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Abstract. Large-time behavior of solutions of the one-dimensional discrete
Boltzmann equation is studied. Under suitable assumptions it is proved that
as time tends to infinity, the solution approaches a function which is constructed
explicitly in terms of the self-similar solutions of the Burgers equation and the
linear heat equation.

1. Introduction

The one-dimensional discrete Boltzmann equations is written in the form
(see Appendix)
aF oF, 1 =

b=~ -kzzl (AUF.F,— AYF,F), i=1,...,m. (1.1)
1J,K,L=

Here F;=F;(t,x)=0 denotes the mass density of gas particles with the
velocity v; (real constant) at time ¢t =0 and position xeR. The coefficients «; are
positive constants. Also, A} are nonnegative constants satisfying

Al = A=Al A} =AY (1.2)

for any i, j,k,I=1,...,m. In order to exclude the trivial case, we may assume that

A #0 for some i,j,kl=1,...,m. (1.3)

We rewrite (1.1) in the vector form. Put F =*(F,,...,F,)V =diag(v,,...,v,) and
Q(F,G)=4Q,(F,G),..., Qm(F, G)), where each Q;(F, G) is defined by

Qi(F,G) === {A}(F,G,+ F,G,)— A4(F,G;+ F;G))}, (1.4)

211k

* Present address: Department of Applied Science, Faculty of Engineering, Kyushu University 36,
Fukuoka 812, Japan



564 S. Kawashima

so that Q;(F, F) is just the right-hand side of (1.1). We then arrive at
F,+ VF, =Q(F,F). (1.5)
We consider the initial value problem for (1.5) with the initial data
F(0,x) = Fy(x). (1.6)

It is obvious that F =0 is a solution of (1.5). The existence of global solutions of
(1.5), (1.6) near the zero solution was proved by Tartar [18] and Cabannes [4]
when the initial data F,(x) are nonnegative and small. Asymptotic descriptions
for t - oo of the solutions were also given in [18]. (For the generalization of these
results to the case of several dimensions, see [9] and the references therein.) It is also
known that similar results hold for some concrete models, such as the one-
dimensional Broadwell model, without smallness conditions on the initial data. See
[1] and the references therein.

Let M be a constant vector with positive components and satisfy Q(M, M) = 0.
Such a vector is an equilibrium of (1.5) and is called an absolute Maxwellian. The
problem concerning the global existence of solutions of (1.5), (1.6) near absolute
Maxwellians was considered in [13, 17] under a suitable condition, i.e., Condition
1 in Sect. 3. It was proved that if the initial data F,(x) are near an absolute
Maxwellian M, then the problem (1.5), (1.6) has a unique global solution F(t, x)
which converges to M at the rate t~'/* as t— oo. See Theorem 3.1. For more
details, see [13]. (This result is valid also for the case of several dimensions. In that
case, the convergence rate is t ~"*, where n is the spatial dimension. See [13,17].)

The aim of this paper is to give an asymptotic form for ¢t — co of the solution
F(t,x) of (1.5), (1.6) obtained in [13,17]. We shall show that F(t, x) approaches a
function F(t,x) at the rate t *?*% a4 >0, as t— co. Here F(t,x) is defined by a
linear combination of its moments w;(t,x), j=1,...,d, and w(t,x)="(W,...,W,)
(t,x) is given by the superposition of the nonlinear and linear diffusion waves
constructed by the self-similar solutions of the Burgers equation and the linear
heat equation. See Theorem 8.2. To prove this, we require that the Eucler equation
(4.8) obtained from (1.5) as the first approximation of the Chapman-Enskog
expansion is strictly hyperbolic and each characteristic field is either genuinely
nonlinear or linearly degenerate, Condition 2 in Sect. 4. A similar asymptotic
behavior of solutions was proved in [ 14] for a general class of hyperbolic-parabolic
systems of conservation equations including the equations of viscous (or inviscid)
heat conductive fluids.

We shall explain our approach. After some preparations in Sects. 2—-5, we show
in Sect. 6 that the solution F(t, x) of (1.5), (1.6) approaches a function G(t, x) at the
rate t~34**% 4 >0, as t— oo (Theorem 6.2). G(t,x) is a linear combination of its
moments z;(t,x), j=1,...,d,and z(t, x) = '(z;,..., z;) (£, x) is a unique global solution
of the semilinear uniformly parabolic system (6.14), which is determined on the
basis of the spectral representation of solutions to the linearized equation of (1.5)
around the absolute Maxwellian M.

In Sect. 7 we define G'(t,x) by a linear combination of its moments zj(z, x)
j=1,....d, where z'(t,x)="(z},...,2,)(t,x) is a unique global solution of the
semilinear uniformly parabolic system (7.2) with the same viscosity matrix as in
(6.14). The hyperbolic part of (7.2) is exactly the same as the Euler equation (4.8)
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obtained from (1.5). It is then proved that the difference G'(t, x) — G(t, x) tends to
zero at the rate t~%*** o >0, as t — oo (Proposition 7.3). This is based on the fact
that the difference of the nonlinear terms of these two systems is of the third order
(Lemma 7.2).

An asymptotic solution w(t, x) = ‘(W,,..., w,) (t,x) for t — co of the system (7.2)
was constructed in [14] by employing the technique of Liu [16]. It was given by
the superposition of the nonlinear and linear diffusion waves constructed by the
self-similar solutions of the Burgers equation and the linear heat equation. We
then define F(t, x) by a linear combination of w;(t,x), j=1,...,d, such that w(t, x)
become the moments of F(t, x). Since the difference z'(z, x) — w(t, x) tends to zero
at the rate t~'2%% 4> 0, as t — oo, we see that G'(t,x) approaches F(t,x) at the
same rate as t — oo. Consequently, we know that the solution F(t, x) of (1.5), (1.6)
approaches F(t, x) at the rate t /2% o > 0, as t — oo, that is, F(t, x) is an asymptotic
solution for t — oo of (1.5) (Theorem 8.2).

The final section contains an application to the one-dimensional Broadwell
model. In the Appendix we give a recipe for reducing the discrete Boltzmann
equation in several dimensions into the one-dimensional equation.

Notations

For pe[1, oo], I” denotes the usual Lebesgue space on R with the norm ||-||;,. When
p=2, we use the abbreviation ||| = ||-[.. For eR, L} denotes the space of
functions u = u(x) such that (1 + |x|)’uel?, with the norm ||| ,». Let s=0 be an
integer. H® denotes the space of functions u =u(x) such that the derivatives
0'u,0 <1 <s, are [*-functions on R, with the norm |-||,. Note that H® = [? and
Illo = II"|. We denote by %* the space of functions u = u(x) such that o u, 0 <[ <s,
are bounded and continuous on R. Let I be an interval in [0, c0), and let k,s =0
be integers. C*(I; H®) denotes the space of k-times continuously differentiable
functions on I with values in H®. L?(I; H®) denotes the space of L?-functions on I
with values in H*.

2. Preliminaries

We introduce some basic concepts concerning the discrete Boltzmann equation
(1.1) or (1.5). A vector Yy ='(y,...,¥,,)eR™ is called a summational invariant if

A;.cj;(lpi/ai_F_ lpj/O‘j_ Wl — /o) =0 2.1
for any i, j,k,l=1,...,m. It is known that the following three conditions are
equivalent ([8, 3]).

Y is a summational invariant, (2.2),
Y, Q(F,G)y =0 for any F,GeR™, (2.2),
{Y,Q(F,F)>=0 forany FeR", (2.2);

where {,> denotes the standard inner product in R™. We denote by .# the set of
all summational invariants. .# is a subspace of R™ such that 1 Edim.Z <m —1
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because (ay,...,0,)e.# and 4 # R™ by (1.3). Putd =dim.Z. Let Yy, j=1,...,d,
and ¢®, k=d +1,...,m, be constant vectors such that
(YW, ... ¢ P} is a basis of 4, and {¢p“*Y,...,p"™} is a basis of 4", (2.3)
where .4 denotes the orthogonal complement of .# in R". For FeR™, we define
w="(wy,...,wy), w;=<{F YV, j=1,...,d (2.4)

Each w; is called the j-th moment of F.
Let F =%(F,,..., F,)eR" be a vector with positive components. Then F is called
a Maxwellian if

forany i, j,k,I=1,...,m. A constant Maxwellian is called an absolute Maxwellian.
It is known that the following three conditions are equivalent ([8, 3]).

