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Abstract. A short-time existence theorem is proven for the Euler equations for
nonisentropic compressible fluid flow in a bounded domain, and solutions with
low Mach number and almost incompressible initial data are shown to be close
to corresponding solutions of the equations for incompressible flow.

1. Introduction

The Euler equations for compressible fluid flow are

(1.1)

to which must be added an equation of state prescribing the density ρ as a function
of the pressure P and entropy S. We will be considering a one-parameter family of
equations of state ρ = f(P/λ2,S); for example, for polytropic gases
ρ = [(l+P/A2)e" i 4 ( S )]1 / y. The equation of state allows (1.1) to be rewritten as

(1.2)

a quasilinear symmetric hyperbolic system.
Formally letting λ->oo in (1.2) produces the incompressibility condition

V - u = 0; the taking of this limit will be made rigorous by showing that, for suitable
initial data, smooth solutions of the initial-boundary-value problem for (1.2)
indeed converge, as Λ->oo, to corresponding solutions of the equations for
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incompressible stratified fluids [17],

VP = 0, (1.3)

[Note that the last equation in (1.3) follows from St + (u V)S = 0, since ρ = ρ(S) in
the limit λ-+oo.~]

As noted in [10,13], the one-parameter family of equations of state can be best
interpreted physically as the effective equation of state of a fixed fluid whose
equations of motion are written in nondimensionalized form, with λ essentially the
inverse of the initial Mach number of the fluid. The theorem to be proven therefore
justifies the use (at least for small times) of the incompressible equations when the
Mach number is small and the initial data is almost incompressible.

Before establishing this convergence result, solutions of the compressible Euler
equations in a bounded domain must first be shown to exist, because a short-time
existence theorem for initial-boundary-value problems for quasilinear symmetric
hyperbolic systems has been developed [14,16, Appendix A] only in the case when
the boundary is noncharacteristic, and so does not apply to system (1.2) with the
usual solid-wall boundary condition.

The existence theorem will be proven in Sects. 3 and 4, and the convergence
theorem in Sect. 5. Analogous results have been proven for baratropic flow, in
which ρ depends only on P, by Ebin [18] and by Klainerman and Majda [10] for
space-periodic flow, and by Ebin [5,6], Beirao Da Veiga [21,22], and Agemi [1] for
flow in a bounded domain; the proofs here are simpler than previous proofs for the
bounded domain case.

Recently, Rauch and Nishida [15] have proven existence for baratropic flow in
a bounded domain by methods similar to those used here. A general convergence
theorem for singular limits of quasilinear symmetric hyperbolic systems with
periodic boundary conditions has been proven by Browning and Kreiss [4] under
more stringent assumptions about the initial data than those used in the special
case here; the results of Barker [2] in effect, relax the assumptions on the initial
data to those used here for the case of one space dimension, again assuming
periodic boundary conditions. The convergence proof given here uses a modified
version of the key idea in Barker's proof.

2. Preliminaries

Ω will denote a bounded region in R" in which the flow takes place; we will
consider only the case of greatest physical interest, i.e. n = 3, although mathemati-
cally this is just a matter of convenience, v will denote the outward normal on the
boundary dΩ.

Hs denotes the usual Sobolev space of order s, which when s is a nonnegative
integer can be obtained by completing C°°(Ώ) in the norm || | | s = Σ ||Dα ||L2.
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Two basic facts about Sobolev spaces that we will need are that in three
dimensions

i) II/HCO^II/UH. for s>h

l l 0 l l ;

the first of these is Sobolev's inequality, while the second follows from the Holder
and Gagliardo-Nirenberg inequalities.

The space X3 = f] Cfc([0, T] ; H3~k) will be given the norm
fc = O

3,Λ,T= sup |||W(0III3>Λ= l|w(t)||3+ IK(OII2 + 1 llw»(t)lli + i l

similarly,

The λ dependence of these norms will be important only for the convergence
theorem in Sect. 5.

The boundary condition for both (1.2) and (1.3) is

U'V = 0 on dΩ. (2.2)

The initial conditions for (1.2) are

u(0 x λ) = u (x X) (2 3̂

while for (1.3) they are

' (2.4)

where V ύo = 0.

3. Existence Theorem for Fixed λ

Theorem 1. System (1.2), (2.2), (2.3) has a classical solution (P, w, S) on some time
interval [0, T], provided that

i) Ω is open and bounded in IR3 and dΩ is in C00

ϋ) ΞiVcIR2 and a δo>0 such that N0 = {(P0(x,λ), S0(x,λ))\xeΩ}CCN,

ρ e C5(iV), and ρ(P/λ2, S ) ^ 5 0 and — | ^ - - ^ δ 0 /or (P, S) G iV;

iii) P0(x,A), uo(x,A), S0(x,
iv) v 3̂ w(0) = 0 ow <9Ω, 0 ̂  /c ^ 2, wfere ^w(O) fa ίΛe kth time derivative att = Oof

any solution of (1.2) and (2.2), as calculated from (1.2) ίo yield an expression in terms
of Po, u0, and So.
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T depends only on λ, Ω, δ0, dist(iV0, dN), the C5 norm of ρ and the H3 norms of

P09 uθ9 and So. (P, u, S) are in (^([O, T] x Ω)n f f) CflΌ, T] H 3 -j~δί(Ω))) for
V=o /

any ^ >0, and d{(P, u, S) are in L°°([0, T] H3~j(Ω)) forj = 0,1,2,3; furthermore
their norms in these spaces can be bounded in terms of δx and the quantities T
depends on. Finally, the solution is unique in C1.
Remark. If ρ and the initial data are smoother and more compatibility conditions
like those in iv) are satisfied, then the solution will be correspondingly smoother;
see [14] for a discussion of compatibility conditions.

Proof. The uniqueness part is standard; see e.g. Sect. 1 of [11]. The existence part
consists of three steps: first, approximate Eqs. (1.2), (2.2), (2.3) by ones for which the
boundary is noncharacteristic so that an existence theorem can be applied; second,
establish uniform estimates for the solutions of the approximating equations;
third, take a limit to obtain the solution to the original equations. The first and last
of these steps will be performed in this section, while the middle step will be
deferred to the next section.

