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Abstract. We investigate Symanzik's improvement program in a four-
dimensional Euclidean scalar field theory with smooth momentum space
cutoff. We use Wilson's renormalization group transformation to define the
improved actions as a sequence of initial data for the effective action at the
fundamental cutoff. This leads to a sequence of solutions to the renormal-
ization group equation. We define the parameters of the improved actions
implicitly by conditions on the effective action at a renormalization scale. The
improved actions are close approximations to the continuum effective action.
We prove their existence to every order of improvement and to every order of
renormalized perturbation theory.

1. Introduction

Wilson's effective actions [Wil 74] have become an important tool in quantum
field theory. They have proved to be useful in establishing perturbative re-
normalizability without relying on detailed estimates on Feynman diagrams
[Pol 84]. Work in constructive field theory also demonstrates that the investi-
gation of effective actions provides a natural tool to understand the full theory, at
least in the case of asymptotically free models [GK84].

In this paper we address the question of the locality properties of effective
actions. Generally effective actions are infinite sums of nonlocal terms. The
question arises how to find good, i.e. local, approximations. This important
problem has received little attention except within Monte Carlo renormalization
group studies [Gup 85].

Symanzik's improved actions [Sym83] are candidates for local approxi-
mations to effective actions. They were found by Symanzik in a different context and
he did not investigate their relationship with the renormalization group. The
parameters of Symanzik's improved actions are determined by demanding a
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certain rate of convergence for a set of observables in a cutoff theory in the limit
when the cutoff is removed [Lύs84], [Par 85]. In principle the full interacting
theory has to be solved in order to determine the improvement parameters. Tn this
paper we show that Symanzik's improved actions lead to a sequence of close
approximations to the effective actions. We define the improvement parameters
implicitly by conditions on the effective action at a renormalization scale.

We consider a four-dimensional Euclidean real scalar field φ with an
ultraviolet cutoff A0 in momentum space. The action S(φ\A^) is parameterized by a
set of bare coupling constants g° with dimension da g: 0 in units of mass. The
renormalization group maps the fundamental theory exactly to an effective theory
with ultraviolet cutoff A e [AR,AQ~] and an effective action S(φ\A, Λ0, (g°)dα^0) The
idea is to integrate out degrees of freedom which correspond to momenta
A^\p\^ A0. Here AR denotes a renormalization scale which we choose of the order
of the physical mass scale. The complete map includes a transformation of
observables in the fundamental theory to effective observables which preserves
expectation values. This is the renormalization of composite operators. Observ-
ables which measure the behavior of the theory at large length scales transform
trivially. We restrict our attention to such observables, i.e., products of blockspins
for instance, and to the effective action itself.

Let the bare coupling constants (gα)dα>0 depend on A0,AR, and a set of
renormalized coupling constants (gf )db^0. The bare coupling constants are chosen
so that the renormalization conditions

on the running coupling constants with dimension db^.O at the renormalization
scale are satisfied in order to take the continuum limit. Polchinski [Pol 84] and
Gallavotti [Gal 85] have proved that the limit

lim S(φ\Λ, Λ0, (gQ

a(Λ0, ΛR, (gf )d^o))dβ> o) = S™\φ\Λ, ΛR, (g*)db> o) (1-2)

exists to every order in perturbation theory in the renormalized φ4-coupling
constant for A^AR. This is the theorem of perturbative renormalizability. (We
work within the framework of perturbation theory.) The rate of convergence is
estimated by

A \2~κ
ΛR

with a suitable norm || ||, where 0</c<^ 1 controls logarithmic corrections which
depend on the order of perturbation theory. Improved renormalization schemes
should improve upon this rate of convergence.

Following Symanzik we make an ansatz for the fundamental action S(φ\A0) of
a more general form. It includes nonrenormalizable coupling constants g° of
negative dimension — 2s g da < 0. Here s = 0, 1 , 2, ... is an improvement index, and
5 = 0 corresponds to standard renormalization theory. The additional bare
coupling constants are called improvement parameters. We let them depend on
A0,AR, and the renormalized coupling constants (gf)db>0 such that the improve-
ment conditions

gc(A^o5(gX^-2JL^R-gΓU^«,(ga^o)L=^ (1.4)
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on the running coupling constants with dimension — 2s ̂  dc < 0 at the renormal-
ization scale are satisfied in addition to the renormalization conditions (1.1). It is
essential that they be fixed to their continuum values. We will prove that the
effective action converges to its continuum limit within this scheme. The crucial
observation is that the rate of convergence is speeded up to

λ \ 2 ( s + l ) - κ

(1.5)

We prove this to every order of improvement and to every order of perturbation
theory. The improvement is universal in the sense that it affects all observables
which transform trivially under the renormalization group.

The improvement parameters g° with dimension — 2s^d f l<0 depend on A0,
ΛR, and (g£)db^0 To achieve improved convergence it suffices to take the leading
order terms in an asymptotic expansion in inverse powers of A0 as was proven in
[Wie87]. The expansion coefficients are Symanzik's improvement constants. To
compute them with the method which we describe here it is not necessary to have
control over the renormalization group flow down to the physical mass scale. The
renormalization scale can be chosen to be arbitrarily large. The improvement
conditions are then imposed at a large scale in units of the physical mass.

The technical framework of our paper is a perturbative analysis of the
renormalization group differential equation along the lines of Polchinski's proof of
the perturbative renormalizability of φ^-theory. Differing from Polchinski's work
we expand the effective action in terms of normal ordered products of the field φ
with respect to the free covariance. The expansion kernels satisfy a Riccati type
system of differential equations without linear terms. This system is used to iterate
estimates on the order of perturbation theory. Infinitesimal renormalization group
transformations were first considered by Wilson [Wil 74]. Brydges and Kennedy
have proved the existence of nonperturbative solutions to the renormalization
group equation for sufficiently small changes of the cutoff [Bry 86].

The paper is organized as follows. In Chap. 2 we establish the renormalization
group equation for the effective action and illustrate it graphically. Chapter 3 is
devoted to the description of the boundary value problems which we investigate
here. We perform the perturbative analysis in Chap. 4 under the assumption that
the improvement conditions have well behaved solutions. Theorem 4. 12 of the
s-improved convergence is proven in Chap. 4. In Chap. 5 we establish the
Corollary 5.10 of the uniqueness of the continuum limit. Finally we prove
Theorem 6.5 of the existence of solutions to the improvement conditions in
Chap. 6. A generalized perturbation theory, where we expand the effective
potential into a power series with respect to the bare nonrenormalizable coupling
constants, allows us to put sufficient bounds on the improvement parameters.

