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Large-time Behavior of Solutions of the Discrete
Boltzmann Equation
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Department of Mathematics, Nara Women's University, Nara 630, Japan

Abstract. Large-time behavior of solutions of the one-dimensional discrete
Boltzmann equation is studied. Under suitable assumptions it is proved that
as time tends to infinity, the solution approaches a function which is constructed
explicitly in terms of the self-similar solutions of the Burgers equation and the
linear heat equation.

1. Introduction

The one-dimensional discrete Boltzmann equations is written in the form
(see Appendix)

f)F dF 1 m

— ί + t,.—ί = - X (AVFtFt-AYjFtFj), i = l , . . . , m . (1.1)

Here F t = Ft (ί, x) ^ 0 denotes the mass density of gas particles with the
velocity υt (real constant) at time ί ^ O and position xeU. The coefficients at are
positive constants. Also, Aft are nonnegative constants satisfying

AU = A^ι = Ai:h 4 ί = 4 ? (1-2)

for any i,j9k,l=l,...,m. In order to exclude the trivial case, we may assume that

AβΦO for some i, j9k,l= l , . . . , m . (1.3)

We rewrite (1.1) in the vector form. P u t F = t(Fί,...,Fm)V = d i a g ( i ; l 5 . . . , i ; w ) and
Q(F9 G) = t(Qί (F, G ) , . . . , QJF, G)), where each Qt(F, G) is defined by

βi(F,G) = - ί-Σμa(F k G I + FIGk)-4j(F ίGJ. + FjG£)}, (1.4)
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so that Qι(F,F) is just the right-hand side of (1.1). We then arrive at

Ft+VFX = Q(F,F). (1.5)

We consider the initial value problem for (1.5) with the initial data

) = Fo(x). (1.6)

It is obvious that F = 0 is a solution of (1.5). The existence of global solutions of
(1.5), (1.6) near the zero solution was proved by Tartar [18] and Cabannes [4]
when the initial data F0(x) are nonnegative and small. Asymptotic descriptions
for ί-> oo of the solutions were also given in [18]. (For the generalization of these
results to the case of several dimensions, see [9] and the references therein.) It is also
known that similar results hold for some concrete models, such as the one-
dimensional Broadwell model, without smallness conditions on the initial data. See
[1] and the references therein.

Let M be a constant vector with positive components and satisfy β(M, M) = 0.
Such a vector is an equilibrium of (1.5) and is called an absolute Maxwellian. The
problem concerning the global existence of solutions of (1.5), (1.6) near absolute
Maxwellians was considered in [13,17] under a suitable condition, i.e., Condition
1 in Sect. 3. It was proved that if the initial data F0(x) are near an absolute
Maxwellian M, then the problem (1.5), (1.6) has a unique global solution F(ί, x)
which converges to M at the rate ί"1/4 as ί->oo. See Theorem 3.1. For more
details, see [13]. (This result is valid also for the case of several dimensions. In that
case, the convergence rate is £~"/4, where n is the spatial dimension. See [13,17].)

The aim of this paper is to give an asymptotic form for t -> oo of the solution
F(ί,x) of (1.5), (1.6) obtained in [13,17]. We shall show that F(t,x) approaches a
function F(t,x) at the rate ί~1/2 + α, a >0, as ί-*oo. Here F(t,x) is defined by a
linear combination of its moments w; (ί,x), 7 = l , . . . , d , and w(ί,x) = ί(w1,...,wd)
(ί,x) is given by the superposition of the nonlinear and linear diffusion waves
constructed by the self-similar solutions of the Burgers equation and the linear
heat equation. See Theorem 8.2. To prove this, we require that the Eucler equation
(4.8) obtained from (1.5) as the first approximation of the Chapman-Enskog
expansion is strictly hyperbolic and each characteristic field is either genuinely
nonlinear or linearly degenerate, Condition 2 in Sect. 4. A similar asymptotic
behavior of solutions was proved in [14] for a general class of hyperbolic-parabolic
systems of conservation equations including the equations of viscous (or inviscid)
heat conductive fluids.

We shall explain our approach. After some preparations in Sects. 2-5, we show
in Sect. 6 that the solution F(t,x) of (1.5), (1.6) approaches a function G(t,x) at the
rate £~3 / 4 + α, α > 0 , as £->oo (Theorem 6.2). G(ί,x) is a linear combination of its
moments z;-(ί, x), j = 1,..., d, and z(ί, x) = t(z1,..., zd) (ί, x) is a unique global solution
of the semilinear uniformly parabolic system (6.14), which is determined on the
basis of the spectral representation of solutions to the linearized equation of (1.5)
around the absolute Maxwellian M.

In Sect. 7 we define G'(ί,x) by a linear combination of its moments z'j(t,x)
j=li...,d9 where z'(ί,x) = ί(z'1,...,zd)(ί,x) is a unique global solution of the
semilinear uniformly parabolic system (7.2) with the same viscosity matrix as in
(6.14). The hyperbolic part of (7.2) is exactly the same as the Euler equation (4.8)
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obtained from (1.5). It is then proved that the difference G'(t,x) — G(ί, x) tends to
zero at the rate ί~3/4 + α, α > 0, as ί-> oo (Proposition 7.3). This is based on the fact
that the difference of the nonlinear terms of these two systems is of the third order
(Lemma 7.2).

An asymptotic solution w(ί, x) = ^w^..., wd) (ί, x) for t -• oo of the system (7.2)
was constructed in [14] by employing the technique of Liu [16]. It was given by
the superposition of the nonlinear and linear diffusion waves constructed by the
self-similar solutions of the Burgers equation and the linear heat equation. We
then define F(t9 x) by a linear combination of w7 (£, x), j = 1,..., d, such that w7 (ί, x)
become the moments of F(t,x). Since the difference z'(t, x) — w(ί, x) tends to zero
at the rate f~1/2 + α, α > 0, as ί->oo, we see that G'(ί,x) approaches F(ί,x) at the
same rate as ί->oo. Consequently, we know that the solution F(t,x) of (1.5), (1.6)
approaches F(t, x) at the rate t ~1/2 + α, α > 0, as t -> oo, that is, F(t, x) is an asymptotic
solution for ί-> oo of (1.5) (Theorem 8.2).

The final section contains an application to the one-dimensional Broadwell
model. In the Appendix we give a recipe for reducing the discrete Boltzmann
equation in several dimensions into the one-dimensional equation.

Notations

For pe[ l , oo], 1/ denotes the usual Lebesgue space on U with the norm || \\LP. When
p = 2, we use the abbreviation || || = || ||L2. For βeU, Lp

β denotes the space of
functions u = u(x) such that (1 + \x\)βueLP, with the norm || \\LP. Let s ^ 0 be an
integer. Hs denotes the space of functions u = u(x) such that the derivatives
dlxu>Q = ' = 5> a r e ^-functions on IR, with the norm || | |s. Note that H° = L2 and
|| | |0 = || ||. We denote by J*5 the space of functions u = u(x) such that δι

xu, 0 ^ I ̂  5,
are bounded and continuous on IR. Let / be an interval in [0, oo), and let fc, s ^ 0
be integers. Ck(I;Hs) denotes the space of fe-times continuously differentiable
functions on / with values in Hs. L2(I;HS) denotes the space of L2-functions on /
with values in Hs.

2. Preliminaries

We introduce some basic concepts concerning the discrete Boltzmann equation
(1.1) or (1.5). A vector φ — t(φί,...9φm)eUm is called a summational invariant if

A&iΨi/Zi + ψj/xj - φkK - φtK) = 0 (2.1)

for any i, j,k, Z= l,...,m. It is known that the following three conditions are
equivalent ([8,3]).

φ is a summational invariant, (2.2)x

(φ,Q(F,G)) = Q for any F,Ge(Rm, (2.2)2

(φ,Q(F,F)} = 0 for any FeUm, (2.2)3

where <,> denotes the standard inner product in Um. We denote by Jί the set of
all summational invariants. Jί is a subspace of Um such that 1 ^ dim M g m — 1
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because t(a1,..., am)eJί and Jί φ Um by (1.3). Put d = dim Jί. Let ι//0), j=l,...,d9

and φ ( k ) , k = d + 1,..., m, be constant vectors such that

{^(1),...,^(d)} is a basis of ̂ # , and {φ(d + 1 ) , . . . , φ ( m ) } is a basis of ̂ # 1 , (2.3)

where Jί1 denotes the orthogonal complement of Jί in Um. For FeίRm, we define

w = f ( W l , . . . , w d ) , w j = < F ϊ ^ ϋ ) > , j = l , . . . , d . (2.4)

Each Wj is called the y-th moment of F.
Let F = x ( F j _ , . . . , F m ) e [Rm be a vector with positive components. Then F is called

a Maxwellian if

^ t ( F ί F J - F i F I ) = 0 (2.5)

for any i,j,k,l= 1,..., m. A constant Maxwellian is called an absolute Maxwellian.
It is known that the following three conditions are equivalent ([8,3]).

