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Abstract. We investigate Symanzik’s improvement program in a four-
dimensional Euclidean scalar field theory with smooth momentum space
cutoff. We use Wilson’s renormalization group transformation to define the
improved actions as a sequence of initial data for the effective action at the
fundamental cutoff. This leads to a sequence of solutions to the renormal-
ization group equation. We define the parameters of the improved actions
implicitly by conditions on the effective action at a renormalization scale. The
improved actions are close approximations to the continuum effective action.
We prove their existence to every order of improvement and to every order of
renormalized perturbation theory.

1. Introduction

Wilson’s effective actions [Wil 74] have become an important tool in quantum
field theory. They have proved to be useful in establishing perturbative re-
normalizability without relying on detailed estimates on Feynman diagrams
[Pol84]. Work in constructive field theory also demonstrates that the investi-
gation of effective actions provides a natural tool to understand the full theory, at
least in the case of asymptotically free models [GK 84].

In this paper we address the question of the locality properties of effective
actions. Generally effective actions are infinite sums of nonlocal terms. The
question arises how to find good, i.e. local, approximations. This important
problem has received little attention except within Monte Carlo renormalization
group studies [Gup 85].

Symanzik’s improved actions [Sym 83] are candidates for local approxi-
mations to effective actions. They were found by Symanzik in a different context and
he did not investigate their relationship with the renormalization group. The
parameters of Symanzik’s improved actions are determined by demanding a
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certain rate of convergence for a set of observables in a cutoff theory in the limit
when the cutoff is removed [Lis84], [Par85]. In principle the full interacting
theory has to be solved in order to determine the improvement parameters. In this
paper we show that Symanzik’s improved actions lead to a sequence of close
approximations to the effective actions. We define the improvement parameters
implicitly by conditions on the effective action at a renormalization scale.

We consider a four-dimensional Euclidean real scalar field ¢ with an
ultraviolet cutoff 4, in momentum space. The action S(¢|4,) is parameterized by a
set of bare coupling constants g2 with dimension d,>0 in units of mass. The
renormalization group maps the fundamental theory exactly to an effective theory
with ultraviolet cutoff A € [ 4, 4,] and an effective action S(¢|4, Ao, (g0)s, o). The
idea is to integrate out degrees of freedom which correspond to momenta
A Z|p| £ 4,. Here Ag denotes a renormalization scale which we choose of the order
of the physical mass scale. The complete map includes a transformation of
observables in the fundamental theory to effective observables which preserves
expectation values. This is the renormalization of composite operators. Observ-
ables which measure the behavior of the theory at large length scales transform
trivially. We restrict our attention to such observables,i.e., products of blockspins
for instance, and to the effective action itself.

Let the bare coupling constants (g2), >, depend on Ay, Ag, and a sct of
renormalized coupling constants (g&),, = o- The bare coupling constants are chosen
so that the renormalization conditions

gb(A>Ao,(gl?)dazo)thR:gf (1.1)

on the running coupling constants with dimension d, >0 at the renormalization
scale are satisfied in order to take the continuum limit. Polchinski [Pol 84] and
Gallavotti [Gal 85] have proved that the limit

Ah_rfloo S|4, Ao, (gfz)(AO’ Ap, (gllf)db > 0))da > 0)=8" (0|4, Ag, (gf)d,, > o) (1.2)

exists to every order in perturbation theory in the renormalized ¢*-coupling
constant for 4> Ag. This is the theorem of perturbative renormalizability. (We
work within the framework of perturbation theory.) The rate of convergence is
estimated by

/1 22—k

IS(- |4, Ag, (gn?(/lo’ Ap, (gf)dbg 0))‘1@ 0) = SN |4, A, (gf)db; ol 4= AR 0 <A—R>
27(1.3)
with a suitable norm | - ||, where 0 <k <1 controls logarithmic corrections which

depend on the order of perturbation theory. Improved renormalization schemes
should improve upon this rate of convergence.

Following Symanzik we make an ansatz for the fundamental action S(¢p|A4,) of
a more general form. It includes nonrenormalizable coupling constants g° of
negative dimension —2s<d,<0. Here s=0,1,2, ... is an improvement index, and
s=0 corresponds to standard renormalization theory. The additional bare
coupling constants are called improvement parameters. We let them depend on
Ay, Ag, and the renormalized coupling constants (gy),, > o such that the improve-
ment conditions

g4, 4o, (gz?)da; —aslla= AR — 20" A, A, (gg)d,, > olla= AR (1.4)



Symanzik’s Improved Actions 151

on the running coupling constants with dimension —2s=<d_ <0 at the renormal-
ization scale are satisfied in addition to the renormalization conditions (1.1). It is
essential that they be fixed to their continuum values. We will prove that the
effective action converges to its continuum limit within this scheme. The crucial
observation is that the rate of convergence is speeded up to

[1S(- 14, Ag, (82(/10, Ag, (gtlf)dbgo))dago)
Ag

2(s+1)—-x
=S |4, AR, (85)a, 20l 4=, =0 (T() : (1.5)
We prove this to every order of improvement and to every order of perturbation
theory. The improvement is universal in the sense that it affects all observables
which transform trivially under the renormalization group.

The improvement parameters g° with dimension —2s<d, <0 depend on 4,
Ay, and (g8),, <o- To achieve improved convergence it suffices to take the leading
order terms in an asymptotic expansion in inverse powers of 4, as was proven in
[Wie 87]. The expansion coefficients are Symanzik’s improvement constants. To
compute them with the method which we describe here it is not necessary to have
control over the renormalization group flow down to the physical mass scale. The
renormalization scale can be chosen to be arbitrarily large. The improvement
conditions are then imposed at a large scale in units of the physical mass.

The technical framework of our paper is a perturbative analysis of the
renormalization group differential equation along the lines of Polchinski’s proof of
the perturbative renormalizability of @4-theory. Differing from Polchinski’s work
we expand the effective action in terms of normal ordered products of the field ¢
with respect to the free covariance. The expansion kernels satisfy a Riccati type
system of differential equations without linear terms. This system is used to iterate
estimates on the order of perturbation theory. Infinitesimal renormalization group
transformations were first considered by Wilson [Wil 74]. Brydges and Kennedy
have proved the existence of nonperturbative solutions to the renormalization
group equation for sufficiently small changes of the cutoff [Bry 86].

The paper is organized as follows. In Chap. 2 we establish the renormalization
group equation for the effective action and illustrate it graphically. Chapter 3 is
devoted to the description of the boundary value problems which we investigate
here. We perform the perturbative analysis in Chap. 4 under the assumption that
the improvement conditions have well behaved solutions. Theorem 4.12 of the
s-improved convergence is proven in Chap.4. In Chap.5 we establish the
Corollary 5.10 of the uniqueness of the continuum limit. Finally we prove
Theorem 6.5 of the existence of solutions to the improvement conditions in
Chap. 6. A generalized perturbation theory, where we expand the effective
potential into a power series with respect to the bare nonrenormalizable coupling
constants, allows us to put sufficient bounds on the improvement parameters.

2. The Renormalization Group Differential Equation

Let ¢ denote a real scalar field in four Euclidean dimensions with a smooth
momentum space ultraviolet (UV)-cutoff A,. The free propagator v(A4,) is defined
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by the Fourier transform of
K(p*/43)

21
p*+m? 1)

upldo)=
By K we denote a smooth, positive, and monotone cutoff function which takes the
value K(t)=1 for 0=t=<1—¢ and K(t)=0 for > 1. Without loss of generality we
can assume that 0 <|m| < A4,. Let the action S(¢|4,) consist of a quadratic term
So(@l4)=(1/2) (¢, v(A,) " * @) and a not necessarily local interaction term V(¢|4,),

S(pl4o)=So(@l4o)+ V(gl4). (2.2)

By dp,4,(®) we denote the Gaussian measure with covariance v(4,). The
generating function Z[J|4,] of the cutoff Green’s functions is an expectation value
with respect to du,4,(®),

Z[J|Ao] = [dptyap(ple VOO0, (2.3)

The field independent term in V(p|4,) is fixed by the normalization condition
Z[0|4,]=1.