2. The Renormalization Group Differential Equation

Let φ denote a real scalar field in four Euclidean dimensions with a smooth
momentum space ultraviolet (UV)-cutoff Λ0. The free propagator v(A0) is defined
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by the Fourier transform of

.
By K we denote a smooth, positive, and monotone cutoff function which takes the
value K(t) = 1 for 0 ̂  t ̂  1 - c and K(t) = 0 for ί ̂  1 . Without loss of generality we
can assume that 0<\m\^A0. Let the action S(φ\A0) consist of a quadratic term
S0(φ|Λ0) = (l/2)(φ, v(AQ)~lφ) and a not necessarily local interaction term V(φ\A0),

S(φ\Λo) = SQ(φ\ΛQ)+V(φ\ΛQ). (2.2)

By dμv(Λo}(φ) we denote the Gaussian measure with co variance v(A0). The
generating function Z[J|Λ0] of the cutoff Green's functions is an expectation value
with respect to dμυ(Λo)(φ\

= J dμv(Λo}(φ)e ~ v^ + <J' *> . (2.3)

The field independent term in V(φ\A0) is fixed by the normalization condition

Let us investigate the theory by integrating out the degrees of freedom which
correspond to fluctuations with momenta A^\p\^A0m (2.3). For this purpose we
split the propagator v(A0) into a low momentum part v(A) and a high momentum
part Γ(A,AQ\

0 ) . (2.4)

This induces a splitting φ = ψ + ζ of the field φ into a block spin ip and a fluctuation
field ζ. The block spin needs not to be rescaled, as no anomalous dimension is
generated in perturbation theory. An effective action S(ψ\A) in the sense of Wilson
is defined by the quadratic term S0(\p\A) = \/2(ip, v(A)~1ιp) and an effective

Let us rename the block spin and write V(φ\Λ\ where φ has an UV-cutoff A. The
dependence of V(φ\A) on A is described by the renormalization group (RG)
functional differential equation [Wil74, Pol 84]. Let v(A) = dv(A}/dA and

Proposition 2.1. The effective potential V(φ\A) satisfies the RG equation

/ Let < >r(^f^o) denote the expectation value with respect to dμΓ(Λ Λo}(ζ). By
the change of co variance formula [GJ 87],

3 A ^ \ I(Λ,Λo)^ /1(Λ,Λ0)
OΛ 2

1 / / / ; > . δ
ι0), r( ί̂, vd0) -- v(ψ+C|y40;

(2.8)
Γ(/l,/lo)
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where f(A, A0) = dΓ(A, A0)/dA = — ύ(A). In the limit A ->Λ0 the Gaussian measure
dμr(Λ,Λ0)(ζ) becomes a Dirac measure. This establishes the RG equation at
A = A0. Π

In the momentum space representation the RG equation takes the form

dV(φ\Λ) (2π)4 (δV(φ\Λ) δV(φ\Λ) δ2V(φ\Λ) \
J d pv(p\Λ) - . (2.9)

dA ~ 2 J ~ ^^\δφ(-p] δφ(p) δφ(-p)δφ(p)J'

With our choice of an UV-cutoff the right-hand side of the RG equation is
invariant under the full Euclidean group, and φ-» — φ. We will assume these
symmetries to hold for V(φ\A) by imposing them on the initial data V(φ\A0)

Let us expand V(φ\A) in terms of normal ordered products of the field φ with
respect to the free propagator v(A). Normal ordered products are defined by

for polynomials P of φ,

V(φ\A0) = go(A)+ Σ — f Π τd£ (W Σ Pi

2n

xV2n(Pl,...,p2n\Λ):( Π φ(Pi) :*„)• (2-10)
\>=ι /

The dependence of the F-kernels V2n( \A) on A is described by a Riccati type
coupled system of differential equations. Let 0 denote the index set

of integer three tupels, and Fm t / ι t the combinatorial factor

Proposition 2.2. The V-kernels satisfy the RG equation

d

(m,l,k)e&
n = m — k

( 2l-k- 1 ik+ 1

Σ p π ( o+Σ
i = l 7 = 1

X ^ 2 ( m - / + l ) ( P π ( 2 / - f c ) 5 . . ίPπ(2») J-^l ί... ί-^+ll^) (2.H)

Here the sum Σ includes a summation over all permutations π e &2(m-k)
(m,l,k)e&

The Proof of Proposition 2.2 is deferred to the appendix.
Let us introduce the following graphical notation

•P2Π'

(2.12)

\i(n\ Λ } —V \H|A/ —

ύ ί π l Λ ) = —

•ί V2n Y

^

1
1
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Reversing arrow means multiplication with — 1. Integration over internal
momenta in connected diagrams is understood. A cut means differentiation with
respect to A. The RG equation for the ^kernels takes the form

Pτr(2ί-k)

dλ
Fm,£,k '

= m-k Pτr(l ) Pτ(2n)
(2.13)

The graphical representation illustrates how the RG builds up the effective
potential V(φ\Λ) from its initial value V(φ\AΌ) when the cutoff is lowered. The
right-hand side of (2.13) is an infinite sum of connected diagrams with a fixed
number of external legs. Each of these is well defined due to the UV- and IR-cutoff
in the free propagator.

3. The Renormalization and Improvement Conditions

Let us define a sequence of initial value problems for the effective potential V(φ\A)
over a scale interval [AR,A0]^A, where AR is the renormalίzed and A0 the bare
scale.

A sequence of bare potentials Vs(φ\A0)=V°s(φ\ which is labelled by the
improvement index se{0, 1, 2, ...}, is defined by

V°°(<P)= Σ gaΊd4xϋa(x,φ\Λ0). (3.1)

Here Ga(x, φ\A0) denotes a local composite field which is normal ordered with
respect to v(A0). The corresponding bare coupling constant g°s has the classical
dimension da in units of mass. We sum over a complete set of linearly independent
(9a(x9φ\AQ) with da^ — 2s which transform like scalars under the group O(4) in
Euclidean space. The initial value V0s(φ) is parameterized in terms of F-kernels
P2°fiS(Pι> •• >P2«) with dimension [4 — 2rc] in units of mass and 0(4) invariant Taylor
expansions of order 4 — 2n + 2s,

...,p2 π). (3.2)

Here {a} denotes the degree of the F-kernel whose Taylor coefficient is g°s. In other
words gαS = (DαF2°{y(0, ...,0), where Dα is a differential operator of order
4 — 2{a} — da. By Ta(p^...,p2r^ we denote the corresponding invariant homog-
eneous polynomials of degree 4 — 2τt — da.

Consider for instance s=l . The bare F-kernels V^ip^ ...,p2n) take the form

(3.3)
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The parameters (g?1,g?1,g31) = (gα1)dα^o are the mass counterterm, the wave
function renormalization, and the bare </>4-coupling constant The additional
parameters (g^1, . . . ,gv 1 ) = (gα 1 )d α =-2 are the improvement counterterms of first
order [Sym 84].