F is a Maxwellian, (2.6)5

f(α 1 logF 1,. . .,αw logFT O)eΛr, (2.6)2

β(F,F) = 0. (2.6)3

Here the components Fhi = 1,...5m, are assumed to be positive. The following
fact will be used in Sect. 4.

Lemma 2.1 ([8,3]) A Maxwellian F = ί ( F 1 , . . . , F w l ) wi£/ι positive components is
completely determined by its moments w = t(w1,..., wd).

I n fact, f r o m ( 2 . 6 ) l j 2 , t h e r e a r e coefficients w = ί ( M 1 , . . . , w d ) e l R d s u c h t h a t
d

α, log F t — ^ UjΨ\jK i — 1,..., wi, where ι//|j) is the /-th component of ψ ( / ). Therefore,

(2.7)

The moments of F are then expressed in terms of u as follows.

w = W ( M ) = f(Wi (w), . . . , wd(M)),

ΣFt{u)φ^9 j=\,...,d. (2.8)
i = 1

We denote by Duw(u) the Jacobίan of the mapping w = W(M). A simple calculation
shows that

{u)φ^φw})^ι^^ (2.9)

where

ylF = diag(F1/α1,...,Fm/αJ, F = t (F 1 , . . . ,FJeR m . (2.10)

The matrix with components (ΛFψ
ij\ψ{k)},j,k = l , . . . ,d, is real symmetric

and positive definite, provided that all the components of F are positive. Therefore
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Duw(u) is non-singular and hence the inverse mapping u = u(w) exists in each
neighborhood. Thus we have the expression F = F(u(w)) by (2.7). This completes the
proof of Lemma 2.1.

Let MeUm be a vector with positive components. Put

LMf=-2Λΰί/2Q(M,ΛU2f), feUn

9 (2.11)

ΓM(f,g) = ΛM

1/2Q(ΛU2LΛU2g\ f,geUm, (2.12)

where A M is given by (2.10) with F = M.

Lemma 2.2. ([13]) ifM is a Maxwellian with positive components, then the following
is true, (i) LM is real symmetric and nonnegative definite. Its null space N(LM) is
equal to A ψ-Ji. (ii) ΓM is bi-linear and satisfies ΓM(f,g)eN(LM)1 for any f,geUm.

When M is a Maxwellian with positive components, we have N(LM) = A]p Jt
and N(LM)λ = A M

lιlJίL. Therefore,

{A U2Φ{1\ ,Λ U2Φid)} is a basis of N(LM\

{Λύ1/2Φid+ί\ ,Λΰ1/2Φim)} is a basis of N(LM)\ (2.13)

We choose vectors φu\ j = 1,..., d, (depending on M) as follows.

{φ(1\...,φid)} is a basis oiAMJί, (2.14)

wy = δjk, j , k = l , . . . , d . (2.15)

The existence of such vectors follows from the fact that the matrix with components
</l Mψu\ψ(k)),j,k= l , . . . ,d , is non-singular (real symmetric and positive
definite). In a similar way, we can choose a basis {φ(d+1\. ..,φ(m)} of A^1 JiL

satisfying (2.15) for j,k = d+l,...,m. It is easy to see that both {φ(1\...,φ{m)} and
{φ(1\...,φim)} are bases of Um and satisfy (2.15) for j9k= l , . . . ,m, namely, they are
dual bases to each other.

3. Global Existence and Decay of Solutions

We consider the initial value problem (1.5), (1.6) in a neighborhood of an absolutely
Maxwellian. We assume the following

Condition 1. LetψeJΐ and λφ = Vφ for λeU. Then it follows φ = 0.
Several conditions each of which is equivalent to Condition 1 were given in [17].
For the details, see Theorem 3.2 below. Under Condition 1 the problem (1.5), (1.6)
is solved globally in time as follows.

Theorem 3.1 ([13,17]) Assume Condition 1. Let M be an absolute Maxwellian with
positive components, (i) Suppose that Fo — MeHs, s ̂  1, and | | F 0 — M | | s is small.
Then the problem (1.5), (1.6) has a unique global solution F(t,x) satisfying F —
MeC°([0, o o l F J n C ^ O , oo];//5"1). Moreover, F(t,x) converges to M in ^s~1-
norm ast^oo. (ii) // Fo - MeHsnL\ s ̂  1, and Es= \\F0-M\\s+\\F0-M \\Ll is
small, then the solution F(t,x) in (i) satisfies

|| δι

x(F(t) - M) ||s_ t ^ CE,{ί + t ) - ( 1 / 2 + i)/2 (3.1)

for f e [ 0 , oo), where O^l^s and C is a constant.
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The estimate (3.1) with 1 ̂  / g s was not proved in the previous papers [13,17],
and therefore we will give its proof after some preparations. We first derive the
linearized equation of (1.5) around the absolute Maxwellian M. Put

F = M + Λ\ί2f. (3.2)

Substituting (3.2) into (1.5), we obtain

ft+Vfx + LMf = ΓM{fJ), (3.3)

where LM and ΓM are defined by (2.11) and (2.12), respectively. The corresponding
linearized equation is

ft+Vfx + LMf=0. (3.4)

The eigenvalue problem associated with (3.4) is

μζ = B(iξ)ζ9 .B(iξ)=-(LM + iξV)9 ξeU, (3.5)

where μeC and ζeCm . We denote the eigenvalues of (3.5) by μ = μM(iξ). The
following result obtained in [17] plays a crucial role in the study of the global
existence problem for (1.5).

Theorem 3.2. ([17]) (i) Let M be an absolute Maxwellian. Then the following four
conditions are equivalent.

Let LMζ = 0 and λζ = Vζfor λeU and ζeUm.

Then it follows ζ = 0. (3.6)ί

ReμM(iξ)<0 for any ξ + 0. (3.6)2

There is a positive constant cM such that Re μM(iξ) ^ — cMp(ξ)

for any ξeU, where p(ξ) = ξ2/(l + ξ2). (3.6)3

There exists an m x m real skew-symmetric matrix KM

such that the symmetric part of KMV + LM is positive definite. (3.6)4

ii) If Condition 1 is assumed, then (3.6)1-(3.6)4 hold for any absolute Maxwellian M.
Conversely, if one of\3.6) x-{3. <5)4 is true for an absolute Maxwellian M, then Condition
1 is satisfied.

We denote by etB the semigroup of the linearized Eq. (3.4). When the matrix
exponential etB{iξ) is well defined, we get the relation

(etBff(ξ) = etB^f(ξ\ (3.7)

where f(ξ) denotes the Fourier transform of f(x). If Condition 1 (or equivalently,
(3.6)4) is assumed, we have

\(etBff(ξ)\ύCe-c^'\f(ξ)\, ξeU, (3.8)

where p(ξ) = ξ2/(l + ξ2), C and c are positive constants. For the proof of (3.8), see
[13 or 19]. From (3.8) we easily obtain

) / 2 | | 5 ί / | | t l , (3.9)
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where 0 g k g /, C and c are positive constants, and f(x) is a function such that the
norms on the right-hand side of (3.9) are finite. It is also known ([13]) that if
f(x)eN(LM)1 holds for any xsU, then (3.9) can be improved to

)/2\\dk

xf\\L^ (3.10)

where 0 ̂  k ̂  / + 1 and / ̂  0.