F is a Maxwellian, (2.6),
Yoy logFy,... o, log F, e, (2.6),
Q(F, F)=0. (2.6);

Here the components F;,i=1,...,m, are assumed to be positive. The following
fact will be used in Sect. 4.

Lemma 2.1 ([8,3]) A Maxwellian F ='(F,,...,F,) with positive components is
completely determined by its moments w ="*(wy,..., wy).
In fact, from (2.6);,, there are coefficients u="(uy,...,u,)eR* such that

o;log F; = u ) i=1,...,m, where Y/ is the i-th component of /. Therefore,

e

J
F = F_(u)= t(F—l(u)a'~'va(u))a
— 1 & .
F,(u) =exp (E Y ujnp?’), i=1,...,m (2.7
ij=1
The moments of F are then expressed in terms of u as follows.

w=wu)="(w;W),...,ws(u)),
W) = (Flu), yy = _i Fiwy, j=1,...d. (2:8)

We denote by D, w(u) the Jacobian of the mapping w = w(u). A simple calculation
shows that

DuW(u) = (<A F(u)l//(j)a lp(k) >)1§M§d’ (29)
where
Ap=diag(F fa,,....F,Ja,), F=YF,,... F)eR" (2.10)

The matrix with components {A YD y®> jk=1,...,d, is real symmetric
and positive definite, provided that all the components of F are positive. Therefore
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D,w(u) is non-singular and hence the inverse mapping u = u(w) exists in each
neighborhood. Thus we have the expression F = F(u(w)) by (2.7). This completes the
proof of Lemma 2.1.

Let MeR™ be a vector with positive components. Put

Lyf = —2A4"2QM, A2 f), feR™, (2.11)
Fyu(f,9)=AN'"P QA f,AMg). f.geR™, (2.12)

where A, is given by (2.10) with F = M.

Lemma 2.2. ([13]) If M is a Maxwellian with positive components, then the following
is true. (i) Ly, is real symmetric and nonnegative definite. Its null space N(L,,) is
equal to A2 . (i) Ty, is bi-linear and satisfies Iy (f,9)eN(Ly)* for any f,geR™.

When M is a Maxwellian with positive components, we have N(L,,) = A 3> M
and N(Ly)" = A y,'>.4*. Therefore,

(AMPYD, L AVY@Y s a basis of N(Lyy),

(AU D A 2™ ) s a basis of N(Ly,)™. (2.13)

We choose vectors ¢V, j=1,...,d, (depending on M) as follows.
{pM,...,0W} s a basis of A .4, (2.14)
(PO YOy =5, jk=1,....d. 2.15)
The existence of such vectors follows from the fact that the matrix with components
CA YD Y™ jk=1,...,d, is non-singular (real symmetric and positive
definite). In a similar way, we can choose a basis {yy“*V,... Y™} of Ay .+

satisfying (2.15) for j,k =d + 1,...,m. It is easy to see that both {y/*,... "} and
{p),..., 9™} are bases of R™ and satisfy (2.15) for j,k =1,...,m, namely, they are
dual bases to each other.

3. Global Existence and Decay of Solutions

We consider the initial value problem (1.5), (1.6) in a neighborhood of an absolutely
Maxwellian. We assume the following

Condition 1. Let ye.# and Ay = Vi for 2eR. Then it follows ¢ = 0.

Several conditions each of which is equivalent to Condition 1 were given in [17].
For the details, see Theorem 3.2 below. Under Condition 1 the problem (1.5), (1.6)
is solved globally in time as follows.

Theorem 3.1 ([13,17]) Assume Condition 1. Let M be an absolute Maxwellian with
positive components. (i) Suppose that Fy — MeH®s=1, and |F,— M|, is small.
Then the problem (1.5), (1.6) has a unique global solution F(t,x) satisfying F —
MeC°([0, o]; H)nC*([0, 00 ]; H* ). Moreover, F(t,x) converges to M in %° *-
norm as t— co. (ii) If Fo—MeH* nL',s>1,and E;= |Fo— M|+ |[Fo— M| .: is
small, then the solution F(t, x) in (i) satisfies

10%(F(t) = M) |ls—y < CE(1 + 1)~ /27072 (3.1)

for te[0, ), where 0 <1=<s and C is a constant.
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The estimate (3.1) with 1 £/ < s was not proved in the previous papers [13,17],
and therefore we will give its proof after some preparations. We first derive the
linearized equation of (1.5) around the absolute Maxwellian M. Put

F=M+AL?f. (3.2)
Substituting (3.2) into (1.5), we obtain

where L, and I",, are defined by (2.11) and (2.12), respectively. The corresponding
linearized equation is

fi+ Vit Lyf=0. (3.4)
The eigenvalue problem associated with (3.4) is
pl =BG, B(i&)= —(Ly +icV), <eR, (3.5

where ueC and {eC™ We denote the eigenvalues of (3.5) by u= puy(i&). The
following result obtained in [17] plays a crucial role in the study of the global
existence problem for (1.5).

Theorem 3.2. ([17]) (i) Let M be an absolute Maxwellian. Then the following four
conditions are equivalent.
Let Ly (=0 and i{=V{ for AeR and {eR™.

Then it follows { = 0. (3.6);
Re uy(i&) <0 for any E+0. (3.6),

There is a positive constant ¢y, such that Re py, (i&) £ — ¢ p(&)
for any EeR, where p(&) = E2/(1 + £2). (3.6),

There exists an m x m real skew-symmetric matrix K,,
such that the symmetric part of Ky V + L,, is positive definite. (3.6)4

ii) If Condition 1 is assumed, then (3.6),—(3.6), hold for any absolute Maxwellian M.
Conversely, if one of (3.6),—(3.6) is true for an absolute Maxwellian M, then Condition
1 is satisfied.

We denote by e'® the semigroup of the linearized Eq. (3.4). When the matrix
exponential 8% is well defined, we get the relation

@2f) (&)= eBiOf (), (3.7)

where f(¢) denotes the Fourier transform of f(x). If Condition 1 (or equivalently,
(3.6),) is assumed, we have

€Pf) Q) < Ce @ fQ)], &eR, (338

where p(¢&) = £2/(1 + &%), C and c are positive constants. For the proof of (3.8), see
[13 or 19]. From (3.8) we easily obtain

[0u(e® Nl = Ce s 1 + C(L+ 1)~ W20 68 f I, (3.9)
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where 0 < k <, C and ¢ are positive constants, and f(x) is a function such that the
norms on the right-hand side of (3.9) are finite. It is also known ([13]) that if
f(x)eN(Ly)" holds for any xeR, then (3.9) can be improved to

[05(e® f)Il < Ce™ ([0 [ 1| + C(1 + 1)~ R 0% £ 1, (3.10)
where 0<k<[+1and [=0.

Proof of the Estimate (3.1). Let F(t,x) be the solution of (1.5), (1.6) in (i) of
Theorem 3.1. The function f(t, x) defined by (3.2) satisfies (3.3). Therefore, using the
semigroup ', we get the formula

£ =€ fo+ [Py (f, () d, (3.11)
0
where fo(x) = A 3'/2(Fy(x) — M). Put
M) = sup (1 + 90202 |3 ()], (3.12)
0=t

for 0 <1< s. It suffices to get the estimate M (t) £ CE, with a constant C. We apply
0%,0< j<s, to(3.11) and estimate each equation by using (3.9) and (3.10). (Recall
that I'y(f, f)eN(L,)" for any feR™). Summing up for 0 < j <'s, we obtain

1)1, < CE(1 + 1) 1% + C(i) O Loy f /)0 o de

+C(ft)(1+t—r)”3/4ljFM(f,f)(r)liler. (3.13)

By the definition of M (t), the middle and the last terms on the right-hand side of
(3.13) are majorized by

CM, (0 [e™"9(1 + 1) 712 de < CM, (07 (1 + 1) V2,
0

t
CMy@)*[(1+t—7)"¥* (1 +1)" 2 de < CM,(0)*(1 + 1)~ /4,

0
respectively. Therefore we arrive at the inequality M, (t) < CE,+ CM ()% from
which follows the desired estimate M, (t) < CE; if E is small. Thus the proof of (3.1)
with [ =0 is completed.