The integration of the RG equation (2.7) with the initial condition (3.1) yields a
trajectory

where the dependence on the initial data is shown explicitly. Its boundary value
Vs(φ\ΛR)= VRs(φ) is called renormalized effective potential. It has the form

VR*(φ)= Σ &*ld*xOa(x>φ\Λώ + RR (φ), (3.4)
da^2s

where RRs denotes a nonlocal remainder term.
Let us impose the following renormalization conditions on the boundary values

gaS = ga(ΛR) of the running coupling constants gs

a(Λ) = ga(Λ,Λ0,(g°s)db^_2s) with
dimension d f l>0, ( ( Os. Rga(^R,A0,(g^s)db^_2s) = δa^g^ (3.5)

where gf denotes the renormalized φ4-coupling constant.
In the unimproved case, which corresponds to s = 0, the renormalization

conditions determine implicitly the bare parameters (g°0)dα^o as functions of A0,
AR, and gf . The continuum limit of the effective action is defined by

V™\φ\A9AR9g«) = lim V(φ\A9Aθ9(g™(AQ9AR9g*))da>0) (3.6)
~

for Λ^ΛR, where the parameters (ga°)da^o are tuned according to the renormal-
ization conditions. The RG maps the continuum theory exactly to an effective
theory with UV-cutoff A. The price is the nonlocality of Vcont(φ\Λ,ΛR,g*)
— j/c°nt(φ|yi) There is much evidence that φ^-theory possesses a trivial continuum
limit beyond perturbation theory [Wil 74]. The implicit equations for (g° °)dα^0 do
not admit solutions for arbitrary Λ0, once gf is fixed. However in perturbation
theory the continuum limit exists to every order of gf [Pol 84, Gal 85]. The speed
of convergence can be estimated by ||F°( \AR)- Fcont( \AR)\\ =0(AR/A0)

2~K,
where 0 < K <ζ 1 takes into account logarithmic corrections which depend on the
order of perturbation theory. We will later define the norm || || precisely.

For a given index s^ 1, let us impose the following improvement conditions on
the coupling constants g^s with — 2s^da<0:

\—σRconί
—

Here gf cont = gc

a

ont(AR} are the boundary values of the continuum running coupling
constants gc

a

oni(A) = gc

a

on\A,AR,gξ). The renormalization and improvement con-
ditions together determine the parameters (gj?5)^ _ 2 s

 a$ functions of A0, AR, and
gf . We will prove to every order of perturbation theory in gf that VRs(φ) converges
to its unique limit VRcont(φ), when the cutoff A0 is removed according to this
scheme. Here the crucial observation is

which defines Symanzik's improvement concept in the asymptotic regime
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4. Renormalization Group ^-Improved Perturbation Theory

Let the bare parameters (g®s)db ^ _ 2s be tuned as functions oίA0, ΛR, and gf such that
the renormalization and improvement conditions are satisfied. To investigate the
F-kernels in s-improved perturbation theory we expand

V2n(pl, ..,p2JΛ,Λ,(gfl°
s(Λ,Λ,gf)k>-2S)= Σ V%\Pl, ...,p2n\Λ,Λ0,ΛR)(glr.

α = 0

(4.1)

The expansion coefficients F|<α)(pl5 ...,p2n\A,A0,AR} = V2^\pί9 ...,p2n\A) describe
multiparticle interactions whose strength can be measured with the norm

\ = sup \Vζ<S»{pl9...,p2n\Λ)\ , (4.2)

which exists as V2

(*\p^ . . ., p2l\Λ) has the compact support |pf| ̂  A for 1 g ί ̂  2n. Let
P^ΞP^pnΛo/Λffl] denote a polynomial in ln(Λ0//ίκ) of degree n with positive
coefficients. We define P(ή) = 0 for n < 0.

The initial conditions for the perturbative coupling constants with negative
dimension are obtained from the expansion

00

σ°s( A A σR\— V σ0 s(αV/f A \(oR\a

δα VLQ>ΛR>%'3)— L ba \Λ0>ΛR)\&3) '
α = 0

Let us state the following assumptions upon the initial values g^s(a\A0,AR) with
-2s^da<0.

(1) To zeroth order and to all orders α^l for {0}>α+l,

gα°s(α)^o^^)-0. (4.3)

(2) To all orders α^l for {β}^α + l,

|g.0s(α)(yl0, viΛ)| ̂  Λd

0«P(2α - {α}) . (4.4)

We will later prove these assumptions to be satisfied.
The boundary conditions for the perturbative coupling constants gs

a

(a\A)
= gs

a

(*\A,A0,AR) with dαg:0 are the renormalization conditions

g?β)(Λ) = <W..ι (4.5)

The expansion coefficients F2

s

π(p1; ...9p2n\A) satisfy the RG equation with the
above boundary conditions on the running coupling constants gs

a

(a\A) with
dimension da^— 2s. All F-kernels vanish to zeroth order and only finitely many
K-kernels do not vanish to order α, namely those with degrees 1 rgnrgα-h 1. This
implies that (dVffi/dA)(pί9 ...,p2n\A) is to order α a finite sum of terms which are
determined by F-kernels of lower orders 1 ̂  jS^α — 1. We prove estimates on the
nonvanishing F-kernels by induction on the order α, where the boundary
conditions are taken care of by Taylor expansion. As a result ||F2^

α)( |Λ)|| is
bounded by A4~2nP(2a — n). Here P ( - ) denotes a polynomial of the above form
and A4~2n is a dimension factor. The proofs are written out explicitly, as these will
serve for reference later.

The effective potential V(ψ\A) as defined in (2.5) is a generating function, where
the block spin plays the role of a source. It generates the free propagator
amputated connected Greens functions in the theory with UV-cutoff A0, which is
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defined by the free propagator Γ(A, Λ0) and the interaction V(ζ\A0) [Mac 85]. As a
consequence the F-kernels have perturbation expansions in terms of connected
diagrams. The following Proposition 4.1 expresses the fact that with a given
number of vertices of a specific type one can only build connected diagrams with a
certain maximal number of external legs. We restrict our attention to solutions of
the RG equation with this property [Pol 84]. In Proposition 4.1 we prove that
there exists a solution of the RG equation (2.11) with the appropriate vanishing
properties.

Proposition 4.1. To order α — 0 for all degrees n^l and to all orders α^ 1 for all
degrees rc > α + 1 ,

V^(pl9...9p2n\Λ) = 0. (4.6)

Proof. The vanishing is consistent with the above boundary conditions. It also
satisfies the RG equation. (dVffl/dΛ) ( ) is an infinite sum of terms proportional to
^(O^lm -?+i)( ) with n = m-k and O^βgα. Suppose that rc>α + l and
/!g/?+l, then w — / + l > α — jβ + fc + 1. Therefore each term contains a vanishing
kernel. Π

A dimensional analysis yields the following estimates for the free propagator
v(p\Λ) with UV-cutoff Λ.