Proof of the Estimate (3.1). Let F(t,x) be the solution of (1.5), (1.6) in (i) of
Theorem 3.1. The function /(ί, x) defined by (3.2) satisfies (3.3). Therefore, using the
semigroup etB, we get the formula

f(t) = etBf0 + \e«-*BΓM{f f)(τ)dτ, (3.11)
o

where fo(x) = A M 1 / 2 ( F 0 ( X ) - M). Put

M,(ί)= supfl+τf/^Hδ'/d)!!^ (3-12)

for 0 ̂  / ̂  s. It suffices to get the estimate Mz(ί) ̂  CES with a constant C. We apply
dj

xi 0 ̂  7 ̂  5, to (3.11) and estimate each equation by using (3.9) and (3.10). (Recall
that ΓM{fJ)eN{LMγ for any feUm). Summing up for 0 ̂  g 5, we obtain

ί - τ ) - 3 / 4 | | Γ M ( / , / ) ( τ ) | | L l J τ . (3.13)
o

By the definition of M0(ί), the middle and the last terms on the right-hand side of
(3.13) are majorized by

CM0{t)2Je"c(ί"τ)(l + τ ) " 1 / 2 dτ g CM 0(ί) 2(l + ί)~ 1 / 2

5
o

respectively. Therefore we arrive at the inequality M 0 ( ί ) ^ C £ s + CM 0(ί) 2, from
which follows the desired estimate M0(t) g CES if Es is small. Thus the proof of (3.1)
with / = 0 is completed.

Next we show (3.1) with / = 1. From the estimates for the derivatives dj

xf, 1 ̂
j ̂  s, we obtain

\

+ c\(l + t-τy^\\dxΓM(ff)(τ)\\Lίdτ. (3.14)
ί/2

Here we have taken k in (3.10) such that k = 0 on [0, ί/2] and k = 1 on [ί/2, ί]. We
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estimate each term on the right-hand side of (3.14) by using (3.1) with / = 0 and the
definition of M1(ή. We know that the second term is majorized by

ί

CEsMx{t)^e~c^~τ\l + τ)~1 dτ ^ CESMί(t)(\ -f t)~J.
o

The third and the last terms are estimated respectively by

CE2)\\ + t - τΓ5'4(i + τ)~ 1 / 2 dτ ^ CE2(1 + ί)~ 3 / 4 ,
o

CEsMAt) f (1 + ί - τ ) ~ 3 / 4 ( l + τ ) " 1 dτ < CE.M^iX + £ Γ 3 / 4

Combining these estimates, we obtain the inequality Mx(ή ^ CES + CEsM1(t),
which gives MΊ(ί) ̂  C£ s if £ s is small. Thus (3.1) is proved for 1=1. The estimates
for higher derivatives are shown in the same way by using the induction for /. We
omit the details.

4. The Euler Equation

Following [8], we derive the Euler equation as the first approximation of the
Chapman-Enskog expansion to (1.5). We assume that the solution F of (1.5) has the
expansion

F = £ F{n\ (4.1)

Let w = ί(w 1,..., \vd) be the moments of F defined by (2.4). Each F{n) is assumed to be
a function depending only on d% w (α ̂  0) such that F{n)eJiL ϊoΐn^l. Consequently,
we have

wj =(F(0\ψU)), j = I,..., d9 (4.2)O

Taking the inner product of (1.5) with φ{j\ j = 1,..., d, we obtain

(w/)t + ({VF,φ{j)))x = 0, j — \ , . . . , d . (4.3)

Each F ( n ) is determined successively by the equations

0, (4.4)0

);/?(«)) _ __ y Q(F(k\F(n~k}) + P / Fj~ 1 )

+ y y y ^ α ί — ( V F { I ) ώ u ) w « > i ί4 4)

supplemented by the conditions (4.2)0 and (4.2)n, w ^ l . The Euler equation is
Eq. (4.3) for F - F ( 0 ) , where F ( 0 ) is determined by (4.4)0 and (4.2)O. By Lemma 2.1 (see
(2.7), (2.8)), we have the expressions F ( 0 ) - F(u) and

w = w(«) = ί « F ( M ) , ^ ) » 1 ^ / ^ , (4.5)
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and hence F{0) = F(u(w)\ where u = u(w) is the inverse mapping of w = w(u). Here all
the components of F{0) are assumed to be positive. Consequently, (4.3) for F = F(0)

takes the form

w(u)t + h(u)x = 0 or A°(u)ut + Λ(u)ux = 0, (4.6)

where

A°(u) = Duw(u) =

A(u) = Duh(u) = « VΛF{u)ψu)9 ψW})^^. (4.7)

Here Du denotes the differentiation with respect to u. Also, (4.6) is rewritten in the
form

wr + K(w)x = 0 or wt + A(w)wx = 0, (4.8)

where

h(w) = h(u(w)l Ά(w) = Dwh(w). (4.9)

The Euler equation (4.8) is regarded as a symmetric hyperbolic system because A°(u)
and A(u) are real symmetric and in addition A°(u) is positive definite. Notice that

A(w(u)) = A(u)A°(u)-1=tA(u), Ά{u) = A°(u)-1A(u). (4.10)

In what follows we assume the following

Condition 2. The Euler equation (4.8) is strictly hyperbolic and each characteristic
field is either genuinely nonlinear or linearly degenerate in the sense of Lax [15].

This condition means that for each w, the matrix Ά(w) has real and distinct
eigenvalues

λx(w)<-<λd(w)9 (4.11)

and for each j = l,...,<i, we have either <Vw/7(w),f7 (w)> ΦQ (genuinely nonlinear)
or <VW/L, (w),rj(w)} = 0 (linearly degenerate) for all w. Here rj(w) is the right
eigenvector of A(w) for λj(w), Vw denotes the gradient with respect to w and <,> the
standard inner product in Ud. Without loss of generality we may assume that either

/ / = l or <Vw/»,r»> = 0 (4.12)

for all w. It is easily seen that (κA°(u(w))~ιfj(w\ fk(w)} = 0 for j φk. Therefore,

<Tj(w),rk(n)> = δjk, jΛ=l. .J, (4.13)

where

/ » = CjiwYr^A^uiw))-1, (4.14)

w)Γ1rj(wlrj(w))-1 > 0. (4.15)

Notice that ζ (vv), a row vector in Md, is the left eigenvector of A(w) for λj(w). We have
the spectral resolution

A(w)=Σλj{w)Pj(w\ Pj(w) = rj(w)Tj(w). (4.16)
I
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From (4.10) we know that λj(w(u)) are the eigenvalues of A(u). The corresponding
right and left eigenvectors, fj(u) and Tj(u\ are given respectively by

tj(u) = Cj(w(u)Γιl2tTj(w(u)) = φiu^A^uΓ'fjiwiu)),

ΐj(u) = Cj(w(u))ίl2trj(w(u)) = c/w(tOΓ1/2fyw(w))Λ>). (4.17)

Here fj(u) and ΐj(u) are chosen so as to satisfy the normalizations

(4.18)

5. Spectral Representation

We consider the eigenvalue problem (3.5). Assymptotic expansions for ς->0 of
eigenvalues and eigenvectors were given in [7]. Our aim is to determine the
coefficients appearing in the expansions by using Conditions 1 and 2.

Let M be an absolute Maxwellian with positive components. We denote the
moments of M by w = t(w 1,..., wd) and put ΰ = w(w). We apply the perturbation
theory for matrices (see [11]) to the problem (3.5) to obtain the asymptotic
expansions of μ = μ(iξ) and ζ = ζ(iξ) for ξ ->0:

μ(iξ)= £ (iξ)nμ{n\ ζ(iξ)= f (OT Λ ) , (5-1)
n = 0 n = 0

where μin)eU and ζ{n)eUm because LM and V are real symmetric. Substitution of
(5.1) into (3.5) yields

^ C ( O ) + L M C ^ = 0, (5.2)O

Equation (5.2)O implies that — μ(0) is an eigenvalue of LM and ς ( 0 ) is the
corresponding right eigenvector. Therefore we have μ(0) = 0 (with multiplicity d)
or μ(0) < 0 by Lemma 2.2. We treat the case

μ<°> = 0. (5.3)O

In this case we have ζ(0)sN{LM), and therefore

ί ( 0 ) =ΣMJ^ w (5 4)o
fc= 1

by (2.13), where β1,...,βd are real constants. Substituting (5.3)O and (5.4)O into
(5.2)! and taking the inner product (in Um) with Λ^2ι//(/c),/t = I9...,d, we obtain
μ{1)A°(ύ)β + A(ΰ)β = 0, where j5 - \βu..., ^ d ) . Here we used (4.7). Therefore, - μ{l)

is an eigenvalue of A(ΰ) = A°(ΰ)~1 X(M) and β is the corresponding right eigenvector.
Thus we have