In order for the solutions of the approximating equations defined below to be
sufficiently smooth, it is necessary to approximate the initial data fQ = (Po, u0, So)
in H3 by functions /0

(w) in H5 that satisfy the compatibility conditions through
order three. Lemma 3.3 of [14] says that such approximations exist for linear
equations with a nonsingular boundary matrix, and the proof given there can be
extended to the case at hand, as follows:

As in the proof of Lemma 3.3 in [14], the approximants /0

(M) will be obtained by
picking g{n) in H5 such that g{n)-+f in H3 and then picking h{n) in H5 such that h(n)

->0 in H3 and /0

(M) = g{n) — h{n) obeys the desired compatibility conditions. In [14] it
is shown that h{n) should obey on dΩ the conditions

M(Axfdkfin) = M(Avfdk

vg
(n) + M (other terms), 0 ^ k^ 3, (3.1)

where M is the matrix giving the boundary condition, i.e. for system (1.2), (2.2),

M = (0 vτ 0),

and Λv is the boundary matrix of the system, defined by Av = vjAj, where the
differential equations can be written as A°ut + AjuXj = F; for system (1.2),

'0 vτ 0\

v 0 0 if k is odd,

.0 0 0/

(Λv)k= <
1 0
0 v(x)v 0 I if k is even.

^ 0 0/

Also, the "other terms" in (3.1) contain fewer than k normal derivatives, so that
even though these terms now depend nonlinearly on Un) they are known quantities
and have the appropriate amount of smoothness by finite induction. The fact that
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Av is singular is overcome by noting that Range[M(Av)k~] = Range[M], so (3.1)
can be solved for dk

vh
in). The rest of the construction now proceeds as in the proof of

Lemma 3.3 in [14].
Thus we obtain /0

(π) = (P(

o"\ w(

o

π), So0) in H5 obeying the compatibility conditions
for system (1.2), (2.2) through order three, and converging in H3 to fΌ = (P o , uθ9 So)
as n-> oo. In particular, δ?w(π)(O), 3*S(ll)(0) e i/5" f c(Ω), 0 ̂  fc ̂  5. Pick some To > 0; by
Theorem 2.5.7 of [8] there exist ύ{n\ S ( n ) ei ί 5 ([0, T0] xΩ) satisfying 3*β<">(0)
= 5*u(fl)(0), ^S (w)(0) = 3?S(n)(0), 0^/c^4. [Recall that 3*u(n>(0), #S ( B )(0) are to be
defined by plugging /0

(n) into (1.2).] Now extend v to be in C°°(Ω) and define the
approximating equations, for sufficiently small positive ε:

ρ[ut + (u V)ύ] + ε(v V)u+VP = ε(v V)ύ{n\ (3.2)

St + (μ P)S + ε(v F)S = e(v P)S ( π ),

together with boundary condition (2.2) and initial condition

), w(0), S(0)) = (P(

0

M), M(ί>, S(

0

M)). (3.3)

The boundary is noncharacteristic for this system, the boundary condition is
maximally nonnegative, and the compatibility conditions are satisfied through
order three, so system (3.2), (2.2), (3.3) has a solution

4

P(t9x9ε,ή)9u(t9x,ε,ή)9S(t9x9ε,ή)e f] C7'([0, Γ(ε,rc)],# 4 ^(Ω)).
7 = 0

Because only a sketch of the existence theorem just used has appeared previously
[14], I have included a precise statement and a proof in Appendix A.

This completes step one of the existence proof; now suppose we can show that
T(ε, n) can be taken to be some fixed T > 0 provided ε ̂  ε(ft), and can show further
that for such ε

|||P(ε, ft), «(e, ft), S(ε, ft)|||3, A,T ̂  C (3.4)

for some C independent of ε and ft. Then, letting ε(ft) = minί ε(n),- I, defining

= (P(ε(ft),ft),w(ε(ft),ft),S(ε(ft),ft)), and abbreviating (3.2) as

we have

M Φ i ) ) C Φ i ) - K^ 2)] = \Ln2{υ{n2)) - L^vin^ υ(n2) + εinJF™ - ε(n2) F ("2).
(3.5)

Multiplying (3.5) by ϋίnj) —t?(n2), integrating over Ω, and using Sobolev's
inequality, (2.1), and (3.4) then gives

ft
\υ(nί)-v(n2)\\2

L2+\ + - l ] . (3.6)
ft ft2j
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Since \\v(n1) — v(n2)\\L2it==0-^0 as nu n2-^>oo, applying GronwalΓs inequality to
(3.6) shows that as «-»oo P(ε(ή),ή), u(ε(n),n), S(ε(n),n) converge in C°([0, T] ;
L2(Ω)) to some P, u, S. An interpolation argument (see e.g. pp. 39-40 of [13]) then

2 _

shows that convergence takes place in (] CJ([0> T~\\H*~j~δ)D C\[0, Γ] x Ω), so
7 = 0

P, w, S satisfy (1.2), (2.2), (2.3) classically. Also, since a ball in Hs is closed under L2

convergence, (3.4) and (3.2) imply that

sup 1 1 ^ , ^ 5 ) 1 1 ^ - ^ ^
ίe[0,T]

for some Cί depending on the quantities stated in the theorem, including λ.
Furthermore, in order to show that (P(ε, n), w(ε, ή)9 S(ε, n)) continue to exist

and satisfy (3.4), it suffices to show merely that they satisfy (3.4) under the
assumption that the solution exists and is in X4, since a continuation principle says
that the solution will exist and be in X4 as long as it remains bounded in X3. A
proof of this continuation principle is given in Appendix A; [13] gives a sharper
version for the initial-value problem.