Let us investigate the theory by integrating out the degrees of freedom which
correspond to fluctuations with momenta 4 <|p| < 4, in (2.3). For this purpose we
split the propagator v(A,) into a low momentum part v(A4) and a high momentum
part I'(A, A,),

v(Aog)=v(A)+T'(4,4,). (2.4
This induces a splitting ¢ =y + { of the field ¢ into a block spin i and a fluctuation
field . The block spin needs not to be rescaled, as no anomalous dimension is
generated in perturbation theory. An effective action S(ip|4) in the sense of Wilson
is defined by the quadratic term S(y|4)=1/2(p,v(4)” 'y) and an effective

otential V(yp|A),
’ R N R @3
Let us rename the block spin and write V(¢|A), where ¢ has an UV-cutoff 4. The

dependence of V(p|4) on A is described by the renormalization group (RG)
functional differential equation [Wil 74, Pol 84]. Let t(A4)=dv(A)/dA and

0 0 2
Ay n= | = 0(A) — | =Qn)* [d*pi(p|A) ————. 2.6
(4) <5¢ ( )5(p> (2m)* {d*po(p] )5go(—p)5<p(p) (2.6)
Proposition 2.1. The effective potential V(p|A) satisfies the RG equation
L yiginy= (-2 viglay ity L) — Ay ) Vigl) @)
EY plA)= 2\\6e @|4),v 50 v(A) ®|1). .

Proof. Let {->r4, 4, denote the expectation value with respect to dpuy 4 4,/(). B
the change of covariance formula [GJ 87],

0 1
—Vwld) — . —V(y+{|40)
e = A e
oA 2< I'(A, Ag) >F(A,Ag)

1 0
<<<5C V(yp+ L Ao), T(A4, Ao) CV(w+CIAo)>

_Ar(A,Ao)V(U)“i‘C'Ao)) e_V(w+C|A°)> ) (2.8)
I'(4, Ao)
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where I'(A4, A,) = 0I'(A, A,)/04 = — i(A). In the limit A— A, the Gaussian measure
dpirs, 4() becomes a Dirac measure. This establishes the RG equation at
A == Ao. I:I

In the momentum space representation the RG equation takes the form

V(el4) _(27r )<5V(<P|A) Vipld)  3*V(gl4) ) (29)
o4 o¢(—p) op(p)  d¢(—p)oe(p)

With our choice of an UV-cutoff the right-hand side of the RG equation is
invariant under the full Euclidean group, and ¢— —¢. We will assume these
symmetries to hold for V(¢|A4) by imposing them on the initial data V(p|4,)
=V o).

Let us expand V(¢|4) in terms of normal ordered products of the field ¢ with
respect to the free propagator v(A4). Normal ordered products are defined by
: P(@) iy 0y =€xp(—1/24,4))P(¢) for polynomials P of ¢,

1 2n d4pi . 2n
ol =g+ T i 62 Jemrs( 5 n)

fd*pi(

X I/Zn(pls . ’p2n|A <1_[ (P ) v(A) * (210)

The dependence of the V-kernels V,,(-|4) on A is described by a Riccati type
coupled system of differential equations. Let ¥ denote the index set

{m Lk)y:1<=m 1<I<m, 0<k<2min{l,m—I+1}—1}
of integer three tupels, and F,, ; , the combinatorial factor
Qk+1)2l—k—D!2m—D)—k+1))~!
Proposition 2.2. The V-kernels satisfy the RG equation

0 k+1 d4q1
0/1 Vln(pl’ . .,p2n|A)_(m,l,Zk)e m,l, k[( H (27'5)4

et 21-k—1 k+1 a k+1
X(27‘E)45< Z pn(z)+ Z q1> <0A H U(qj|A)>

X VolDr1ys s Prai—k =1y Q15 -+ > Qe+ 114)
X I/Z(m—l+1)(pn(21—k)’ coos Prany —q1s-00s —qi+114). (2.11)

Herethesum )  includes a summation over all permutations we %, _.
(m,l,k)e®
The Proof of Proposition 2.2 is deferred to the appendix.

Let us introduce the following graphical notation
P2 .

2n
(27)48(2 p1> Von(Pps oo aPp A= Py Dan
|=
vigla) = ——,

TCINE . (2.12)
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Reversing arrow means multiplication with —1. Integration over internal
momenta in connected diagrams is understood. A cut means differentiation with
respect to 4. The RG equation for the V-kernels takes the form

Pr(22-k-1) P (21-k)
Pa |
J
T Pn = Z Fr, 2,k
(m, 2,k)ew
n=m-k

The graphical representation illustrates how the RG builds up the effective
potential V(¢|A) from its initial value V(p|4,) when the cutoff is lowered. The
right-hand side of (2.13) is an infinite sum of connected diagrams with a fixed
number of external legs. Each of these is well defined due to the UV- and IR-cutoff
in the free propagator.

3. The Renormalization and Improvement Conditions

Let us define a sequence of initial value problems for the effective potential V(¢p|A)
over a scale interval [Ag, 4,]3 A, where Ay is the renormalized and A, the bare
scale.
A sequence of bare potentials V¥(¢p|4,)=V(¢p), which is labelled by the
improvement index se€ {0, 1, 2, ...}, is defined by
Vo= 3 a0, x.oldo). (1)
Here 0,(x, p|A4,) denotes a local composite field which is normal ordered with
respect to v(A4,). The corresponding bare coupling constant g2 has the classical
dimension d, in units of mass. We sum over a complete set of linearly independent
0 x, \A,) with d,= —2s which transform like scalars under the group O(4) in
Euclidean space. The initial value V%(¢) is parameterized in terms of V-kernels
V%(py, ..., Pay,) With dimension [4 —2n] in units of mass and O(4) invariant Taylor
expansions of order 4 —2n+2s,
Vs = L g0 Tprnp2). (32)
wen
Here {a} denotes the degree of the V-kernel whose Taylor coefficient is gJ*. In other
words g2*=(D,V55)(0,...,0), where D, is a differential operator of order
4—2{a}—d, By T(p,....,p,,) we denote the corresponding invariant homog-
eneous polynomials of degree 4 —2n—d,.
Consider for instance s=1. The bare V-kernels Vy'(p,, ..., p,,) take the form

VD1, o P2 =0, 180 + 83" T +25'(PD)?)

[ 3 3
+0,2 (3" +gd' ,le?+g21,21pipj +8,389" . (33)

1= Lj=

t+j
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The parameters (g7",g9",83")=(g%")s,>0 are the mass counterterm, the wave
function renormahzatlon and the bare ¢*-coupling constant. The additional
parameters (g9',...,8%")=(g0")s, - -, are the improvement counterterms of first
order [Sym 841].

The integration of the RG equation (2.7) with the initial condition (3.1) yields a

trajectory
[Ar. AoTs > V(@I A0, (80%)a, — 2=V (0l 4),

where the dependence on the initial data is shown explicitly. Its boundary value
V(| Ag)=V*(¢) is called renormalized effective potential. It has the form

VRS((P)— Z ga" [ d*xO,(x, | Ag) + R*(¢), (3.4)

where R** denotes a nonlocal remainder term.
Let us impose the following renormalization conditions on the boundary values
g8 =gi(Ayg) of the running coupling constants g3(4)=g, (A4, Ao, (g)")a,> - 5) With

dimension d,=0, s
- ga(AR’AO’(gg )db; —25):5a. 3g§a (35)

where g% denotes the renormalized ¢*-coupling constant.