Next we show (3.1) with [ = 1. From the estimates for the derivatives ¢% f, 1 <

J='s, we obtain

s—1=

t
10, f (Dl S CE(1+1)3* 4 Cfe <07,
0

t/2
10 (f, f)@D) ls-1dT+ C (f) (Lt =) > Ly (f, N)(@) | ade

t

+C (1 +t—0) ¥ 0. T y(f, )@l dr. (3.14)

t/2

Here we have taken k in (3.10) such that k=0 on [0,¢/2] and k=1 on [¢/2,t]. We
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estimate each term on the right-hand side of (3.14) by using (3.1) with / = 0 and the
definition of M, (r). We know that the second term is majorized by

t
CEM, (1) e (1 + 1) ' dr < CE,M, (1)(1 + 1) .
4]

The third and the last terms are estimated respectively by

t/2
CE? g (I4+t—1) 3% 4+ 1) Y2de < CE2(1 + 1)~ 34,

t
CEM ()| (1 +t—1)*1 +1) "dt S CEM,()(1 + 1) ¥~
t/2
Combining these estimates, we obtain the inequality M, (1) < CE;+ CE M (¢),
which gives M, () £ CE, if E; is small. Thus (3.1) is proved for [ = 1. The estimates
for higher derivatives are shown in the same way by using the induction for . We
omit the details.

4. The Euler Equation

Following [8], we derive the Euler equation as the first approximation of the
Chapman-Enskog expansion to (1.5). We assume that the solution F of (1.5) has the
expansion

HRPI @

Letw="'(w,,...,w,) be the moments of F defined by (2.4). Each F™ is assumed to be
a function depending only on 0w (x = 0) such that Fe_#" forn = 1. Consequently,
we have

w;=(FOQDS, j=1,....d, (4.2),
(FW Y0y =0, j=1,....d n=1. (4.2),
Taking the inner product of (1.5) with Y/, j=1,...,d, we obtain
(Wj)[+(<VF,¢(i)>)x=0, j=1,....d. (4.3)
Each F™ is determined successively by the equations
Q(FO, FOy =, (4.4),

n-1
20(FO,F?) = — Y Q(F, F" 9)+ VFy~ Y
k=1

d o a 2(k)
_|._

CH—LKVFO DY) o nz=1, (44),

k+l=n—1j:11:oa—(ai.wj)

supplemented by the conditions (4.2), and (4.2),, n=1!. The Euler equation is
Eq.(4.3)for F = F9, where F'© is determined by (4.4), and (4.2),. By Lemma 2.1 (see
(2.7), (2.8))., we have the expressions F© = F(u) and

w=w(t) ="({FLY7>) < =y (4.5)
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and hence F© = F(u(w)), where u = u(w) is the inverse mapping of w = w(u). Here all
the components of F© are assumed to be positive. Consequently, (4.3) for F = F(®
takes the form
w(u), + h(u), =0 or A°wu, + A(wu, =0, (4.6)
where
h(w) =" ({VEW,Y ), < <05
AO(“) =D, w(u)=({A m)w‘j’, Wk)>)1 <jk<d>
A(u) = D h(u) = (VA g ¥ ) < icu (4.7)
Here D, denotes the differentiation with respect to u. Also, (4.6) is rewritten in the
form
w,+h(w), =0 or w,+ Aww, =0, (4.8)
where
hw) = hu(w)),  A(w) =D, h(w). 4.9)
The Euler equation (4.8) is regarded as a symmetric hyperbolic system because 4°(u)
and A(u) are real symmetric and in addition A°(u) is positive definite. Notice that

Aww) = AW A°w)~t ="Aw), Au)= Au)" " Au). (4.10)
In what follows we assume the following

Condition 2. The Euler equation (4.8) is strictly hyperbolic and each characteristic
field is either genuinely nonlinear or linearly degenerate in the sense of Lax [15].

This condition means that for each w, the matrix A(w) has real and distinct
eigenvalues

Aw) < oo < Ay(w), 4.11)
and for each j=1,...,d, we have either {V4;(w),7;(w)) # 0 (genuinely nonlinear)
or (V,4;w),7j(w)>=0 (linearly degenerate) for all w. Here 7;(w) is the right
eigenvector of A(w) for 4;(w), V,, denotes the gradient with respect to w and {, ) the
standard inner product in R?. Without loss of generality we may assume that either

(VA WL F W)Y =1 or (VA (w),F(w)> =0 (4.12)
for all w. It is easily seen that {A°(u(w))™'F;(w), 7 (w)> =0 for j# k. Therefore,
LWy (wW)> =64, jk=1,....,d, (4.13)
where
Ti(w) = c;(w) 7, (w) A° (u(w)) ™, (4.14)
cj(w) = A (u(w)) ™ 1 F(w), 7 (w) )~ > 0. (4.15)

Notice that Tj(w), a row vector in R¢, is the left eigenvector of A(w) for Zj(w). We have
the spectral resolution

2w Pi(w),  Pi(w)=F;(w)(w). (4.16)

M=~

Aw) =

J

1



572 S. Kawashima

From (4.10) we know that Z (w(u)) are the eigenvalues of A(u). The corresponding
right and left eigenvectors, #,(u) and Tj(u), are given respectively by

F) = ¢ 0v(00) ™ T (w(w) = 0w (w) 2 A0 F (w(a),
1) = ¢w() 7, (w() = ¢ (w(w) ~ 2T (w() A (). (4.17)

Here #;(u) and T,(u) are chosen so as to satisfy the normalizations

CA®(u)pj(u), i)y = 0y,
), Flu)y =685, jok=1,....d. (4.18)

5. Spectral Representation

We consider the eigenvalue problem (3.5). Assymptotic expansions for ¢ —0 of
eigenvalues and eigenvectors were given in [7]. Our aim is to determine the
coefficients appearing in the expansions by using Conditions 1 and 2.

Let M be an absolute Maxwellian with positive components. We denote the
moments of M by w="w,,...,w,) and put & =u(w). We apply the perturbation
theory for matrices (see [11]) to the problem (3.5) to obtain the asymptotic
expansions of = pu(i&) and { = {(i¢) for £->0:

oL

u(ic) = Z L) = Y e (5.1)

= n=q
where ™eR and ("™eR™ because Ly, and V are real symmetric. Substitution of
(5.1) into (3.5) yields

(0)((0) + L (0) =0, (5.2)0

h

S 4 L (=0, nz L (5.2),

Equation (5.2), implies that — @ is an elgenvalue of Ly, and {9 is the
corresponding right eigenvector. Therefore we have p(% =0 (with multlpllclty d)
or 1 <0 by Lemma 2.2. We treat the case

w9 =0. (5.3),

In this case we have {{YeN(L,,), and therefore

d
0= Y RAY (54)
=1

by (2.13), where f3,,..., [, are real constants. Substituting (5.3), and (5.4), into
(5.2); and taking the inner product (in R™) with A ;2y®, k=1,...,d, we obtain
P A @B + A(w)f = 0, where f ="(B,,..., B,;). Here we used (4.7). Therefore, — u
is an eigenvalue of A(i1) = A°(i1) " ! A(ii) and f3 is the corresponding right eigenvector.
Thus we have

W= 7,00, (5.3),
and fi =7;(u) for j=1,...,d. Consequently, we have from (5.4),,
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d
(O == Y Fu@A Y, (54
k=1
where #;,(1) is the k-th component of #,(1). Here e; are normalized so as to satisfy
(by (4.18))
lej ey =0y, jk=1,...,d (5.5
Notice that {e,,...,e,} is an orthonormal basis of N(L,,). Substituting (5.3), , and
(5.4), into (5.2),, we get Ly (™ =(i,(wW)— V)e,. This equation can be solved
J J
(non-uniquely) for () because
(2,(9) — V)e,e N(Ly)". (5.6)
we have

(W= with &= Ly' (4,(W) — V)e, + Poel?, (5.

4,
d
where P, denotes the orthogonal projection onto N(L,,), namely, P,f Z
the

{f,erye for feR™ Substituting (5.3)y.;, (5.4), and (5.4), into (5.2), and taking t
inner product with e;, we get the formula

1 = ;= CLig (440%) — V)ey, (35(07) = V)e, (53);

where (5.5) and (5.6) were used. Since Lye;=0 and e; #0, we conclude by
Condition 1 (orequivalently, (3.6),) that (4;(w) — V)e; # 0. Therefore we have ; > 0
because L, is real symmetric and positive definite on N(L,,)". These considerations
are summarized in the following lemma.