μ^= -λj(w), (5.3)2

and /? = fj(ΰ) for j = !,...,<£ Consequently, we have from (5.4)O,
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ί
k=l

(5.4)'O

where rjk(ΰ) is the fc-th component of f^ύ). Here e} are normalized so as to satisfy
(by (4.18))

<ej9eky = δjk9 j 9 k = l , . . . 9 d . (5.5)

Notice that {el9...,ed} is an orthonormal basis of N(LM). Substituting (5.3)0,i and
(5.4)Ό into (5.2)1? we get LMζ{1) = (λj(w)—V)ej. This equation can be solved
(non-uniquely) for ζ ( 1 ) because

(λj(w)-V)ejeN(LM)\ (5.6)

we have

ζU> = ή» with eγ> = LΰHλj(w)-V)ej + Poeγ\ (5A\

d

where P o denotes the orthogonal projection onto N(LM), namely, Pof = Σ
k = 0

</, ek)ek for feUm. Substituting (5.3)O>1, (5.4)'O and (5.4) x into (5.2)2 and taking the
inner product with ej9 we get the formula

μ<2» = Kj = <L^(λj(w)- V)ep(λj(w) - V)ej), (5.3)2

where (5.5) and (5.6) were used. Since LMej = 0 and e7-τ^0, we conclude by
Condition 1 (or equivalently, (3.6)x) that (/7 (vv) — V)βj φ 0. Therefore we have Kj > 0
because L^1 is real symmetric and positive definite on N(LM)λ. These considerations
are summarized in the following lemma.

Lemma 5.1. Assume Conditions 1 and 2 and consider the problem (3.5). Then there
is a positive constant δ such that for \ξ\<δ, we have d eigenvalues μ} = μ^iξ),

j — l,...,d, which tend to zero as ξ->0. We denote the corresponding eigenvectors
by ζj = ζj(iξ\ j=l,...,d. We have the Taylor series expansions for \ξ\<δ:

μj(iξ)= f KTμf\ ζj(iξ)= Σ Mr??, (5-7)
n=1 n = 0

where μ^eU and Cj")G(Rm. In particular, we have

μ< 1>= -λj(w), μf> = Kj(w)>0,

ζ f = β;(w), ζΫ^ή'Kw). (5.8)

For explicit forms of these coefficients, see (5.4)'θ9 {5.4)1 and (53)2 The eigenvectors
Cj(ίξ)'can be normalized by

(ζj(iξ),ζk(-iξ)) = δjk, j,k = U .,d, (5.9)

where (,) denotes the standard inner product in Cm.
By this lemma, the matrix exponential etB{iξ) is well defined ϊor\ξ\ <δ and has the

following expression.

emiξ)f = t e'μm)(f, ί/(" WKjiiξ) + Z(t, iξ)f, (5.10)
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for feCm. Here Z(t,iξ) is the matrix satisfying

\Z(t,iξ)\^Ce-c\ \ξ\<δ9 (5.11)

where C and c are positive constants.

6. Approximation by Uniformly Parabolic System, I

Let F(t,x) be the solution of (1.5), (1.6) constructed in Theorem 3.1 and let f(t9x)
be the function defined by (3.2). We have the formula (3.11), or in the Fourier
transform,

fit, ξ) = (e'Bfof(ξ) + i(e"-"BrM(/,/))A(t, ξ)dτ, (6.1)
0

where /0(x) = A^1/2(F0(x) - M). For \ξ\ < δ, the matrix exponential emiξ) is well
defined and hence (3.7) holds true. Therefore, using (5.10), we obtain

/(ί, ξ)=t *tμm(fo{ξ), Cj( - ίξ)Kj(iξ) + Z(ί, iξ)fo(ξ)
7 = 1

Oj=l

+ ]z(t-τ9iξ)ΓM(fJ)(τ,ξ)dτ9 \ξ\<δ. (62)
o

Taking (6.2) into account, we define G(ί, x) by

x), (6.3)

t j j7 = 1

+ j j ; e<'-*W0(f Mfo, ^)(τ9 ξ), - iξ^Oβ^τ, (6.4)

Oj=l

where

V j(iξ)= - ^ ( w j + ί i ξ ) 2 ^ ) , 7 = l , . . . , d . (6-5)

(Here Λj(w), -̂(VV), e = β; (w) and ^ υ = ^ υ(w) are the coefficients in (5.8).) We shall
show that G(ί, x) is well defined for all (t, x) and gives an approximation to F(t, x)
for ί->oo. For this purpose, we first derive the equation of g{t,x). Substituting
(5.4)! into (6.4) and using (5.6) and the fact that ΓM(g,g) is perpendicular to N(LM)
(by Lemma 2.2), we have

7 = 1

-}iξ t e^^KVL^Γ.^g^ξle^ejdτ. (6.6)
0 j = l

This expression implies that g(t,x)eN(LM\ and hence G(ux) — MsΛMJί for all
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(ί, x). Consequently, we have the expressions

d

g(t9x)= £ gj(t,x)ej, (6.7)

G(ί, x) - M = X (z/ί, x) - wj)φ<>\ (6.8)
7 = 1

where gj(t,x) = <#(ί,x), ^ > and z, (ί,x) = <G(ί,x), ^ ω > , j= l,...,d. Here we used
(5.5) and (2.15). Note that z7 (ί,x) and w,- are the j-th moments of G(ί,x) and M,
respectively. Take the inner product (in Cm) of (6.6) with ej9j=l,...,d, and
differentiate the both sides with respect to t. We substitute (6.5) and (6.7) into the
resulting equation and then take the inverse Fourier transform to obtain

j j
k,l=ί

gJ(0,x) = (F0(x)-M,Λ^l2ej-}, j=l,...,d, (6.10)

where

q{ι(w)=(VLΰ1ΓM(ek,eι),ejy, j , k , l = l,...,d. (6.11)

Note that (6.9) is a semilinear uniformly parabolic system because Kj(w) > 0 for
j=h...,d.

We rewrite (6.9) into the equation of the moments Zj = Zj(t,x),j = l,...,d, of
G(ί, x). Put z = t(zί,..., zd). A simple calculation shows that

gS = <z-wSj(u)> = cj(w)-1!\z-wJj(w)> (6.12)

for j = 1,..., d. Here we used (5.4)0 and (4.17). These relations together with (4.18)
and (4.17) yield

z-w=t gHj(ΰ) = t giφ^rjiw). (6.13)
7 = 1 7 = 1

From (6.9), (6.10), (6.12) and (6.13) we easily obtain

zt + k(z)x = B(w)zxx9 (6.14)

z(0,x) = wo(x) = f « F 0 ( 4 ΦU)»^j^ (6.15)

where

k(z) = h{xv) + Ά(w)(z - w) + f̂(z),

5(w)= X KJ(W)PJ(W)9 (6.16)
7 = 1

and f̂(z) is the quadratic function of z — w:

Φ)= Σ 0*(w)<z-w,ζ<w)><z-wΛ(w)>f;(w),
i, j,fc = 1

βίt(w) = q^wmwyφy.iw))1'2. (6.17)

In deriving (6.16), we used the spectral resolution (4.16). The system (6.14) is also
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semilinear and uniformly parabolic and therefore the problem (6.14), (6.15) can be
solved globally in time, provided that the initial data wo(x) are close to the constant
state w. (See, for example, Proposition 6.1 of [14].)

