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Abstract. For a large class of quantum models of mean-field type the
thermodynamic limit of the free energy density is proved to be given by the
Gibbs variational principle. The latter is shown to be equivalent to a non-
commutative version of Varadhan's asymptotic formula.

1. Introduction

Varadhan developed a general theory of the asymptotics of integrals for measures
satisfying a large deviation principle [19, 9]. An application of this theory
generalizes results of Cramer on the rate of convergence in the weak law of large
numbers [8]. Let ξu ξ2,> > be a sequence of independent, identically distributed,
random variables, and let μn be the distribution of the average

xn = (ξ1 + ξ2+... + ξn)/n

Varadhan's result concerns the asymptotic behaviour of the measures vn given by

dvn(μ) = exp(nf{u))dμn(u).

for a continuous function /, and says that

lim n-1logvπ(l?) = sup{/(u)-/(M):w6R}, (1)

where the rate-function / is determined by the distribution of ξx [20, Sect. 3].
Here we consider the non-commutative analogue of (1); the random variables

become self-adjoint operators in an operator algebra stf. To fix the ideas, let M be
the algebra of all complex mxm matrices and

sd= (x) M\
ieN
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where M ι is a copy of M. Let x = x * e M and xt be a copy of x in M\ We denote
(xι + x2 +... +xn)/n by xn. Let ρ be a faithful state of M, and ωρ the associated
infinite product-state of $ί. The sequence xu x2,... and the state ωρ play the role of
independent random variables. We concentrate on the asymptotics of
Trexp(logDn + rc/(xn)), and compute the limit

lim n 1 logTrexp(logDn + n/(icn)), (2)
«->• 00

n

where Dn is the density of ωρ restricted to (x) Mι\ we show that the limit is equal to
i= 1

where ίf is the state space of M, and S is the relative entropy function: S(ρ,φ)
= Ύϊ(DφlogDφ) — Ύr(Dφ\ogDρ), where the D's are the respective densities.
Moreover, we obtain that

sup {f(φ(x)) - S(ρ, φ):φe^} = sup {f{u)-IρJu) :ueR}> (3)

where Iρ x is the Legendre transform of the function ίι->logTrexp(logDρ + Oc).
These results constitute a non-commutative version of formula (1). Equation

(3) relates the rate-function / to the relative entropy. Remark that one recovers the
probabilistic situation of [_xu D{\ = 0. While (1) is derived using measure-theoretic
considerations from the large deviation principle:

lim sup n Mogμ M [F]^ —inϊ{I(u):ueF}, F closed;
n-> oo

liminf n~1 logμtt[G] ^ — inf{/(u) :ueG}, G open

our proof is different and partially based on a generalization of the de Finetti
theorem proved by Stormer [16], which states that any permutation invariant
state on an infinite tensor product has a unique decomposition into product states.

From the point of view of statistical mechanics, we establish the existence of the
thermodynamic limit of the free-energy density for a large class of quantum mean-
field models, and prove that the variational principle is satisfied. Let

Dρ = exp(-j8Λ)/Trexp(-j8ft),

where β > 0, and h is a self-adjoint element of M, i. e. the Hamiltonian for the single
system. The Hamiltonian for n non-interacting systems is then the element H® of

n

(x) M ι given by

H°n= Σ K
i= 1

where ht is a copy of h in M1'. The mean free energy F®(β) is then simply the free
energy of the single system:
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Suppose the interaction between the systems is of the mean-field type given by
nf(Xn)> where x = x * e M ; the main example in the physics literature is the
quadratic case:

n(xn)
2 = { j

i.e. the mean-field pair interaction. The Hamiltonian is then

and for the corresponding mean-free energy Fn(β), one computes that

β{F°n(β)- Fn(β)} = rCι logTr expίlogD,, - nβf(x)).

The existence of the limit of {Fn} has been proved before in many particular
models (e.g. [7]). Here we prove the existence of the limit for an arbitrary
continuous function /, and we also allow the single system to be infinite. We prove
that the limit is given by the Gibbs variational principle. One should distinguish
the existence problem of the thermodynamic limit of the free energy density from
the study of the equilibrium conditions for mean fields. In [10] it is shown that the
equilibrium condition is equivalent to the famous gap-equation for states.