Lemma 5.1. Assume Conditions 1 and 2 and consider the problem (3.5). Then there
is a positive constant 6 such that for || <6, we have d eigenvalues p;= p;(ic),

j=1,...,d, which tend to zero as £ —0. We denote the corresponding eigenvectors
by {;={;(ié), j=1,...,d. We have the Taylor series expansions for |£| < é:
p;(i€) = Z @&y, (8= Z @&y, (5.7

where W’ eR and (" eR™. In particular, we have
p = —4;(w), P = (w) >0,
(O =e;(w), (P =eP(w). (5.8)

For explicit forms of these coefficients, see (5.4)y, (5.4), and (5.3),. The eigenvectors
{;(i¢) can be normalized by

(G0, G(— i) =0y, Jk=1,....d, (5.9)

where (,) denotes the standard inner product in C™.
By this lemma, the matrix exponential e'5%9 is well defined for | £| < § and has the
following expression.

MY = 3 EIOLL(— N0 + 20010 (5.10)
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for feC™. Here Z(t,i¢) is the matrix satisfying
[Z(t,iQ)] = Ce™, [ <9, (5.11)

where C and c¢ are positive constants.

6. Approximation by Uniformly Parabolic System, I

Let F(t, x) be the solution of (1.5), (1.6) constructed in Theorem 3.1 and let f(t, x)
be the function defined by (3.2). We have the formula (3.11), or in the Fourier
transform,

S0 =("fo) (&) + i(@“‘”BFM(f, ) &9de, (6.1)

where f,(x) = A Y2(Fo(x) — M). For || < §, the matrix exponential e® is well
defined and hence (3.7) holds true. Therefore, using (5.10), we obtain

ft.éo= ZWW%@CH@mw+Mﬁ%@

d
Y et (f, )T 8, C(— 1)) (i) dT

Jj=1

Z(t—wi&) Dy (f, )@, &de, €< (6.2)

+

+

Oty Qe_-yu

Taking (6.2) into account, we define G(z, x) by
G(t,x) =M + A3 g(t, x), (6.3)

zo=;gwwﬁ©@m

t d -~
+j‘ Z e(t-‘t)vj(if)(FM(g, g)(r, é), . iéeg,l))ejdr, (64)

0j=1
where
vii&) = —iE2;(W) + (i) kW), j=1,...,d. (6.5)

(Here 4;(W), r;(w), ¢; = e;(w) and el = ¢V () are the coefficients in (5.8).) We shall
show that G(z, x) is well defined for all (t, x) and gives an approximation to F(t, x)
for t— 0. For this purpose, we first derive the equation of g(t, x). Substituting
(5.4), into (6.4) and using (5.6) and the fact that I",(g, ¢) is perpendicular to N(L,,)
(by Lemma 2.2), we have

d _
gt &= 'Zﬁ M9 (f6(8), e;le;

t d
- gié Zl TNV Ly ' Tgg,9)(1, ), €))edr. (6.6)
=

This expression implies that g(t, x)e N(L,,), and hence G(t,x) — MeA ,,.# for all
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(t, x). Consequently, we have the expressions

g(t, x) Zd: i(t, x)e;, 6.7)

Glt,x)— M = .Z (z,(6, %) — ), (6.8)

where ¢/(1, x) = {g(t,x), e;> and z;(t,x) = {G(t,x), Yy, j=1,...,d. Here we used
(5.5) and (2.15). Note that z;(t,x) and w; are the j-th moments of G(t,x) and M,
respectively. Take the inner product (in C™) of (6.6) with e;, j=1,...,d, and
differentiate the both sides with respect to t. We substitute (6.5) and (6.7) into the
resulting equation and then take the inverse Fourier transform to obtain

d

gl + A;(w)gl + ) 12—1 G(W)(g°9")x = 1,(W) s (6.9)
§0,x) = CFo(x) = M, Ay ?e;>, j=1,....d, (6.10)
where
qh(w) =V Ly' Tylewe)ey, jikl=1,....d (6.11)
Note that (6.9) is a semilinear uniformly parabolic system because x;(w) >0 for
j=1,...,d

We rewrite (6.9) into the equation of the moments z; = z;(t,x), j=1,...,d, of
G(t,x). Put z="(z,,...,z,). A simple calculation shows that

gl =z =W, hi(@)) = ¢;(%) 1z = W, L)) (6.12)
for j=1,...,d. Here we used (5.4); and (4.17). These relations together with (4.18)
and (4.17) yield

Z g’ c; (W) 27 (W), (6.13)

W=

~.
-
<«Q
~.

From (6.9), (6.10), (6.12) and (6.13) we easily obtain

z, + k(z), = D(W)z,,, (6.14)

2(0,x) = wo(x) ="({Fo (X, ¥)), < <0 (6.15)
where
k(z) = hW) + AW)(z — W) + q(2),
D(w) = Zd: Kj(W)Fj(W), (6.16)
ji=1

and ¢(z) is the quadratic function of z — w

d

Z 5 (9) (2 = W, T(0) > (2 — W, T (9) Y7, (9),

05 (W) = q;-k(W) ci(W)fe;(W)e(w)' 2. (6.17)
In deriving (6.16), we used the spectral resolution (4.16). The system (6.14) is also
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semilinear and uniformly parabolic and therefore the problem (6.14), (6.15) can be
solved globally in time, provided that the initial data w(x) are close to the constant
state w. (See, for example, Proposition 6.1 of [14].)
To obtain a decay estimate of solutions, we consider the linearized system of
(6.14) around z = w,
z,+ A(W)z, = D(W)z,,. (6.18)

We denote the semigroup of (6.18) by ¢'. Then we have (¢'5z) (&) = 'S0 2(&), where

S(i&) = — iAW) + (i€)* D(w) =

|I'[\/] a

v (i) B(), (6.19)

j=1

d
o189 21 e P (). (6.20)
=

Recall that v;(i¢) is given by (6.5). By virtue of the spectral resolution (6.20), we easily
obtain

[(e®2)]| < Cem | oz + C(1 + 1) V202 0z, (6.21)

where 0 <k <[, C and ¢ are positive constants. We also have
1/2
afero dru<ic<£e MR <>u2dr>

t
+ C{(1 41—~ PR35 ()| dr, (6.22)
0

where !> 1and 0 £ k < 1. Using (6.21) and (6.22), we can show the decay of solutions
of (6.14), (6.15) in the same way as in the proof of (3.1). Summarizing all the
considerations, we have

Proposition 6.1. Assume Conditions 1 and 2. We denote by wq(x) the moments of
Fo(x), ie, wo(x)="({Fo(x), YV o oy () If wo—weH®, s= 1, and |[wo—W|, is
small, then the problem (6.14), (6.15) has a unique global solution z(t,x) satisfying
z—weC([0, o), H) (N C' ([0, co); H™2) if s=2) and 0,zeL*([0, o), HY). More-
over, z(t,x) converges to w in #°~ *-norm as t —» co. Consequently, G(t, x) defined by
(6.8) tends to M in % ‘-norm as t—oo. (i) If wo—weHnL', s=1, and
E.=|wo—w|,+ | wo— Wl is small, then
| 04(2(0) = W) o1, I 0G(0) = M) |y £ CE(1 +1)” /27072 (6.23)

for te[0, o0), where 0 <[ <s and C is a constant.

Next we shall show that the solution F(z, x) of (1.5), (1.6) constructed in Theorem
3.1 is well approximated by G(t, x) for t > cc. We define f(t, x) and g(t, x) by (3.2)
and (6.3), respectively. Then we get the formulas (6.1) and (6.4). It follows from
(6.1) and (3.8) that for 0 < j <,

1 (6O 2z < Ce™ Nl Soll + Cfe”‘“ el (L@ ]d (6.24)

Here and in the sequel, C and ¢ denote positive constants. Similarly, we have
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from (6.4),

t 1/2
1GEY 42, Ol 220 < Ce™ 0% fo | + C(ge_c‘"” 105149, 9)(0) ll"‘df> - (6.25)
For |£] < 6, we use the expression (6.2). Subtracting (6.4) from (6.2) and using the
expansions of u;(i¢) and {;(i¢) (see Lemma 5.1), we obtain

17(t,6) = 4(t, &) < Ce™| [o(&)] + ClEle ™| (&)

+ Cie‘“‘“’lfM(f, 1)z O)\de
L CJE e R Py (£, f)(x, &) d
0

t
+ Cgléle_c(‘""ézlfM(f—g,f+g)(f, Oldr, &) <o. (6.26)
Here we also used (5.11) and the fact that I'y(f,f) is prependicular to
e;,j=1,...,d. From (6.26) we get for 0 < j<s,
1GEY(F (£ &) — 9t )] 2
S Ce | 0L foll + C(A + 1)~ £,

+CJe AT (£ 1) de
e iu )RR G () e de

+ Ci(l 1) ORI Ny (f — 9. f + @) [adr, (627)

where 0< k< j+2and 0 <k’ < j+ 1. Combining (6.24), (6.25) and (6.27), we have
a desired approximation result.