To obtain a decay estimate of solutions, we consider the linearized system of
(6.14) around z = w,

zt + Ά(w)zx = B(w)zxx. (6.18)

We denote the semigroup of (6.18) by etS. Then we have (etszf (ξ) = etS{iξ)z(ξ), where

S(iξ) = - iξA(w) + (iξ)2D(w) = X vy(/ς)P (w), (6.19)

etsdξ)= £ etvΛiQp.ty). (6.20)

Recall that v7 (i£) is given by (6.5). By virtue of the spectral resolution (6.20), we easily
obtain

| | ^ i S z ) | | ^ C ^ - c f | | 5 ^ | | + C ( l + 0 " ( 1 / 2 + i " k ) / 2 l i^ l lL i , (6.21)

where 0 ;§ k ^ /, C and c are positive constants. We also have

t-τ)-{1/2 + ι-k)/2\\dk

xz(τ)\\Lίdτ, (6.22)

where / ̂  1 and 0 g k ^ /. Using (6.21) and (6.22), we can show the decay of solutions
of (6.14), (6.15) in the same way as in the proof of (3.1). Summarizing all the
considerations, we have

Proposition 6.1. Assume Conditions 1 and 2. We denote by wo(x) the moments of
F 0 { x ) , i.e., w o ( x ) = ί « F o M ^ ( Λ > i ^ < / W / / v v o - w e H s

9 s ^ l , and \\wo-w\\s is
small, then the problem (6.14), (6.15) has a unique global solution z(ί,x) satisfying
z - weC°([0, oofcH'XnC1 ([0, oc);tfs~2) i/5^2) and 5 X ZEL 2 ([0, oo);Hs) Morβ-
6>τj£r, z(ί,x) converges to w in $is~1-norm as t-^ GO. Consequently, G(t,x) defined by
(6.8) tends to M in @s~1-norm as t->oo. (ii) // w0 — w e i ί s n L \ s ^ 1, and
£ s = || w0 — w ||s + || w0 — w ||Li is small, then

|| dι

x(z(t) - w) || s_z, || d
ι

x(G(t) - M) L_z £ CES(1 + 0~ ( 1 / 2 + 0 / 2 (6.23)

/or te[0, GO), where 0 ^ / ̂  5 and C is 0 constant.
Next we shall show that the solution F(t,x) of (1.5), (1.6) constructed in Theorem

3.1 is well approximated by G(t,x) for t -• 00. We define /(ί,x) and g(t,x) by (3.2)
and (6.3), respectively. Then we get the formulas (6.1) and (6.4). It follows from
(6.1) and (3.8) that for 0 ^ j ^ 5,

II(iξyf(t, ξ) \\Lim>δ) ^ Ce~ct i| d{f0 II + C\e- c«- τ ) \\ d{ΓM{f,f){τ) || dτ. (6.24)
0

Here and in the sequel, C and c denote positive constants. Similarly, we have
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from (6.4),

l/2

. (6.25)

For \ξ\ < δ, we use the expression (6.2). Subtracting (6.4) from (6.2) and using the
expansions oϊ μ^iξ) and ζj(ίζ) (see Lemma 5.1), we obtain

c\ξ2e-«-*2\fu(f,f)(τ,ξ)\dτ
0

:, \ξ\<δ. (6.26)
0

Here we also used (5.11) and the fact that ΓM(ff) is prependicular to
ej9j= \,...,d. From (6.26) we get for O^j^s,

+ Cf (1 + t - τ ) - ( 3 / 2 +j-k>)'2 || dk

xΓM(f -g,f + g)(τ) | |L l dτ, (6.27)

where 0 ̂  fc ̂  + 2 and 0 ̂  fc' ̂  j + 1. Combining (6.24), (6.25) and (6.27), we have
a desired approximation result.

Theorem 6.2. Assume Conditions 1 and 2. Suppose that Fo — MeHsnLι,s^ 1, and
Es= | | F O _ M | | S + | | F 0 - M | | L i is small Let F(t9x) be the solution of (1.5), (1.6)
constructed in Theorem 3.1 and let G(t,x) be the function in Proposition 6.1. Then
we have

\\d x(F(t)-Git))L-ι ύ CEs(l + t ) - ( 3 Λ W (6.28)

for te[0, oo), where 0 ^ / ^ 5 — 1 , C is a constant, and α > 0 is a small fixed

constant.

Remark 6.1. A similar approximation result was proved in [12] (Theorem
3.9) for the one-dimensional Broadwell model of the Boltzmann equation.

Proof of Theorem 6.2. For 0 5Ξ / ̂  s — 1, we define

M,(t)= sup (1 + τ ) ( 3 / 2 + ί ) / 2 - α K(/(τ)-<7(τ)) | | s _ i . (6.29)
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It suffices to show the inequality M^i) <; CES. First we have from (6.24), (6.25) and

(6.27) with 0 g j S s,

1/2

r/2 i

+ C f (1 + ί-τ)-5/*||JΓAf(/,/)(τ)||I.I dτ + C J (1 + ί - τ ) " 3 ' 4 .
0 r/2

ί

0

Here we have taken k and k' in (6.27) such that k = 0 on [0, ί/2], ίc=l on [ί/2, ί]
and fc' = 0 on [0, ί]. We estimate each term on the right-hand side of (6.30) by
using (3.1) and (6.23) with 1 = 0,1. By the same arguments as in the proof of
(3.1), we know that the integrals except for the last one are all majorized by
CE2

S{\ + ί)~ 3 / 4 . For the last term, we have the bound

CEsM0(t)\(1 + t - τ Γ 3 / 4 ( l + τ)~' + adτ £ CE sM0(ί)(l + ί Γ 3 / 4 + α,
b

where we used the definition of M0(ί). Combining these estimates, we arrive at the
inequality M0(ί) g CES + CEsM0{t), which gives M0(ί) ̂  CES for small £ s . Thus
the proof of (6.28) with / = 0 is completed.

Next, from (6.24), (6.25) and (6.27) with 1 ̂  j <L s, we obtain

Here we take fc and k! in (6.27) such that k = k' = 0 on [0, ί/2], and k = 2, fc' = 1 on
[ί/2, ί]. We estimate each term on the right-hand side of (6.31) by using (3.1), (6.23)
with / = 0,1,2 and (6.28) with / = 0. Similarly as in the above, we reach the inequality
M t(ί) = CES 4- CE^M^t), from which follows the estimate (6.28) with / = 1 if Es is
small. The estimates for higher derivatives are shown in the way and we omit the
details.

7. Approximation by Uniformly Parabolic System, II

We shall give a modification of G(t,x) in Proposition 6.1. Taking into account of
(6.8), (6.14) and (6.15), we defined G'(t,x) by

G'(Ux)-M= X (z)(t,x)-w^u\ (7.1)

where z'(f, x) =• r(z' t,..., z^)(ί, x) is a solution of the problem

z't + %{z')x = D(w)zxx, (7.2)

z;(0,x) = wo(x) = '((ίΌfx), ΨU)y)iz,zd. (7.3)

Here h(z) and D(w) are defined by (4.9) and (6.16), respectively. Note that
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Zj(t,x) = (G'(t,x),ψU)}, n a m e l y , z'j(t,x) is t h e 7-th m o m e n t of G'(t,x), j =l,...,d.
The system (7.2) is semilinear and uniformly parabolic, and its linearized system
around z' = w agree with (6.18). Therefore we have the following

Proposition 7.1. Assume Conditions 1 and 2. (i) Ifw0 — weHs, s ̂  1, and || w0 — w ||s
is small, then the problem (7.2), (7.3) has a unique global solution z'(t,x) which
converges to w in &s~ι-norms as t-> 00. Consequently, G'(t,x) defined by (7.1) tends
to M in &s~ι-norm as ί-> 00. (ii) If w0 — v v E i ^ n L 1 , ^ 1, and Es= \\w0 — w|| s +
II v^0 — vv> | | L i is small, then

II dι

x(z'(t) - w) | | s_/9 II dι

x(G'(t) - M) \\s_t ̂  CES(1 + ί ) " ( 1 / 2 + ί ) / 2 (7.4)

/or ίe[0, 00], where 0 ̂  / ̂  5 and C ΪS α constant.
We wish to show that z'(ί,x) is well approximated by z(t,x) in Proposition 6.1

for f —• 00. For this purpose we prepare the following

Lemma 7.2. Let Tι(z) and k(z) be the functions in (4.9) and (6.16), respectively. Then we
have

\h(z)-k(z)\ = O(\z-w\3) for | z - w | - 0 .

