + , and the compact embedded 3-submanifold-with-boundary
38 of M defined, in modern notation, as the set /+(Q,M). With the objective of
obtaining a contradiction, Penrose supposes that there is a generator hoϊJ+ which
cuts ^ at some point R, but which does not cut 38. Using his constructions and
notation, one has that the null geodesies g(S) through the variable point SeS1R
all cut ^ , and that the points at which they do so accumulate at some point
Te3flnJ> +. The generator h of J+ through R is a limit curve of the g(S), as is the
generator t of J+ through T. But as S approaches R, the segment of g(S) between
3ft and S may become arbitrarily long, and so no contradiction need arise from
the consequence t φ h of the hypothesis that h does not cut 38. This error, which
alone invalidates the proof, is compounded by another of an even more fundamental
nature. The set of all generators of J+ which cut 3flr\J>+ = d38 foliate an open
submanifold of J> + homeomorphic to d3S x U. On the grounds that 538 is a compact
2-manifold (without boundary), Penrose makes a false inference that this region of
J>+ must be disconnected from the complementary region J*. All that is clear is
that J* is closed, with its topological boundary in J+ foliated by a collection of
generators of J>+ which do not cut d3$. Evidently there is no basis for Penrose's
claim that ,/* is empty and that J^ is consequently homeomorphic to d38 x U.

An article of Geroch [2] gave a correct proof that one could conclude
J>+ « § 2 x 1R under an assumption that the topology of J>+ is of the form K x i
for some compact 2-manifold K. This rather strong assumption was weakened by
Hawking & Ellis [3] to strong causality at J>+. Both discussions implicitly assumed
orientability of the space-time manifold M, and Hawking & Ellis implicitly assumed
the conformal completion of the space-time to be causally simple. Geroch also
gave some reason to believe that every Cauchy surface ^ of the space-time must
have topology IR3, and his argument was reproduced by Hawking & Ellis. Geroch
noted that the assumption that M is orientable implies the orientability, and hence
parallelizability, of the 3-manifold #, and that this implies the triviality of the
bundle N%. No mention was made of the fact, established below, that N+ must be
a non-trivial U2 bundle over J+ & S 2 x U. Nonetheless it will be seen later that
one does, under Geroch's hypotheses, have N+ « T§2 x U « § 2 x U3. The claim
that the homeomorphism N%&N+ implies ^ x S 2 « U3 x § 2 is therefore correct.
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However he then claimed, without justification, that this implies ^ « U3. The
inference is certainly false if the Poincare conjecture is false (see Sect. 6). Suppose
then that the Poincare conjecture is true. The homeomorphism ^ x § 2 ^ H 3 x § 2

implies π r ( # ) © π r ( S 2 ) ^ π r (§ 2 ) for all r ^ 0. Since the homotopy groups of § 2 are
all finitely generated, (Spanier [4, p. 516]), the homotopy groups of # must therefore
be trivial. Hence ̂  is a contractible open 3-manifold. It then follows by van Kampen's
theorem that ^ is irreducible (i.e. every tamely embedded 2-sphere bounds a 3-disc).
The homeomorphism ^ x § 2 * H 3 x § 2 also implies that <$ is simply connected
at infinity (i.e. for every compact set jf\ of #, there exists a compact set Jf 2 =D jf\
of # such that π1 (<g - Jf 2 ) -> πx (<g - Jf x) is trivial). The properties of irreducibility,
contractibility and simple connectivity at infinity are sufficient to guarantee that
# is homeomorphic to U3 (Scott [8]). (Proof. Let Jf x and j f 2 be as above. Perform
surgery on Jf 2 outside Jf\ to produce a compact j f 2 z> j f j such that π-^δJf 2)->
πι{^Ί) and π^dJf^^π^ - Jf'2) are trivial. Homological considerations then
give that dW2 is a disjoint union of 2-spheres, one of which bounds a 3-disc
containing Jf x . Thus ^ is a monotone union of open 3-cells, and so is itself an
open 3-cell.) Geroch's proof that the Cauchy surface <$ is homeomorphic to U3 is
therefore correct iff the Poincare conjecture is correct.

More recently, Newman & Clarke [7] gave a different argument to establish
the topology of the Cauchy surfaces. Strong causality was again assumed to hold
at / + and «/", but the space-time manifold was not required to be orientable.
The proof did make use of an erroneous assertion that the conformal completion
of the space-time is necessarily causally simple, but this defect may be rectified by
means of the results of the previous section of the present paper. Use was also
made of the Poincare conjecture, thought at the time to have been proved by Rego
and Rourke [9]. Without this, one has that J>+ and */" have topology § 2 x IR,
and that every Cauchy surface is homeomorphic to the complement of a point
in a homotopy 3-sphere. If the Poincare conjecture is true after all, it follows that
the Cauchy surfaces must have topology U3.

The following theorem supercedes all of the previous work. Strong causality
is not required to hold at </+ or «/", the space-time manifold is not required to
be orientable, and the Poincare conjecture is not assumed to be true.

Theorem 5.1. Let (M,g) be a simple space-time and (M,g) an asymptotic null
completion of (M, g). Let Ή be a smoothly embedded Cauchy surface of (M, g). Let
J>% be the strongly causal region of J>+. Then

(I) # is diffeomorphic to the complement of a point in a smooth homotopy 3-sphere
§ 3 ;

(II) <#+ is diffeomorphic to the complement of a point in a contractible open
3-manifold C3 which embeds in § 3 ;

(III) J^ is diffeomorphic to the complement of a point in IR3;
(IV) every slice of\f+ is homeomorphic to § 2 ;
(V) every slice of J+ is a strong deformation retract of both JQ and , / + ;

(VI) M is homeomorphic to [R4.

Proof. The approach will be as follows. Since slices of J+ are only 2-dimensional,
the claim (IV) is established first. A proof comes from Z2-homological consi-
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derations. The fact that any good slice of,/+ is cut by all generators of JQ then
implies (III). The next step is to argue that, since slices of J>+ are simply connected
and cannot be unwrapped, the manifold M must be simply connected. It follows
that <€ is simply connected. Choosing an arbitrary point peM one then considers
the compact 3-submanifold-with-boundary A:= I+(p,M) of M. Since dA is a slice
of J>+, and is therefore homeomorphic to § 2 , the quotient space Λ/dΛ is a compact
topological 3-manifold. The simple connectivity of # « A now leads to (I). The
homeomorphism between the total spaces of N + and N#9 as in the proof of
Proposition 4.9, is used to identify the Z-homology of J+ and to establish its
simple connectivity. One then shows that homeomorphism-type is preserved by
the removal of the complement of J+(p,M)nJ+ in J + , and that all reduced
homology is annihilated the subsequent adjunction of a closed 3-disc. An appeal
to Hurewicz then yields (II). The complement of J + (p, M) n«/ + is in fact contained
in / 0

+ , and its removal from the pair (J+,JQ) is an excision. This leads, by the
argument in support of (II), to the triviality of the relative Z-homology of (</ + , J%).
The homeomorphism in (III) is used to establish that every good slice of </+, and
therefore every slice Σ, is a strong deformation retract of JQ . The consequent
triviality of the relative Z-homology of the pair (J+,Σ) implies the vanishing of
all obstructions to a strong deformation retraction of </+ to Σ, thus completing
the proof of (V). Finally, (VI) will follow from (I).