In the unimproved case, which corresponds to s=0, the renormalization
condmons determine implicitly the bare parameters (g2°),, s, as functions of A,
Ay, and g% The continuum limit of the effective action is defined by

Verl(old, A, g5)= lim Vipld, 4o, (g3°(Ao, g €3))a, > 0) (3.6)

for A= Ay, where the parameters (g7%),, , are tuned according to the renormal-
ization conditions. The RG maps the continuum theory exactly to an effective
theory with UV-cutoff A. The price is the nonlocality of V<™(¢p|4, A, g%)
= V(| A). There is much evidence that ¢3-theory possesses a trivial continuum
limit beyond perturbation theory [Wil 74]. The implicit equations for (g2°),, > o do
not admit solutions for arbitrary A,, once gX is fixed. However in perturbation
theory the continuum limit exists to every order of g% [Pol 84, Gal 85]. The speed
of convergence can be estimated by | VO(-|4gx)— V(- |AR)|| =O(Ag/Ae)* ¥,
where 0 <k <1 takes into account logarithmic corrections which depend on the
order of perturbation theory. We will later define the norm | - || precisely.

For a given index s =1, let us impose the following improvement conditions on
the coupling constants g&* with —2s5<d, <0:

8l AR A0, (85 )0y 2 - 29 =84 ™ (3.7)

Here gReont= geont( 4 ) are the boundary values of the continuum running coupling
constants gio™(A)=g°"(A4, A, g¥). The renormalization and improvement con-
ditions together determine the parameters (g2°), > _,, as funct10ns of A, Ag, and
g We will prove to every order of perturbation theory in g% that V®(¢) converges
to its unique limit V*<"(¢), when the cutoff A, is removed according to this
scheme. Here the crucial observation is

V(- |AR) = VR (- | AR) || = O(A g/ Ag) > V¥,

which defines Symanzik’s improvement concept in the asymptotic regime
Ag/Ay<1.
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4. Renormalization Group s-Improved Perturbation Theory

Let the bare parameters (g5°),, > -, be tuned as functions of A, 4, and g5 such that
the renormalization and improvement conditions are satisfied. To investigate the
V-kernels in s-improved perturbation theory we expand

VaulD15 -5 Panlds Ao, (g‘?s(AO,AR, gg))da: EPWES Zo I;l(ia)(pl’ coes Ponl 4, Aoy AR) (gg)a~
=
4.1)

The expansion coefficients V5®(p,, ..., paul A, Aoy AR)= V5 (py, ..., p2alA) describe
multiparticle interactions whose strength can be measured with the norm
W2 1l=  sup [V3py, oo panl )], (4.2)
Ip1ls..s [p2nl S 4

which exists as V3®(p,, ..., p,.|4) has the compact support |p;| < A for 1 <i<2n. Let
P(n)=P"[InA,/Ag] denote a polynomial in In(4,/4) of degree n with positive
coefficients. We define P(n)=0 for n<0.

The initial conditions for the perturbative coupling constants with negative
dimension are obtained from the expansion

ga (AO> R> g3)_ Z gOS(a) >AR) (g?)a

Let us state the following assumptions upon the initial values g2*®(A,, Ag) with
—2s<d,<0.
(1) To zeroth order and to all orders a=1 for {a}>a+1,

25 (A, Ag)=0. (4.3)
(2) To all orders a>1 for {a} <o +1,
lg* (Ao, AR)| = AGFP(20—{a}). (4.4)

We will later prove these assumptions to be satisfied.
The boundary conditions for the perturbative coupling constants g&®(A)
=g5(A, Ay, Ag) with d,=0 are the renormalization conditions

gz(a)(AR) = 5a, 3501, 1- (45)

The expansion coefficients V3, (py, ..., pz,,]A) satisfy the RG equation with the
above boundary conditions on the running coupling constants gi®(A) with
dimension d, = — 2s. All V-kernels vanish to zeroth order and only finitely many
V-kernels do not vanish to order «, namely those with degrees 1 <n<o+1. This
implies that (0V3®/0A)(py, ..., P2slA) is to order « a finite sum of terms which are
determined by V-kernels of lower orders 1 < <a—1. We prove estimates on the
nonvanishing V-kernels by induction on the order «, where the boundary
conditions are taken care of by Taylor expansion. As a result ||[V3@(-|4)| is
bounded by A4*~2"P(2a—n). Here P(-) denotes a polynomial of the above form
and 4%~ ?"is a dimension factor. The proofs are written out explicitly, as these will
serve for reference later.

The effective potential V(ip|4) as defined in (2.5) is a generating function, where
the block spin plays the role of a source. It generates the free propagator
amputated connected Greens functions in the theory with UV-cutoff 4, which is
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defined by the free propagator I'(4, 4,) and the interaction V({|4,) [Mac85]. Asa
consequence the V-kernels have perturbation expansions in terms of connected
diagrams. The following Proposition 4.1 expresses the fact that with a given
number of vertices of a specific type one can only build connected diagrams with a
certain maximal number of external legs. We restrict our attention to solutions of
the RG equation with this property [Pol 84]. In Proposition 4.1 we prove that
there exists a solution of the RG equation (2.11) with the appropriate vanishing
properties.

Proposition 4.1. To order o.=0 for all degrees n=1 and to all orders « =1 for all
degrees n>a+1,

V3 py, ..oy Paul4)=0. (4.6)

Proof. The vanishing is consistent with the above boundary conditions. It also
satisfies the RG equation. (0V3®/0A4)( -)is an infinite sum of terms proportional to
VP v3ehy (-) with n=m—k and 0<p=<a. Suppose that n>o+1 and
[£6+1, then m—I[+1>a—f+k+1. Therefore each term contains a vanishing
kernel. [

A dimensional analysis yields the following estimates for the free propagator
v(p|A4) with UV-cutoff A.

Lemma 4.2. There exist positive constants Ao, A,, and B, for all n=0, such that

d*p
< 2
| on)* [u(pl )| S ApA~,
d4
J Gyt 1P S 4,4, (4.7
4 | as(pla) | _ B,
,,1,..%":1:511115[51?”‘ l: A3

Let us introduce the following notation for i,je {1, ...,2n}, and
pe{l, ..., 4} % =0/opt—ao/op .
Given N = {(i,j, w): 1 §l§|N|} as above, we define
oy= J1 0, and py= [] .

(i, j,m)eN (i, j.w)eN
Let dy=1 for |[N|=

Proposition 4.3. To every order a =1 for all degrees 1 <n=<a+1 the norm of the
V-kernels is bounded as follows:

ONVE) (1) £ A% 2"~ INP20—n). (4.8)

Proof. The estimate is proved by induction on the order of perturbation theory. All
V-kernels are independent of A to first order, as Proposition 4.1 implies
@V5V10A) (py, ..., P2n|4)=0. By the initial conditions:

I/Zsfll)(pl?"WPanA):én,Z_‘— Z gt?S(l)’Tt‘z(pla'-prn)' (49)

—255da<0
{a}=n
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The assumption (4.4) implies
IVaDCID=0,.+ ¥ AFPR—{a})O(1)- A*72" 74,

—25<dqa<0

{a}=n
<AYHPQ—p), (4.10)

which proves the estimate (4.8) to first order in the case [N|=0. The general case
follows by application of dy to Eq. (4.9).