Theorem 6.2. Assume Conditions 1 and 2. Suppose that Fo— MeH*nL',s > 1, and
E,=||Fo— M|+ |Fo— M| is small. Let F(t,x) be the solution of (1.5), (1.6)

constructed in Theorem 3.1 and let G(t,x) be the function in Proposition 6.1. Then
we have

[0%(F(t) = G0) |- < CE((1 + )7 /21020 (6.28)

for te[0, 0), where 0<I<s—1,C is a constant, and o >0 is a small fixed
constant.

Remark 6.1. A similar approximation result was proved in [12] (Theorem
3.9) for the one-dimensional Broadwell model of the Boltzmann equation.

Proof of Theorem 6.2. For 0 <1< s— 1, we define

My(t)= sup (1 + 1)L (f (1) — g(0) lls-- (6.29)

0Tt
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It suffices to show the inequality M,(t) < CE;,. First we have from (6.24), (6.25) and
(6.27) with 0 < j < s,

1£(0) = g(0)], € CE((1 + 1)~ * + CJe~,

0

t 1/2
I (f, /)@ lsdT + C(ié"“'” I M(g. ) ()12 df)

+ Cl/fz(l +1—1) N Dy (f, (@) |l de + C j (I+t—1)7 "
0

t/2
0.y (fs ))de FCI A+ t=0 3y (f ~ g, f + @)l dr. (6.30)

Here we have taken k and k' in (6.27) such that k =0 on [0,¢/2], k=1 on [t/2,1]
and k'=0 on [0,t]. We estimate each term on the right-hand side of (6.30) by
using (3.1) and (6.23) with [=0,1. By the same arguments as in the proof of
(3.1), we know that the integrals except for the last one are all majorized by
CE2(1 +t)” %4 For the last term, we have the bound

t

CE,M(0f(1+1—1)7 (1 +1)7 " dt £ CEM(t)(1 + 1) 47,
0

where we used the definition of M (t). Combining these estimates, we arrive at the
inequality M(t) < CE,+ CE,M(¢), which gives M(t) < CE, for small E,. Thus
the proof of (6.28) with [ = 0 is completed.

Next, from (6.24), (6.25) and (6.27) with 1 < j <, we obtain

10(f(6) =g lls—y SCE(141)" ¥+ .. (6.31)

Here we take k and k' in (6.27) such that k= k' =0 on [0,t/2], and k=2,k'=1 on
[1/2,1]. We estimate each term on the right-hand side of (6.31) by using (3.1), (6.23)
with [ =0, 1,2 and (6.28) with [ = 0. Similarly as in the above, we reach the inequality
M (t) < CE + CE,M,(t), from which follows the estimate (6.28) with [ =1 if E| is
small. The estimates for higher derivatives are shown in the way and we omit the
details.

7. Approximation by Uniformly Parabolic System, 11

We shall give a modification of G(t, x) in Proposition 6.1. Taking into account of
(6.8), (6.14) and (6.15), we defined G'(t, x) by

G(t,x)— M = Z (L, x) — w;) Y, (7.1)
where z'(r,x) = (z,..., z,)(t, x) is a solution of the problem
Zi+ B ) = DOW) i, (72)

2(0,x) = wo(x) = "({Fo (), YD), < 2y (7.3)
Here h(z) and D(w) are defined by (4.9) and (6.16), respectively. Note that
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Z(t,x) = {G'(t,x),y), namely, zj(t,x) is the j-th moment of G'(t,x), j=1,...,d.
The system (7.2) is semilinear and uniformly parabolic, and its linearized system
around z' = w agree with (6.18). Therefore we have the following

Proposition 7.1. Assume Conditions 1 and 2. (i) If wo — weH®% s> 1, and |wy — W |
is small, then the problem (7.2), (7.3) has a unique global solution Z'(t,x) which
converges to w in #°~ -norms as t - o0. Consequently, G'(t,x) defined by (7.1) tends
to M in B ‘-norm as t — oo. (i) If wo —weH* LY, s> 1, and E, = ||wy — W], +
|wo — W . is small, then

105G () = W)l 15 105G (1) = M) [, < CE((1 4 1) /2012 (7.4)

for t€[0, 0], where 0 <1< s and C is a constant.
We wish to show that z'(t, x) is well approximated by z(¢, x) in Proposition 6.1
for t— co. For this purpose we prepare the following

Lemma 7.2. Let h(z) and k(z) be the functions in (4.9) and (6.16), respectively. Then we
have

|h(z) — k(z)| = O(|z—Ww[®) for |z—w|—0.
Proof. Recall that the Euler equation (4.8) is equivalent to

((FO YD), + (CVFO yy) = j=1,....d, (7.5)
where F® is determined by (4.4), and (4.2),. We write
FO=M+ AL f. (7.6)
Substitution of (7.6) into (4.4), yields
Ly f=Tyu(f. /) (7.7)

Since I',,(f,f)eN(Ly)" by Lemma 22, Eq. (7.7) is reduced to f=P,f+
d

Ly Ty (f, f), where P, is the orthogonal projection onto N(L,,), i.e., Py f = Z fle;
j=1

with f/={f,e;>, j=1,...,d. Therefore we get the formula

au

d
f= Z fjej + Ly' y(ewe) f* f'+ R f], (7.8)

j=1 kil=1

where R[ /1= O(|f|*)for | f| - 0. By the definitions of fand e;, j = 1,...,d, we know
that (7.5) is equivalent to

(<f)ej>)l+(<Vf>ej>)x=()ﬂ ]:1,,d (79)

We substitute (7.8) into (7.9) and compute the resulting equation by using (5.6) and
Iy(er,e,)eN(Ly)". We then obtain

d
fi+ 4,00 fl+ IZQI e+ RIf1=0, j=1,...4d, (7.10)

k 1

where the coefficients g{,(w) are in (6.11),and R’[ f1=<{VR[fl,e;>,j=1,...,d. We
rewrite (7.10) into the equation of the moments w;, j = 1,...,d, of F°. Similarly as in
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the proof of (6.14), we arrive at
w, + (k(w) + r(w)), = 0, (7.11)
where w="(w,...,wy), k(w) is in (6.16), and

Z RILfT¢;(0)12F;(0). (7.12)

Notice that the right-hand side of (7. 12) is a function of w because F® and hence f is
a function of w. Also, note that r(w)=O0(] f|*) }w— w|3) for |w—w|-0.
Equation (7.11) must agree with (4.8). Therefore we get h(w) = k(w) + r(w). Thus the
proof of Lemma 7.2 is completed.

By virtue of Lemma 7.2 we have

Proposition 7.3. Asuume Conditions 1 and 2. Suppose that wy —weH*nL',s = 1, and
Ey=|wo— Wl i+ [[wg— W is small. Let G(t,x) and G'(t,x) be the functions in
Propositions 6.1 and 7.1, respectively. Then we have

104G (1) = GO) | < CEZ(1 4 ) G702 (7.13)

for te[0, oo), where 0 <1 <s,C is a constant, and o.> 0 is a small fixed constant.
A combination of Theorem 6.2 and Proposition 7.3 gives the following

Corollary 7.4. Assume the same conditions of Theorem 6.2. Let F(t, x) be the solution
of (1.5), (1.6) constructed in Theorem 3.1 and let G'(t, x) be the function in Proposition
7.1. Then we have

[OUF ()~ G'(1) y- < CE(1 1) G2z te (7.14)

for te[0, ), where 0 <[ < s—1,C is a constant, and o > 0 is a small fixed constant.