As in the proof of Proposition 4.9, let N<# be the bundle of future-directed null
directions over #, and let N + be the bundle of all future-directed null directions
not tangent t o / + over J+. The fibres of Nv are homeomorphic to S 2 , whilst
those of N+ are homeomorphic to S 2 — {pt.} « U2. The future-directed null
geodesies of (M,g) from ^ t o / + define a homeomorphism of the total space of
Ny onto the total space of N + . In fact, all that will be required is the existence of
a homotopy equivalence N^^N+. Note that the projection N +-+J>+ of N+ onto
its base space is another homotopy equivalence.

Remark 5.2. The homotopy sequence for N<# assumes the form

i =
πr(N+)

I —

πr(J+)

Lemma 5.3. ^ has the Z2-homology and Z-homology of a point, and J+ has the
Z2-homology ofS2.

Proof. Since N<# is a 2-sphere bundle over V one has a Gysin homology sequence

-+Hr+1(V;Z2)^Hr_2(^Z2)-+ Hr{N^Z2) ^Hr(^Z2)^

I —

Hr(N+;Z2)
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Since Proposition 4.9 gives that the 3-manifolds J+ and Ή are connected
and non-compact, working from left to right one finds Hr(

(£;Z2) = 0 for all
r ^ 1, Hr(J + ; Z2) ^ 0 for all r ^ 3 and for r = 1, with H2(J+; Z2) ^ H 0 ( j^ + ; Z2) ^
#o(^; ^2) = ^2 T n u s ^ + n a s t n e Z2-homology of S 2 and # has the Z2-homology
of a point.

The universal coefficient theorem for homology gives a short exact sequence

One thus has Hr(<g) ® Z 2 ^ Tor (H r(^), Z2) ^ 0 for all r ^ 1, and it follows that #
has the Z-homology of a point. T

Let peM. Then Lemmas 3.4 and 4.5 give that Λ:= I + (p,M) is a compact
achronal embedded topological 3-submanifold-with-boundary of M, with δΛ =

Lemma 5.4. Ή « /ί.

Proof. Let V be a continuous, nowhere-zero, non-spacelike vector field on M which
is timelike on M, and on <3M = J+κjJ+ is null and tangent thereto. The maximal
integral curves of V |M are endless in M and cut ^ . Moreover, by Lemma 4.2, they
cut 7 + (/?,M)nM and Γ(p,M)nM cz M-I + (p,M% and so cut I + (p,M)nM = A.
The maximal integral curves of V |M thus define a homeomorphism of /i
onto V. Ύ

Remark 5.5. The generators of J>^, when parametrized with respect to arc-length
from the good slice δΛ with respect to a complete positive definite metric on JQ ,
equip J>$ with the structure of a 1-dimensional Euclidean vector bundle over dΛ
with group 0(1) ^ Z 2 .

Lemma 5.6. δΛ is homeomorphic to S 2 and is a strong deformation retract of J§ .

Proof The inclusion A -> Λ is a homotopy equivalence as a consequence of the
topological collaring theorem. Since Ή & Λ has the Z-homology of a point, it
therefore follows that Λ has the Z-homology of a point. The universal coefficient
theorem for cohomology then gives that Λ has the Z2-cohomology of a point.
Since Λ is Z2-orientable, Lefschetz duality gives the commutative diagram

-> H\A\Έ2) -+

I ^

There follows //1(cM;Z2) = 0. Each component of δΛ, being compact and Z 2-
orientable therefore has the Z2-homology of a 2-sphere. Each such component
therefore has Euler characteristic + 2 and so is homeomorphic to a 2-sphere. Hence
dΛ is the disjoint union of n 2-spheres, for some integer n ^ 1. This implies that
one may adjoin n closed 3-discs to Λ to obtain a compact 3-manifold X. The Euler
characteristics of Λ and X are related by 0 = χ(X) = χ(Λ) + n( - 1 ) 3 = χ(Λ) - n. Since
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A has the Z-homology of a point one obtains χ(Λ) = 1. There follows n = 1 and
hence dΛ « § 2 . Remark 5.5 implies that <M is a strong deformation retract of
J\. •

Corollary 1. Every slice of J>+ is homeomorphic to S2 and is a strong deformation
retract of JQ .

Proof. Let Σ be a slice of J>+. Every generator of J$ which cuts Σ <= «/^ must
cut the good slice dΛ czJ^o oΐ J + . Since Σ is acausal and compact, and dΛ is
acausal and connected, the generators of JQ therefore define a TOP isotopy
GΣ\ Σ x [0,1] -+JQ x [°> 1] w h i c h throws Σ onto 3/1. Hence Σπ dΛ « § 2 . More-
over the generators of ,/Q define a TOP isotopy G ^ : ^ x [0,1]-^./Q X [0,1] which
throws an open neighbourhood % of X in J ^ onto an open neighbourhood
of dΛ in ,/Q The homotopy HΣ:Σ x [0,1] ->^o °f t n e inclusion I - > / 0

+

5

defined by (x,v)\-^y such that GΓ(x, v) = (y,v), therefore extends to a homotopy
H:JQ x [0, l]->J^o o f t n e identity on ,/J. The mapping H^JQ-^JQ i s a

homotopy equivalence, as is the homeomorphism H^Σ'.Σ-tdΛ. Both therefore
induce isomorphisms of homotopy groups (Spanier [4, p. 386]). One thus has a
commutative diagram

- πr(Σ) -πΓ(./o+)-> π ^ ί ^ ) - ^

in which both rows are exact and the vertical homomorphisms are induced
by H1. The five lemma now gives an isomorphism πr(JίQ,Σ)^πr(JίQ,dΛ) for
every r. But any strong deformation retraction of J§ to dΛ induces isomorphisms
πr(S£,dΛ) ^ 0 for all r. One must therefore have πXJ^Σ) ^ 0 for all r. Since JQ
is a 3-manifold, and Σ is a topological 2-submanifold-with-boundary of ,/ + , the
pair (t/

 + ,1) may be equipped with the structure of a relative CW-complex. It
therefore follows [4, p. 402] that Σ is a strong deformation retract of J>^. W

Corollary 2. ^ « § 2 x R.

Froo/. Since 1-dimensional Euclidean vector bundles over § 2 are classified by
π 1 (O(l))/π 0 (O(l))^π 1 (Z 2 )/π 0 (Z 2 )^0 (Steenrod [10,p. 99]) all such bundles are
equivalent and therefore trivial. Thus the assertion follows directly from the lemma
and Remark 5.5. •

Lemma 5.7. π ^ ^ O .

Proof Let p:Mc-+M be the universal cover of M. Then Mc is a 4-manifold-with-
boundary such that dMc = p~1(dM). One forms a space-time-with-boundary
(Mc,gc), with gc:=p*g The time orientation on (M,g) induces a time orientation
on (Mc,gc). Since ^M is null with respect to g, and p is a local isometry, dMc is
null with respect to gc. Let Mc:= Mc — dMc,gc:= p*g. It is easily checked that (Mc, gc)
is a Cr null asymptote of the space-time (Mc,gc).