Let φ ) = |J|(v P)β(")||J3iAfτo + lll(v F)St">||l3iλfroί and define e(n) = l / φ ) so
that the right side of (3.2) is bounded in X3 if ε ̂  e(n). Given that the right side of
(3.2) is so bounded, we will show in Sect. 4 that the solution of (3.2), (2.2), (3.3)
satisfies the estimates

jt |||P(ί), u{t\ 5(01111, ύFiM\P{t\ <t)9 S(t)\\\3J (3.7)

and

where

fciWCIII l l k + lll I I U ^ I I I l l k Λ ^ ^ W D I I l l k + lll I L J , (3.9)

and Flλ is a continuous nondecreasing function on (0, oo), F2 λ is a continuous
nondecreasing function on [0,2| | |P0, uθ9 S0\\\EJ, and Fltλ and F2tλ are independ-
ent of ε for 0 < ε ̂  ε0. Now P$\ u($\ S(

0

M)->P0? uθ9 So in # 3, 'and (3.2) and the first half
of (3.9) show that convergence also holds in the ||| | | |E l norm, so |||P(

0

M), w(

o

π), S%)\\\El

^ f IIIΛ)> MO> S0\\\El for n sufficiently large. Hence substituting (3.8) into the second
half of (3.9) and plugging the result into (3.7) yields a differential inequality that
shows |||P(ε,ή)9 u(ε,n), S(ε,n)\\\Eί is bounded on some fixed time interval [0, T]
provided n is sufficiently large and ε^ε(ή). Using (3.8) and the second half of (3.9)
once more then yields (3.4).

4. Estimates

In the standard estimates for symmetric hyperbolic systems (see [9, 13, 14, 16,
Appendix A]), only estimates involving normal derivatives near the boundary
require inverting the boundary matrix Av, which for (3.2) would yield estimates of
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order - . Thus,
ε

~ | | |P(ί, ε), u(t, ε), S(t, ε)\\\lλt1an£F39λ(\\\P(t, ε), u(ί, ε), S(ί, ε)| | |3 f J , (4.1)

where the ||| |||3,Λ,tan norm is a sum of norms of localizations and includes no3,Λ,

normal derivatives in a neighborhood of dΩ. Define Ωδ = {xeΩ\άist(x,dΩ)^δ};
given any δ we can pick the localizations so that ||| | | | 3 j λ j t a n is equivalent to ||| \\\3tλ

on Ω\Ωδ.
Next, the estimate

^ | | |P(ί, ε), «(ί,ε), S(ί, e) | | | l , A ^F 4 , A ( | | |P(ί 9 ε), w(t, β), S(ί, e)|||3pΛ) (4.2)

can be obtained in standard fashion by simply not integrating the spatial
derivatives by parts.

Furthermore, since Ay for (1.1) had rank two we can solve for the normal
derivative of two components of (P, u, S) in a neighborhood of dΩ without

obtaining terms of order - as follows: Let dΩ be given locally as the solution set of
ε

(4.3)

and make the standard change of variables y1=xί9 y2~
χi^ y3 = Φ(χu xi->

Then the equations from (3.2) for w = (w Vφ,P) can be written as

= sum of terms with only time and tangential derivatives of (P, ύ). (4.4)

For ε^some ε0? det A will be bounded away from zero provided |P, S|^some
constant k and |M P^l^some small constant εί depending on ε0, k, etc.

Fix ε0, and fix k such that || P, S \\ 2 <, 2 \\ P o , So || 2 implies |P, S\ ^ fc, thereby fixing
ε1. Because the boundary condition (2.2) says precisely that u Vφ = 0 on dΩ, and
U{Q] is bounded in H3 independent of n and satisfies this boundary condition by
assumption, |M(

O

Π) Vφ\ ̂  ^ on Ωδ* for some sufficiently small 5* independent of n.
For later use, pick this <5* small enough so that Ω̂ * can be covered by sets in which
dΩ is defined by an equation like (4.3), and fix the ||| | | | 3 > λ j t a n norm so that it is
equivalent to ||| | | | 3 λ on Ω\Ωs*. If x is in Ωδ*, then

2

sup |Mf(

(4.5)

for tx sufficiently small if |||w|||3> λ> τ is finite for some T> 0. Hence whatever estimate
for I||P, u, S|||3f λ f Γ l is eventually derived by assuming det^ v ^ ^in Ωδ*, (4.2) and (4.5)
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show that det Av will indeed be ^ \ there for t ^ some T2. The estimate derived for
IIIΛ u > Silk A, n i s therefore valid at least for | | |P, u, S\\\3iλtT, where T = min(T1, Γ2).

Now multiply (4.4) by (Av)~x, t a k e two time derivatives or one time and one
normal derivative or two normal derivatives, and integrate over a set G C Ωδ* in
which dΩ is given by (4.3). Using Sobolev's inequality, estimate (2.1), the estimate

(4.6)

and the estimate(s) already obtained from the case(s), if any, when fewer normal
derivatives were taken, we obtain the estimate

, dy3(u Vφ)\\\2tktG^F5iλ(|||P, u,S\\\2,λ) [c(β2)(1 + | | |P, u, S| | |3 i λ, t J

"̂ - <^>,3"^m^,^, « > J - (4.7)
Estimate (4.6) which we just used can be proven for a whole space by using the
Fourier transform and then extended to the case of a bounded domain by injecting
Hkι+k2+k3(Ω) boundedly into Hl1+k2+k3(Ωr)CHkl+k2+k3QR!ί) for some Ω'DΩ (see
pp. 274-276 of [7] for this bounded injection map).

Estimates (4.1) and (4.2), and essentially (4.7) also, are standard estimates for
symmetric hyperbolic systems. The remaining estimates will make use of the
special structure of (3.2). Taking the curl of the equation for u in (3.2) and

multiplying by — gives
Q

l(V xu)t + (u-V)V xu] + -(v-V)V xu + lower order terms = -Fx(v V)ύ{n\
ρ ρ

(4.8)

because curl grad = 0. Taking Dα of (4.8), multiplying by 2D\V x w), summing over
all α with | α | ^ 2 (including both time and space derivatives), and using standard
estimates gives

^ | | | F χ W | | | l , λ ^ J F λ ( | | | P , W , S | | | 3 , , ) - ε Σ ί | D α Γ x ι / | 2 ^ F A ( | | | P , W , S | | | 3 , A ) .