Finally, we introduce some technical preliminaries, in this paper we con-
sider only unital C*-algebras which are inductive limits of finite
dimensional C*-algebras with a common unit (this class is slightly larger than the
class of UHF algebras). The basic ingredient is such a C*-algebra 3$, a fixed self-
adjoint element x therein, and a fixed separating state ρ, that is, a state such that the
cyclic vector in the GNS construction is separating for the generated
von Neumann algebra. Let sdn be the n-fold minimal C*-tensor-product of M with
itself, and stf the inductive limit C*-algebra. If φ is a state on J* then ωφ denotes the
corresponding infinite product-state on A. We remark that if φ is separating then
also ωφ is [17, Corollary IV.5.12].

Let M be the von Neumann algebra generated by the GNS representation π of
stf associated with ωρ, and let Ω be the corresponding cyclic and separating vector.
If h = h*eto/, then the perturbed vector Ωπ(h) is defined by

where A is the modular operator of (M, Ω) (see [1]). We define the perturbed
functional ωh

ρ by

ωh

ρ{a) = (π(a)Ωπ(h\ Ωπ(h)} {a e A)

(cf. [4, (5.5)]).
Every finite permutation p of the positive integers N gives rise to an

automorphism yp of sd\ a state of srf is called symmetric if it is invariant under all
7p's. A celebrated theorem of Stormer [16] says that the symmetric states form a
simplex lisrf) with a closed extreme bpundary consisting of the product-states. We
shall use this result to reduce the variational problem on the state space of sd to
one on the state space of 3/H.
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The proofs are also based on several properties of the relative entropy and the
mean relative entropy. For the readers' convenience we collect them in an
appendix.

II. Results

Let us recall that xn = (x1 -f x2 + ... + xπ)/w, where x is a fixed self-adjoint element of
0g. We have:

Theorem 1. Let ρ be a separating state of the algebra &, and f a continuous real-
valued function on the interval [— ||x||, | |x| |]. Then

limn'1 log(ωe)
nf^\ί) = sup [£/ω) - SM(ωρ, ω): ω e /(j/)},

n-*- oo

where Ef(ω)= lim ω(f(xn)).
n—> oo

The proof is broken up into several lemmas, the first two of which concern the
stence of Ef. We write C for the real-valu

[— ||x||, ||x||] equipped with the supremum norm.
existence of Ef. We write C for the real-valued continuous functions on

Lemma 2. For each integer k ̂  1 there exists a constant ck such that for every integer
n^k, and every ωel(s/),

Proof Using the multinomial expansion and the symmetry,

where the sum is over the non-negative integers m l5 m2, ...,mn whose sum is fe, and
such that at least one of them is ^ 2, and we have evaluated and summed all
summands where every mj is either 0 or 1. Moreover,

the summation being as before. The claim follows by combining these facts with an
estimate by norms. •

Lemma 3. // ωel{<tf) and f e C, then Ef(ω)= lim ω(f(xn)) exists, and is continuous
inf. "̂ °°

Proof By Lemma 2, Ef exists for polynomial /, and \Ef(ω)\ ^ || /1 | . The rest follows
from the Weierstrass approximation theorem. •

Lemma 4. Put Φn = n~{ log(ωρ)"/(*π)(l), then for every ωel(sf), liminf Φn^Ef{ω)

-SM(ωρ,ω).

Proof By (A4), Φn^{ω\srfn){f{xn))-n~ιS(ωQ\stfn,ω\stfn). The claim follows from
the definition of SM and Lemma 3. •

We have now established that liminϊΦn^sup{Ef(ω)~SM(ωρ,ω):ωeI(stf)}.
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Write ωn for the state (ωρ\^n)
nf{3tn)/(ωρ WJf{5ίn\\) oϊs/n and remark that ωn is

symmetric. Let ώ be the state of sd defined by

all fc ^ 1 ,
and put

where α is the right-shift on stf. Notice that ώna
n = ώn, so that ώna = ώn.

L e m m a 5. For integers n and k with n^k^ί, and arbitrary elements a1,a2,...,akiin

Proof.