Since any closed timelike curve of (Mc,gc) would project to a closed timelike
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curve of (M,g), one has that (Mc,gc) satisfies the chronology condition. Moreover,
any null geodesic of (Mc,gc) without a future (respectively past) endpoint in Mc

would project to a null geodesic of (M, g) without a future (past) endpoint in M.
Thus every null geodesic of (Mc,gc) has both future and past endpoints in Mc. It
follows that (Mc,gc) is a simple space-time and that (Mc,gc) is an asymptotic null
completion of (Mc,gc). One also has ̂ Mc = / c

+ u / c ~ where «/c

+ = p~x(y+) and
*/,," = p~1(e/~) are the future and past null infinities of (Mc,gc).

Let reM. Then Σ:= I + (r,M)nJ'+ is a good slice of J + . Since X1 is homeo-
morphic to S2, which is simply connected, each component of p~1(Σ) is
homeomorphic to § 2 and the multiplicity of/? is equal to the cardinal number of
the set of components of p~1(Σ).

Let ^ep" 1 ^). If there was to exist a point scep~X(Σ)nI+ (rc,Mc) then there
would exist a timelike curve μc of (Mc, gc) from rc to sc, and p°μc would be a timelike
curve of (M,g) from r to ^(SJGX c / + (r,M)nJ^+ a M — I + (r,M). Since this is
impossible one must have p~ 1(Σ) a J+ — I+(rc, Mc) cz J+Oi by Lemma 4.14. If there
was to exist a non-degenerate causal curve vc of (Mc,gc) from p- 1(X) to p " 1 ^ ) ,
then p°vc would be a non-degenerate causal curve of (M,g) from X to 2λ This is
impossible since Σ is acausal. It follows that p~1(Σ) is acausal and that each
component of p~1(Σ) is a slice of J*.

Consider the good slice Σc:= I + (rc,M)nJ+ of (Mc,gc). For each tcep~1(Σ),
the generator of J+o through tc must cut Σc. Since p~1(Σ) is acausal, the generators
of J+o thus define a homeomorphism of p~\Σ) onto an open submanifold of Σc.
Since Xc is connected it follows that each component of p~1(Σ)9 being compact,
is mapped onto Σc. Hence, for any uceΣc, the generator of J+o through uc must
cut every component of p~ 1{Σ). It follows that p~ 1{Σ), being acausal, is connected.
Thus p:Mc-+M has unit multiplicity and so is a homeomorphism.

One now has π ^ M ^ π ^ M J ^ O . Since the inclusion M = M — dM->M
is a homotopy equivalence, there follows π1(M)^π1(M) = 0. Moreover, since
^ is a Cauchy surface for (M,g) one has M ^ ^ x i and consequently π1{^)^

0. Ύ

Corollary 1. %> is a contractible open 3-manίfold.

Proof. By Lemma 5.3 one has Hr(^)^0 for all r ^ l . Since one also has
n^) ^ πo(#) = 0, the Hurewicz isomorphism theorem gives πr(#) = 0 for all r ̂  0.
The assertion now follows by a standard result [4, p. 402]. •

Corollary 2. πr(J+) ^ πr(§2)/or αH r ̂  0.

Proof. Immediate by Corollary 1 and Remark 5.2. T

Corollary 3. J+ has the Z-homology of S2.

Proof Since </+ is simply connected one has Ho(Jί+)^H1(Jί+)^0, whereby
Hurewicz gives H2(J>+) = π2{J'+) = Z. Since J>+ is a non-compact 3-manifold one
h a s f U / + ) ^ 0 f o r a l l r ^ 3 . T

Corollary 1 to Lemma 5.7 is strengthened by the corollary to the following result.

Lemma 5.8. The adjunction space Λ\J O3 is homeomorphic to a homotopy 3-sphere

§3.
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Proof. By Lemmas 5.4 and 5.7 one has that A « ^ is simply connected. Since A

is compact, the adjunction space Λ[J O 3 is therefore a compact simply connected
d

topological 3-manifold and (Hempel [11, p. 26]) must be homotopy equivalent to

§ 3 . T

Corollary. %π§3-{pt.}.

Proof. By means of Lemma 5.4 one has # « /ί « § 3 — {/?ί.}. T

Since J + (p,M) is a closed future set of (M,g), Lemma 3.4 gives that
Γ\= J+(p,M)nJί+ is a topological 3-submanifold-with-boundary of <f+ such
that dΓ = J + (p,M)nJ+ =i+(p,M)njr + . Moreover one has f = I + (p,M)nJ + .

Lemma 5.9. Γ is a strong deformation retract of J*+ such that Γ&J>+.

Proof For any qeJ> + —J'Q onehaspeM c / ~(q,M) and hence qeI + (p,M)nJ+ =
f. Thus J+ -JQ ^ Γ a n d hence / + - Γ c / 0

+ . It follows therefore that every
generator of J>+ which cuts J+ — f is a generator of J§ and so must cut the
good slice dΓ of J>+. Thus the past endless past-directed generating segments of
JQ from dΓ, parameterized by arc-length from dΓ with respect to a complete
positive definite metric on J>+, define a homeomorphism of J>+ —f onto
dΓ x [0, oo). The result follows. •

Lemma 5.10. The adjunction space Γ\J O 3 is homeomorphic to a contractible open
d

3-manifold C .

Proof. Since 7̂  « J>+ is simply connected, the adjunction space Γ (J O 3 is a simply

connected 3-manifold. If F ( J O 3 was compact it would be a homotopy 3-sphere.
δ „

Mayer-Vietoris would then give H:¥(Γ) = 0 which, by the simple connectivity

of Γ and the Hurewicz isomorphism theorem, would imply π%(Γ) = 0. One

would then have n^(Jf+) ^ π^(f) ^ ^ ( Γ ) ^ 0 which would be incompatible with

Corollary 2 to Lemma 5.7. Thus 7"(JO 3 is non-compact.
d

The simple connectivity and non-compactness of Γ [j O 3 imply H^ΓljD3)^
d d

H3(Γ [j O3) ^ H3(Γ \J D3) ̂  0. The universal coefficient theorem for cohomology

gives Hr+1(Γ I J D 3 ) k Uom{Hr+1{Γ [j O3), Z ) 0 Ext(H,(Γ (J D 3 ) 3 , Z) for all r, so
a a a

one has Ext(/f2(/~1 |Jθ3), Z) = 0. The Mayer-Vietoris sequence for the triad
d

{Γ[j O3,7", D3) now gives a short exact sequence

d

I * 1 =
z z

which implies that H 2 ( Γ | j D 3 ) is a finitely generated torsion module. Hence
d
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H2(Γ(jD3)sHom(H2(Γ|jD3),Z)φExt(H2(ΓyD3),Z)s0. One now has
~ d d d

Hr(Γ[jD3)^0 for all r ^ O whereby the Hurewicz isomorphism theorem gives
d

πr(Γ (J O3) ̂  0 for all r ̂  0. There is consequently no obstruction to the contraction

o f T ^ D 3 . • T

Corollary. J+ *C3-{pt.}. Ύ

Lemma 5.11. C3 admits a topological embedding into S3.