Lemma 4.2. There exist positive constants A0, Aί7 and Bn for all π^O, such that

74

p l- '-1 ^l^A^A, (4.7)

4

Σ SUP
dnύ(p\A)

<3pμι...ό>

Let us introduce the following notation for ije (1, ...52n}, and

Given N = {(il,jl, μ,) : 1 ̂  /^ \N\} as above, we define

dN= Π S^'j], and PN= Π Pΐ

Let dN=l for |ΛΓ| = 0.

Proposition 4.3. To βi er y order α ̂  1 /or α// degrees 1 ̂  π ̂  α + 1 ί/i£ norm o/
V-kernels is bounded as follows:

n). (4.8)

Proo/ The estimate is proved by induction on the order of perturbation theory. All
K-kernels are independent of A to first order, as Proposition 4.1 implies
(dV$(

n

i)/dΛ)(pl9...,p2n\Λ) = Q. By the initial conditions:

Σ g^ ,̂ . - , P2n) - (4.9)
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The assumption (4.4) implies

Λ* P(2-{a})0(ί)'Λ 4-2n-d

~2nP(2-n), (4.10)

which proves the estimate (4.8) to first order in the case |Λ/] = 0. The general case
follows by application of dN to Eq. (4.9).

Let us suppose that the estimate is true to order α — 1 ̂  1. The RG equation
together with Proposition 4.1 and Lemma 4.2 yields the inequality

dΛ
( \Λ)

α-1

^ Σ Σ 0(1). A 2/c-3

v I I l/s(0ty 1 AMIX II V2l ( \Λ)\\ \Λ}\\ (4.11)

to order α. Here the right-hand side is a finite sum of terms which are bounded by
the induction hypothesis. For all 1 rg n ίΞ α +1 simultaneously we have the estimate

dΛ ( M)
α-1

^ Σ Σ
m — k = n

xΛ4-2lP(2β-l)Ά4-2(m-l+ί}P(2(oί-β)-(m-l

~2T(2oc-n-l). (4.12)

When dN is applied to the RG equation (2.11), each differentiation with respect to
the momentum variables acts on either of the factors ύ( ), F2

s

/

(/?)( ), or V£[n~-βι*+1)(' )•
We suppose that the g^+i-integral has been performed. Taking norms all of these
factors are bounded by Lemma 4.2 and the induction hypothesis. The above
argument leads to the estimate

dΛ
( \Λ) (4.13)

We integrate this inequality from Λ0 to Λ for 4 — 2n — \N\ < — 2s with the initial
condition (<9#F2

0

n

s(α))( ) = 0 which completes the induction in this case,

33 τ/s(α)

°°NV2n

dΛ'

n). (4.14)

For the running coupling constants gs

a

(a\A) formula (4.13) leads to the estimate

rs(α)N

dΛ
(4.15)
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which is integrated from Λ0 to A for — 2s^da<0. Taking into account the
assumption (4.4) we have

^ lgα°s(α)l + ί dΛ' - }(Λ')

Λo dΛ' ,d

Λ Λ'

(4.16)

For da^0 we integrate (4.15) from ΛR to Λ, the initial values vanishing by the
renormalization conditions to order α^2,

fa

(a\A)\^ J dΛ'
ΛR dΛ'

(4.17)

Finally we reconstruct the kernels with 4 — 2n^ — 2s by Taylor expansion,

Σ

(4.18)

which yields the estimate

^ Σdα^ -2s

~2nP(2a-n). (4.19)

Here we used the bounds (4.16) and (4.17) on the running coupling constants and
the bound (4.14) for the remainder term. An analogous argument for the
derivatives of the F-kernels completes the induction. Π

We will now investigate a set of auxiliary quantities which we call FF-kernels. At
AR they are derivatives of the F-kernels with respect to g*s, the renormalized
coupling constants with da^— 2s. The bare coupling constants depend on the
latter implicitly through the renormalization and improvement conditions.

Definition 4.4. Let us define quantities
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by

Ξ Σ
2 s a

\ (4.20)

Here (dg/dg°s) ~ 1 denotes an inverse matrix, and Wξ a linear differential operator
with db^-2s.

The J/F-kernels are completely determined by the F-kernels. For the further
analysis however, their dependence on A is better characterized by the following
RG equation.

Lemma 4.5. The W-kernels satisfy the following system of differential equations,

...... ,M- Σ F,.,,

^

1 x, = xf(x') = f(χ), and the sum runs over all a such that da^ —2s. The initial
conditions at AQ for the W-kernels are

W2°n:b(Pl,...,p2n)= Σ ta,bTa(Pl,...,P2n). (4.22)
dαl -2s

[a} = n

The proof is deferred to the appendix.
The kernel Wlntb(pί,...,p2nΛ) is expanded exactly like the kernel

V2n(pι, . . ., p2n\Λ), i.e. first in a Taylor series of order 4 — 2n -f 2s with remainder term
and second in an s-improved perturbation series. The Taylor coefficients are
constants.

Proposition 4.6. The zeroth order W-kernels are independent of A and given by

(4.23)

To every order α ̂  0 and for all degrees

WΪ<?b(pl9...9p2n\Λ) = Q. (4.24)

Proof. As the zeroth order F-kernels vanish, we have (dW2

(£l/dΛ) ( ) = 0 by (4.21).
The initial conditions (4.22) imply (4.23). They are compatible with (4.24) as the
highest degree F^kernel with nonvanishing zeroth order has n — s + 2. In the RG
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equation (dW%(*],/dΛ)( ) is an infinite sum of terms which are either proportional
to W«( ) V + ( ) with n = m-k o r

with {a} =m — k. Both types contain a vanishing kernel for n > α -f s -f 2. Consider
for instance the first type with / ̂  /? + s + 2, then m — / + 1 > α — β + fc + 1 and
Proposition 4.1 applies. Π

Proposition 4.7. 77ze norm of the W-kernels is bounded to every order α ̂  0 and for all
degrees l^n^a + s + 2 as follows :

(4.25)

Proof. To order zero W$l(pl9..., p2n\Λ) = δnt(b}Tb(pί9 ..., p2n). Here Tb(pl9..., p2n) is a
homogeneous polynomial of degree 4 — 2n — db with db^— 2s. The above estimate
is satisfied to order zero.