Proof of Proposition 7.3. It suffices to show the estimate
104z (1) = 2(0) - £ CEZ (1 4 1) 202+ (7.15)
for te[0, o), where 0 < [ < 5. Here z(t, x) and Z'(¢, x) are the solutions of the problems
(6.14), (6.15) and (7.2), (7.3), respectively. Using the semigroup e of (6.18), we get
t t
Z() = 2t) = — [ T2 (r)dr — [ PP (g(2') — g(2)).(7) dr, (7.16)
0 0

where r(z) and ¢(z) are given by (7.12) and (6.17), respectively. Put
My(6)= sup (1 + )32 027202 (1) — 2(6) 5 - (7.17)

01t

for 0<1<s. We apply 0.,0 < j<s, to (7.16) and estimatc each equation by using
(6.21) and (6.22). Summing up for 0 < j <5, we obtain

t 1/2
Iz'(t)—z(0) |, = C<ge‘““” () ()12 dr>

: 1/2
C<(§)e‘“’“’) Iq(z') — q(2))(x) Hfdf)
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t
+Cl(1+1t—1)7* 1)) ||, dr
0

+ Cj)(l +1—1)7 " (q(2) — 9@)(@) | 1 dr. (7.18)

We estimate each term on the right-hand side of (7.18) by using (6.23) and (7.4) with
I=0,1. The first and the second terms are estimated respectively by

t 1/2
cEg(je-c"-ﬂu + r)_5/2d1> S CEX(1+1)7%%
0

t 1/2
CE?(je—”(’_’)(l+r)_3/2d‘c> < CEX2(1+1) %4
0

For any fixed y > 0, the third term has the bound

t
CE}[(14+t—1) 31 +1) 1t S CEX(1 + )34,
0

Similarly, the last term is majorized by

t
CEMo(@0)[(1+t—1)">*(1 + 1) " *dv < CEMo(6)(1 + 1) 3472,
0
where we used the definition of M, (¢). Substituting these estimates into (7.18) and
choosing y =a, we obtain the inequality M,(t) < CE2 4+ CE,M,(t), which gives
M (t) < CEZ if E, is small. Thus (7.15) with [ =0 is proved. The estimates for the
derivatives are shown in the same way and we omit the details.

8. Large-time Behavior of Solutions

An asymptotic solution of the semilinear uniformly parabolic system (7.2) was
constructed in [14] by employing the technique of Liu [16]. We first review its
construction. We determine 6;(w), j=1,...,d, by

0

d
| (Wo(x) —w)dx = Zl 0;(W)F;(w), (8.1)
kN =
where wo(x) ="({Fo(x),y)), ., <, and Fi(w), j = 1,...,d, are the right eigenvectors of
A(w). Put (W) = *(6,(W),...,5,(W)) and assume that |§(w)| # 0. We denote by R;(w)
the integral curve of the vector 7(w) through the point w=w. When j-th
characteristic field is genuinely nonlinear, we define the nonlinear diffusion wave
wi(t, x) by

w/(t, x)€R;(W),
ij(Wj(t, x)) = A;(W) = y(t + 1,x — A;(W)(t + 1); K{(W), 6;(W)), (8.2),
where
/2K __ —-n2
Wt xire,0) = et 12— €= e , on=x/JAxr.  (83),

S+ @ —1)] e Fde
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Note that y=y(t, x;x,0) is the self-similar solution of the Burgers equation
¥, + VY. = KV, and satisfies

[ wt,x;x,0)dx =36 for t>0. (8.4)
In (8.2),,4;(w) is the eigenvalue of A(w) and « ;(w) is the coefficient determined by
(5.3),. Smce {V,4;(w), 7(w) ) = 1 by (4.12), w(t, x) is uniquely determined by (8.2),,
provided that é;(w) is small. When j-th characteristic field is linearly degenerate, we
choose a smooth function s; = s;(w) such that s;(W) = £;(W) and {V ,s;(w),7;(w) > =1,
and then define the linear diffusion wave wi(t, x) by

wi(t, x)eR;(W),
Sj(Wj([, X)) — Aj(W) = p(t + 1, x — 4;(W)(t + 1); 5;(W), 6,;(W)), (8.2),
where
W(t, x; 1, 8) = d(dnrt)” V2e ", y=x//dKt. (8.3),

Note that y = y(t, x;x,0) is the self-similar solution of the linear heat equation
¥, = kY., and satisfies (8.4). Note also that w/(¢, x) is uniquely determined by (8.2),
for small é;(w).

Now, we define w(t, x), the superposition of the diffusion waves, by

W(t,x) —w = i (Wi(t, x) — W). (8.5)

Then, by Theorem 8.2 of [14], w(t,x) is an asymptotic solution for t— oo of
the problems (7.2), (7.3). Indeed, if wy—weH*nLj,s21,pe[0,1], and E =
lwo — Wi+ || wg— Wl is small, then we have

1042 (6) = W(O) |-y < CE, y(1 + )~ F 002 (8.6)

for te[0, c0), where 0 <[ < s and C is a constant. Here o = (1/2 — f)/2 if f€[0, 1/2),
and o > 0 is a small fixed constant if fe[1/2,1]. ESQ,, is given by

Esﬁz{Ilwo_W'|S+“WO‘WHL}, if  pefo,1/2),

8.7
fwo = wlls + lwo — Wi, if pe[1/2,1]. ®.7)

As a consequence of (8.6), the function G'(t, x) in Proposition 7.1 is approximated for
t— oo by the following function F(z, x):

F(t,x) — Z (8, x)— W) oV, (8.8)

i=1

)in (8.5). Note that w(t, x) = (F(t, x), ¥ >,
(t,x), j=1,...,d. These considerations are

where w(t, x) is j -th component of w(z, x
namely, w,(t, x) is the j-th moment of F
summarlzed as follows.

Theorem 8.1. Assume Conditions 1 and 2. Let s = 1 and €[0,1]. Suppose that w,,
—weH*nLg and E,=|wo—wl,+ [lwo— Wl is small. Let G'(t, x) be the function
in Proposition 7.1 and let F(t,x) be the function defined by (8.8) in terms of the
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superposition of the diffusion waves. Then we have
16%(G'(6) = F(£)) lly— 1 < CE, (1 + 1)~ A +02 %= 8.9)

for re[0, c0), where 0 <1 <s, C is a constant, and ES,,, is given by (8.7). Here o=
(12 = p)/2 if fe[0,1/2), and o> 0 is a small fixed constant if fe[1/2,1].

A combination of Corollary 7.4 and Theorem 8.1 gives the main theorem of this
paper.
Theorem. 8.2. Assume Conditions 1 and 2. Let s=1 and fe[0,1]. Suppose that
Fo—MeH*nL" and wo —weLj and that E;= |Fo— M ||+ | Fo— M ||+ is small.
Let F(t, x) be the solution of (1.5), (1.6) constructed in Theorem 3.1 and let F(t, x) be the
function in Theorem 8.1. Then we have

1OL(F () = FO) [ls—1 < CE 4(1 1)~ + 025 (8.10)
for te[0, o), where 0 <1 < s —1,C is a constant, E, ; = max {E_, ES,B}, andoa>0isa
constant determined in Theorem 8.1.

Remark. 8.1. When |§(w)| # 0, we conclude from Lemma 7.1 of [ 14] that for large ¢,
105(F(6) = M) || Z c[d(W)[(1 + 1)~ 4202, (8.11)

where [ = 0 and c is a positive constant. Therefore, the estimates (6.28), (7.13), (7.14),
(8.9) and (8.10) give meaningful asymptotic relations for t — co. In particular, F(t, x)
constructed by the superposition of the diffusion waves is an asymptotic solution for
t — oo of the discrete Boltzmann equation (1.5).

9. The Broadwell Model in One Space Dimension

Asan application of our general result, we treat here the simplest model proposed by
Broadwell [2]. We consider the following six velocities.

[Ul = (U’ 0, O)’ [UZ = (0> v, 0)5 £U3 = (Oa 0’ U)>
[]_Jp+3='_[U p=15293a
where v is a positive constant. We denote by N, = N ,(t,X) (p = 1,...,6) the mass
density of gas particles with the velocity U, at time t=0 and position X =
(x,y,z)eR3. We assume that N, X), p=1,...,6, do not depend on y and z,
ie, N,(X)=N,(tx), and that N,(t,x)= N;(t,x)= Ns(t,x)= N4(t,x). Put
Fi(t,x)=N(t,x), F,(t,x) = N,(t,x) and F5(t,x) = N,(t, x). The original Broadwell
model in three space dimensions is then reduced to ([2])

F,+ VF, =Q(F,F), 9.1)
where F ='(F,,F,,F;), V =diag(v,0, — v) and

p?