Proof. Let W be a timelike vector field on (M, g). Any maximal integral curve of
W to Γ cz J + (p,M) either has a past endpoint a t / ~ c M - J + (p,M\ or is past
endless in M and therefore cuts I~(p,M) a M — J+(p, M). In both cases it cuts
J + (p, M) = A. The maximal integral curves of W to /"therefore define a topological
embedding of Γ into A. Clearly dΓ = dA is mapped onto itself. The adjunction
space Γ Ί J O 3 therefore admits a topological embedding into /1(JD3. The result

d 0

now follows by Lemmas 5.8 and 5.10. T

Lemma 5.12. Every slice of J+ is a strong deformation retract of J>+.

Proof. Let Σ be a slice of,/4". Since Corollary 1 to Lemma 5.6 gives that Σ and
dΓ are strong deformation retracts of J ^ , and Lemma 5.9 gives that dΓ is a
strong deformation retract of J+ — Γ, the homology sequences for the triples
(J\J^Σ\(^ + ̂ o^n^άy\J+ -Γ,dΓ) give H^J\Σ)^H^J\ J + ) ς*
H^ + ,dΓ)^H:,(J + ,J+ - /). One thus has H+(S+\Σ)^H^{Γ,dΓ) by excision
of J+ -Γ. But Lemma 5.10 implies H*(Γ,dΓ)^HJC*, {pt.})^H*(C3)^0 so
one obtains H^(Jf + ,Σ)^0. The simple connectivity of J+ and Σ permits the
application of the relative Hurewicz isomorphism theorem (Spanier [4, p. 397]) to
yield π^(J + ,Σ) ^ 0. It therefore follows [4, p. 402] that Σ is a strong deformation
retract of J + . •

The preceding lemmas may now be brought together to establish the main
result. Since all DIFF structures on any topological 3-manifold are isotopic, the
Corollary to Lemma 5.8 gives (I), the Corollary to Lemma 5.10 with Lemma 5.11
give (II), and Corollary 2 to Lemma 5.6 gives (III). The claims (IV) and (V)
are established by Corollary 1 to Lemma 5.6 and Lemma 5.12. By (I) one
has M ~ d i f f ( S 3 — {pt.}) x U. Since § 3 — {pt.} is proper homotopy equivalent to
S 3 — {pt.} « [R3, M is proper homotopy equivalent to [R4, and a theorem of
Freedman [12] gives M « U4. This establishes (VI). •

Corollary 1. «/+ — ,/Q has no compact component.

Proof Let Σ be a slice of </ + . Then Σ is a strong deformation retract of both
J>+ and JQ and one has H^+,Σ)^ H^JQ ,Σ) ̂ 0 . The homology sequence
for the triple (J+,JQ,Σ) thus yields H^(J + ,JQ)^0. In particular one has
H3(J + , JQ ) = 0 which, since </£ is relatively open in J +, gives that there are no
non-zero compactly supported, continuous Z-valued functions o n / + — JQ .

Suppose </+ — ./Q" h a s a compact component Jf\ The characteristic function
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χx of JΓ in J>+ —^o, regarded as a Z-valued function o n / 1 — J>§, is clearly
compactly supported. Moreover χ^ is continuous since both χ^r

1(l) = Jf and

χ-
1(0) = (jf+ -j£)- X are relatively open in J + - J Q . One thus has a

contradiction. •

Corollary 2. N^ is a trivial S2 bundle over cβ. N + is a topological U2 bundle over J +

such that N+\Σ ^TS2 for every smooth slice Σ » § 2 of J>+, and is therefore
non-trivial

Proof The 3-manifold Ή, being orientable, is parallelizable. A parallelization of
^ together with a unit timelike vector field on M define a parallelization of M.
Hence TM is trivial. It follows that N^ is trivial.

Let Σ « S 2 be a smooth slice of J>+. It is not difficult to see that N +\Σ is
equivalent to a topological bundle over Σ having the fibre over each p e l an open
2-cell neighbourhood of p in Σ. This bundle is equivalent to TΣ ^ T § 2 . Since § 2

is not parallelizable, TS2 is non-trivial. Therefore N+\Σ is non-trivial and so is
JV+. •

The bundle equivalence class of any bundle is determined by the bundle it
induces over a strong deformation retract of its base. Thus Corollary 2 determines
the bundle equivalence classes of both N^ and N+.

Remark 5.13. Suppose strong causality holds at </ + , and ̂  is homeomorphic to
U3 (e.g. Minkowski space) One then has J+ ^ d i f f S 2 x IR, N^πdiffM

3 x S 2 and
N + « TS2 x U, and the homeomorphism N+ » N% demonstrates the well-known
result TS2 xU^S2 xU3 (Karoubi [13, p. 22]).

Suppose ^ « d i f f [R3, as would be the case if the Poincare conjecture were true.
Then M « d i f f IR3 x R « d i f f 1R4 and J+ ^ d i f f ( C 3 - {pi.}) where, by Theorem 5.1, C 3

is a contractible open 3-manifold which embeds in § 3 . Recall that a contractible
open 3-manifold is said to be a Whitehead manifold if its every compact subspace
admits a topological embedding into § 3 . Thus, in the present case, C 3 must be a
Whitehead manifold. A theorem of McMillan [14] shows that any such manifold
may be expressed as a monotone union of a sequence of P.L. cubes-with-handles
such that each is contained and deformable to a point in the interior of the next.
The fact that the whole of C 3 embeds in S 3 is a non-trival restriction since many
Whitehead manifolds are known to admit no such embeddings [15].

If the Poincare conjecture is false then Theorem 5.1 may not give M « d i f f [R
4.

Thus it is conceivable that there could exist a simple space-time with an underlying
manifold diffeomorphic to an exotic [R4.

In the case that the space-time admits an U3 Cauchy surface, one may use the
following result to obtain a more useful description of the topology of J + .

Lemma 5.14. For any 3-manifold N, the following are equivalent:
(I) N is homeomorphic to the complement of a point in a contractible open 3-manifold
which embeds in U3;
(II) iV is homeomorphic to the complement in U3 of the intersection of a sequence
of P.L. cubes-with-handles such that each is contained and deformable to a point in
the interior of its predecessor.
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Proof. The result will be established as a corollary to the following.

Lemma 5.15. Let Ta9 Tb be P.L. cubes-wίth-handles in S 3 such that Ta c Tb. Then
the closed complements of Ta and Tb in § 3 are P.L. cubes-with-handles T'a, T'b such
that Tb cz T'a. Moreover if Ta is deformable to a point in fb, then Tb is deformable
to a point in T'a.

Proof. Any tamely embedded 2-sphere in T'a divides § 3 into a pair of 3-discs, one
of which must be contained in T'a. Thus T'a is irreducible. The Loop Theorem
shows how a finite number of disjoint P.L. 1-handles may be removed from T'a to
yield a compact connected P.L. 3-submanifold-with-boundary X of T'a such that
π1(dX)->π1(X) is trivial. The homotopy-homology ladder for (X, dX) implies that
H1(dX)^H1(X) is trivial and that Hί(X)^Hί(X,dX) is an isomorphism. The
Mayer-Vietoris sequence for (S3,X,Xf), where X' is the closed complement of X
in § 3 , now gives H1(X)^0. Hence H1(X,dX)^0. And since Lefschetz duality
gives H2(X, dX) = Hλ(X) ̂  H^X) ^ 0, the homology sequence for (X, dX) implies
H^δX) ^ 0. Thus dX is a disjoint union of P.L. embedded 2-spheres, X is a 3-disc
and Ta is a cube-with-handles. Similarly Tb is a cube-with-handles. Since Ta and
Tb are P.L. so are T'a and Tb. The inclusion T'b cz Ta is obvious.