Let us suppose that it holds to order α — 1 ̂  0. By Lemma 4.5, Proposition 4.6,
and Lemma 4.2 the FF-kernels satisfy the inequality

=V Σ o(ί) Λ2k-3 \\w^l
m k — n

dA

/ϊ + γ + δ = α d α ^-2s (m,i,k)e^ |Mι| + |M2| ̂ 4- 2{α} -dα

m - fe = {α}

W^V (4.26)

to order α. Here Ml and M2 denote index sets of triples (ij, μ) with 1 ̂  /,; ̂  2/ and
1 = ϊ j J^2(m —/+!) respectively (and l^/^^4). By VF<-»F we denote the terms,
where FF and F are interchanged under the sums over (m, /, fc) e ̂ . The right-hand
side is bounded by the induction hypothesis and Proposition 4.3. It is a finite sum
of terms in which no order α FFkernels appear. The inequality (4.26) yields the
estimate

V y
/ j /_^

m-a + β^l^

+ Σ Σ Σ Σ
. da^ -2s (m,l,k)e& |Mι| + |M2| ^4 - 2{α) -dα

(4.27)



162 C. Wieczerkowski

By a similar argument we conclude that

ι*w«fr
dΛ

(4.28)

for all dN with \N\ ̂  1 to order α.
The inequality (4.28) is integrated from A0 to A for 4 — 2n — |JV| < — 2s with the

initial condition (dNW?ffi( \A) = 0:

A

.Λ°dA

'[^

N''2n,b

dΛ' ( M':

n). (4.29)

The remaining J/Γ-kernels with 4 — 2n — \N\^ — 2s are reconstructed by Taylor
expansion,

\ 5 - 2 « H

Σ

(4-30)

Here the Taylor coefficients are independent of A. By taking norms we have
2"-*»+ Σ 0(1)

(4.31)

which completes the induction step in this case. In the same way we obtain

for 4-2n-\N\^-2s. Π

We will now introduce another set of auxiliary quantities which we call
JΓ-kernels. At AR they are total derivatives of the F-kernels with respect to A0,
where the bare coupling constants (gaS)da>-2s are tuned according to the
renormalization and improvement conditions.

Definition 4. 8. Let us define quantities X2n(pv, ...,p 2JAΛo?(gα 5)dα^-2s)
= Xs

2n(Pι> ~ >P2n\Λ), the Jί-kernels, by

^^

x V2n(p1,...,p2n\Λ,Λ0,(gΐ*)da2.-2J9 (4.32)

where Xs denotes a differential operator and W£ is introduced in Definition 4.4.
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The dependence on A of the X-kernels is described by a RG equation which is
similar to that of the ^-kernels.

Lemma 4.9. The X-kernels satisfy the following coupled system of linear differential
equations:

dΛ

"[

-) (Pι, ,P2n|Λ) =

- Σ &
p' = 0

k+l

>V). (4.33)

The proof of Lemma 4.9 is deferred to the appendix.
The X-kernels with 4 — 2n^—2s are expanded in Taylor series of order

4 — 2n + 2s with remainder terms. By Definition 4.8 the Taylor coefficients vanish
identically, and the X-kernels are nonlocal in this sense. We can restrict the
discussion to (dNXs

2n) (p1 ?..., P2«M) with 4 — 2n — \N\ < — 2s. The initial values at A0

are bounded with the identity

ί r\r\ T/s \

(4.34)

for these JC-kernels and Proposition 4.3. Finally, the kernels Xs

2n(pι, ...,p2n\Λ) are
expanded into perturbation series whose coefficients X2%\pι,.. .,p2n\Λ) we are now
concerned about.

Proposition 4.10. The X-kernels vanish to zeroth order. To every order α ̂  1 and for
all degrees n>a. + s+\,

X^(Pl,...,p2n\A) = 0. (4.35)

The proof is identical to that of Proposition 4.6. The vanishing is consistent with
the initial conditions which are imposed by (4.34), and with the RG equation (4.33).

Proposition 4.11. The norm of the X-kernels is bounded to every order α ̂  1, and for
all degrees l ^ n gα + s + 1 as follows:

A4-2n-\N\ / A \ 2 ( s + l )

\\(dNX«?)(. \Λ)\\ ^ — P(2α-n-1). (4.36) -
Λo \Ao/

Proof. The estimate is proven by induction on the order α. To first order the
X-kernels are independent of Λ, and determined by the initial conditions at A0.
For 4-2n-\N\<-2s the identity
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\A)\\ ^ ̂ P(2n~ 1),

P(2n-l)

P(2n-l). (4.37)

Let us suppose that the estimate holds to order α —1 ^1. With Lemma 4.9,
Proposition 4.10, and Lemma 4.2 we infer the inequality

dΛ- ( M) Σ
α- 1

^ Σ

+ Σ Σ
e djy ^ — 2s

0(1) A 2 f c - 3 | ι

Σ
| Λ f ι | + |M 2 |^4-:

\Λ)\\ (4.38)

The right-hand side of (4.38) is a finite sum of terms which are bounded by the
induction hypothesis, Proposition 4.3, and Proposition 4.7. It is linear in the
Jί'-kernels, and no order α Jf-kernels appear. Thus

( M)^Y
/lr

+ Σ Σ
b^ -2s

2(s+l)

Σ

2(s+l)

P(2«-π-2).

By an analogous argument we infer the estimate

f Pι?ι Ys<α

00NΛ 2n

dΛ
\A)

/t3-2n-\N\ / Λ \ 2 ( s + l )

<- 1— P(2α-«-2).
o/

(4.39)

(4.40)
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The Jί-kernel on the right-hand side of the RG-equation preserves the convergence
factor (A/A0)

2(S+ υ in the iteration. The inequality (4.40) is integrated from Λ0 to Λ.
With 4 — 2n — \N\ < — 2s, and the above estimate on the initial values, we conclude
that

dλ

Λ°dΛ'

( Mo) + I dΛ'

Λ

s(α)

~(-K)
dΛ

P(2α-n-2)

s 2(s+l)

P(2α-n-l), (4.41)

which completes the induction step. Note that A appears to a negative power on
the right side of the estimate. Π

We are ready now to show that the renormalized F-kernels approach their
continuum limit values in s-improved perturbation theory with an s-increased rate
of convergence.

Theorem of s-Improved Convergence 4.12. Let the bare parameters g°s with
dimension da^—2s depend on Λ0, AR, and gf such that the renormalization and
improvement conditions hold. Let us assume that g^s(a\A0,AR) = 0 for α^l and
{α} > α + 1 and that |g°%/lo, AR)\ ^ Λd

0

aP(2κ - {a}) for α ̂  1 and {a} ̂  α + 1 , where α
denotes the order of perturbation theory in gf . Then the continuum limit

lim
^

o/ t/ie renormalized V-kernels exists to every order α ̂  1 <?/ s-improved perturbation
theory for the degrees 1 ̂  n ̂  α +1. 77ιe remaining V-kernels vanish identically. The
rate of convergence in (4.42) is bounded as follows:

(A \ 2 ( s + l )
| |J/ s(αV.M ^ ^ \ j/scont(α)/ ι^ ^ \ ι ι ι _ <yl 4~ 2 n( — I P(2tt — n)

\Λ0J (443)

Proof. Let α^l, and l g n ^ α + 1. The JΓ-kernels were defined, such that their
renormalized boundary values are the total derivatives of the F-kernels with
respect to A0 at AR, where the parameters (g°5)dα^ _ 2 s are tuned according to the
renormalization and improvement conditions. Thus for A00^A0,

||Fs(α)( \A,Λ ,A ) — Vs(a\ \A,A ,A )\\\Λ-

^ΛΪ° dΛ'0\\X%\ \Λ,Λ0,ΛR)\\\Λ = ΛR
Λo

Λ o o Λ / T / / ί _ \ 2 ( s + 1 )

^ ί ,ί/ ^Λ "( A,

V / A O

~ι ^όΊ

. logΛj
2 ( s + l )

(4.44)

Cauchy's criterion implies the existence of (4.42) and the estimate (4.43).
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5. Uniqueness of the Continuum Limit

The limit values j/^cont(α)(. \Λ) in Theorem 4.12 do not depend on the improvement
index 5^0. The continuum limit values F2°

nt(α)( \Λ) are uniquely defined within the
index s = 0 scheme. We prove this to every order of perturbation theory by means
of a homotopy to the index s ̂  1 scheme.