Proof. Recall that the Euler equation (4.8) is equivalent to

« F ( 0 U ( Λ » t + « 7 F ( ° > , ^ » J C = 0, j=l , . . . ,</, (7.5)

where F{0) is determined by (4.4)0 and (4.2)0. We write

F ( 0 ) = M + ylj|/2/. (7-6)

Substitution of (7.6) into (4.4)0 yields

LMf = ΓM(ffl (7.7)

Since ΓM(f,f)eN(LMf by Lemma 2.2, Eq. (7.7) is reduced to f = Pof +
d

^ M 1 ΓM(f, /), where P o is the orthogonal projection onto N(LM), i.e., P o / = £ / J ^
J = 1

with fj=^f,βj},j=ί,...,d. Therefore we get the formula

f=ΣfJ'j+ Σ ^M^Mfe^^/v + ̂ c/], (7.8)

where jR[/] = O( |/ | 3 ) for | / | -> 0. By the definitions of/and ep j=l,...,d,we know
that (7.5) is equivalent to

( < M > ) f + ( < ^ M > ) * = 0, j=l,...,d. (7.9)

We substitute (7.8) into (7.9) and compute the resulting equation by using (5.6) and
ΓM(e/c,^)e./V(LM)i\ We then obtain

fi + λj(ή)fί+ Σ <AιW(fkfι)x + R3lΩx = O9 7 = l , . . . , d , (7.10)
k,l= 1

where the coefficients qJkl(w) are in (6.11), and RJ[f] = < VR [/], ^ >, 7 = 1,..., d. We
rewrite (7.10) into the equation of the moments w; , j = 1,..., d, of JF(0). Similarly as in
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the proof of (6.14), we arrive at

wt + (k(w) + r(w))x = 0, (7.11)

where w = t(wι,...,wd),k(w) is in (6.16), and

(w)ll2rj(w). (7.12)

Notice that the right-hand side of (7.12) is a function of w because Fi0) and hence / is
a function of w. Also, note that r(w) = O( |/ | 3 ) = O(\w — w|3) for |w — w|->0.
Equation (7.11) must agree with (4.8). Therefore we get h(w) = fe(vv) + r(w). Thus the
proof of Lemma 7.2 is completed.

By virtue of Lemma 7.2 we have

Proposition 7.3. Asuume Conditions 1 and 2. Suppose that w0 — weHsnL1, s ^ l,αwd
Es

= \\wo — w\\s+ ||vv0 — w||Li is smα/l. Lei G(ί,x) and G'(t,x) be the functions in
Propositions 6.1 and 7.1, respectively. Then we have

\\dι

x{G\t)- G(t))\\s_aCE2

s(l+tr(3ί2 + ι^2^ (7.13)

for ίe[0, oo), where 0 ^ / ̂  s, C is a constant, and α > 0 is a small fixed constant.
A combination of Theorem 6.2 and Proposition 7.3 gives the following

Corollary 7.4. Assume the same conditions of Theorem 6.2. Let F(t, x) be the solution
of (1.5), (1.6) constructed in Theorem 3.1 and let G'(t,x) be the function in Proposition
7.1. Then we have

(7.14)

for ίe[0, oo), where 0 rg / ̂  s — 1, C is a constant, and ot>O is a small fixed constant.

Proof of Proposition 7.3. It suffices to show the estimate

^ έ 3 (7.15)

for te [0, oo), where 0 rg / g s. Here z(ί, x) and z'(ί, x) are the solutions of the problems
(6.14), (6.15) and (7.2), (7.3), respectively. Using the semigroup etS of (6.18), we get

z'(t) - z(t) = -\e^τ)Sr(z')x(τ)dτ -\e{t'x)S(q(z') - q(z))x(τ)dτ, (7.16)
o o

where r(z) and q(z) are given by (7.12) and (6.17), respectively. Put

M,(ί)= sup (1 + τ p 2 + I>'2-«||dίc(z'(ί)-z(t))|| s_ l (7.17)

for 0 ^ / ̂  s. We apply d{, 0 ^ j 5* s, to (7.16) and estimate each equation by using
(6.21) and (6.22). Summing up for 0 g j ^ 5, we obtain

1/2

z') - q(z))(τ)\\2dτ\12
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+ c\{\+t-τy^\\r{z'){τ)\\Lldτ
0

+ c](l+t-τ)-^\\(q(Z')-q(z))(τ)\\Lίdτ. (7.18)
0

We estimate each term on the right-hand side of (7.18) by using (6.23) and (7.4) with
/ = 0,1. The first and the second terms are estimated respectively by

0 \l/2

ft \l/2

CE2A ]e-c{t~τ\\ + τΓ3/2dτ I ^ C£ 2 ( l + ί ) " 3 / 4

For any fixed γ > 0, the third term has the bound

Similarly, the last term is majorized by

CEsM0(t)\(l + t - τ Γ 3 / 4 ( l + τ)~1+adτ % CEsM0(t)(l + ί

where we used the definition of M0(ί). Substituting these estimates into (7.18) and
choosing y = α, we obtain the inequality M0(ί) ̂  CE2 + CEsM0(t% which gives
M0(t) ^ CE] if £ s is small. Thus (7.15) with / = 0 is proved. The estimates for the
derivatives are shown in the same way and we omit the details.

8. Large-time Behavior of Solutions

An asymptotic solution of the semilinear uniformly parabolic system (7.2) was
constructed in [14] by employing the technique of Liu [16]. We first review its
construction. We determine δj(w)9 j=l,...,d,by

f (wo(x) - w)dx = Σ δj(w)rj(wl (8.1)
- oo j = 1

where wo(x) = ^ ( ^ ( x ) , φω})ίύjSd and f/w), j = 1,..., d, are the right eigenvectors of
Ά(w). Put δ(w) - '(δiίvP),..., δd(w)) and assume that |δ(w)| ^ 0. We denote by Rj(w)
the integral curve of the vector fj(w) through the point w = w. When j-th
characteristic field is genuinely nonlinear, we define the nonlinear diffusion wave

wJ(t,x)eRj(w),

λj(wj(t, x)) - λj(w) = y(t + 1, x - λj(w)(t + 1); Kj(w)9 δj(w))9 (S.2)1

where

!- _ (eδ/2κ - l)e~η2

yit9x'9κ9δ) = y/κt 1 / 2 , η = x/y/4κt. (8.3)x
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Note that y = y(t, x; K, δ) is the self-similar solution of the Burgers equation

y% + yy% — κyχχ a n d satisfies

J y{t9x;κ,δ)dx = δ for ί > 0 . (8.4)
— oo

In (<&.2)1,λj(w) is the eigenvalue of Ά(w) and Kj(w) is the coefficient determined by
(5.3)2. Since < VwλJ (w),rJ.(w)> = 1 by (4.12), wj(t,x) is uniquely determined by (8.2)l9

provided that δj(w) is small. When 7-th characteristic field is linearly degenerate, we
choose a smooth function Sj = Sj{w) such that Sj(w) = λj(w) and < Vws7 (w), f7 (w)> = 1,
and then define the linear diffusion wave wj(t,x) by

t, x)) - λj(w) = y(t+l,x- λj(w)(t + 1); Kj(w)9 δj{w))9 (8.2)2

where

j/(ί, x; K, (5) = <5(4πκί)~ ίl2e~η2, η = x/^/Axt. (8.3)2

Note that 3; — y(ί, x; K, δ) is the self-similar solution of the linear heat equation
yt — κyxx and satisfies (8.4). Note also that wJ'(ί, x) is uniquely determined by (8.2)2

for small δj(w).
Now, we define w(ί, x), the superposition of the diffusion waves, by

d

w(ί, x) - w = X (wJ"(ί, x) - w). (8.5)

Then, by Theorem 8.2 of [14], w(ί,x) is an asymptotic solution for ί->oo of
the problems (7.2), (7.3). Indeed, if w0 - weHsnLι

β,s^ l,j8e[0,1], and £ s =
II w o ~~ w L + II w0 — w ||Li is small, then we have

II dι

x{z\t) - w(ή) \\s-ιύ CEsφ{\ + t)-<1 + l)>2+* (8.6)

for ίe[O9 00), where 0 S I ύ s and C is a constant. Here α = (1/2 - β)/2 if ]8G[0, 1/2),
and α > 0 is a small fixed constant if jβe[l/2,1]. ESrβ is given by

o = f | | w o - w | | s + | | w o - w | | L i if J8G[091/2),
s'β | i | w o - w | L + | | w o - w | | L } / 2 if J l j

As a consequence of (8.6), the function G'(t, x) in Proposition 7.1 is approximated for
t -» oo by the following function F(ί, x):

_ d

F(t, x)-M= X (w/ί, x) - w,-)^, (8.8)
7 ~~ 1

where wj(t, x) is j-th component of w(ί, x) in (8.5). Note that vv; (ί, x) = < F(ί, x)5 φ
U) >,

namely, w7 (ί, x) is the 7-th moment of F(ί, x), 7 = 1,..., d. These considerations are
summarized as follows.