Each of Ta,T'a, Tb and Tb has the homotopy type of a finite wedge of circles,
and so has a free, finitely generated fundamental group, with trivial homology and
homotopy groups in dimensions greater than 1. By the Mayer-Vietoris sequence
for (S 3, Ta, Ta) one has χ(Ta) + χ{Ta) = χ(fa) = 2χ(Ta). Hence H^Ta) ς* H*(Ta). By
hypothesis, the inclusion j : Ta -• Tb is homotopic in Tb to a constant map and so
induces a trivial homomorphism of graded homology modules. The reduced
homology sequence for the pair (Tb,Ta) therefore gives H1(Tb,T^^H1(Tb) and
H2(Tb, Ta) = //1(Tα). Consider the reduced homology sequence for the pair (T'a, Tb):

By duality and the universal coefficient theorem one has H1(Ta, Tb) = H1 ( § 3 - Ta9

H^Tj,) are free and finitely generated. Hence H^T^ Tb) ̂  H^TJ ^ H^T'J. But
any epimorphism of finitely generated free groups of equal rank is necessarily an
isomorphism. Thus the inclusion j':T'b->T'a induces a trivial homomorphism of
1-dimensional homology modules. Since πi(Tb) and π1(T^J) are both free, the
homomorphisms π1(Tb)-^H1(Tb) and π1(Ta)-^Hι(T'a) are both isomorphisms,
and the homotopy-homology ladder for the pair (T'a, T'b) gives that / induces a
trivial homomorphism of fundamental groups. But Tb has the homotopy-type of
a wedge of circles, and so f:Tb -• T'a must be homotopic in T'a to a constant map.
Since T'a is P.L., any such homotopy may be deformed so as to avoid T'a. Thus Tb is
deformable in f'a to a point. T

Suppose that (I) holds. The contractible open 3-manifold is a Whitehead
manifold W which one may assume to be realised as an embedded submanifold
of § 3 . A previously quoted therorem of McMillan gives that W is the union of a
sequence of P.L. cubes-with-handles Tt in § 3 such that each T{ is contained and
deformable to a point in Ti+ί. For each i let T be the closed complement of Tt
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in § 3 . One then has N « W- {pi.} = (J T£ — {pi.} - ( § 3 - {pi.}) - Q ΓJ = U3 -
i i

f] Tt under the identification [R3 = § 3 - {pt.}. The lemma now implies (II).
i

Suppose now that (II) holds. One then has N = U3 - f] Th where the Tt are
i

P.L. cubes-with-handles such that each Ti+ί is contained and deformable to a
point in Tf. Let the one-point compactification of U3 be identified with § 3 , and
for each i let T\ be the closed complement of Tt in § 3 . One has Ύ\ c f'i+1 for all
U and hence that W:= (J T"f is an open submanifold of S 3 . One also has

i

N « ( S 3 — {oo}) — P) Tf = W — {oo}. For any r ^ 0, a continuous image of S r in
i

N is contained in T"f for some i. Since the lemma gives that each Ύ\ is contained
and deformable to a point in T + 1 , one must have πr(W) ^ 0 for all r ^ 0. Hence
VΓ is contractible. •

This shows that, for any simple space-time having an U3 Cauchy surface, the
topology of J+ may be realised as the complement in U3 of the intersection of a
sequence of P.L. cubes-with-handles, each of which is contained and deformable
to a point in the interior of its predecessor.

Subject to the truth of the Poincare conjecture, there has now emerged a general
picture of an asymptotic null completion (M,g) of a simple space-time (M,g).
Specifically, M may be realised as an open dense submanifold-with-boundary of
S 3 x [ -1 ,1] such that

(a) M = ( § 3 - {pt.}) x ( - 1,1);
(b) for each ίe(— 1,1) the set ( § 3 — {pi.}) x {ί} is a Cauchy surface of (M,g);
(c) J+ (respectively J~) is the complement in ( § 3 — {pt.}) x {+ 1} (respectively
(S 3 — {pt.}) x {— 1}) of a monotone intersection of P.L. cubes-with-handles such
that each is contained and deformable to a point in the interior of its predecessor;

Moreover spatial infinity, defined formally as the inverse limit of sets M — /(jf, M)
for all compact sets Jf of M, is represented as the set {pi.} x [ - 1,1] identified
to a point.

6. Further Topological Considerations

The previous sections give much information concerning the general properties of
simple space-times and their asymptotic null completions. In particular, they show
that N+ is the unique U2 bundle over , / + ^ C3 — {pt.} admitting a homotopy
equivalence ί:S2^J+ such that i*N+ ~ T S 2 , and that N^ is the unique trivial
§ 2 bundle over ^ ^ d i f f S

3 — {pt.}. The proofs of these results have used only the
homotopy equivalence of the total spaces of N + and N^. However the causal
structure of any simple space-time demands a homeomorphism N+ ~Λ/^, and it
is not immediately clear that this can exist other than in the special case
%πdiΐ{n

3,J+ ^ § 2 x R, for which one has N+ α TS2 x [R^d i f f[R3 x S2^d i f fJVV
The two following self-contained topological results show that the necessary



46 R. P. A. C. Newman

homeomorphism N+^N^ does in fact occur for all topologies of J+ and #
admitted by Theorem 5.1 and its corollaries.

The first result is of relevance to N<#.

Proposition 6.1. For any smooth homotopy 3-sphere S3 one has (S3 — {pt.}) x

Proof Let DX,D2 be disjoint smoothly embedded 3-discs in § 3 , and let X:=
§ 3 - (Dί uZ)2). By excision one has Hr(X, dDJ ^ Hr(§3 - D 2 , D J ^ Hr{§3 - D2)
for all r ^ O , and by Lefschetz duality and excision one has Hr(S3 — /32) =
H3-r(S3-D2,dD2)^H3-r(S3,D2)^H3-r(S3)^H3-r(S3)^Hr(pt.)ϊorMsuch
r. Thus Hχ(X, dD^^O. The simple connectivity of § 3 implies that X, which has
the homotopy type of § 3 — {two pts.}, is simply connected. Since dD1 « S 2 is also
simply connected, one may apply the relative Hurewicz isomorphism theorem to
obtain πr(X,dDx) = 0 for all r ^ O . It follows that dD1 is a strong deformation
retract of X. Similarly dD2 is a strong deformation retract of X, and so (X; dD1, dD2)
is a smooth 3-dimensional /z-cobordism.