(4.9)

The points are that i) given P and S, the equation for V x u is itself a symmetric
hyperbolic system, and ii) the boundary terms in the estimates for this system
always have a helpful sign so that the estimates proceed exactly as in the whole-
space case. Analogous points hold for the equation for S in (3.2) considered by
itself, so

^ll|S||li,A iτ^i i f(IIIΛι*,S||l3.A ir). (4.10)

We are now ready to define the Eι and E2 norms and show that (3.7)—(3.9) hold.
Define
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and

λ9 (4.11)

where the sum is taken over a finite set of Gs that cover Ω^, are contained in Ωδ,

and are such that in each of them dΩ can be represented as in (4.3). Since ||| |||3f A f t a n

is equivalent to ||| | | |3 s Λ in Ω\Ω^, in order to show that (3.9) holds it suffices to show

that it holds for functions supported in one of the Gs. Within a G, V x u can be
written in the y-coordinates defined after (4.3) as (dy2u

3 — ψy2dy3u
3 — dy3u

2,
dy3u

ι —dyiu
3~\pyidy3u

3, d y 2u
x — ψ y 2d y ̂  — d y xu

2+ψ y β y 3u
2). Since the tangential

derivatives dyi a n d dy2 a re included in the ||| | | |3>λ>tan n o r m ,

On the other hand ||| \\\El includes \\dy3(u3 -ψyιu
x -ψy2u

3)\\2,λfG. Since

0

, u9 S\\\E2). (4.12)

No calculation is even needed to show that (4.12) holds when u on the left side is
replaced by P or S, so (3.9) holds.

Finally, (4.12) and the definition of the Eί norm allow us to rewrite (4.7) as

which, upon choosing β 2 = ^ ^ ^ s ^ y ™ be solved for

|||δ,3P,δ,3ιι F^| | 2 > A > G to obtain

s | | | ) ( 4 1 3 )

F 6 , Λ ( 3 | | | P ( 0 ) , W ( 0 ) , S ( 0 ) | | | J Ϊ 1 )

Adding (4.13) for all Gs that occur in the sum in (4.11) gives us (3.8), while adding
(4.1), (4.2), (4.9), and (4.10) yields (3.7).

5. Convergence as λ-+oo

Theorem 2. Assume
i) the hypotheses of Theorem 1 are satisfied for λ^some λ0, with δ0 and

dist(AΓ0, dN)^some constant independent of λ;
ii) | |P 0 (x ,/L) | | 3 + /l | |V uo(x,λ)\\2Sconstant;

iii) 3w0, So e H3 such that

lim || uo(x9 λ) - ύo(x) || 3 + || S0(x9 λ) - S0(x) || 3 = 0.
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Then
a) the solution (P(λ)9u(λ),S(λ) of (1.2), (2.2), (2.3) (shown to exist in

Theorem 1) exists for a time T independent of λ and satisfies

P(λ)
,u(λ),S(λ)

3,λ,T

(5.1)

for some c independent of λ;
b) there exists ύ, ρ in C([0, T]; H^'^nC1^, T]; H2-δ)nC\[O, Γ] x Ω) for

any δ>0, such that as λ-+oo ( w(A),ρί-^,S(/l) j I ->(w,ρ) in C([0, Γ]; // 3 "^) ;

c) ίftere exisίs P m C°([0, Γ]; # 3 ) swc/z that as λ-+oo VP(λ)->VP weak-* in

d) (P, ώ, ρ) 5αί/5/> (1.3), (2.2), (2.4) with P, w, ρ replaced by P, ύ, ρ, and ρ0 defined
by ρo = ρ(0, S0).

Remark. The scaling used here differs from [10, 13,16] in that what is denoted P
here is usually called λ2P there.

Proof Once assertion a) of the theorem is established, assertions b)-d) follow as in
Theorem 2.4 of [13] or Theorem 1 of [10], provided i) the test function we integrate
against to establish that (P, w, ρ) is a weak solution is chosen to have compact
support in Ω, ii) we note that S converges in (^([0, Γ]; H2~δ) since there are no
0(λ) terms in its equation, iii) we observe that u-+ ύ in C°([0, T] if2 ~ **) D C°([0, T]
x Ω) implies ύ satisfies the boundary condition since u does, and iv) we prove
uniqueness, by standard arguments, for classical solutions of (1.3), (2.2), (2.4).

Furthermore, the initial data could be approximated by smoother data
obeying more compatibility conditions, the resulting solutions would exist and
remain in X4 as long as their X3 norm ||| | | |3 > λ > Γ remained bounded, and any
estimates for derivatives through order three derived for the approximating
solutions will hold for the original solution by a limit argument, so in order to
prove a) it suffices to show that (5.1) holds under the assumption that the solution
exists and is in X4 on [0, T]. Finally, it suffices to prove (5.1) for λ sufficiently large.

Define r = P/λ and a(r/λ, S) = —, so that we can rewrite (1.2) as
ρ(Γ//t, iS) uyrjA)

α[rt + (u F)r]+AF M = 0,

= 0, (5.2)

assumption ii) of the theorem as

λ(||r(09x,λ)||3 + ||Γ tt(0,x,Λ)||2)^constant, (5.3)

and (5.1) as

(5.4)
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Note that (5.3) implies that

|||r(A,0),M(A,0),S(A,0)|||3.A + A|||Frα,0), F u(

i.e. that the desired estimate holds at time zero.