ώπ(α1φ2)...α*
n-k

yj + k - ί (

yj + k - l (

j=n~k+l

in the first sum all (n — k + 1) summands are equal to ώn(axa(a2)...ak 1(ak))
= ωn(aioc(a2)...oίk~1(ak)) since) + k^n; the modulus of the second sum is estimated

Π •
Remark that this implies that {ώn}, and {ωn} have the same limit points, which

are symmetric.
The following is the main estimate for the energy part.

Lemma 6. IfN0 is an infinite subset of the positive integers, ωisa w*-limit point of

{ώn: n E iV0}, and feC, then given ε > 0, \Ef(ω) — con(f(xn))\ ^ ε, for infinitely many in

No-

Proof ω is symmetric so that Ef(ω) is given by Lemma 3. If / is a polynomial,

f(u)= ΣQCku
k

9

then using Lemma 5 choose n0 sufficiently large so that

i

Σ ck{ώn(x 1x2...xk)~ώn{xιx2...xk)) ^ ε , for all n^n0,

with the understanding that xo = ^ Since Ef(ω)= Σ ckω(x1x2...xk), we can

choose an infinite subset Nι of No such that

ck(ω{x1x2...xk)-ώn{x1x2...xk)) for all

Finally, notice that for n sufficiently large, ωn(x1x2.. .xk) = ώn(xίx2.. ,xk\ so that the
claim follows for polynomial / For general feC, we obtain the result by the
continuity of the map fv-±Ef{ω) established in Lemma 3. •
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We now turn to the entropy estimates. In the following two lemmas n is an
arbitrary positive integer.

Lemma 7. For every positive integer j ,

lim fc-1S(ωc|^,ώπαVfc) = « 1

Proof, Using the α"-invariance of ώn, we may assume that 0 gj < n. For k ̂  n —j,
put k = n—j + mn + k0, where 0^fco<n, and m is an integer. Then,

ώna
j = (ωn I An-j

so that

S{ωρ \jtfk9 ώn0Lj\jtfk) = mS(ωp \ dn, ωn)

Since the last two summands are bounded by S(ωβ\jtfni ωn) due to monotonicity of
the relative entropy, the claim follows by dividing by k and taking the limit
m—•oo. •

Lemma 8. SM(ωρ5ώn) = n'1S(ωρ\rfn,ωΛ).

Proof. We have SM(ωρ,ώn) = n~ιSn

M(ωρ,ώn), by scaling. Since each ώπ αJ

(/= 0,1,..., n) is a α"-invariant, the affinity of the mean relative entropy (A5) implies

Thus, by the definition of S"M,

SM(ωρ,ώn) = n~2 Σ l i m k~xt
j=0 /c->oo

The claim follows from Lemma 7. Π

n- 1

We can now give the proof of Theorem 1. By the remark after Lemma 4 it
suffices to show that given ε>0,

c= lim sup Φn<^Ef{φ)-SM(ωQ,φ) + ε,

for some φel(s/). There is an infinite subset Λ̂ o of the integers such that

ω B (/(x Λ ) )-«" 1 SKK,ωJ = Φ B ^ c - ε , for all neN 0 ,

where we have used (A4); let ω be a w*-limit point of {ώn: neN0}; by Lemma 6
there is an infinite subset N1 of No such that

^ ) ^ ωn{f(xn)) - ε, for all n e N x .

By the lower semicontinuity (A5) of SM(ωρ, ω)

SM{ωρ, ω) ̂  SM(ωρ, ώn i) + ε
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for some n1 eN n . Due to Lemma 8, we then have

Ef(ω) - SM{ωρ, ω) ̂  ωWl(/(xWl)) - SM{ωρ, ώj - 2ε

This completes the proof of Theorem 1.
The argument of the proof of Theorem 1 can be repeated to prove that every

w*-limit point of {ωn

ρ

f{Xn)/ωn/{Xn\\):neN} is a maximizer of Ef( )-SM{ωe, ).
Let the real-valued function G on the reals be defined by

) = logρ ίΛ(l).