Let us suppose that the estimate is true to order «—1=1. The RG equation
together with Proposition 4.1 and Lemma 4.2 yields the inequality

oV -
< )('IA )| = Z ) o(1)- A3
oA B=1 miBew
m—a':[_igl_gnﬁ+1
X VP - V=R (- 1)) (4.11)

to order o. Here the right-hand side is a finite sum of terms which are bounded by
the induction hypothesis. For all 1 £n <« + 1 simultaneously we have the estimate

s(a) —
(| s 5 om

p=1 (m,l,k)e%
m—k=n

m—a+pfSISp+1
X A%ZHPQB— ) A+~ 2 VPO — ) — (m— 1+ 1)),
<A3T2PQRo—n—1). (4.12)
When 0y, is applied to the RG equation (2.11), each differentiation with respect to
the momentum variables acts on either of the factors o(- ), V5/P(-), or V3 2\ 1/(+).
We suppose that the g, , ;-integral has been performed. Taking norms all of these

factors are bounded by Lemma 4.2 and the induction hypothesis. The above
argument leads to the estimate

We integrate this inequality from A, to A for 4 —2n—|N|< —2s with the initial
condition (0, V25®)(-)=0 which completes the induction in this case,

doy Vi )
(5o
dod A’

<[ oAt M)
A

oA

<66N S(a)>(‘ |A)H §A3—2n*[N|P(2a_n_1). (413)

1@ V3 (- 14)] < y° ar

SA4‘2”"N1P(2a—n). (4.14)

For the running coupling constants g5®(A) formula (4.13) leads to the estimate

s(a)
(%)

< A% 1PQo—{a}—1), (4.15)
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which is integrated from A, to A for —2s=<d,<0. Taking into account the
assumption (4.4) we have

Ao gS(a)
g =1ga" @]+ | dA' || = | (4)
1 o4

< A%“PQ2u— {a}). (4.16)

For d,=0 we integrate (4.15) from Ay to A, the initial values vanishing by the
renormalization conditions to order o>2,

OIS T da KagS(a)> A')’,

oA
A /
j A’d“P 200—{a}—1)
<A“aP 2 {a)). 4.17)

Finally we reconstruct the kernels with 4 —2n= —2s by Taylor expansion,

stfla)(pl’ A p2nlA) Z gS(a)(A)T(pl’ T pZn)

Y
1 1 (1_t)5—2n+25
+ - S —
@n)* 2" 2 =250 (5—2n+2s)!
X ONV3) APy - tD2al Py (4.18)

which yields the estimate

1V3AP1s - s P2al Al = 2, A%PQo—{a})- O(1) 4%~ 2 e

{a)=n
+ Y A*7 NPy ). O(1)AM

IN|=4=2n+2s
<A*T2"PQo—n). 4.19)
Here we used the bounds (4.16) and (4.17) on the running coupling constants and

the bound (4.14) for the remainder term. An analogous argument for the
derivatives of the V-kernels completes the induction. [J

We will now investigate a set of auxiliary quantities which we call W-kernels. At
Ay they are derivatives of the V-kernels with respect to gX*, the renormalized
coupling constants with d,= —2s. The bare coupling constants depend on the
latter implicitly through the renormalization and improvement conditions.

Definition 4.4. Let us define quantities
VVZn,b(pla ERRE] p2n|A9 AO’ (ggs)dcg - 23) = VVZSn,b(pI’ (R p2n|A)
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by
Won (P15 -5 P2nl 4, Ao, (g?s)dcg 2 =WV, D) (P1s - P2nl A, A, (g?s)dcg ~25)

oV, ;
Z < Z )(pl’ . 'ap2n|AsA0a(g:) )dcg—Zs)

- 45225\ 0gYs
a -1
X —gOS (4, A0, (8)a> —29) | - (4.20)
ag a,b
Here (0g/0g°) ! denotes an inverse matrix, and W; a linear differential operator
with d, = —2s.

The W-kernels are completely determined by the V-kernels. For the further
analysis however, their dependence on A is better characterized by the following
RG equation.

Lemma 4.5. The W-kernels satisfy the following system of differential equations,

OWinp _ krLdtg;
< oA >(P1,~~,Pzn|/1)—(m’l’zk)eg mlkj< (27'6)

X
|j5n.mfk”p’:p_d >Z 5 5{0},m—kVVan,a(p17 (EE) pZnIA) ) Dalp/=0]
aZ T &8

21-k—1 k+1 a k+1
><(2n)45< Z pnm+ p) q,)<a A 11 v(quA))

X(WzsLb(Pm)’ ~"’pn(21—k—1)’q1’ s Gt 1l4)
X st(m—1+ 1)(P;z(2z—k), “',p;t(Z(m—k))a 1> = Qi1 D)+ W) (421)

Here 1|, - . f(X")= f(x), and the sum runs over all a such that d,= —2s. The initial
conditions at A, for the W-kernels are

VVZn s(P1s "'5p2n)=d >Z 5 Ou s TD1s 5 P2n) - (4.22)
wen
The proof is deferred to the appendix.
The kernel W3, . (py,...,ps.l4) 1s expanded exactly like the kernel
5uD1s - Panld), 1.€. first in a Taylor series of order 4 — 2n + 2s with remainder term
and second in an s-improved perturbation series. The Taylor coefficients are
constants.

Proposition 4.6. The zeroth order W-kernels are independent of A and given by
Wanhp1s u-,pz,.l/l):d >Z_2 Oa, b TalP1s -5 P2n) - (4.23)
faj=n
To every order 0. =0 and for all degrees n>a+s+2,
WPy s P2l A)=0. (4.24)

Proof. As the zeroth order V-kernels vanish, we have (0W5(°)/04)(-)=0 by (4.21).
The initial conditions (4.22) imply (4.23). They are compatible with (4.24) as the
highest degree W-kernel with nonvanishing zeroth order has n=s+2. In the RG
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equation (OW5),/04)(-) is an infinite sum of terms which are either proportional
to Wil )Vse=®. \(-) with n=m—k or

W OWSEOVaaba)()

with {a} =m—k. Both types contain a vanishing kernel for n>a+ s+ 2. Consider
for instance the first type with ISf+s+2, then m—I+1>a—f+k+1 and
Proposition 4.1 applies. [

Proposition 4.7. The norm of the W-kernels is bounded to every order 0.2 0 and for all
degrees 1=n=<a+s+2 as follows:

ION W) (- [A)| S A* 29~ N P20 —n+ {b}). (4.25)

Proof. To order zero W34 py, ... Dol A) =0, 1y To(P1s - .-, P2n)- Here Ty(py, ..., pa,)isa
homogeneous polynomial of degree 4 —2n —d, with d, = — 2s. The above estimate
is satisfied to order zero.

Let us suppose that it holds to order « — 1 = 0. By Lemma 4.5, Proposition 4.6,
and Lemma 4.2 the W-kernels satisfy the inequality

oWz - )
( “an b>( 1) Ilé ) ) O(1)- A3 W) 1) [ VSR, (- )]
=1 (m, L k)e%

m—k=n
m—at+pB<ISP+s+2

+ Z 0(1)'A2k+2{a)+da+|M1|+|M2| 7
pry+to=a daz —2s (m,l,k)e¥ IM 1|+ |M3| 24— 2{a}—dg
m—k={a}
m—0=<I<y+s+2

WS- 1©@w W5 CIAD - 100, V3G - 14 1) C LD+ WV (4.26)

to order . Here M, and M, denote index sets of triples (i, ) with 1 <i,j <2l and
14, j<2(m—141) respectively (and 1 <pu<4). By WeV we denote the terms,
where W and V are interchanged under the sums over (m, [, k) € 4. The right-hand
side is bounded by the induction hypothesis and Proposition 4.3. It is a finite sum
of terms in which no order o W-kernels appear. The inequality (4.26) yields the
estimate

|
o

H( gaa%))(-m)].é Y O AR PR+ (b))
p=1 (m,l,k)e¥

m—k=n
m—a+B<I<B+s+2

X A2 VPO (g — f)—(m—1+1))
+ X 2 > ) o(1)
BHy+d=a daz —2s (m,l,k)e% IMy|+|M2|£4—2{a}—da

m—k={a}
m—0=<I<y+s+2

XA2k+2{a)+da+|M1|+;M2|—7,A4—2n—daP(2ﬁ_n+{a})
><A4_21_d”"|M1‘P(2y—l+{b})~A4_2("‘_HU_IM2|
x PRo6—(m—1+1))

< A3 BP(y—n+{b}—1). 4.27)
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By a similar argument we conclude that

AN
oA

for all 0y with [N|=1 to order a.
The inequality (4.28) is integrated from A, to A for 4 —2n—|N|< — 2s with the
initial condition (OyWar?)(-|4)=0:

aN ZS:la)b ’
e ians | |5

A3 =INIPpQy —n+ (b} —1) (4.28)

Ao !
<j_ dA A,4 2n—dp— ]NlP(z(x n_1)

§A4 m=d=INIp(2g —p). (4.29)
The remaining W-kernels with 4 —2n—|N|= —2s are reconstructed by Taylor

expansion,

285;“)17(1’1, . '9p2n|A)=5n,{b}' Ty(pys s P2n)
1 __£\S—2n+2s
2n)* 722 ) =4Z'2n+2s (gdt ((15 —gn +2s)!
X (ONW3 ) (EP s - s tD2a] A) - Py - (4.30)
Here the Taylor coefficients are independent of A. By taking norms we have
WD S0y - O A28 5 O(1) - AN

IN|=4—2n+2s
x A*7 2= 4~ INIp(2g —n + {b})
< A4 P2y + (b)), 431)

+

which completes the induction step in this case. In the same way we obtain
IR (- |A)| < A%~ 2%~ NIPQy —n + {b})
for4—2n—|N|= —2s. [

We will now introduce another set of auxiliary quantities which we call
X-kernels. At Ay they are total derivatives of the V-kernels with respect to A,
where the bare coupling constants (g0%),,» -,, are tuned according to the
renormalization and improvement conditions.