As in Sect. 4, we seek norms ||| \\\Eί and ||| | | |£ 2 satisfying

Mill Ills, + III I I U ^ III Ilk A ^ M I I I III*, + III IIW.
for which we can show that

— ||Kr, M, ^ < J^iClllr, M, S | | | 3 . A)

.A^constant, (5.5)

(5-6)

(5.7)

and

\\\(r,u,S)\\\E2SF2Q\\r,u,S\\\El),

but now the kt and Ft are to be independent of λ. The ||| | | | £ l and |||
here differ from those in Sect. 4; specifically, defining V=(r, u, S),

\\E2

(5.8)

to be used

(5.9)

1

I Ut]

(5.10)

where A0 = diag (α, ρ, ρ, ρ, 1) and ( , ) is the L2 inner product on Ω. Since a and ρ
are positive initially and the estimates to be proven show they remain so for a time
independent of λ, (5.6) holds. However, we will use the estimate [3]

||w|| S ^ C ( | | F X M | L _ I + | | F - M | | S _ 1 + | |M| | 0 + ||M V|| I ) (5.11)
s-j,dΩ

to replace \\\V\\\E2 by

jVxutt
(5.12)

That is, (5.11) implies that (5.6) still holds when ||| | | |£ 2 is replaced by ||| | | |£ 3, because
u-v = 0 on dΩ. Hence, in order to show that | | | r ,w,S| | | 3 > λ ) T ^c it suffices to show
(5.7) and

u,S\\\El). (5.13)
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We need to derive several estimates in order to establish (5.7) and (5.13). First,
taking dk

t of (5.2), 0 ̂  k ̂  3, multiplying by 23j(r, w, S) times the appropriate power

of-, integrating over Ώ, and integrating by parts as usual in the terms containing
A

derivatives of order k +1 gives

(5.14)

because the boundary terms always vanish by (2.2) and the factors of- work out
A

correctly. Estimates for S like those in Sect. 4 also have the correct ̂ -dependence,
i.e.

j t l (5.15)

The same is true for spatial-dervative estimates for V x u from Sect. 4, i.e.

^ A ) . (5.16)

Adding (5.14)-(5.16) yields (5.7).
Estimates time derivatives of V x u like those in Sect. 4 would not have the

correct A-dependence because of the presence of- Vρ x ut as one of the "lower order

terms" in (4.8); we therefore will estimate such terms as follows: Take the curl of the
equation for u in (5.2) and divide by ρ to obtain

yxu---Vρχut--Vx (ρ(u V)u). (5.17)
ρ ρ

Taking the L2 norm of both sides and using calculus inequalities (2.1) to estimate
the right side gives

r χ W ί | | o ^ F 7 ( | | F | | 3 ) ( l + | |W ί | |o). (5.18)

Taking up to one spatial derivative of (5.17), taking the L2 norm and using calculus
inequalities gives

(5.19)

Λ) (5.20)
0 Λ

Finally, taking two time derivatives of (5.17) yields

1

r Λ τ
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The remaining basic estimates will be derived from the equations

1
(5.21)

which are just (5.2) rewritten.

1
Taking two time derivatives of (5.21) and multiplying by -, or one time

A

derivative, or one time derivative and up to one spatial derivative, or up to two
spatial derivatives, and taking the L2 norm of both sides of the result yields

Now,

IF

\r-ut\\0+Wrt\\0ίF12(\\Vh)

+ ΊF15(\\\V\\\3,λ)
1 Λ

\F15(\\\V\\\3J,

P r " 2 - I F

(5.22)

(5.23)

UWh)

1

~λV'u"

[
1

0

K
0

utt

λvstt

0

1
oj

1

(5.24)

(5.25)

(5.26)

by (5.11) and (5.25). Substituting (5.26) into (5.18H5.20) and (5.22)-(5.25),
substituting (5.18) and (5.23) into (5.19), substituting (5.20) and (5.22) into (5.24),
and adding the resulting (5.19), (5.20), (5.22), (5.24), and (5.25) yields

For λ sufficiently large (5.27) can be solved for
(5.13).

£ 3 in terms

(5.27)

, yielding
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Thus, | | | r 5 M,S| | | 3 > λ f T ^c for some T and c independent of λ, and (5.25) then
implies (5.4), so the theorem is established.

Appendix A

The purpose of this appendix is to state and prove the existence theorem for
quasilinear symmetric hyperbolic systems with noncharacteristic boundary and
maximally nonnegative boundary conditions that was used in Sect. 3. A sketch of a
more general version of this theorem was presented in [14]; it should also be noted
that an existence theorem for more complicated boundary conditions was proven
in [20].

Because a solution to the quasilinear equation L(ύ)u = F will be obtained by
finding a fixed point of the map v-+u given by L(v)u = F, we need a linear regularity
theorem that bounds some norm of the solution u of Lu — F in terms of the same
norm of the coefficients of L.

Before stating this slightly more precise version of the linear regularity theorem
from [14], let us recall a few definitions.

First,

has the norm

1

Note that

X

ll-llkr

k([0,T]

= sup

Ml

j=O

, III- (0111.= [

2
Hk([0,T]xΩ) —

([0,

k

Σ

T

0

τγ,Hk

•(ί)IIL2

1/2

A IIHILtan norm will be defined similarly except that no normal derivatives are
to be included in a neighborhood of the boundary dΩ\ that is a ||| | | | M a n norm is a
sum of norms of localizations, and in the patches intersecting dΩ a coordinate
system is used in which dΩ is mapped into a portion of the hyperplane {xn = 0} (cf.
[9]), and no dXn derivatives are included. The ||| |||fc?tan norm therefore depends on
the choice of patches and coordinates.

Next, the boundary matrix Av of a system A°ut + ΛjuXj •+• Bu = F is defined by
Av = vjA\ where v is the outer normal on dΩ. The boundary condition Mu = 0 is
called maximally nonnegative if Ay is positive semidefϊnite on the null space N of M
but not on any space containing AT as a proper subspace. For later use, v can be
extended to be in C°°(ί7) (assuming dΩ is smooth), and then Av is also defined for
xeΩ, but the above condition is applied only on dΩ.

Given the system A°ut + AjuXj + Bu = F and initial data M(0)=/, "5JM(0)" is
defined by formally taking i— 1 time derivatives of the system, solving for d\u and
evaluating at time ί = 0; e.g. W M ( 0 ) " = / ,

 ίid}u(0Y' = (A°(0,x)y1(F(0,x)
— Aj(0, x)fXj — B(0, x)f). The quotation marks remind us that "3^(0)" is not the
derivative of a known function but rather the value that the derivative of the
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sought-for function u will have provided u exists. Finally, for A a matrix, \A\
denotes its operator norm, i.e. |;4| = sup|4ι;|/|ι;|.