Let us introduce auxiliary quantities which we call ^kernels. They are closely
related to the index zero PF-kernels and we refer to these for the proofs of
Lemma 5.2, Propositions 5.3, and 5.4.

Definition 5.1. Let us define kernels

Y2n,b(Pl> •••9P2n\A,A09(gcS)dc> -2s) = ^2w,ί>(PlJ •• ?/ ?2nM)

by

Y2n,b(Pι, ,P2n\Λ,Λ0,(g°\^^2s) = (Yb

sίV2ny(Pl,...,p2n\Λ,Λ0,(g°\^^2s)

3

= Σ
α= 1 \

' 3 g \ n I"1

^ )(A9Λθ9(g^de>.2^\ , (5.1)
\0g J ~ _\a.b

where da, db ̂  0 and 1 ̂  α, b <, 3.
The dependence on A of the 7-kernels is described by the following RG

equation:

Lemma 5.2. The Y-kernels satisfy the following system of differential equations:

*π
j=ι

l 2\^^^^
2l-k-ί k+ί \ / fl k+l

Σ Λ(ί)+ Σ 9j Ur Π

<r+V) (5.2)

the initial values

i3 (5.3)

^2«,fc(PiJ 5P2«M) is expanded in an s-improved perturbation series with
coefficients Γ2^(p1? ...9p2n\Λ).

Proposition 5.3. To zeroth order the Y-kernels are exactly given by the Λ-independent
expression

β/Ί, , P2.M) = δa, !(<V i + ̂ . 2p?) + <5n, 2ί6. 3 . (5.4)
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To every order α ̂  0 and for all degrees nxx + 2,

Y2$(Pl, .,P2«W = 0. (5.5)

The nonvanishing perturbative 7-kernels are bounded in norm as follows:

Proposition 5.4. To every order α ̂  0 and for all degrees 1 ̂  n ̂  α -f 2,

(5.6)

Let us finally introduce another set of auxiliary quantities, the Z-kernels. At AR

they are the total derivatives with respect to the bare coupling constants g°s with
dimension — 2s ̂  da < 0, where the renormalization conditions are kept fixed. We
omit the proofs of Lemma 5.6, Propositions 5.7 and 5.8.

Definition 5.5. Let us define kernels

Z2n,b(Pl,' ,P2n\Λ,ΛQ,(g°\^_2s)ΞΞZS

2n,b(p1,...,p2n\Λ)

by

ZL>ι,. ,/>2jΛΛ,(Λ^^

X V2n(pl9...,p2a\Λ9Λθ9(g?\z-2J9 (5.7)

where — 2s^db<0.
For the perturbative analysis we characterize the Z-kernels by a RG equation

which is similar to that of the ^-kernels.

Lemma 5.6. The dependence on A of the Z-kernels is described by the following
system of linear differential equations:

ι,...,pa.M)= Σ

[^

2l~k-ί fc+1 \ / k+ί

x(2nYδ

(2z-/c) ? --- ? ^(2(m-/c)) , -ql9 ..., -qk+l\Λ) + Z++V) . (5.8)

T/ze/r m/ίία/ ί;fl/wβ5 αί Λ0 are given by:

Z¥n,b(P^ ,P2n}= Σ
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Let the parameters g°s with dc^—2s be functions of Λ0, AR, and gf, such that
the renormalization and improvement conditions are fulfilled. Zs

2n(-\Λ) is ex-
panded in powers of gf, the coefficients being denoted Zs$( \Λ).

Proposition 5.1. To order zero the Z-kernels are independent of A and given by

Zs^b(p1,...,p2n\Λ)= Σ δa,bTa(Pl,...,p2n). (5.10)
-2s^d α <0

[a} = n

To every order α^O and for all degrees n>α + s + l,

Z%]b(Pl,...,p2n\Λ) = 0. (5.11)

The nonvanishing Z-kernels can be bounded in norm to every order of
perturbation theory by means of an induction on the order with the RG equation
(5.8).

Proposition 5.8. To every order a^Oof perturbation theory and for all degrees \^n

(5.12)

Let us implement the improvement conditions in two steps. First we take
(gas)-2s^da<o as independent parameters and impose the renormalization con-
ditions only. They determine (g°%,^0 implicitly as functions of Λ0, ΛR, gf, and
(gas)-2s^da<o Second we choose (gαS)-2s^α<o as functions of Λ0, ΛR, and gf, such
that the improvement conditions are satisfied. Let us define a homotopy

with fe[0,l] between V?n(pί9 ...,p2n\Λ) and V2n(p^...,p2n\Λ). Let

denote the F-kernel of order α of t 5-improved perturbation theory within the
above homotopy.

Theorem 5.9. To every order α ̂  1 and for all degrees l^n^a+\,the norm of the
difference of the V-kernels in s-improved and unimproved perturbation theory is
bounded as follows:

\\VS^( \Λ A A \ V°W( \Λ A A Mil <Λ4~2n(-—\ P ( 2 α ~ " ) l n — —
\\y2n \\ΛιΛ&ΛR)~ V2n \ \Λ> 710? /LR) II \Λ = ΛR =

 /LR \ A 1 Γ \ Λ \'
\Λo/ L ΛRΛ

(5.14)

Corollary 5.10. The continuum limit of the V-kernels is unique in the sense that for all
values s^O of the improvement index, to every order α^O of s-improved
perturbation theory, and for all degrees 1 5^n^

scont(α)/ I A A \ ι _ τ/cont(α)
—

A \ ι _ τ/cont(α)/ ι A \
>ΛR)\Λ = ΛR— V2n \\ΛR)
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Proof of Theorem 5.9. By the above homotopy we have

|| V£\ \Λ,Λ0,ΛR)- V% \ \Λ,A0,ΛR)\\ \Λ=ΛR

1 α

< f rlt V V
= )ai L L

^ Σ Σ Λ\-2n-
-2s^da^-2

2(2oc-n). (5.16)

Proposition 5.8 applies also for the improvement index t - s, as none of the above
estimates becomes invalid when the bare parameters g°s(α)(y40,Λκ) with

0 and {α}^α + l are scaled by a factor t. Π

6. Generalized Perturbation Theory

By induction on the order 5 of improvement we conclude that the bare parameters
g°s with dimension da^—2s can be chosen as functions of Λ0,ΛR, and the
renormalized φ4-coupling constant gf such that the renormalization and the
improvement conditions hold to every order of perturbation theory. We prove the
estimates on the nonvanishing orders which we assumed above. For this purpose
we represent them as iterative solutions of a set of nonlinear equations.