Let π : § 3 x S 2 - > § 3 be the projection onto the first factor. Let X'.^π'1

( ^ - ( D i U i i , ) ) , Y1:=π~1(Dί)a.nd Y2:= π~1{D2). Then (X;dYl9dY2) is a smooth
5-dimensional /z-cobordism. The simple connectivity of dY1 « BY2 « § 2 x § 2

permits the application of the five-dimensional proper /z-cobordism theorem of
Freedman [12] to obtain X zz dYt x [0,1], and consequently X\JY1&Y1. Since
one clearly has § 3 - {pt.} « § 3 - D 2 « ( l u D J 0 , there follows ( § 3 - {pi.}) x § 2 ^

By Theorem 10.1 of [16, Essay IV], the concordance classes of DIFF
structures on U3 x S2 are classified [U3 x § 2 , TOP/DIFF], or equivalently by
π2(TOP/DIFF) ^ 0. Thus all DIFF structures on U3 x S 2 are concordant and
hence isotopic. It follows that any homeomorphism of ( § 3 — {pt.}) x S2 onto
U3 x § 2 may be composed with a homeomorphism of U3 x S2 onto itself to yield
a diffeomorphism of (S 3 - {pt.}) x S2 onto U3 x S2. •

It is now clear that, for a smooth Cauchy surface ^ of any topology admitted
by Theorem 5.1, one has N^^diΠU3 x S2.

The next result is of relevance to the bundle N +. Since the metric g has only
been assumed to be C°,N+ may only be C° and so it is necessary to work in the
topological category.

Proposition 6.2. Let C3 be a contractible open topological 3-manifold. Let
π:E->C3 — {pt.} be a topological U2-bundle admitting a homotopy equivalence
h: §2^C3- {pt.} such that /z*£ ~ T§2. Then EπM3 x S 2 .

Proof The topological manifold C3, being 3-dimensional, admits a P.L. structure.
Let B3 be a regular neighbourhood of pt. in C 3 and let Σ:= B3. Then Σ is a strong
deformation retract of C 3 - {pt.}, and so h: S 2 -> C 3 - {pt.} is homotopic in
C3 -{pt.} to a continuous map hΣ:§

2^>Σ a C 3 - {pt.}. Since h is a homotopy
equivalence, so is hΣ. The Brouwer degree theorem (Spanier [4, p. 398]) therefore
gives that hΣ: S2 -^Σ » § 2 is homotopic to a homeomorphism H Γ : § 2 -+Σ « § 2 .
There follows £ | X - H | £ - /z|£ - /z*£ - Γ § 2 .
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By Theorem 1.1 of [16, Essay II] there exists a P.L. structure on E such that
the mapping π:£—• C 3 — {pi.} is P.L. (The required, continuous [R-valued function
on E may be taken to be the logarithm of fibrewise distance, with respect to a
complete topological metric on E, from a fixed section of E.) Let C3 — {pi.} be
identified with the image of a P.L. section of E. Then Σ is a strong deformation
retract of E, and HΣ: §

2 ->X may be regarded as a P.L. embedding of § 2 into E.
Let πD:ED^C3- {pt.} be a 2-disc P.L. sub-bundle of £ such that C 3 - {pi.} c ED.
Let N3 &Σ x [— 1,1] be a regular neighbourhood of Σ in C 3 — {pt.}. Then
N:=π^1(N3) is a regular neighbourhood of Z1 in E. Since J£ is a strong
deformation retract of N, as well as of E, the homotopy sequence for the triple
(£, N, Σ) gives that the pair (£, JV) is fe-connected for all k ̂  0. One also has
Nκπ-1{Σ)x{-\,\)πT§2 x ^ H 3 x § 2 .

Lemma 6.3. For any compact subset A of E there exists a regular neighbourhood
NAπN of Σ such that A <= NA.

Proof. Let A be any compact subset of E. Then π(A) is a compact subset of
C 3 — {pt.} and is contained in some compact P.L. subspace Ao of C 3 — {pt.}. By
Lemma 3.7 of Hudson [17], the P.L. manifold C 3 — {pt.} admits a triangulation
by a locally finite simplical complex K which contains a subcomplex Ko

triangulating Ao. If dim (Xo) = 3, then a finite sequence of 3-dimensional elementary
simplicial collapses yields a 2-dimensional subcomplex K'oΐ Ko such that Ko \ SK'.
Hence, in general, Ko admits a subcomplex Kl9 dimfJ^) ^ 2 = dim(£Γ) — 3, such
that 7£0 V l ^ . The Engulfing Theorem 7.4 of [17] gives that there exists a P.L.
homeomorphism hx:E^E such that \KX\ czhi(N\ whereby Lemma 7.1 of [17]
gives that there exists a P.L. homeomorphism h2:E^E such that \K0\ a h2

oh1(N).
There clearly exists a fibre preserving P.L. homeomorphism h3:E-*E throwing A
into the open neighbourhood h2

ohί(N) of Ao = \K0\ in E. The regular neighbour-
hood NA:= hϊloh2 °/z1(N) of Σ in E is such that Ao <=NA. Ύ

Let Θ cz N be a regular neighbourhood of Z1 in £. Then the Generalized Annulus
Theorem 2.16.2 of [17] gives N — Θ K, 0 x [0,1). Lemma 6.3 implies that E is
covered by a sequence of regular neighbourhoods Nt^ N oϊΣ such that Nt a Nί+1

for all i. Without loss of generality, assume Nγ = Θ. For each i, the Generalised
Annulus Theorem gives Ni+1— Nt α Nt x [/,i + 1]. Hence £ — Θ & Θ x [0, oo)^
(̂  x [0,1)«iV — ̂ . It follows that there exists a homeomorphism of £ onto N
leaving β? fixed. Thus E «iV « [R3 x § 2 . •

It is now clear that, for all topologies of J+ and # admitted by Theorem 5.1,
the total spaces of the corresponding, uniquely determined bundles N + and N<#
are homeomorphic to U3 x S 2 , and so are homeomorphic to one another.

7. General Slices

Theorem 5.1 gives that all slices of J+ are compact and connected. This information
may be used to generalize the two results of Sect. 4 established only for good slices
of J+, namely Proposition 4.13(111) and Lemma 4.15, to apply to all slices.

Proposition 7.1. Every generator of JQ cuts every slice of J>+.
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Proof. Let Σ be a slice of J+ and let Σg be a good slice of </ + . By Proposition
4.13(111) every generator of ./Q which cuts Σ must cut 1^. These generators thus
define a homeomorphism of Σ onto an open submanifold oΐΣg. Since J£ is compact
and Σg % S 2 is connected, this homeomorphism is onto Σg. Hence every generator
OΪJQ which cuts Σg must cut Σ. But Proposition 4.13(111) gives that every generator
of JQ cuts Σg. Hence every generator of f% cuts Σ. •

Proposition 7.2. //X is a slice ofj+ then J" ^Γ(Σ,M).

Proof. Since Σ is compact there exists a compact set J ί of M such that
£ c z / + (jf,M). Consider the good slice Ig:=i + (X'9M)nJ+ of ,/ + . Let p e ^ .
By Proposition 7.1 thejenerator of J+ through p cuts X at some point qeΣ. One
cannot have peJ + (q,M) for this would imply peI + (Jf,M) which is incompact-
ible with peΣgai + (jf,M). Hence peJ~(q,M) c J ' (X,M) and more generally
ΣgcJ-(Σ9Mr). By Lemma 4.15 one now has . / " c / - ( i ; g , M ) c : / - ( i ; , M ) . •

These two results enable one to establish the following result concerning the
causal relationship between a slice of J^+ and a Cauchy surface of (M,g).