_ 1
O(F.G) =7 (2F,G5 = (F1G3 + 3Gy} | =172, 0.2
1

with a positive constants 6. The component of Q(F, G)in (9.2) are of the same form as
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in (1.4) if we put
o, =03=1, o,=4,
A =A31=423=4%22=G and AJ=0 otherwise.

Consequently, (1.2) and (1.3) are satisfied.
The space .# of summational invariants consists of vectors ¥ ="({/,,,,¥5)
satisfying /; + /3 —,/2 = 0. Therefore, putting

YO =1(1,4,1), Y@ ='(,0, —v), ©-3)

we see that {y, ¥} is a basis of .#. Note that .#" is spanned by ¢ =
(1, — 1/2,1). We denote the moments of F =*(F,F,,F;) by p and m:

p=C(F YNy =F, +4F, + F;, m={(F.y?)=uF,—F;). ©4)

Let F='(F,,F,,F;) be a Maxwellian with positive components, namely F,, F,,
Fy>0and F,Fy— F3=0. By a simple calculation, we know that F is expressed
in terms of its moments p and m as follows (see [6]):

2(a(u) + vu)
F= i vi—ow) |, u=m/p. 9.5
v 2o(u) — vu)
where p >0, |u] <wv, and
a(u) = (?3/3) 2o (u) — 1), o) = (1 + 3u?/v?)"% 9.6)

Note that v|u| < o(u) < v? for |u| < v. By a straightforward calculation, using (9.5),
we obtain the Euler equation for (9.1) (see for example, [6 or 12]):

po+m,=0, m,+ (pa(m/p)),=0. (9.7

This is rewritten in the vector form (4.8) with the coefficient matrix A:

~ < 0 1
i=
o(u) —ua’(u) d'(u)

where o' (u) = do(u)/du.

>, u=m/p, ©.8)

Lemma 9.1. The one-dimensional Broadwell model (9.1) satisfies Conditions 1 and 2.
In particular, the Euler equation (9.7) is strictly hyperbolic and both the charateristic
flelds are genuinely nonlinear in the region {p > 0,|u| <v}.

Proof. Letye.# and Ay = V1 for LeR. Since ./ is spanned by ) and ®, we may
write Y = ¢y + c, ¥, where c¢,,c,eR. We substitute this expression into
A=V toget ¢, (A— WV + ¢, (A — V)'® =0. A simple calculation shows that
the vectors

(A= V) = (i — 0,44, J + 1),

(2= VW =v'(2—0,0, — (A +v))

are lincarly independent for any AeR. This implies ¢, = ¢, =0 and hence = 0.
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Thus Condition 1 has been checked. We remark that in the previous paper [13] we
verified the equivalent condition (3.6),.

Condition 2 had been checked in [5]. We give the outline of the proof. The
eigenvalues 4; of 4 are given explicitly by
(W) = (u—a(u)'?)/aq(w),
() = (u+ o) ")/oo(w), u=m/p. 9.9)

A straightforward calculation shows that for |u| <,
w) =diw/du>0, j=1,2,
— v < 4, (1) <min {u,0} < max {u,0} < Z,(u) <v. (9.10)

. -~

=44
iz = 22

Therefore the Euler equation (9.7) is strictly hyperbolic. The right eigenvectors 7; of
A for 4; are then given by

Fi=a;'(1,4), j=12, 9.11)
where a; # 0. By a simple calculation, we see that (VA,,7; > = ajZ}(u)(Zi(u) —u)/p#0
by (9.10), j = 1,2, where V denotes the gradient with respect to (p, m). This means

that both the characteristic fields are genuinely nonlinear. The coefficients a;in (9.11)
are determined by the normalization {(V4;,#;) = 1

a;=p/XW(Zu) —u), u=m/p, j=12. (9.12)

This completes the proof of Lemma 9.1.

By Lemma 9.1, we can apply all the results in the preceding sections to the one-
dimensional Broadwell model (9.1). In what follows we shall give the concrete form
of the asymptotic solution of (9.1). First we determine the vectors ¢* and ¢® in
(2.14), (2.15), which are used in the formula (8.8). Let M ='(M,,M,, M;) be an
absolute Maxwellian with positive components. We can write

M=M,"(a,1,a”"), M,>0, a=M,/M,>0. (9.13)
The matrix A ,, in (2.10) is then given by A ,, = M, diag(a, 1/4,a™"'). We compute
2
¢V and ¢ by the formula ¢V = Y ¢, A y®, j=1,2, where ¢, are the elements
k=1

of the inverse matrix of ((A , P, y®>), _ ,. By a straightforward calculation, we
get

] 5 L 20+2)
d)(l):E a+a-1 , 4)(2):% _(a_a‘l) , (914)
5 (142471

where b=a+1+a"".
Next, we determine the diffusion coefficients «;in (5.3),, which are used in (8.2), .
Let L,, be the matrix defined by (2.11). We have the expression

a ! —a~ 12 1
Ly=6M, |—a ' 1 a2 . (9.15)
1 —atl? a
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We compute the characteristic polynomial of the matrix B(i¢) = — (L, + i¢V), (eR.
Put L,,=6¢M, L, and V =vV. We have B(i¢) = ¢ M, B(n) with n = iév/cM ,, where
B(n) = — (L +nV). A straightforward calculation gives (cf. [10])

det (@l — Bn) = 4° + b* + (cn — n*)a—n?, (9.16)

whereh=a+ 1 +a~'andc=a—a ' Wedenote by (), j = 1,2, the eigenvalues
of B(n) satisfying f;(n)— 0 for n — 0. We determine the coefficients in the expansions

=3 n'al", j=1,2, by using (9.16) (see [ 107). Since the eigenvalues y;(i¢) of

n=1
B(i&) satisfy p;(i&) = aM,fi;(n) with n =ilv/cM,, the coefficients 4; and «; in the
expansions of p,(i¢) (see (5.7) and (5.8)) are calculated by the formulas 4, = —val"
and «; = v*(1?)/GM . Therefore we obtain
/., =uv(c— DV?)2b, /.y = v(c+ DY?))2b,
ot e e (9.17)
Ky = — A (U2 — A oeM,DYV2, Ky = 7,07 — A3)vaM, DV,

where D =c? +4b,b=a+1+a 'andc=a—a ' Wenote that £;in (9.17) agree
with Zj(ﬁ), i =m/p, in (9.9), where p and m are the moments of M:

p=(MYV>=M,(a+4+a '), m=(MY?>=vM,(a—a" ). (9.18)
Note also that x; in (9.17) satisfy x; >0 by (9.10).

Finally, we determine the integral curve R of the right eigenvector 7; through the

point (p, m). Let z,(p, m) be the j-th Riemann invariant, i.c., {Vz;,7;)> = Ofor all (p, m),

where V denotes the gradient with respect to (p, m). By a straightforward calculation,
using (9.11), we obtain

z;(p,m) = pzexp<—2£(21(;7)— ;7)“d;7>, u=mlp, j=12. 9.19)

The integral curve R; is then expressed by the equation z;(p, m) = z;(p, m), namely,

p = pexp (I(Z,(n) - n)”dn) u=m/p,

i

m=pu, j=12. (9.20)

Now we define the asymptotic solution F(t, x) of (9.1). Let Fy(x) be the initial data
and define its moments p,(x) and mg(x) by

Po(x) = CFo(x). D, mg(x) = CFo(x) ). 9.21)
We determine 0, j=1,2, by
* 2
| Hpox) = pomg(x) —m)dx =Y d;F;, (9.22)

- j=1

where 7/, are given by (9.11),(9.12) and evaluated at the constant state (p, m). Since the
integral curves R, are given by (9.20), the nonlinear diffusion waves (g7, /) (1, x) are
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determined by the formulas
diex)
pit,x) = ﬁexp( f (4;(n) — ﬂ)_ld”l), u=m/p,
wi(t, x) = pi(t, x)i!(t, x),
A, X)) — @) = y(t + 1, x — L@ + 1);%,,8), j=1,2, (9.23)

where «; and ¢; are given by (9.17) and (9.22), respectively, and y(t, x; k, 6) by (8.3);.
We denote the superposition of the nonlinear diffusion waves by (p, m)(t, x):