Obviously,

G'(t) = ρtx(x)/ρtx(l).

and G"{t) > 0 if x is not a multiple of the identity (see Lemma 1 of [2] for t = 0, and
note that due to the chain rule ρ ( ί + s ) x = {(ρtx)sx, the general case is similar). Since G
is non-decreasing, we have

z+=sup{G'(ί): ίeR} = lim G'(ή<,\\x\\,
t~> oo

z-=inϊ{Gf(t):teR} = lim G'( ί )^- |

with z _ < z + if x is not a multiple of the identity. We assume in what follows that
this is the case. The proof of the following lemma is straightforward; we leave it to
the reader.

Lemma 9. Let I(u) = sup {tu — G(t)}, ueR.be the Legendre transform of G. J is non-
negative with l(ρ(x)) = 0, and l(u) = + oo if u is outside the interval(z_,z + ). Moreover,
l(u) is finite if G'(t) = u has a solution, and then l(u) = tu — G(t).

Lemma 10. For each φ e ^ S(ρ,φ)^I(φ{x)). If S(ρ,φ) = I(φ(x))<co and I{z+)
= I(z_)=oo, then there is a real t such that φ = Qtx/Qtx{\) and conversely.

Proof We use (A4). S(ρ, φ)^sup{φ(h)-\ogρh(l)\h* = h(Ξ@}^sup {tφ(x)
- G(ί): ίeR} = I(φ(x)). Iϊφ = ρtx/ρtx(l)>thenS(Q> ψ) = tφ{x)~ G(ί) SI(φ(x)). Suppose
$(Q, ψ) = I{ψ{x)) < oo if x is a multiple of the identity then I(φ(x)) = 0, which implies
ρ-—φ\ otherwise, by strict convexity of G, I(φ(x)) = toφ(x) — G(t0), where t0 is the
unique solution of φ(x) = G'{t), and φ = ρtx/ρtx(l). Π

Lemma 11. One has

}

If J(z+) = /(z_)= oo then the sets of maximizers are in one-to-one correspondence
as follows:

(i) Given a miximizing u, t is the unique solution of G'{i) — u, and φ = ρtx/ρtx(l);
(ii) Given a maximizing ί, u = G'(t\ and φ = ρtx/ρtx(l);

(iii) Given a maximizing φ,u = φ(x\ and t is the unique solution of G'{t) = φ(x).
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Proof The case where x is a multiple of the identitiy trivializes. Suppose this is not
the case; by Lemma 10,

sup {f(φ(x)) - S(ρ, φ): φ e ^} S sup{f(φ(χ)) -

Ssup{f(u)-I(u):ue[-\\xl\\x\tt} = s.

Let ue(z_,z+). By the strict convexity of G, there exists a unique real tu such that

u = G>(tu).

Put φu = ρtuX/ρtuX(l); one has φu{x) = u, and by the proof of Lemma 10, S(ρ, φu) = I(u)
= tuG'(tu)-G(tu). Now,

x)) - S(ρ, φ): φ 6 5̂ } ^ sup {/(φtt(x)) - S(ρ, φM): z _

= sup{/(u)-/(w):z_<tt<z + },

and, by the upper semicontinuity of f(u) — /(M) the last supremum is equal to s. But,
also f(φu(x))-S(ρ,φu) = f(GXtu))-tuG'(tu) + G(tu), and as M varies in (z_,z+), ί
varies in i?. The supremum over ue\_— \\x\\, \\x\\~\ is attained (in [z_,z+]) by
continuity. The last claim follows using Lemma 10. •

The main result establishes the bridge between the Gibbs variational principle
and an asymptotic formula of the type given by Varadhan (cf. [9, pp. 50-51]).

Theorem 12. Let ρbe a separating state of the algebra g§, and f a continuous real-
valued function on the interval [— ||x||, | |x| |]. Then

lim n~1log(ωe)
nf{3bn\ί)s\xp{f(φ(x)) — S{ρ9φ):φ a state on J>}

Moreover, if ω is a w*-limit point of the sequence {ωj, then there is a regular
probability measure μω on the state space Sf of Sd such that

and μω is supported by the states φe^ maximizing the first supremum.

Proof For φ e ^ , and a polynomial /, we see from Lemma 2 that

Ef(ωφ) = f(φ(x));

this formula extends by continuity (Lemma 3) to every feC. Since SM(ωρ, ωφ)
= S(ρ, φ\ we have

sup {Ef(ω) — SM{ωρ, ω):ωe I (A)} ̂  sup {/(φ(x)) - S(ρ9 φ): φ e <?}.