Theorem Al. The system

Lu==A°ut + AjuXj + Bu = F in [0 ,Γ]x ί2 , (Al)

u(0,x) = /(x) in Ω, (A2)

M(x)υ = 0 on [0,T]xθΩ (A3)

has a unique solution in Xm([0, T ] ; Ω), m ^ 1, provided
i) Ω is open and bounded in Rn and dΩ is smooth;

ii) A0, the A p and B are in Xs9 where 5 = maxί m, - + 2 I;

iii) A0 and the Aj are symmetric and A0^some cί>0;
iv) M (x) is in C°°(Ω);
v) Av is nonsingular on [0, T] x dΩ and \(Av)~i\ ^some c2 there;

vi) the boundary condition is maximally nonnegatίve;
vii) F is in Hm([0, T] x Ω) and f is in Hm(Ω);

viii) M"d\u(ϋ)" = 0 on dΩ, O ^ ΐ ^ m - 1.

The solution obeys the estimates

•ίe-F*'\\\F(t')\\\2

mdt], (A4)m

0 J

• {IIWOIIL-1 + IIMOHLtan+TOIL- J , (A5)M

where a is a constant < 1 that depends only on m and the dimension n, and the F^
are positive, continuous, and nondecreasing. (The Fj also depend on m, Ω, and M

but we will consider these fixed.) Finally, if m> - + 2 then

lllϋfrtlll2 <F (Me \\\A° Λj\\\ \j5{\\\AQ

tAJ,B\\\m-UTtilcuc2)t
l l lwwlllm,tan = r lV 1 / 6 !? \\\Λ i Λ \\\m-l,τ)e

|_ m ' o

(A6)m

gF 7( | | |A°, A\ β|||m_ 1 > τ, c2) {|||u(ί)|||m- i + |||«(ί)|||m,tan + H^iOIIL -1}
(A7)m

Proo/. We will first prove the theorem in the case when L is smooth, and then show
by an approximation argument that it holds generally. For smooth L, the existence
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of a unique solution u in Xm follows easily from Theorem 3.1 of [14]. To show that
(A4)-(A7) hold we will follow the derivation of similar estimates in [14, 9] while
keeping track of how these estimates depend on the coefficients of L.

Using Lemma 3.3 of [14] we can approximate F and / in Hm by Fk and fk in

Hm + L 2 J + 2

 s u c h that MΛf3{uk(0)Λf = 0 on 3 Ω , 0 ^ i g m + MM + l.Nowif(A4)-(A7)m

hold for the resulting solutions uk then straightforward limit arguments show that
uk^»u in Xm and u obeys (A4)-(A7)m as well, so we can assume that w, /, and F are
in Cm+\ which ensures that all of the calculations to be made later are legitimate.

As in [9] and Lemma 3.2 of [14], we will use a partition of unity {φ1} and
changes of dependent and independent variables to reduce to the case when either
Ω = {x\xn>0, | x | < l } , suppwC{|x |<|} ? Mu = 0 on {xn = 0} with M a constant
matrix, and \(An)~1\^2c2, or else ί2 = R" and suppwc{|x|< 1}. Note that

| y - x r by standard in-

bedding lemmas when α = 1/8 say, so that

\A\y) ~11 = MXx) ~ 1 (/ - lA\x) - A\y)~] A\x)

if

x e δ Ω and | y - x r α < [ 2 c ( Ω ) c 2 | | | ^ | | | s _ l 5 T ] .

Hence the choice of the open cover, and so of the partition of unity subordinate to
it, depends on L only through c2 and III^IIL-i,-^ while the changes of dependent
and independent variables depend only on Ω and M, respectively, not on L.

Let (,) and || || denote the spatial I? inner product and norm, respectively. In

Rn III Ilktan^lll III*, while in Ω = {x\xn>0, \x\<\} | | H | | M a n Ξ Σ l|Dβ |l; here
\a\g>m

0

α = (α o ,α l 9 . ..,αM)andDα = ̂ °3J1

1...δ^. The ||| | | |Λ > t a n norm for the original domain
is defined by ||| | | | M a n = Σ IWφ1- | | | M a n , where the norms on the right side are

ί

evaluated in the transformed domains.
Then, since L{φιu) = φψ + (φ\A° + ΦlA^u, estimates like (A4)-(A7) for the φ{u

imply that u satisfies (A4)-(A7) with | | |F | | | f c replaced by | | |F | | | f e + |||(yl0,^J)w|||fe; in
particular, Fl9 F 4 , etc. still depend only on the Z s _ ± norm of the coefficients. The
calculus inequalities

[^] (A8)

^ ^ J + 2 , (A9)

which will be proven in Appendix B, then show that u satisfies the original (A 5) and
(A7), and satisfies (A4) and (A6) with | | | F | | | k replaced by | | |F | | | k + |||tt|| |k. Substituting
(A 5) and (A 7) into the new (A 4) and (A 6), respectively, allow us to apply
GronwalΓs inequality to show that the original (A 4) and (A 6) hold, so it suffices to
prove the estimates for the localizations.
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Since the estimates for Rn are similar, but simpler and better known, we will
consider only the boundary patches.
Claim. In order to show that (A4)-(A7) hold, it suffices to show that for any
positive β,

~ Σ C^̂ w, ^L0^«w)^^(|ll^L°, -̂̂", ̂ IIU,^)||Iw|Ii^-HclΠ^ilI^, (A 10)
ut \a\£m

|α| ίSm— 1 or an = 0

+ F(\\\A°, A\B|||,_ t , Γ ) c2,1/ε)(1 + | μ ° , Λ>|||« Γ)(|||w||L, tan + ||M||m_ j

1, (All)

and that if m> - +2, then the term \\\A°, AJ\\\a

SίT can be omitted from (All) and

the right side of (A10) can be replaced by F(\\\A°,Aj,B\\\m_iT)