(572, %)~ p),

DM

ﬁ(t,X)—ﬁ:

i

1

it x)—m= Y (mi(t,x)—m). (9.24)

o

J

The asymptotic solution F(t, x) is then given by
F(t,x) = M = (p(t,x) — p) ¢ + (m(t, x) — m) 2, (9.25)

where ¢’ and ¢ are the vectors in (9.14).
From Lemma 9.1 and Theorem 8.2 we have

Theorem 9.2. Let M be an absolute Maxwellian with positive components and let
(p, m) be its moments. Assume that Foy — MeH*n L' and (p, — p, mo — m)eL; fors > 1
and Pe[0,1], where (po,my)(x) are the moments of Fy(x). If E;=||Fo— M ||+
| Fo — M || .1 is small, then the initial value problem for (9.1) with the initial condition
F(0,x) = Fo(x) has a unique global solution F(t,x). For 0 <I1<s, ||0~(F(t) — M)|,_,
tends to zero at the rate t ~ 12 *V12 g5 t — oo. This convergence rate is optimal if §, and
8, in (9.22) satisfy (8,,0,) # 0. Moreover, for 0 I <s— 1, | 0L(F(t) — F(t)) ||, tends
to zero at the rate t~ Y *V2%% g5t — o0, where F(t,x) is the function defined by (9.25)
and o.> 0 is a constant determined in Theorem 8.1. Consequently, F(t, x) in (9.25) is an
asymptotic solution of the one-dimensional Broadwell model (9.1).

Appendix. Reduction to the One-Dimensional Equation

The general form of the discrete Boltzmann equation in R” (n = 2) is given by (see
[8,31)

ON J
2 ‘VN,= Y (BYN,N,—B5N,N,), p=1,...J, (A1)

a q,r,s=1

where N, = N (t, X) represents the mass density of gas particles with the velocity U,
(constant vector in R") at time ¢t = 0 and position XeR", V denotes the gradient with
respect to X, and the coefficients B2, p,q,r,s =1,...,J, are nonnegative constants
satisfying

By = BlY = Bjf, BP =By, (A.2)
for any p,q,r,s=1,...,J
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We shall explain how the one-dimensional equation (1.1) is derived form (A.1).
Let xeR be the first component of XeR". We assume that

N, (t.X),p=1,...,J, are functions depending only on
t and x,ie., N,(t, X)= N (t, x). (A.3),

To state the second assumption, we introduce a partition of the set {1,...,J}. Let
p.qe{l,...,J}. When the first component of two velocities U, and U, are equal and
in addition |U,| =|U,|, we write p ~ q. It is easily seen that this is an equivalence
relation on {1,...,J}. Hence we have a partition of {1,...,J}, namely, {I,....J} =
I,u---ul,, where [;,i=1,...,m, denote the equivalence classes. We then assume
that for each i=1,...,m,

N,(t,x)= N,(t,x) forany p,qel,. (A.3),

Under the assumptions (A.3), , Eq. (A.1)is reduced to the one-dimensional Eq. (1.1).
To see this, we put for each i=1,...,m,

Fi(t,x)=N,(t.x) pel, (A4)
v; = the first component of U,, pel,, (A.5),
o; = the cardinality of I,. (A.S5),

Also, we put for each i, jk,I=1,...,m,
A=Y B, (A.5);

where the summation is taken over all pel;, gel;, rel, and sel;. We sum up the
equationsin (A.1)for pel;. Then by the assumptions (A.3), , and the definitions (A.4)
and (A.5); _5, weeasily obtain (1.1). The condition (1.2) follows from (A.2) and (A.5);.
Here we remark that all the v;,i = 1,...,m, in (A.5), arc not distinct in general by the
definition of the partition of {1,...,J}.

Finally, we give a remark on summational invariants. A summational invariant
of (A.1) is defined as a vector ¥ ="(¥,,..., ¥,)eR’ satisfying

B (Y, + ¥, —¥,—¥)=0 (A.6)

for any p,q,r,s=1,...,J (see [8,3]). Let ¥="(¥,,...,¥,) be a summational
invariant of (A.1) and satisfy (A.3),, namely, ¥, = ¥, for any p,gel;. Put for each
i=1,...,m,

=Y, pel.

l

(A7)

Summing up (A.6) for pel;, gel;, rel, and sel,, we get A (), + ¥, — i, — ;) =0 by
(A.5); and (A.7). Therefore, taking the definition (2.1) into account, we know that
W =", ¥,,...,2,W,) is a summational invariant of (1.1). Physically reasonable
models in R" usually have the following n + 2 vectors as summational invariants,
wO =111, YU =Yy, . uy,), k=1,...n,
llu(n+2) — r(“Ullz:“*v'[UJ'Z)’

where u,, denotes the k-th component of U,. Among these summational invariants,
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only YW, Y@ and Y"*2 satisfy (A.7) in general by the definition of the partition of

{1,

o

References

1.

2.
3.

4.

10.

11

12.

14.

15.

16.

17.

18.

19.

Beale, J. T.: Large-time behavior of the Broadwell model of a discrete velocity gas. Commun. Math.
Phys. 102, 217-235 (1985)

Broadwell, J. E.: Shock structure in a simple discrete velocity gas. Phys. Fluids 7, 1243-1247 (1964)
Cabannes, H.: The discrete Boltzmann equation (Theory and applications). Lecture Notes,
University of California, Berkeley 1980

Cabannes, H.: Comportement asymptotique des solutions de I’équation de Boltzmann discréte.
C. R. Acad. Sci. Paris 302, 249-253 (1986)

. Caflisch, R. E.: Navier—Stokes and Boltzmann shock profiles for a model of gas dynamics. Commun.

Pure Appl. Math. 32, 521-554 (1979)

. Caflisch, R. E., Papanicolaou, G. C.: The fluid-dynamical limit of a nonlinear model Boltzmann

equation. Commun. Pure Appl. Math. 32, 589-616 (1979)

. Ellis, R. S, Pinsky, M. A.: Limit theorems for model Boltzmann equations with several conserved

quantities. Indiana Univ. Math. J. 23, 287-307 (1973)

. Gatignol, R.: Théorie cinétique des gaz a répartition discréte de vitesses. Lecture Notes in Physics,

Vol. 36. Berlin, Heidelberg, New York: Springer 1975

. Hamdache, K.: Existence globale et comportement asymptotique pour I'équation de Boltzmann a

répartition discréte des vitesses. J. Mécan. Théor Appl. 3, 761-785 (1984)

Inoue, K., Nishida, T.: On the Broadwell model of the Boltzmann equation for a simple discrete
velocity gas. Appl. Math. Opt. 3, 27-49 (1976)

Kato, T.: Perturbation theory for linear operators. (Sec. ed.) Berlin, Heidelberg, New York: Springer
1976

Kawashima, S.: The asymptotic equivalence of the Broadwell model equation and its Navier—Stokes
model equation. Jpn. J. Math. 7, 1-43 (1981)

. Kawashima, S.: Global existence and stability of solutions for discrete velocity models of the

Boltzmann equation, Recent topics in nonlinear PDE, Lecture Notes in Num. Appl. Anal 6,
Kinokuniya, 1983, pp. 59-85

Kawashima, S.: Large-time behavior of solutions for hyperbolic-parabolic systems of conservation
laws and applications. Proc. R. Soc. Edinburgh. (to appear)

Lax, P. D.: Hyperbolic systems of conservation laws, II. Commun. Pure Appl. Math. 10, 537-566
(1957)

Liu, T.-P.: Nonlinear stability of shock waves for viscous conservation laws, Memoirs. Am. Math.
Soc., No. 328, Vol. 56 (1985)

Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to
the discrete Boltzmann equation. Hokkaido Math. J. 14, 249-275 (1985)

Tartar, L.: Some existence theorems for semilinear hyperbolic systems in one space variables, MRC
Technical Summary Report, University of Wisconsin 1980

Umeda, Y., Kawashima, S., Shizuta, Y.: On the decay of solutions to the linearized equations of
electro-magnetofluid dynamics. Jpn. J. Appl. Math. 1, 435-457 (1984)

Communicated by C. H. Taubes

Received July 15, 1986