Proposition 7.3. If Σ is a slice ofj + , and Ή is a Cauchy surface for (M,g), then
<€ -Γ(Σ,M) is compact.

Proof. Suppose <€ — I~(Σ,M) is non-compact. Then there exists a sequence of
points qt therein without cluster point in M. For each ί there exists a timelike
curve μf from «/" e / " ( Σ , M ) to # f e # — I~(Σ,M). Each μ, admits a segment vt

from some point ptei (Σ, M)nJ (<£, M) c ( M - t / ' ) n ( M - , / + ) = M to ̂ ε ^ .
Lemma 3.3(11) gives i'&M)-J+ ^J~(Σ,M)-J+, and Lemma 4.13(11) gives
that J~(Σ,M) is compact. Since J~(^,M)czM — J+ is closed in M, it follows
that the p{ admit a cluster point peJ~(Σ,M)nJ~(%>,M)cz M. Since one has
|v£| c= J~(%>,M) for all i, the V; therefore admit a future endless causal cluster curve
v in M from peM such that |v| c J~((£,M). But by Lemma 4.2, v would have to
cut / + (^,M). This gives a contradiction since ^ is acausal in (M,g). •

The following is the final result.

Theorem 7.4. Every non-empty locally acausal compact connected topologίcal 2-sub-
manifold of\f+ is acausal and contained in J>$.

Proof. Since (M,g) is globally hyperbolic, there exists a continuous surjection
τ: M -> (— 1,1) which is monotonically strictly increasing along every timelike curve
of (M,g) and whose level sets are Cauchy surfaces of (M,g). For any pe<f+ and
any δ > 0, every neighbourhood Jίp of p in M contains a neighbourhood Jί'v of
p in M such that τ | yΓ^ n M > 1 — <5.

Lemma 7.5. No non-empty locally acausal compact connected topological 2-sub-
manifold of J>+ bounds a compact topological 3-submanifold-with-boundary of J> +.

Proof. Suppose, to the contrary, that there exists a compact topological 3-sub-
manifold-with-boundary f of / + such that d$£ is non-empty connected and
locally acausal. Let the inclusion of ^Γ:= 9C x {0} into M be extended to a
topological embedding of ί x [0,1] into M such that # " x ( 0 , l ] c M , with
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dθC x [0,1] locally acausal. Let ίoe(— 1,1) be the supremum of τ on the compact
s e t ^ x {1}CZM.

Suppose d3C is a future boundary of 9£. Then dθC x [0,1] is contained in the future
boundary of 9C x [0,1]. Let y be a generator of J+ which cuts dθC. Then y is totally
past imprisoned by ΘC and there exists reL~(y,M) c <$n(J+ —J>Q) Since 9C is
compact and , / + is non-compact, the open set M — (9Cx [0,1]) of M must have
non-empty intersection with , / + and so must contain a point peM such that
τ ( p ) > ί o Since one has peM aI~(r,M)9 there exists a timelike curve λ of (M,g)
from pφ& x [0,1] to reSC x [0,1]. Since dθC x [0,1] is contained in the future
boundary of 3C x [0,1],λ must cut d(X x [0, l ] ) n M = (d3C x (0, l ])u(«" x {1}) at
some point g e ^ x { l } c M . One then has τ(p) > t0 ^ τ(g) which is impossible since
τ°/l is monotonically strictly increasing.

Now suppose d9C is a past boundary of 3C. Then 5<F x [0,1] is contained in
the past boundary of 9£ x [0,1]. Let / be a generator of </+ which cuts ddC. Then
the compact set 9C must totally future imprison y' and so have non-empty
intersection with J>+ —J§. Thus J>+ —J>o is non-empty and moreover, being
closed with no compact component, cannot be contained by 3F. Hence there exists
r'e(J+ - JQ) - 3C. Choose any p'^9C x (0,1] c M such that τ(p') > ί0. Since one
has M c I~(r',M), there exists a timelike curve λ' of (M,g) from p'eSC x [0,1] to
r'φX x [0,1]. Since dθC x [0,1] is contained in the past boundary of 3C x [0,1], λ'
must cut 3 ( ί x [ 0 , l ] ) n M = ( a « 1 x ( 0 J l ] ) u ( ί x { l } ) at some point qfe3ΐx{l} cM.
Since τ °λ' is monotonically strictly increasing there follows τ(p') < τ(q') ̂  t0, which
gives a contradiction. •

Let Σ be a non-empty locally acausal compact connected topological 2-sub-
manifold of J + . Let JΓ c M be a compact set such that 21 c 7+(jf,M).Then the
good slice Σo := / + (JΓ, M) n J + aj+ oϊ J+ does not intersect Σ.

For the purposes of the next two lemmas, let J+ be identified with C 3 — {pi.},
where C 3 is a contractible open 3-manifold.

Lemma 7.6. C 3 admits compact topological 3-submanifolds-with-boundary ty and
<&0 which are bounded by Σ and Σo respectively, and such that pt.eΦCΛ^§.

Proof. Let the inclusion of Σ:=Σ x {0} into C 3 be extended to a topological
embedding of Σih:= Σ x [ — 1,1] into C3. Then C 3 — Xth is a 3-submanifold-with-
boundary of C3. Since C 3 is connected, each component of C 3 — Σih is bounded
by a non-empty union of components of dΣih. Moreover, an elementary Mayer-
Vietoris argument gives that C 3 — Σth has precisely two components. Each of
the two components of dΣth = (Σ x{— l } ) u ( I x {1}) must therefore bound a
component of C 3 — Σth. The homology sequence for the pair (C3,Σih) gives
H3(C3, Σth) ^ H2(Σth) ^ H2(Σ) ^ Z, so C 3 — X"th has a unique compact component
^ # . Without loss of generality, assume d%/# = Σ x {1}. Then <gf:= ̂ # u ( i : x [0,1])
is a compact topological 3-submanifold-with-boundary of C 3 such that d<W = X x
{0} = X. The use of Lemma 7.5 gives pt.sΉ/, and one clearly has pί.^X c / + =
C 3 - {pi.}. Hence p ί . e ^ -Σ=<Φ. The proof for ΣQ is similar. •

Lemma 7.7. There exists a compact topological 3-submanifold-with-boundary 2£ of
C 3 - {pt.} such that 3 f = I u I 0 .
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Proof. Both ®l and ^ 0 are non-empty compact topological 3-submanifolds-with-
boundary of the connected non-compact 3-manifold C3. Since d°y = Σ and
d<&Q = ΣQ do not intersect, one has that ^ u ^ 0 and ^ n ^ 0 , the latter being
non-empty by Lemma 7.6, are compact topological 3-submanifolds-with-boundary
of C3 such that each is bounded by a non-empty union of components of Σ u l o .
Again since d<& = X and d^0 = Xo do not intersect, one has ̂ n ^ 0 c (^u^ 0 )° ,
and hence that δ ( ^ u ^ 0 ) and 3 ( ^ n ^ 0 ) are disjoint components of I u l o . Thus
J f : = ^ u ^ 0 — ( ^ n ^ o ) 0 is a compact topological 3-submanifold-with-boundary
of C3 such that 3Jr = δ ( ^ u ^ o ) ^ 5 ( ^ n ^ o ) = 2;u2lo BY Lemma 7.6 one has
pt.eΦnΦ0 = (^n^ 0 ) ° c C 3 - ί and hence Ĵ 7 c= C3 - {pi.}. •

Lemma 7.8. ̂  c , / + .