Theorem 8.1. Assume Conditions 1 and 2. Let s ^ 1 and βe[0,1]. Suppose that w0

— weHs nLj and Es =\\ w0 — w\\s + || w0 — w|(Li /5 smα//. Let G'(t,x) be the function
in Proposition 7.1 and let F(ί,x) be the function defined by (8.8) in terms of the
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superposition of the diffusion waves. Then we have

|| dx(G'(t) - F(t)) ||s_ x ^ C ^ ί l + ί ) " ( 1 + / ) / 2 + * (8.9)

/or re[0, OO), where O^l^s, C is a constant, and ESίβ is given by (8.7). Here α =
(1/2 - )8)/2 ifβe[O91/2), and oc>O is a small fixed constant if βe [1/2,1].

A combination of Corollary 7.4 and Theorem 8.1 gives the main theorem of this
paper.

Theorem. 8.2. Assume Conditions 1 and 2. Let s^.1 and βe[O,1]. Suppose that
Fo — MeH'nL1 and wo-weLβ and that Es= | | F O - M | | S + | | F 0 - M | | L i is small.
Let F(t, x) be the solution of (1.5), (1.6) constructed in Theorem 3.1 and let F(t, x) be the
function in Theorem 8.1. Then we have

|| dι

x(F(t) - F(ή) | | s _ ^ CEStβ(l + ί)~ ( 1 +l)/2 + α (8.10)

for £e[0, oo), where 0 ^ / ̂  s — 1, C is a constant, Esβ = max {Es9EStβ}9 and α > 0 is a
constant determined in Theorem 8.1.

Remark. 8.1. When | δ (w) \ φ 0, we conclude from Lemma 7.1 of [ 14] that for large t,

^ C | < 5 ( w ) | ( l + ί ) - < 1 / 2 + ί>/2, (8.11)

where / ̂  0 and c is a positive constant. Therefore, the estimates (6.28), (7.13), (7.14),
(8.9) and (8.10) give meaningful asymptotic relations for ί -» oo. In particular, F(t, x)
constructed by the superposition of the diffusion waves is an asymptotic solution for
t-> oo of the discrete Boltzmann equation (1.5).

9. The Broadwell Model in One Space Dimension

As an application of our general result, we treat here the simplest model proposed by
Broadwell [2]. We consider the following six velocities.

Ut=(t;,O,O), V2 = (0,v,0), U 3 = (0,0,ι;),

I V 3 = -Vp, p = l , 2 , 3 ,

where v is a positive constant. We denote by Np = Np(t, X) (p = 1,..., 6) the mass
density of gas particles with the velocity Vp at time t ^ 0 and position X =
(x,y,z)eU3. We assume that Np(t,X), p=l,...,6, do not depend on y and z,
i.e., Np(t,X) = Np(t,x), and that N2(t,x) = N3(t,x) = N5(t,x) = N6(t,x). Put
Fί(t,x) = Nx(t,x),F2(t,x) = N2(t,x) and F3(t,x) = N4(t,x). The original Broadwell
model in three space dimensions is then reduced to ([2])

Ft+VFX = Q(F,F), (9.1)

where F = t(F1,F2,F3), V = diag(v,0, —υ) and

(9.2)

with a positive constants σ. The component of Q(F, G) in (9.2) are of the same form as
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in (1.4) if we put

ot1 = α3 = i? α2 = 4,

^22 = ̂ 22 = A\\ — Al\ = & a n d Akjι = 0 otherwise.

Consequently, (1.2) and (1.3) are satisfied.
The space Jί of summational invariants consists of vectors φ = ι(φγ,φ2,φ3)

satisfying φ1 + φ2) — φ2/2 = 0. Therefore, putting

φ{1) - f(l, 4,1), φ{2) = \υ, 0, - υ\ (9.3)

we see that {φ{1\φ{2)} is a basis of Jί. Note that ^ # x is spanned by φ{3) =
'(1, - 1/2,1). We denote the moments of F = ί ( F 1 , F 2 , F 3 ) by p and m:

p = (F,φ(1)y = Fi + 4 F 2 + F 3 , m = <F, ι//(2)> = u ^ — F 3 ). (9.4)

Let F = t(F1,F2,F3) be a Maxwellian with positive components, namely Fl9F2,
F 3 > 0 and F1F3 — F 2 = 0. By a simple calculation, we know that F is expressed
in terms of its moments p and m as follows (see [6]):

/2(σ(u) + m

F = / 2 - t; 2 -σ(u) I, M = m/p. (9.5)

where p > 0, | u \ < v9 and

σ(μ) = (v2β)(2σ0(u) - 1), σo(u) = (1 + 3u2/i;2)1/2. (9.6)

Note that v\u\< σ(u) < v2 for \u\ < v. By a straightforward calculation, using (9.5),
we obtain the Euler equation for (9.1) (see for example, [6 or 12]):

pt + mx = 0, mt + (pσ(m/p))x = 0. (9.7)

This is rewritten in the vector form (4.8) with the coefficient matrix Ά:

( 0 1 \
u = m/ρ, (9.8)

where σ'(w) = dσ(u)/du.

Lemma 9.1. T/zβ one-dimensional Broadwell model (9.1) satisfies Conditions 1 and 2.
In particular, the Euler equation (9.7) is strictly hyperbolic and both the charateristic
fields are genuinely nonlinear in the region {p > 0, \u\ < v}.

Proof. LeiφeJί dinάλφ = Vφ for λeU. Since Jί is spanned by φ{1) and φ{2\ we may
write φ = c1φ

(1) + c2φ
(2\ where cl5c2e[Rϊ. We substitute this expression into

Xφ = Vφ to get cγ{λ- V)φ(1) + c2(λ - V)φ{2) = 0. A simple calculation shows that
the vectors

(λ - V)φ{2) = υ\λ - υ, 0, - (Λ + i;))

are linearly independent for any λeU. This implies c1 = c2 = 0 and hence φ = 0.
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Thus Condition 1 has been checked. We remark that in the previous paper [13] we
verified the equivalent condition (3.6)4.

Condition 2 had been checked in [5]. We give the outline of the proof. The
eigenvalues λ } of A are given explicitly by

λ2 = λ2(u) = (u + σ(u)1/2)/σ0(u% u = m/p. (9.9)

A straightforward calculation shows that for \u\ < v,

l'j(u) = dλj{u)/du>0, 7 = 1 , 2 ,

{M,0} <max{u,0} <22(u)<v. (9.10)

Therefore the Euler equation (9.7) is strictly hyperbolic. The right eigenvectors fj of
A for λj are then given by

rj = a/(lλjl 7 = 1,2, (9.11)

where a } Φ 0. By a simple calculation, we see that (Vλj9 fj) = ajl'j{u)QΊ{u) — u)/p Φ 0
by (9.10), 7=1,2, where V denotes the gradient with respect to (p,m). This means
that both the characteristic fields are genuinely nonlinear. The coefficients a^ in (9.11)
are determined by the normalization <V^ ,r7> = 1:

aj = p/λ'j(u)(λj(u)-u), u = m/p9 j = 1,2. (9.12)

This completes the proof of Lemma 9.1.
By Lemma 9.1, we can apply all the results in the preceding sections to the one-

dimensional Broadwell model (9.1). In what follows we shall give the concrete form
of the asymptotic solution of (9.1). First we determine the vectors φ{1) and φ{2) in
(2.14), (2.15), which are used in the formula (8.8). Let M = t(Ml9M29M3) be an
absolute Maxwellian with positive components. We can write

M = M2

t(a,l,a~1l M2 > 0, a = MJM2>0. (9.13)

The matrix ΛMm (2.10) is then given by A M = M2 diag(a, 1/4, a~x). We compute
2

φ{1) and φ{2) by the formula φU) = £ cjkAMφ(k\ 7 = 1 , 2 , where cjk are the elements
fc=l

of the inverse matrix of (</l Mφu\ ψ{k)y)\<]k<2 By a straightforward calculation, we
get

w L - W φ™ ( 1 ) (9.14)

where b = a + 1 +a~1.
Next, we determine the diffusion coefficients κ} in (5.3)2, which are used in (8.2):.