Definition 4.8. Let wus define quantities X,,(py, ..., P2uld, Ao, (80, - 25)
= X5,(p1, .-, P2nl4), the X-kernels, by

Xou(P1s s P2ul4; Ao, (g s)daz 2 =XV D) (P15 -5 P2ul 4, Ao, (gt(z)s)da;—Zs)

_| 9 agb
X V2n(p17 ”',panA,AOs (ggs)da;—2s)7 (432)

where X® denotes a differential operator and Wj is introduced in Definition 4.4.
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The dependence on A of the X-kernels is described by a RG equation which is
similar to that of the W-kernels.

Lemma 4.9. The X -kernels satisfy the following coupled system of linear differential
equations:

aXSZ'l k+1 g4 ;
<—> (P12l )= 3 Fm,k‘lj<n (23“)

aA (m,lLk)e¥ ji=1

x [am,kl

> (S(b},m—kVVZSn,b(pla coos Dol A)Dy

p=p dp=—2s

20-k-1 k+1 g k+1
X(2”)45< X Pt X ‘b) (:92 11 U(‘Ij|/1)>
i=1 ji=1 J

=1

p’=0]

X (X3P -+ s Przi—tk— 19 Q15 -+ Qe+ 114)
X Vem—1+ 1)([’;:(2141(), '”’p;t(Z(m—k)b i =i 1|+ XSV). (4.33)

The proof of Lemma 4.9 is deferred to the appendix.

The X-kernels with 4—2n=> —2s are expanded in Taylor series of order

4 —2n+ 2s with remainder terms. By Definition 4.8 the Taylor coefficients vanish

identically, and the X-kernels are nonlocal in this sense. We can restrict the

discussion to (OyX5,) (P15 ---> Paul4) With4 —2n—|N| < — 2s. The initial values at 4,
are bounded with the identity

aaN VZSn

(ﬁNngl)(pb"'»I)Zn):_( oA )(p1>"'3p2n|A) (434)

A=Ap

for these X-kernels and Proposition 4.3. Finally, the kernels X% (p;, ..., P,l41) are
expanded into perturbation series whose coefficients X5*(p,, ..., p,,|4) we are now
concerned about.

Proposition 4.10. The X -kernels vanish to zeroth order. To every order x> 1 and for
all degrees n>oa+s+1,

X5Apys s p2nl )=0. (4.35)

The proof is identical to that of Proposition 4.6. The vanishing is consistent with
the initial conditions which are imposed by (4.34), and with the RG equation (4.33).

Proposition 4.11. The norm of the X -kernels is bounded to every order « =1, and for
all degrees 1<n=<o+s+1 as follows:
A4 —2n—|N| < A

2(s+ 1)
—> PQou—n—1). (4.36) -
Ao

OnXE) (- 10] < T

Proof. The estimate is proven by induction on the order o. To first order the
X-kernels are independent of A, and determined by the initial conditions at A,.
For 4—2n—|N| < —2s the identity

(OnXE0) ()= — (00N V3P /0A) (- 40)
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implies
A4 2n=IN|
[(ONXE) (1)) = P2n—1),
0
A4~ 2n=INL /1 g\ —(4=2n=IN]
=\ P(2n—
Ao <A0> (@n=1)
A4—2n—|N| A 2(s+1)
S———\| P2n—1). 4.37
=T, <A> @n—1) (4.37)

Let us suppose that the estimate holds to order «—1=1. With Lemma 4.9,
Proposition 4.10, and Lemma 4.2 we infer the inequality

S

Vo= (- 1]

= D SN I NG e TR

p=1 (m,l,k)e¥%
m—k=n

m—a+p<I<Pp+s+1

+

pty+to=a dp=—2s (m,lk)e¥
m—k={b}

m—90<I<y+s+1
X O(1)- AP 200 LTS |4 |
X (@, X5V C LA - 1@nr, Vit -4 1 DI+ X o V.

[M1]+ M3 =4~ 2{b}—dy

(4.38)

The right-hand side of (4.38) is a finite sum of terms which are bounded by the
induction hypothesis, Proposition 4.3, and Proposition 4.7. It is linear in the
X-kernels, and no order o X-kernels appear. Thus
A 2(s+1)
2p—1—1
( 1 > P2p )

Xs(a) A4 21
”( 2n 0(1) A2k-3
Ao

s
p=1 (m,l,k)e%
m—k=n
m—a+f<I<p+s+1

X A2 OP (g — B)—(m—1+1)

+

pryTo=a dp> —2s (mLKe¥  |Ma|+|Ma<4—2{b)—dp
m—k={b}

m—O6<I<y+s+1

><0(1)-A2k+2{b)+db+|M‘|+lM2l_7-A4_2"_dbP(2ﬂ—n+{b})
A4—21—|M1| A 2(s+1)
—<v PQ2y—1—1)

4o

Ay
X A+THmS U DZIMAPOS (4 1)),

X

A 3—2n A 2(s+1)
< - —n—2). 4.
=4 <A0> PQRx—n—2) (4.39)
By an analogous argument we infer the estimate
6 Xs(a) /13 2n—|Nj A 2(s+1)
H( on ) |A)H S A‘) PQo—n—2). (4.40)
0
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The X-kernel on the right-hand side of the RG-equation preserves the convergence
factor (4/4,)** "V in the iteration. The inequality (4.40) is integrated from A, to A.
With 4 —2n—|N| < —2s, and the above estimate on the initial values, we conclude

that 0V i 20X
oA 0 oA’
<A INIPQo—n—1)
AOdA/ A/4—2n~|N| A/ 2(s+1)
_—— | — 20—n—2
+,{A’ 1, (/10) PQRo—n—2)
4—2n—|N|
M4 (A

2(s+1)
== /To> PQRo—n—1), (4.41)

A

IENXEN (1] = +]da

(149

which completes the induction step. Note that A4 appears to a negative power on
the right side of the estimate. []

We are ready now to show that the renormalized V-kernels approach their
continuum limit values in s-improved perturbation theory with an s-increased rate
of convergence.