Given α)e/(i), there exists a unique regular probability measure μω on Sf [16],
such that

ω = \ωφdμω{φ).

If / is a polynomial, then by Lemma 2,

Ef{ω)=\f{φ{x))dμω{ψ),



Asymptotics of Varadhan-Type 279

and this formula extends by continuity to C. Moreover, the affinity and lower
semicontinuity of the mean relative entropy (A5) imply [13, Lemma 9.7, p. 68]

SM(ωρ, ω) = J S M (ω ρ , ωφ)dμω(φ) = j S(ρ, φ)dμω(φ).

Let ωe/(j/) maximize Ef( ) — SM(ωρ). Then

Ef(ω) - SM(ωρ, ω) = J {f(φ(x)) - S(ρ, φ)}dμω(φ)

<> sup {/(φ(x)) - S(ρ, φ): φ e supp(μω)}.

Together with Theorem 1 and Lemma 11 this gives the first claim.
As noted after the proof of Theorem 1, any w*-limit point of {ωn} maximizes

the function Ef( -) — SM(ωρ, •) on the state space of $£\ therefore, for such a limit
point ω, φ maximizes /( (x)) — S(ρ, ) for μω - almost all φeϊf. Due to the upper
semicontinuity of φv->f(φ(x)) — S(ρ,φ) [see (A2)], the set of its maximizers is
closed. •

Although the primary aim of the present paper was to prove the existence of
lim Φm and establish the connection with Varadhan's asymptotic formula, we

obtain as a byproduct, the so-called gap-equation.

Assume that / is twice continuously differentiable, and let ω = J ωφdμω(φ) be
as in the previous theorem. Then, for μω-almost all φ e £f there exists t(φ) e R
such that

(i) φ = ρt^x/ρt^x(ί)9

(ii) f>(G'(t(φ)) = t(φl
(iii) f"{G!{t{φ)))<\IG"{t{φ)\

Set F(ί) = /(G/(ί))-ίG'(ί) + G(ί). One computes that

F"{t) = G"{t) U"{G\t))G"{t) ~ 1] + G"\t) UW(ή) - ί] .

Lemma 11 tells is that the maximizers of the functional φ\-+f(φ(x)) — S(ρ,φ), are
in one-to-one correspondence with the maximizers of t\-+F(t). Since
sgnF\t) = — sgn ί if |ί| is large enough, the maxima are attained at those t satisfying
F'(t) = 0 and F"(t)<0. So we arrive at (ii) and (iii) since G"(t)>0. Π

The condition (ii) is the well-known gap-equation of the corresponding mean
field model [10, Theorem II.4]. On the other hand, condition (iii) selects the
thermodynamically stable solutions of (ii) (cf. [14, Eq. (8)]).

Appendix on Entropies

Let M be a finite dimensional C*-algebra with a faithful tracial state τ. To every
positive functional φ on M there corresponds a density Dφ with respect to τ. If φ is
faithful, Dφ is invertible and the quantity

S(φ, ω) = τ(Dω logDJ - τ(Dω \ogDφ)
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is independent of τ. It is called the relative entropy oίφ and ω ([18], see also [11]).
The following properties of the relative entropy are known (see, e.g., [6,
pp. 269-305]):

I. Scaling: For /, μ>0, S{λφ, μω) = μS(φ9 ω) + ω(l)μlog(μ/λ);
II. Convexity: For 0 < λ < 1 ,

III. Superadditivity: if M = M 1 ® M 2 φ = φί®φ2, and ω restricted to M t is
denoted by ω{ (j=l,2), then

p, ω) ̂  S((/)1? ωx) + S(<p2, ω2)

IV. Monotonicity: If N £ M then

Araki [4] extended the definition of the relative entropy to normal states of an
arbitrary von Neumann algebra; the extension has all the above properties.

In the following four propositions si is a unital C*-algebra which is the
inductive limit of finite-dimensional C*-algebras and φ is a fixed separating state of
si. The GNS triplet associated with φ is written (πφ, Hφ, Φ). There exists an
increasing sequence {MJ of finite-dimensional subalgebras Mπ of si such that

U Mn is dense in si. If ω is an arbitrary state of si, we define
neN

S(φ,ω)= lim S{φ\Mn,ω\Mn).
n-> oo

The limit exists due to monotonicity and is non-negative or + oo.