Proof of the Claim. After choosing ε sufficiently small, the estimates in (A 11) can be
solved for the ||δj5^~ιw||, showing that these quantities are bounded by the right
side of (A 5). The remaining terms on the left side of (A 5) have the form ||Dαw|| with

and αo + α π ^ m — 1 , so the calculus inequality,

^ _ 1 ) , (A12)

then shows that (A 5) holds. [Inequality (A 12) is a straightforward consequence of
the calculus inequality

Σ ||D*/||^||^/H+c(l/ε,Ω)/ Σ Wf\\
|α|^fc \β\=k

which can be proven for Rw by Fourier transform and then extended to bounded
domains.] Next, substituting (A 5) into the right side of (A 10) and using

|] ||2^—(- ,A° -) allows us to apply Gronwalls inequality to the transformed

(A 10); using

once more then yields (A4). Finally, a similar argument shows that the alternate
forms of (A10-A11) imply (A 7) and (A 6).

To prove (A 10), let an = 0 and |α| ̂  m, take Da of Lu = F, and define ua = Dau to
obtain

°u? -f Ajua

Xj + Bua = DaF + [AΌ, Da~]ut + [Aj, D*]uXj -f [B, Da~]u. (A 13)
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Multiply (A 13) by 2wα, integrate over the spatial variables, and integrate by parts in
the terms on the left side to get

^-{u\ A°u«) = M [ - (u«)τAnu«l) + {u\ (A° + A*Xj -2B)u«)
dt \{Xn=O} )

+ (2wα, DaF) + (2u\ [A0, Da1ut + [Aj

9 D«-]uXj + [B, Dα]u)

(A 14)

Now MDau = DαMiί = 0 because the transformed M is constant and an = 0, and An

is a scalar multiple of the original Av so —(u^AV^O on {xπ = 0} because the
boundary condition is nonnegative. Also,

The last three terms in (A 14) themselves consist of terms of the form
\\{D*A)(Dβu)\\2, with |α| + | j8 |^m+l; |α|,|j8|^m; and A = A°, Aj, or B. Now if
\β\ = m then

while if s = m = |α| then

In the remaining cases |α|^s—1 and \β\^m— 1, so the calculus inequality

α i i i i

S l I I I J
fill1"' l i l s i

" α i l l l /
- l l l l ί

7|||α2|||/

/ l l l s 2 l l l ί 7 ι ι μ -
/ l l l s 2

— a-
-ί

(A15)

where 0 < a , < l , shows that | | ( i)M)(i)^) | | 2^c| |μ 0,^,J5| | | s

2 | | | t/ | | | 2 . Also if

^ ^ h^ + 3 and n^ 2 or if m^ - + 4 and w=l, then by the second part of (A 15)

while if n = 1 and m = 3, then with each st = m each αf in the first part of (A 15) is < \
so the same conclusion holds. [Inequality (A 15) will also be proven in
Appendix B.]

Similar estimates are obtained for the case |α|^m— 1 by following the same
procedure but omitting the integration by parts in the spatial derivative terms to
avoid boundary terms. Adding these estimates for all |α |^m with |α|^m—1 or

απ = 0 yields (A 10), including the special form when m> - +2.
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To prove (All), solve Lu = F for uXn, and take δjS^" 4" 1 of the result to get

n - 1
7-A°ut- Σ Ajux.-Bu (A 16)

Using Sobolev's inequality (|| | | c o ^ II llriΊ + 1 τ ) , (A8-A9), (A 12), (A 15), the

elementary estimates c\c\~a^εc1 +c(l/έ)c2 and ||yl||co^<:|^4| for matrices A, and
the fact that \(An) ~1\<^2c2to estimate the right side of (A 16) yields (A 11), with the

term \\\A°, Aj\\\" present only if m ^ - +2, thereby completing the proof for the
case when L is smooth. '—'

Now consider the case when L is not smooth. By the proof of Lemma 3.3 of
[14], there exist sequences Fk and fk in Hm + 1 such that Fk-+F in i/m([0, Γ]xί2),
/*-•/ in Hm(Ω\ and M " 5 / M * ( 0 ) " = 0 on dΩ, O ^ z ^ m - 1 , where"5jwfc(O)"is defined
like "δjw(θ)" but using Fk and fk in place of F and /. (Note that this much weaker
version of the lemma holds even though L is not smooth.) By repeating elements of
the sequence if necessary, we can arrange that \\Fk\\Hm+1, ||/Jjϊm+1 ̂  ck. Then, since
"d\u\ϋ)" is in Hm~i+1/2(Ω% Theorem 2.5.7 of [8] says there exists Uk in
H m + 1 ( [0, T]χβ) such that δjl/fe(O) = "δjwfe(O)", O^i^m, and \\Uk\\Hm+^ck.

Now pick Bk and symmetric Ak and ̂  in C00 such that

and consider the system

(
A'lA-

k

-Aj]UXj + (Bk-B)U, (A 17)

u*(0)=/k, (A 18)
: = 0 on dΩ. (A 19)

For k sufficiently large, conditions i-v and vii of Theorem A1 are satisfied for
(A 17)-(A 19), and since "dl

tu
k(0)", 0 ̂  i rg m, is the same for Lku

k = Fk, u
k(0) =fk as for

Luk — Fk, u (0) =fk, condition viii also holds, by construction. Next, the boundary

matrix for (A 17) is Av

k+-jl, and if Mv = 0, then
fV

Lku
k = ̂ n f + ̂ 4 + I W / ^ ̂  + B,w = Ffe = F k + (A°k - A°)Uk

Also, if w G N1 and |w| = 1, then picking z e JV to maximize c in (z + w)Γ^lv(z + w)
< — c|z + w\2 gives a c(w) that is continuous and hence bounded away from zero.
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Hence for k sufficiently large

so the boundary condition is still maximally nonnegative.
Therefore, since Lk is smooth, (A17)-(A19) has a solution uk in Xm obeying

(A4HA7)m. Since \\Fk~Fk\\Hm^φ by (A8), Fk-+F in ff». Also, | | | t/ f c | | |m > τ^c since
the ll-FJjjm etc. are bounded. Next,

L(uk - uι) = Fk-Fι + (L- Lk)uk - (L - L^vί,

and multiplying this by uk — u\ integrating over Ω, integrating by parts, and
applying GronwalΓs inequality shows that {uk} is a Cauchy sequence in
C°([0, T'j L2). Since Luk = Fk + (L-Lk)uk-+F in L2, the limit u of the sequence
{u} is a strong solution of (A1)-(A3).