Proo/. Suppose, to the contrary, that there exists re<f n ( / + - / 0

+ ) . Let the
inclusion of ^\=^ x {0} into M be extended to a topological embedding of
^ x [0,1] into M such that 2£ x (0,1] c M, with δ ^ x [0,1] =(Σ x [0, l ])u
(Σo x [0,1]) locally acausal, and moreover such that Σo x [0,1] c J + (Jf, M). Let
toe(— 1,1) be the supremum of τ:M->(— 1,1) on the compact set 2£ x {1} of M.

Suppose Σo was a future boundary component of 2£, Then ^ ~ ΣQ would
intersect J+ - J + pf,M) but not Σ0 = i + (JΓ9M)n<f+ and so, being connected,
would be a subset of J+ - /+ (Jf, M). One would thus have reΣ <=.&-Σ%aM-
I+ (JΓ,M). However this is impossible since the inclusions J ί c M c / " ( r , M ) imply
reI + (Jf,M). Thus 2Ό, being connected, is a past boundary component of 2£.
Hence Σo x [0,1] is contained in the past boundary of ̂  x [0,1].

Suppose Σ is a future boundary component of 2£. Then Σ1 x [0,1] is contained
in the future boundary of % x [0,1]. Lemma 4.14 gives ./ + —J% CZI + (JΓ,M).

Moreover J>+ —JQ is closed non-empty and non-compact, and so cannot be
contained in the compact set ̂  x [0,1]. It follows that the open set I+(X\M) —
(β x [0,1]) of M has non-empty intersection with .J+ —J^o and so contains a
point peM such that τ(p)>t0. Since one has Mc/"(r,M), there exists a
timelike curve λ of (M,g) from peI + (Jf, M) ~ {β x [0,1]) to re<^ x [0,1], Clearly
μ |c/ + ( j f ,M), so λ cannot cut £ 0 x [0,1] C / + (JΓ,M). Since I x [ 0 , l ] is
contained in the future boundary of ̂  x [0,1], λ must therefore cut d[β x [0,1]) n
M = (Σ x(0,l])u(2Ό x(0, l ] )u(^ x {1}) at some point qe£? x {1} c M. But then
one has τ(p) > £0 §: τ(g) which is impossible since τ°λ is monotonically strictly
increasing.

Now suppose Σ is a past boundary component of «2Γ. Then 21 x [0,1] is
contained in the past boundary of ^ x [0,1]. Since the compact set 2£ cannot
contain all of the closed non-empty non-compact set J>+ — J>Q, there exists
r'e(J+

 -JQ)-&. Choose any p'eϊZ x (0,1] c M such that τ(p;) > ίo Since one
has M c I~(r\M) there exists a timelike curve A' of (M,g) from p ' e ^ x [0,1] to
r r ^^ x [0,1]. Since Σ x [0,1] and Σo x [0,1] are both contained in the past
boundary of & x [0, l],λ' must cut d(& x[0,l])nM = ( I x (0, l])u(2;o x (0, l])u
(̂ Γ x {1}) at some point ^ G ^ X { 1 } C M . Since τ°λ' is monotonically strictly
increasing there follows τ(p') < τ(q') ̂  t0, which gives a contradiction. •

Lemma 7.9. X is acausal.

Proof. If X and Σo were both future boundary components of JΓ c ,/Q , any
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generator y of J+ which cut d2£ = ΣuΣ0 would be totally future imprisoned by
Jf, with L+ (y, M) a non-empty subset of ^ n (J+ — J$ ). This contradicts Lemma
7.8. Similarly Σ and Σo cannot both be past boundary components of Jf.

Suppose Σ c J>Q is not acausal. Then there exists a non-degenerate generating
segment K OΪJ>Q from some qeΣ to some seΣ. Suppose Σ and Σo are respectively
future and past boundary components of 3£. Then K must leave if at qsΣ and,
in order to reach seΣ, must enter $£ through Σo. Hence K admits a segment v
from qeΣ to some reΣ0. By Proposition 4.13(11), the past endless generating
segment μ~ of JQ to q is such that L~(μ~,M) = 0 , and so cannot be totally past
imprisoned by S£. Thus μ~, being unable to enter «3Γ through 21, must admit a
segment μ from some peΣ0 to g. The concatenation of μ and v is a non-degenerate
causal curve from peΣ0 to reΣ0. This gives a contradiction since Σo is a good
slice of J*+. A similar contradiction is obtained if Σ and Σo are respectively past
and future boundary components of «2Γ. •

The result now follows by Lemmas 7.8 and 7.9. •

A slice of J + , according to the provisional Definition 4.11, is a compact
topological 2-submanifold Σ of <f+ which is contained in JQ and acausal in (M, g).
It is now appropriate that this definition be reconsidered. Observe that, by
Theorem 7.4, the hypothesis that Σ be contained in J§ is redundant. And
by Theorem 5.1 (IV), the possibility for disconnected slices cannot be realised.
Moreover Theorem 7.4 shows that, if a connectivity hypothesis is explicitly
imposed, then the hypothesis of acausality may be weakened to one of local
acausality. One is thus led to redefine slices of«/+ in the following manner.

Definition 7JO. A non-empty locally acausal compact connected topological
2-submanifold of J+ is a slice of J + . A slice of J+ of the form J + (Jf,M)nJf +

for some compact set JΓ c= M is a good slice of J' + .
Theorem 5.1 (IV) and Theorem 7.4 together establish the equivalence of

Definitions 4.11 and 7.10. All previous results concerning slices of */+ are therefore
unaffected. Theorem 7.4 may be re-expressed to the effect that a slice of ^ + , in
the sense of Definition 7.10, is necessarily acausal and contained in J>£.

8. Concluding Remarks

The fundamental causal and topological properties of simple space-times have
been identified. Certain problems have, however, been left open. For example:

(1) Given any homotopy 3-sphere S 3 , and any pair of contractible open
3-manifolds C+, C3. which embed in § 3 , does there exist a simple space-time with
a Cauchy surface homeomorphic to S 3 — {pt.}, J*+ homeomorphic to C+ — {pt.}
and J~ homeomorphic to C3. — {pt.}Ί

(2) Does strong causality violation at J + imply that J + has a topology different
from S 2 x IR?

(3) If (Mβ,gα) and (Mb,gb) are two asymptotic null completions of a simple
space-time (M, g), can J^ a n d ^t be non-homeomorphic?

Of course the foremost challenge is to construct a simple space-time admitting
an asymptotic null completion with J>+ having a topology different from § 2 x U,
The subtleties of some Whitehead manifold different from U3 (or a counterexample
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to the Poincare conjecture) must be reflected in the topological structure of any
such completion. Moreover the light cones must somehow be oriented so that the
entire space-time manifold lies to the past of every point of the strong causality
violating region of J>+. The necessity for such rich topological and causal
behaviour will inevitably impede any attempt at construction. A more reasonable
initial goal might therefore be to establish existence.
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