Al. Proposition. If sup {S(φ \Mn, ω\ Mn) :neN} is finite, then there exists a vector
ΩeHφ such that ω{a) = (πφ(a)Ω,Ω) {aesi).

This proposition follows immediately from Sect. 5 of [4], where it is shown that
under the present conditions πφ quasi-contains πω .

Using the above proposition, and the martingale property [4, Theorem 3.9]
of the relative entropy of normal states of a von Neumann algebra, we obtain an
equivalent definition of S(φ,ω). Namely, S(φ,ω)= +oo, if ω does not admit a
normal extension to a state of the von Neumann algebra πφ(si)"\ if such an
extension (unique) ώ exists, then

S(φ, ω) = S(φ, ώ),

where φ is the vector state given by Φ, and the quantity on the right-hand side is the
relative entropy of the normal states φ and ώ (cf. [4, Sect. 5]).

A2. Proposition. S(φ, ω) is a w* lower semicontinuous function of ω.

Proof Due to the monotonicity, S(φ, ω) = sup S(φ \Mn, ω\ Mn), and
neN

S(φ \Mn, ω\ Mn) is continuous in ω because MΠ is finite-dimensional. •



Asymptotics of Varadhan-Type 281

A3. Proposition. // h = h*e<$f, then S{φ,φh) = φh(h).

Proof. This is immediate from the corresponding result for normal states of a
von Neumann algebra [4, Theorem 3.10]. Π

A4. Proposition. If h = h*ejtf, then logφΛ(l) ^ ω(h) — S{φ, ω) for every state ω on
stf, and equality holds only when ω = φh/φh(l).

Proof If S(φ, ω)= + oo there is nothing to prove. Otherwise, applying Al reduces
the problem to that for normal states of a von Neumann algebra. Let φ and ώ be
the normal state extensions of φ and ω to πψ(A)". Then logφh(l) = logφ πφ ( h\l), and
ω(h) — S(φ, ω) = ώ(πφ(h)) — S(φ, ώ). Since

(see [4]) the monotonicity S{φπφ{h\ ώ)^ώ(l)[logco(l)-logφ π ^ w (l)] gives the
inequality.

If ω = φhlφ\\\ then S(φ,ω)={φh/φh{l)}{h) + \ogφh{l\ by A3 and I.
Now suppose equality holds true; we proceed as in the proof of Proposition 1

of [12], even if we do not know a priori that ω is faithful. The equality implies

p[_Dφ^h\ Dώlp = {φ\\)lω{\)}up.

where p is the support-projection of ώ. Since \_DφKφ{h\Dω]t is a partial isometry
from p into p, we have, introducing the notation μ = φπφ(h)/φh(\),

This implies (see [5, Theorem B.I]) that ώ = pμp. Then μ(p) = l, and we arrive at

p = \9 and ώ = φπ*{h)/φh(l). D

We return to the case where j / ί 2 (respectively J / ) is the n-fold (respectively
infinite) tensor product of J*, and ρ is a separating state of 3ft. For a state ω of srf
invariant under αk (k ε N) we have

S(ωρ I stfk{n + m), ω I s4w + m)) ̂  S(ωρ \ dkn, ω \ rfkn) + S(ωρ \ sdkw ω \ stfkm)

as a consequence of superadditivity. Therefore [9, Lemma IX.2.5, p. 274]

lim n ~ι S{ωρ | dkn, ω \ s/J = sup n ~1 S{ωρ | sdkn, ω \ srfkn),
NneN

and we call this number the k-step mean relative entropy Sk

M(ωρ, ω) of ωρ and ω.
Instead of S^ we write SM and call it the mean relative entropy.

A5. Proposition. Sk

M(ωρ, ω) is a w* lower semicontinuous, affine function of the
(^-invariant state ω. Moreover, Sk

M(ωρ,ω) = kSM(ωρ,ω) if ω is a-invariant.

Proof The lower semicontinuity follows from A2. Affinity follows from the
convexity (II). The scaling property is obvious. •
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