Let us consider the initial value problem which corresponds to the improve-
ment index 5^1. Suppose that the bare coupling constants g°5 with dimension
df>.2(s — 1) depend on Λ0, ΛR, gf, and the bare coupling constants g£5 with
dimensions db = — 2s. The ^-kernels are expanded to generalized perturbation
series as follows:

V2n(P^ ,P2n\Λ,Λ0,(&(Λ0,ΛR,gR^

= Σ VM(pl9...,p2n\Λ,Λθ9ΛR)(g*)** Π (g«°Tα (6.1)
|α |^0 da=-2s

Here the sum runs over integer multi-indices αΞΞ(α3,(α f l) ( / α =_2 s) whose order is
defined by |α| = α3 + Σ αα.

Let us impose the following boundary conditions on the running coupling
constants gs

a

(-\A) = gs

a

(-\A,A0,AR) with dimensions da^ —2s.
The coupling constants with dimension da ̂ — 2(s — 1) are fixed at the

renormalization scale AR. The renormalization conditions on the coupling
constants with dimension da^0 take the form gαβ)(Λκ) = (5α 3 j l<5 f l > 3. The coupling
constants with dimension — 2(5— \)^da<0 are fixed by the improvement
conditions gSa*}(AR) = gc

a

oni(**\AR) of order s- 1. Here we assume that |α| = α3, i.e.,
α = (α3,0, ...,0). The coefficients with |α|>α3 have vanishing boundary values.

The coupling constants with dimension da = — 2s are fixed at the bare scale A0.
Only the coefficients of order |α| = 1 with aa = δa b, where db = — 2s, have boundary
values which do not vanish, namely gSa*\A0) = δa^b.
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Let us assume that we can satisfy the improvement conditions of order s — 1 by
an appropriate choice of bare coupling constants ga(-}(v40) with dimension
da^ -2(5-1) and α = (α3,0, ...,0) with g?β)(Λ(0) = 0 for a = 0 and for {0}>α3 + l,
and

\g}*\Λ0)\^Λ*rP(2a3-{a}) for {α}^α3 + l .

The expansion coefficients, which correspond to multi-indices of the form
α = (α3,0, ...,0), can be identified as expansion coefficients in (s— l)-improved
perturbation theory by gs

a

(*\Λ) = gs

a~
1(Cί3}(Λ). The above assumptions constitute

the hypothesis in the induction on the order s of improvement.

Let us define L(α)Ξα3 + £ αα({α} — 1) + 1, i.e., 2L(α) is the maximal
da= -2s

number of external legs a connected diagram can have, which consists of α3

vertices with four legs and αα vertices with 2{a] legs respectively where da = —2s.
We also introduce the symbol {a}=2a3 + £ oca{a}. It is used to estimate

da= -2s

logarithmic corrections which depend on the order of generalized perturbation
theory. Finally, let θ(α,b)=l for a>b and θ(α,fc)^0 for a<b.

Proposition 6.1. To order |α| = 0 for all degrees n ̂  1, and to every order |α| ̂  1 for all
degrees n>L(α),

V?*)(p1,...,p2n\Λ) = 0. (6.2)

Proof. For |α| = α3 Proposition 6.1 reduces to Proposition 4.1, where the improve-
ment order is s — 1 . For |α| > α3 it is consistent with the above boundary conditions.

\Λ) has an infinite expansion with terms which are proportional to
_l + ί), where β + y = α and m-k = n. Suppose that l^L(β\ then m-/

+ 1 > L(y). Therefore every term contains a vanishing F-kernel. Π

Proposition 6.2. To every order |α| ̂  1, /or α// degrees 1 ̂ π^L(α) ί/ze norm o/ £/ze
V-kernels is bounded as follows,

A \2sβ(|β|,α 3)

P({α}-n). (6.3)
W

Proo/ The case |α| = α3 is treated in Proposition 4.3, where the improvement order
is 5—1. We assume that |α|>α3 in the following.

The estimate is proven by induction on the order |α|. To first order the F-kernels
are independent of A. By the initial conditions at ΛQ,

V^\Pl,...,p2n\Λ) = δnΛb}Tb(Pl,...,p2n), (6.4)

for y.a = δatb where db=—2s. As Tb(p^...,p2n) is a homogeneous polynomial of
degree 4 — 2n — db, we conclude that

4-2"+2s. (6.5)

Therefore the estimate holds to order |α| = l.
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Let us suppose that it is true to order |α| —1^1. The induction step is
performed with the inequality

\Λ)
2n

dΛ

< Σ

m-L(γ)+ 1 ̂ l^ (6.6)

Due to Proposition 6.1 the sum is finite. Using the induction hypothesis we infer
the estimate

Σ Σ O(\) Λ 2/c-3

m-k = n
m-L(y)+ 1 ̂ l^

2sθ(\β\,βι)
-

/ A \2sθ(\y\,yt)
2s(|Z |-y3)M_ '

V^O/

2sβ(|α|,α 3)

(6.7)

Note that 0(|^|,j?3) + 0(|y|,y3)^9(|a|5a3) for β + y = a. By a similar argument we
obtain the estimate for }\(ddNV^}/dA)( \A)\\~with an additional factor A~\Nl. It is
integrated from A0 to Λ for 4 — 2n — \N\< — 2s. Here A appears to negative power
in the estimate. The initial values vanish. Thus

dA
'\2sθ(\z\,ctι)

The running coupling constants satisfy the estimate

v 2sθ(|α|,α3)
, (lβ|-«3)f "•

A0

(6.8)

(6.9)

For dfl ̂  — 2(s — 1) it is integrated from Λ^ to A. Here Λ appears to a positive power
in the estimate because |α| > α3. For da= —2s it is integrated from τi0 to yd. In both
cases the initial values vanish as α| ̂  2. Thus

A \ 2s0(|β|,α3)

_
W

holds for all coupling constants with da^— 2s.

(6.10)
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Finally the F-kernels with 4 — 2n — \N\^ — 2s are reconstructed by Taylor
expansion which completes the induction step. Π

Corollary 6.3. The coupling constants gs

a

(*\A) with dimension da= —2s satisfy to all
orders |α|^l for Σ α f l^l and {a}^L(ά) the estimate

da= ~

\g^\A)\^Als^Σ-^a'^P({a}-{oc}). (6.11)

Next we let the bare coupling constants g°s with dimension da = — 2s depend on
Λ0, AR, and gf . A perturbation expansion yields

oc

σ°s( A A σR\— V σ°s<αΫ A A \.(σRYga VLQ9Λ

R,g3)— 2_, ga (ΛOyΛ

R) (g3) .
α = 0

Here the expansion coefficients g°s(α) to vanish to zeroth order and to all orders
α^l for {α}>α + l.