Theorem of s-Improved Convergence 4.12. Let the bare parameters g5 with
dimension d,> —2s depend on A,, Ag, and gX such that the renormalization and
improvement conditions hold. Let us assume that g2*™(A,, Ax)=0 for a=1 and
{o} >a+1 and that |g2%(A,, AR)| S A5 P(20.—{a}) for « =1 and {a} <o+ 1, where
denotes the order of perturbation theory in gX. Then the continuum limit

lim VZSr(ta)(pl’ R pZnIA’ AOa AR)IA=AR = strucom(a)(pl’ (3} p2n|A7 AR)IA=AR (442)

Ap—

of the renormalized V-kernels exists to every order &= 1 of s-improved perturbation
theory for the degrees 1 En<o+ 1. The remaining V-kernels vanish identically. The
rate of convergence in (4.42) is bounded as follows:

2(s+1)
IV 14, Aoy AR) = V3™ O A, AR | [g=a S AR <£5> P20 —n).
Ao (4.43)
Proof. Let =1, and 1<n=<a+1. The X-kernels were defined, such that their
renormalized boundary values are the total derivatives of the V-kernels with
respect to A, at Ag, where the parameters (gf,’s)d‘zg _,, are tuned according to the
renormalization and improvement conditions. Thus for 4,,=4,,

Va4, Ao, AR) = V5 (14, Agos AR Lt e

Aoo
g /i[ dAb||Xg:)(|A> A0>AR)H |A=AR
0

400 d A}y A\206+ 1) Az
< A4~2n< R> P(ZazAn—l) lo 0
=44 E

A \206+1) AT
< f4—2n “*R pRa=mi | 20 . 4.44
sai=| () s .

Cauchy’s criterion implies the existence of (4.42) and the estimate (4.43). []
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5. Uniqueness of the Continuum Limit

The limit values V52°™@(.|A) in Theorem 4.12 do not depend on the improvement
index s > 0. The continuum limit values V5°"@(- |4) are uniquely defined within the
index s =0 scheme. We prove this to every order of perturbation theory by means
of a homotopy to the index s=1 scheme.

Let us introduce auxiliary quantities which we call Y-kernels. They are closely
related to the index zero W-kernels and we refer to these for the proofs of
Lemma 5.2, Propositions 5.3, and 5.4.

Definition 5.1. Let us define kernels
Youu(P1s s P2al 4, Ao, (g?S)ng 2= Y5, (P15 s P2ul )
by
Youo(Pis oo Panl s Ao, (8294, 2 <20 = (Y5 TVau) (P s P2l A, Ao, (82%)a, = —25)

3 [V, ‘
Z <‘\g03>(p17‘ '>p2nlAvA0>(g?5)dtg-25)

) .

x A A0z 2 |+ (51
l:(ag ( 0 (8¢ )a 2 " )
where d,,d, =20 and 1<a,b<3.

The dependence on A of the Y-kernels is described by the following RG
equation:

Lemma 5.2. The Y-kernels satisfy the following system of differential equations:

0Y3,p _ kL diq
< 8/1 )(pl’ ""pZnIA)_“"’l%;‘)EgFm 1, k§< n (271')

><[5nm kllp =p 1 m~kYZSn,1(p1’~-~sp2n|A)1|p’=0
_51,m~kY2n,2(p1a "~sp2nIA)%D["2],]p’:0~52,m—-kY25n,3(p17 --~’P2n|A)1|p':o]

4 2l-k—1 k+1 0 kt+1
X (27[) 0 < Z pn(z) + Z q]) <6A U(qJIA)>
j=1

X (Y3, o(Pr1)s oo Pr@i—k—1p 1> > Qi+ 114)
X Vaym-1+ 1)(p;z(21—k)’ e P;c(z(mﬂq), Q15 — Qi+ 1| A)+ YO ) (5.2)

with the initial values
Yzorf, B 15 s P2n) =0, 1(Op, 1+, 2p7)+ Op, 205, 3 (5.3)
at A,.

Y3 o(P1s - Panl4) 1s expanded in an s-improved perturbation series with

s(a)

coefficients Y33(py, ..., Paul4).

Proposition 5.3. To zeroth order the Y-kernels are exactly given by the A-independent

expression )
st,(,?},(pl, cos PanlA) =38y, 1(Op,  + 0, 203)+ 0y, 20,3 - (5:4)
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To every order a =0 and for all degrees n> o+ 2,
VP 1s - P2nl4)=0. (5.5)
The nonvanishing perturbative Y-kernels are bounded in norm as follows:
Proposition 5.4. To every order 0 =0 and for all degrees 1 <n<a+2,
@Oy Yo (1) S A% 2= = WIP(2o—n+ {b}). (5.6)

Let us finally introduce another set of auxiliary quantities, the Z-kernels. At A,
they are the total derivatives with respect to the bare coupling constants g2* with
dimension —2s=d, <0, where the renormalization conditions are kept fixed. We
omit the proofs of Lemma 5.6, Propositions 5.7 and 5.8.

Definition 5.5. Let us define kernels

23 o(P1s - Panld, A, (g?S)dC; —ZS)EZSZn,b(pl’ coes DaglA)
by

Zon (P15 - P2al 4, Ao, (gc Vioz - 20 = (L[ V2,]) (Pu cous P2nl, A, (ggs)dcg ~25)

= a aga Os s
= [6g33 -agl <6ggs> (A> AO) (gc )dcg — ZS)YajI
XValPrs oo P2 Aos (802 20> (5.7)

where —2s=<d, <0.
For the perturbative analysis we characterize the Z-kernels by a RG equation
which is similar to that of the X-kernels.

Lemma 5.6. The dependence on A of the Z-kernels is described by the following
system of linear differential equations:

0Z%,p _ kel dtg,

< 6/1 )(pl, "'>p2n|A)_ o IZ’;,) @ m, 1, kj‘( I:Il (27'()4

X [5n m— kll 1 m— kYZn 1(p19~ 'ap2n|A)1|p'=0
—51,m—kY2n,2(p13 '-~,P2n|A)§D[1 21 |p'=0_52,m—kstn,3(p1a ""p2n|A)1|p’=O]

2l-k-1 k+1 a k+1
xmw<21w+zQQAanQ

X (Z51,5(Da(1)s -+ s Przi—k— 1 415 -+ Qe+ 114)
XVym-1+ 1)(p;:(21—k), oo Dr2om—kyy — 41> - — Qi+ ) +ZeV). (5.8)

Their initial values at A, are given by:

ngx,b(l’v N SMES ., Z} -0 00 p TD1s - s P2n) - (5.9)
{a)_=‘;|



168 C. Wieczerkowski

Let the parameters g2 with d, > — 2s be functions of A, A, and g%, such that
the renormalization and improvement conditions are fulfilled. Z5,(-|4) is ex-
panded in powers of g%, the coefficients being denoted Z5%(-|A).

Proposition 5.7. To order zero the Z-kernels are independent of A and given by

sz(r?)b(pls . "pZnIA)= _, Z:i <05a,b’1—¢;(p1: ~"’p2n)' (510)
{aT=‘:t

To every order =0 and for all degrees n>a+s+1,
Z504(p1s s P2l 4)=0. (5.11)

The nonvanishing Z-kernels can be bounded in norm to every order of
perturbation theory by means of an induction on the order with the RG equation
(5.8).

Proposition 5.8. To every order o =0 of perturbation theory and for all degrees 1 <n
<a+s+1,
[(ONZS2,) (- |A)| S A%~ 2= 4= NP2 —n+ {b}). (5.12)
Let us implement the improvement conditions in two steps. First we take
(89°)-25<4,<0 as independent parameters and impose the renormalization con-
ditions only. They determine (g;°),, >, implicitly as functions of 4,, A, g5, and
(89) - 25 <4, < 0- Second we choose (g0%) - 25 <, < o as functions of 4, A, and g5, such
that the improvement conditions are satisfied. Let us define a homotopy
VouPis s D2nl A, Ao, ( (Ao, Ags g3, t(ga (Ao, Ag, gg))_ 2s<dg< O)db >0>
182 (Aos AR, 85)) - 2524,<0) = Var (P15 -+ P2alA) (5.13)
with € [0, 1] between Vou(py, ..., panlA) and Vs,(py, ..., poalA). Let
VZ':r'nS(a)(pla sy p2n[A> AO: AR)

denote the V-kernel of order « of t-s-improved perturbation theory within the
above homotopy.