Let LM be the matrix defined by (2.11). We have the expression

LM = σM2 \-a-112 1 - α 1 / 2 | . (9.15)

V 1 - a 1 ' 2
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We compute the characteristic polynomial of the matrix B(iξ) = — (LM + iξV), ξeU.
Put LM = σM2LM and V = υV. We have B(ίζ) = σM2B(η) with η = iξv/σM2, where
BW = — (LM + }iV) A straightforward calculation gives (cf. [10])

det (μ/ - B(η)) = μ3 + bμ2 + (cη - /?2)μ - ^2, (9.16)

where b = a + 1 + a~x and c — a — a~ι. We denote by /ij(^), j = 1,2, the eigenvalues
of B(η) satisfying μ^η) -> 0 for 77 —> 0. We determine the coefficients in the expansions

βj(η) = Σ η"μf\ j = 1,2, by using (9.16) (see [10]). Since the eigenvalues μ^iξ) of
« = 1

^(iζ) satisfy μ^iζ) = σM2βj(η) with 77 = iξv/σM2 > the coefficients /,- and τc; in the
expansions of μ^iξ) (see (5.7) and (5.8)) are calculated by the formulas / ; = — vμi

J

1)

and Kj = v2μψjoM2. Therefore we obtain

/, = v(c - Dll2)/2b, λ2 - υ(c + D

γ = - A i ( i ; 2 - λ 2

ί ) / v σ M 2 D ί / 2 , κ 2 = λ 2 ( v 2 - λ l ) / M D 1 / 2

where D = c2 + 4fo, b = a -f 1 + &"1 and c — a — cΓ ι. We note that Λ; in(9.17) agree
with 2j(u), u = m/p, in (9.9), where p and m are the moments of M:

p = < M, ιA(1) > = M 2 (a + 4 + fl " ] ) , m = < M, ψi2) > = vM2(a -a'1). (9.3 8)

Note also that Kj in (9.17) satisfy κj > 0 by (9.10).
Finally, we determine the integral curve Rj of the right eigenvector f,- through the

point (p, in). Let z;(p, m) be the 7-th Riemann invariant, i.e., < Vzj, fj) = 0 for all (p, m),
where V denotes the gradient with respect to (p, m). By a straightforward calculation,
using (9.11), we obtain

u = m/p, j = 1,2. (9.19)

The integral curve Rj is then expressed by the equation Zj(p, m) = Zj(p, m\ namely,

\ίdηl u = m/ρ,

m = pu, . /=U2. (9.20)

Now we define the asymptotic solution F(ί, x) of (9.1). Let F0(x) be the initial data

and define its moments po(x) and mo(x) by

p ( )(x)=<Fo(x),ιA ( 1 )>, mo(x) = <Fo(x),ι//(2)>. (9.21)

We determine δj, j = 1,2, by

x 2

J r(p0(x) - p, mo(x) - m) dx = X δ/j, (9.22)
- x / - I

where r ] are given by (9.11), (9.12) and evaluated at the constant state (p, in). Since the
integral curves R are given by (9.20), the nonlinear diffusion waves (pj, mj) (ί, x) are
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determined by the formulas

/ύ}(t,x) ^ \

pj(t, x) = pexp J (λj(η) -ηyUη), ύ = m/p,
\ a J

rhj(t,x) = pj(t,x)ΰj(t,x),

λj(ΰ% x)) - λj(ύ) = y(t+l,x- λj(ύ)(t + 1); κj9 δj), j = 1,2, (9.23)

where Kj and δj are given by (9.17) and (9.22), respectively, and y(t, x; K, δ) by (8.3)!.
We denote the superposition of the nonlinear diffusion waves by (p, m)(ί, x):

2

p(t,x)-β= X (pj(t,x)-p\

2

m(ί, x)-fh= X (mj(ί, x) - m). (9.24)
i = i

The asymptotic solution F(ί, x) is then given by

F(t9x) - M = (p(t,x) - p)φ(1) + (m(t,x) - rh)φi2\ (9.25)

where φ{1) and φ{2) are the vectors in (9.14).
From Lemma 9.1 and Theorem 8.2 we have

Theorem 9.2. Let M be an absolute Maxwellian with positive components and let
(p,rh) be its moments. Assume that Fo — MeHsr\U and(p0 — p,m0 — wήeLβfors ^ 1
and βe[091], where (po,mo)(x) are the moments of F0(x). If Es= \\F0 — M| | s +
|| Fo — M ||Li is small, then the initial value problem for (9.1) with the initial condition
F(09 x) = F0(x) has a unique global solution F(t9 x). For O^l^s, || dι

x(F(t) - M) | |s_,
tends to zero at the rate t~il/2 + ιV2 as t—> oo. This convergence rate is optimal ifδx and
δ2 in {922) satisfy {δuδ2)φ0. Moreover Jor 0 ̂  / ̂  s - 1, || dι

x(F(t) - F(ή) | |s_, tends
to zero at the rate t~{1+l)/2 + a as f-» oo, where F(t,x) is the function defined by (9.25)
and a>0isa constant determined in Theorem 8.1. Consequently, F(t, x) in (9.25) is an
asymptotic solution of the one-dimensional Broadwell model (9.1).

Appendix. Reduction to the One-Dimensional Equation

The general form of the discrete Boltzmann equation in Un (n ̂  2) is given by (see
[8,3])

dN" Λ ™,= Σ
q,r,s — 1

(Bpq N N — Brs N N ) n — 1 / ΓA 1)

where Np = Np(t, X) represents the mass density of gas particles with the velocity Vp

(constant vector in Un) at time t ̂  0 and position XeMn, V denotes the gradient with
respect to X, and the coefficients B™, p,q,r,s=l,...,J, are nonnegative constants
satisfying

B™ = B™ = B™, B™ = Br;q (A.2)

for a n y p,q,r,s= 1 , . . . , J .
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We shall explain how the one-dimensional equation (1.1) is derived form (A.I).
Let xeU be the first component of XGIR". We assume that

JVp(ί, X), p = 1,..., J, are functions depending only on
t and x, i.e., Np(t, X) = Np(t9 x). (A3),

To state the second assumption, we introduce a partition of the set {!,..., J}. Let
P , ^ G { 1 , . . . , J}. When the first component of two velocities U p and Vq are equal and
in addition | L)p| = | LI J , we write p — ̂ r. It is easily seen that this is an equivalence
relation on {1,... ,J}. Hence we have a partition of {1,... ,J}, namely, {1,... ,J} =
/! u u Im, where /f, i = 1,..., m, denote the equivalence classes. We then assume
that for each / = 1,... ,m,

JVp(ί, x) = Nq(t, x) for any p, g e J f. (A.3)2

Under the assumptions (A.3)1?2 Eq. (A.I) is reduced to the one-dimensional Eq. (1.1).
To see this, we put for each i = 1,..., m,

Fi(t,x) = Np(t,x) pelh (A.4)

vt = the first component of l)p, pslh (A.5^

(Xι = the cardinality of Ir (A.5)2

Also, we put for each ί, j , k, I = 1,..., m,

where the summation is taken over all pelh q^Ij , relk and sel^ We sum up the
equations in (A.I) for pG/t . Then by the assumptions (A.3)1>2 and the definitions (A.4)
and (A.5)2 _ 3 , we easily obtain (1.1). The condition (1.2) follows from (A.2) and (A.5)3.
Here we remark that all the vh i = 1,..., m, in (A.5^ are not distinct in general by the
definition of the partition of {1,..., J}.

Finally, we give a remark on summational invariants. A summational invariant
of (A.I) is defined as a vector Ψ = t(Ψl9..., Ψj)eUJ satisfying

B*ϊ(Ψp+Ψq-Ψr-Ψs) = 0 (A.6)

for any p,q,i%s = 1,..., J (see [8,3]). Let Ψ=t(ΨJ,...,ΨJ) be a summational
invariant of (A.I) and satisfy (A.3)2, namely, Ψp = Ψq for any p,qelt. Put for each
i= l , . . . ,m,

$i=ΨP, Pεlf (A.7)

Summing up (A.6) for peIhqeIj,rElk and selh we get Λι

k

J

ι(φι + ψj — ψk — Φι) = 0by
(A.5)3 and (A.7). Therefore, taking the definition (2.1) into account, we know that
φ = t(a1\jjι,...,amφm) is a summational invariant of (1.1). Physically reasonable
models in Un usually have the following n + 2 vectors as summational invariants,

= ' ( « ! * , . . . , « , * ) , k=\,...,n,

ψ<" + v = '(\U1\
2,...,\UJ\

2),

where upk denotes the fe-th component of Vp. Among these summational invariants,



Boltzmann Equation 589

only Ψ{1\ Ψ{2) and ψ<n + v satisfy (A.7) in general by the definition of the partition of

{1,...,./}.
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