Let us recorder the generalized perturbation expansion for the running
coupling constants with dimension db = — 2s as follows :

= Σ gsΛMo,Λ)(g?)α3 Π / Σ g0aS(β\A,,AR)(g«f\
I β l ^ l da=-2s

- Σ $*\A9A09Aj Π UgaS(βa^o,AR)(g^ + ̂ . (6.12)
(α,^) \d α =-2s i = l /

Here the sum runs over multi-indices α of order |α| ̂  1 , which satisfy {b} ̂  L(α), and
over multi-indices β = (βa, t)da = - 2s, i ^ i ̂  αα with βfl, i = 1 ? which satisfy {a}^βaΛ + \.

Let |^|= Σ Σ / U
ίία = ~ 2s i = 1

To order |α| = 1 with αfl = <5β>c, where dc= —2s, the expansion coefficients take
the form g£(β)(Λ,Λ0,ΛΛ) = <5b f C. Furthermore

is an expansion coefficient in (5— l)-improved perturbation theory. Thus

- Σ tf \Λ,Λ0,ΛR) Π Π gα^-^o.Λ), (6.13)
(α,^) da= -2s i = l

which expresses gbs(y)(yl0,yl^) in terms of lower orders g^s(βa'l)(A0,AR) with l^βa i

Proposition 6.4. To ei ery ord^r 7^0 ί/i^rβ ^xi5ί bare parameters g®s(y\A0, AR) with
dimensions db=—2s such that the improvement conditions gs

b

 (y)(A,A0,AR)\Λ=:ΛR

— gb°nt(y\AR) are satisfied. The zeroth order and all orders y^l for {



Symanzik's Improved Actions 173

vanish. The orders y ^ l for {b}^y-\-\ satisfy the estimate

\g°b

sM(Λ0, ΛR)\ ί -̂  P(2y - {b}) . (6.14)
Λo

Proof. We perform an induction on the order y in (6.13) with Λ = ΛR, where
gΓtω(Λ) is inserted for gs

b

(y\Λ,Λ0,ΛR)\Λ = ΛR. To first order by the induction
hypothesis on the order s — I of improvement

1 (A 2s

i Qs(\)ί A A \ |_ ι α s- l ( l )/ / | A A \\ — σ

coni(V( A \\ < _ ( R

\gb (ΛO>ΛR)\ — \gb \Λ>Λ&ΛR)\Λ = ΛR gb lyικ;l = A2s

Let us suppose that the estimate holds to order y — 1 ̂ 1. Thus,

1(rtμ, ̂ o, ΛK)\A = ΛR - gΓM(AR)\

Σ \%r(Λ,Λ0,ΛR)\Λ =

, ΛR}\ g |

a= -2s i=l

Σ

x π Π
d α = -2s i= 1

Theorem 4.12 provides the estimate on the convergence in the continuum limit for
(s — l)-improved perturbation theory. The hypothesis in the induction on the order
of improvement covers the assumptions of Theorem 4.12. Corollary 6.3 provides
the estimate on the expansion coefficients in generalized perturbation theory. This
completes the induction step. Π

It is essential that the renormalized coupling constants gs

b

(y\ΛR) with dimension
db = —2s be fixed to their continuum values in order to apply the estimates on
(s — l)-improved perturbation theory.

Proposition 6.4 completes the induction step on the order s of improvement.
The first improvement step which corresponds to s = 1 follows by an analogous
line of arguments. There the only ingredient needed is the renormalizability
estimate of Theorem 4.12 in the case s = 0. Thus we conclude:

Theorem 6.5. To every order s ̂  1 of improvement and to every order α ̂  0 of
renormalized perturbation theory the bare parameters g£s(α) with dimension da^—2s
can be chosen as functions of A0 and ΛR such that the renormalization conditions

g(aa}(^^(g°Λ^-2s) = ̂ A^ (6.17)

for rfα^0, and the improvement conditions of order s

g<«>(Λ,Λ,(gn^-2s) = g«°nt(α>(ΛR) (6.18)
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for — 2s ̂  da < 0, are satisfied. The zeroth order and all orders α ̂  1 /or {α} > α + 1
<9/ the bare parameters g°s(α) wzί/z dimension — 2s^da<0 vanish. All orders α^l
for {αj^α + 1 satisfy the estimate

|gfl

0s(α)(Λ0? ΛR}\ ^ Ai«P(2a - a] . (6.19)

Appendix. RG-Equations

We prove the RG equation (2.1 1) for the F-kernels by inserting the expansion (2.10)
into the RG equation (2.9) for V(φ\Λ).

The formula for the infinitesimal change of normal ordering [GJ 87] implies

π

The use of normal ordered products eliminates the linear term on the right-
hand side of (2.9). The nonlinear term contributes

Σ £ m.-ί)!(Ά,-»)+m-
n=ι m = ι

2m- 1

(Σ Λ +

2 ( I I_O T + 1 )(p 2 l f I 5...,/? 2 w 5 -q\Λ)

/2m- 1 \ / 2« \

x: Π ^(Pί) :^)M Π Φ(P/) :,M)- (A 1.2)
V i=l / \ i = 2 m /

Let / = {!,..., 2m— 1} and J = {2m, ...,2n} define index sets. By 7 = /1 + /2 we
denote a partition of /, i.e., 7 = 7^/2 and 7^72 = 0. The product of normal
ordered monomials in (A 1.2) is reorganized with the identity

^)V^)= Σ Σ Σ
J y fe = 0 / = / ι + / 2 , | / l | = f c σ:J 2 ^/2

J = J ι + J 2 , | J ι | = f c

(2π)4(5(pσϋ) + PXP^)) : ( Π φ(P/) f Π <P(Pj)} ̂  , (A 1 .3)
'

where we sum over all bijections σ from J2 t° ^2- Formulas (A 1.1), (A 1.2), and
(A 1.3) together yield the RG equation (1.11).

By Definition 3.4, the operators W£ satisfy the relations

,-2 s

 (A1 4)

and

(A 1.5)
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The RG equation for the running coupling constants implies

+ 1

π11
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4
j = ι (2π)

/ S k+1

; br7 Π ̂(2π)4<5 X p'π(i)

7~V\. (A 1.6)

We insert (A 1.6) in (A 1.4). The application to the F-kernels yields the RG equation

for the W-kernels. Π

The RG equations for the X-Kernels follows from the identities

"Ax l- Σ ίx ί̂ flW., (A..7,
OΛ

and

(A 1.8)

The derivation of the RG equation for the JΓ-kernels is now identical with that for

the ^-kernels.
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