Theorem 5.9. To every order « =1 and for all degrees 1 Sn=<o+ 1, the norm of the
difference of the V-kernels in s-improved and unimproved perturbation theory is
bounded as follows:

A\ s A
V(- 1A, Agy Ag)— VIO 1A, Agy A Li- ag S A% ( A—“) pe "’[lnA’o ]

0 R

(5.14)

Corollary 5.10. The continuum limit of the V-kernels is unique in the sense that for all
values s=0 of the improvement index, to every order =0 of s-improved
perturbation theory, and for all degrees 1 <n=<a+1

Vaw™ O A, ARl g= 4= V5" @ [ 4g).- (5.15)
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Proof of Theorem 5.9. By the above homotopy we have
V3214, Ao, AR) = Var®(- 14, Aoy AR 4= 4n

1 a
é(j) dr ¥ 1Z5290 14, Aoy AR g = 4|88 ™ PA(A o, AR)]

=0 —2s=da=<—2

<Y Y A TPRB—n+{a)APQ(u—f)—{a})

=0 —2s<d,=—-2

gA;;-Z"Gﬂ)Z PQo—n). (5.16)

0

Proposition 5.8 applies also for the improvement index ¢ - s, as none of the above
estimates becomes invalid when the bare parameters g2®(A,, Az) with
—2s<d,<0 and {a}<o+1 are scaled by a factor t. []

6. Generalized Perturbation Theory

By induction on the order s of improvement we conclude that the bare parameters
g% with dimension d,> —2s can be chosen as functions of A, Az, and the
renormalized @“*-coupling constant gX such that the renormalization and the
improvement conditions hold to every order of perturbation theory. We prove the
estimates on the nonvanishing orders which we assumed above. For this purpose
we represent them as iterative solutions of a set of nonlinear equations.

Let us consider the initial value problem which corresponds to the improve-
ment index s> 1. Suppose that the bare coupling constants g2 with dimension
d,>2(s—1) depend on A,, Ag, g5, and the bare coupling constants gp* with
dimensions d,= —2s. The V-kernels are expanded to generalized perturbation
series as follows:

VaulPis -+ s P2nl 4, Ao, (gSS(AOa Ap, glsz: (gl?S)db= - 2s)da; —2(s—1)p (gt(z)s)da: ~25)
= IZO V3P, ---,pZnIA,Ao,AR)(g§)“3d [1 , (g2, (6.1)
al = a= — 258

Here the sum runs over integer multi-indices o= (a3, (at,);, = - »,) Whose order is
defined by |¢|=os+ Y  a,.
dg=—2s

Let us impose the following boundary conditions on the running coupling
constants g5@(A)=g3® (A, A,, A) with dimensions d, > —2s.

The coupling constants with dimension d,= —2(s—1) are fixed at the
renormalization scale Ag. The renormalization conditions on the coupling
constants with dimension d,>0 take the form gi®(Az)=4,, ,6, 5. The coupling
constants with dimension —2(s—1)<d,<0 are fixed by the improvement
condltlons 25 A )= g @A) of order s— 1. Here we assume that x| =05, i.€.,

=(03,0,...,0). The coefficients with |¢|>a5 have vanishing boundary values.

The coupling constants with dimension d, = — 2s are fixed at the bare scale 4.
Only the coefficients of order || =1 with «,=J, ,, where d,= —2s, have boundary
values which do not vanish, namely gi®(A4,)=0, ;.
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Let us assume that we can satisfy the improvement conditions of order s— 1 by
an appropriate choice of bare coupling constants gi®(A4,) with dimension
d,z —2(s—1) and a=(a3,0, ...,0) with g8®(4,)=0 for «=0 and for {a} >az+1,
and

|8 Ap) S AFPQRoy—{a}) for {a}<oy+1.

The expansion coefficients, which correspond to multi-indices of the form
a=(03,0,...,0), can be identified as expansion coefficients in (s— 1)-improved
perturbatlon theory by g5®(A4)=g5~'@)(A). The above assumptions constitute
the hypothesis in the induction on the order s of improvement.

Let us define Lg)=as+ Y o {a}—1)+1, ie, 2L(x) is the maximal
de=—2s

number of external legs a connected diagram can have, which consists of a5

vertices with four legs and «, vertices with 2{a} legs respectively where d,= — 2s.

We also introduce the symbol {a}=2u3;+ Y «a,{a}. It is used to estimate
de=—12s

logarithmic corrections which depend on the order of generalized perturbation
theory. Finally, let 6(a,b)=1 for a>b and 0(a,b)<0 for a<b.

Proposition 6.1. To order |a| =0 for all degrees n= 1, and to every order |¢| =1 for all
degrees n>L(q),

Va1, -, 2l 4)=0. (6.2)

Proof. For |a| = a5 Proposition 6.1 reduces to Proposition 4.1, where the improve-
ment orderis s — 1. For || > a5 it is consistent with the above boundary conditions.
(0V5®/0A)(-|4) has an infinite expansion with terms which are proportional to
VSB(- AV _ 1+ ), where p+y=a and m—k=n. Suppose that [ < L(f), then m—1
+1> L(y). Therefore every term contains a vanishing V-kernel. [J

Proposition 6.2. To every order |o| 21, for all degrees 1 <n< L(x) the norm of the
V-kernels is bounded as follows,

250(|a|, a3
H(aNV;;”)(-|A)ngA“”""”‘Aés“z'““a’(-AA—) Y b -, (63

0

Proof. The case |a| = is treated in Proposition 4.3, where the improvement order
is s—1. We assume that |¢|> o, in the following.

The estimate is proven by induction on the order |¢|. To first order the V-kernels
are independent of 4. By the initial conditions at A,

VZSI(IG)(pI: LR pZnIA) = 5!!. (b}n(p JERRRT] p2n) > (64)

for o,=0, , where d,= —2s. As Ty(py,...,p,,) is @ homogeneous polynomial of
degree 4 —2n—d,, we conclude that

V32 1Dl 0(1) - A% 72072, (6.5)

Therefore the estimate holds to order |o|=1.
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Let us suppose that it is true to order |¢/—1=1. The induction step is
performed with the inequality

s(a)
S

= Y O(1) - A2V AV -4 1) 1D -
/}+y=t1 (m,l,k)e%
1Bl Iyl slal =1 m—k=n
m—L(y)+1 SIS L(B) (6.6)

Due to Proposition 6.1 the sum is finite. Using the induction hypothesis we infer
the estimate

“<6st5‘1)> H < Z 0(1).A2k—3
a (m,l.k)e¥
e

8
LIyl < lod - m—k=n
m—L(y)+1§l§L(§)

x A% 21 2s(B1=B3) <i>259(15|”’3) P({ﬂ} —1)
0 A -

0

,— +
u/\ B

w A" 2m=1+1) | g25(131=y3) i 2o mp({ }—(m—l+1))
0 AO Z
A 250(|e|, a3)
§A3—2n.A%S(|G|“a3) (T) P({g}_n_'l) (67)
0

Note that 0(8], f2)+0(y],73) = 0|zl 23) for f+y=0. By a similar argument we
obtain the estimate for [|(00yV5®/04)(-| A)|| with an additional factor A4~ It is
integrated from 4, to A for 4 —2n—|N|< — 2s. Here A appears to negative power
in the estimate. The initial values vanish. Thus

00y V3@
< Y )('IA’)

I@xV39) (- [4)] f A

Ao d A’ A 2s0(|al, a3)

< A/4 2n—|N| 42s(Ja] ~a3) ——

- i A A <A0> Pz =n=1)
< g4 2n= IV g25(la] = 5) (i)zsa(m " P({e} —n) (6.8)
= 0 A() - : :

The running coupling constants satisfy the estimate

o5 @ A\ 2500l 23)
( g Y >(A)' < Adam 1 g2s0el =2 (Z) P(la}—{a}—=1). (69

Ford,= —2(s—1)itisintegrated from A to A. Here A appears to a positive power
in the estimate because |¢| > o5. For d,= —2s it is integrated from 4, to 4. In both
cases the initial values vanish as |¢|>2. Thus

~ A 250(|al, a3)
lgz(a)(A), gAdaAgs(lzl as) <T> P({Q(} — {a}) (6.10)
]

holds for all coupling constants with d,= —2s.
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Finally the V-kernels with 4—2n—|N|>= —2s are reconstructed by Taylor
expansion which completes the induction step. [

Corollary 6.3. The coupling constants g5®(A) with dimension d,= — 2s satisfy to all
orders |a|=1 for Y, o,21 and {a} <L(x) the estimate
—2s

a=

D) < A o 2" pia) — (o). (6.11)

Next we let the bare coupling constants g0* with dimension d,= — 2s depend on
Ag, Ag, and gX. A perturbation expansion yields

8a°(Ao Ag, g¥)= ;Og.?s("’(/lo, ®) - (83)".

Here the expansion coefficients g2** to vanish to zeroth order and to all orders
a=1 for {a} >a+1.

Let us recorder the generalized perturbation expansion for the running
coupling constants with dimension d,= —2s as follows:

gy, Ao, (gc(z)s(/lo’ Ap, g};))da > - 25)

= Y g4, 40, Ag) (gD ] ( ) g[?s‘”’(Ao,AR)(g?)“)’

la] = 1 da=—2s| f=1

{b} = L(v) {a}<p+1
=(Zﬂ)gi(q‘)(/1,Ao,/1R)<d_;2 ngos("“ Ao, R)>(g‘§)““”"- (6.12)

Here the sum runs over multi-indices o of order || = 1, which satisfy {b} < L(«), and
over multi- indices B=(Pa,da,= - 251 <i<a, With B, ;= 1, which satisfy {a} <f, ;+1.

Let [f|= Z Pa,i

a=—2si=1

To order || =1 with a, =4, ., where d,= —2s, the expansion coefficients take
the form g;®(A, Ay, Ag)=0, .. Furthermore

g)s)(y,o,...,O)(A’AO,AR):gi— 1(?)(A’AO’AR)

is an expansion coefficient in (s— 1)-improved perturbation theory. Thus
80" (Ao, A)=g"(A, Ao, Ag)— g3 (A, Ao, Ap)

- Y g4, 40,4 R) [ ﬂg"s“’“ NAg, Ag), (6.13)

(2, ) a=—2si=1
a3sy—1
az+ |l =y
which expresses g0, Az) in terms of lower orders g2*« (A4, Ax) with 1 <8, ;
sy—1

Proposition 6.4. To every order y =0 there exist bare parameters gd*"(A,, Ag) with
dimensions d,= —2s such that the improvement conditions gy"(A, Ay, AR)l 4= 4p
=gs™NAR) are satisfied. The zeroth order and all orders y=1 for {b}>y+1
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vanish. The orders y=1 for {b} <y+1 satisfy the estimate

|g5" (Ao, AR)| S — 55 P2y —{b}). (6.14)

A2s
Proof. We perform an induction on the order y in (6.13) with A= A,, where
g5 (Ay) is inserted for gi(A, Ag, Ag)l 4= 4, To first order by the induction
hypothesis on the order s—I of improvement

1 A 2s
e A=l A A1~ 1015 e (52) P2 (8,
& \ 4o (6.15)

Let us suppose that the estimate holds to order y—1=1. Thus,
lg° (Ao, AR) = g5~ 1A, Ao, AR 4= 1r — g (Ap)|

+ X |gi(G)(AaAOoAR)|A=AR [ ngosm“)(/l > AR)l

(5,511 Z=—2si=1
a?:lzil=y
1 AR ag—1
< (4 Pe-he 3 A r) - o)
R 0
a?flgl_:v
< 1 142k~ la),
< P2y~ (b)), (6.16)
0

Theorem 4.12 provides the estimate on the convergence in the continuum limit for
(s—1)-improved perturbation theory. The hypothesis in the induction on the order
of improvement covers the assumptions of Theorem 4.12. Corollary 6.3 provides
the estimate on the expansion coefficients in generalized perturbation theory. This
completes the induction step. [

Itis essential that the renormalized couphng constants gi”)(A ) with dimension
d,= —2s be fixed to their continuum values in order to apply the estimates on
(s—1)-improved perturbation theory.

Proposition 6.4 completes the induction step on the order s of improvement.
The first improvement step which corresponds to s=1 follows by an analogous
line of arguments. There the only ingredient needed is the renormalizability
estimate of Theorem 4.12 in the case s=0. Thus we conclude:

Theorem 6.5. To every order s=1 of improvement and to every order =0 of
renormalized perturbation theory the bare parameters g2*® with dimension d, > —2s
can be chosen as functions of Ay and Ay such that the renormalization conditions

gfza)(AR> AOa (ggs)d,, = - 23) = 50:, léa, 3 (61 7)
for d, =20, and the improvement conditions of order s

(a)(AR, Ay, (gb )d,, 25)= gﬁom(a)(AR) (6.18)
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for —2s<d, <0, are satisfied. The zeroth order and all orders =1 for {a}>a+1
of the bare parameters g2*® with dimension —2s<d,<0 vanish. All orders a>1
for {a} So+1 satisfy the estimate

|ga*® (Ao, AR)| < AFP 20— a). (6.19)

Appendix. RG-Equations

We prove the RG equation (2.11) for the V-kernels by inserting the expansion {2.10)
into the RG equation (2.9) for V(p|A).
The formula for the infinitesimal change of normal ordering [GJ 87] implies

0 1 1 2n ]
((M 5 Au(A)) ViplA4)=go(4) + Z 2 1 (n a l;,> 7 45(2 p>
aVZn 4
x <_0_A__>(pl7“‘7p2nl‘/1):<il:_[1 (;D(pi)>:v( )~ (A11)

The use of normal ordered products eliminates the linear term on the right-
hand side of (2.9). The nonlinear term contributes

%<5V;Z|A), za(A)éVéZ’A)> :"2 mil Q2m—1)!2n—m)+ 1)) !

2n J4y. 4 2m—1
<11 50 ) Sems( 3 Jemo(S, pia)sana

X V2m(p19 <o Pom— 1 qlA)VZ(n m+ 1)(p2m’ LX) plna _qlA)
2m—1
( H o(p; )) “o(d) - < H o(p; )) w(A) - (A1.2)

Let I={1,...,2m—1} and J={2m,...,2n} define index sets. By I=1I,+1, we
denote a partition of I, ie., I=1,uUl, and I,nI,=0. The product of normal
ordered monomials in (A 1.2) is reorganized with the identity

min{[1], |}

(n (P(Pi)> :v(A):<H @(Pj)) = X
iel jed k=0 I=11+15,|I1|=k o:J2—1>
J=JyHd2 0=k

(JH (21)*0(py(+ Pl p,IA)> (H o(p;) )( [ (p(pJ) Wy (A13)

elJa iely jedt

where we sum over all bijections ¢ from J, to I,. Formulas (A1.1), (A1.2), and
(A1.3) together yield the RG equation (1.11).
By Definition 3.4, the operators Wj satisfy the relations

a 'S S agi S
[M w] . g_zS(W”[aAD(A)W“’ (A1.4)

(Wilgs]) (4) =4, (A15)

and
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The RG equation for the running coupling constants implies

s| 0% B k1 g
(Wb[aA]>(A)—(m,t§)ef mzkf(ﬂ (271)4>
m—k=1a
20~k—1 k+1 o k+1
X [(275)45( Z Pn(,)*l- Z qj) <6/1 ﬂ (‘Ij|/1)>

X Vstl,b(P;zu), "->pn(2l—k*1),QIa oo Q1] 4)

=0

X V2S(m—l+ 1)(p;z(2l—k)> ""p;z(Z(m—k))’ =G5 = Qi)+ W‘_’V:I . (A16)
Weinsert (A 1.6)in (A 1.4). The application to the V-kernels yields the RG equation

for the W-kernels. [
The RG equations for the X-Kernels follows from the identities

0 ol _ .08
[M x] da:Z_23<X <6A]>(A)Wa, (A1.7)

(X°[gz]) (4)=0. (AL8)

The derivation of the RG equation for the X-kernels is now identical with that for
the W-kernels.
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