Next, since |||wfc|||m is bounded and a ball in Hm is closed under L2-convergence,
u is in L°°([0, T ] ; # m ) . Also, since

by the Sobolev interpolation inequalities, uk-*u in C°(0, Γ];ίΓw~^(ί2)) for any
<5 > 0. Solving for uk and wf in the equations Lku

k = Ffe and Lu — F now allows us to

conclude that uk->w in "ft Cj([0, T];Hm~j~δ) and 5JM6L°°([0, T];H m ~0- Argu-
j=o

ments like those on pages 40 [replace H~s by (.fFίΊ and 44-46 [replace Λ°(uk) by
^ + i and note that Dau\0) still -^Dαw(0) by construction] of [13] then prove that
u(t) is also continuous in the ||| | | |W } t a n norm, and using Lu = F to express normal
derivatives in terms of tangential ones then shows that u is in Xm.

In order to verify that u satisfies (A4)-(A7), it suffices to show that

, (A20)

since taking the limit of the (A4)-{A7) obeyed by z/ then yields (A4)-(A7) for w. If
|α| ^ m - 1 then Dauk(t)-+Dau(t) in L2, so (A20) certainly holds. Also, if D« includes
any spatial derivative, say DΛ = dx.D

β, then for all φe CQ(Ω),

(φ, D«uk(t)) = (φ, dxpi>u\t)) = ( - dXjφ,

i.e. D"u\t) converges weakly in L 2 to D"u(t) and again (A 20) holds. The only
remaining possibility is Da=d™, so

(Φ, d?u\t))=(φ, dr1 [(Λ°)" \Fk <

-+(φ, d? ~' l(A°) -\F- AuXj - Bu)J) = (φ, d?u(t)),

and hence (A 20) holds in all cases.
With the linear regularity theorem in hand, we are now ready for the

quasilinear existence theorem:
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Theorem A 2. The system

A°(t, x, u)ut + A\t, x, u)uxj + B(t, x, u)u = F(t, x) in [0, ί] x Ω, (A21)

u(0,x)=f(x) inΩ, (A22)

M(x)u = 0 on [0,T]xδΩ (A23)

has a unique classical solution if T is sufficiently small, provided
i) Ω is open and bounded in Rn and dΩ is in C00

ii) for some ε0 and Tθ9 A°(t,x,v), A\t,x,v), and B(t,x,v) are in

Cw([0, Γo] xN0) with m^ M +2, where N0 = {(x,v)\xeΩ, \υ-f(x)\^ε0};

iii) A0 and the Aj are symmetric and A0^ some c1>0, for t,x,v [0, T0]xJV0;
iv) M(x) is in C°°(Ω);
v) Av(t9x9v) = vj(x)Ai(t,x9v) is nonsingular and K/Γ^l^some c2, for all

such that xedΩ and M(x)v = 0;
vi) the boundary condition M(x)u = 0is maximally nonnegative for Av(t, x, v),

for all ί, x, v as in v).
vii) F is in tfm([0, T]xΩ) and f is in Hm(Ω);

viii) M"ajw(0)" = 0 on dΩ, 0 ^ i ^ m - l .

The time T up to which the solution is shown to exist depends only on Ω, M, n,
m, ε0, To, cu c2, F, the Cm norms of A°9 the A 7', and B, and the # w norm of/. (If

F e I m T depends on F only via | | |F | | | m > To.) The solution is in Xm([0, T] Ω) [which

m-Γ-Ί-l Ί
is contained in (Γ L̂J ([o? T]xΩ)J, and its norm in this space is bounded in terms
of T and the quantities T depends on.

Theorem (A 2) follows from the lemmas (which have conditions i-viii as
hypotheses):

Lemma A3. The set X = {U eXm(l0,To];Ω)\MU=0 on dΩ, d\Uψ)="d\uφy\
O^i^m} is nonempty.

Lemma A4. There is a function g(R) with lim g(R) = oo and a ||| |||m t a n norm
.R->oo

depending only on R, Ω, and M such that if Tx is sufficiently small and R is
sufficiently large then the set X{R Tl) = {UeXm([0, T1~];Ω)\MU = 0 on dΩ; d\U(0)
=W5{M(0Γ, OSiύm; sup | | |l7| |iϊ-i + ll |U| | | i f t β n^R, ll|l/|||Miτ^ffW} is mapped

into itself by the map v ̂ w given by L(v)w = F, w(0)=f Mw = 0 on dΩ.

Lemma A5. // Tx is sufficiently small the map in Lemma A4 is a contraction in the
Xo norm.

Proof of Theorem A 2, Given the Lemmas. Pick u° in X and choose Rx large enough
so that u° is in X(RuToy Pick R^Rχ sufficiently large and T sufficiently small so
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that the conclusions of Lemmas A 4 and A 5 hold with TX = T. Then the sequence
{un} defined by L(un)un+ί=F, un + 1(0)=f Mun+ί=0 on δΩ converges in
Xo([0, T] Ω) to some u. Since the uk are bounded in Xm, an interpolation
argument and the fact that

u = [ ^ ^ j ( F _ Aj(u)u- B(u)uk + x)

m - l

f

B(uk)uk

m l

show that uk->u in f] C([0, T] Hm~j~δ) and 3/M eL°°([0, T] iίm~ j). In parti-

cular wk->w in C1 so w satisfies (A21)-(A23). Finally, the argument in [13] can be
adapted in similar fashion as for Theorem A1 to show that u e Xm. I For this, note

that by the proof of Theorem A1, if ||| | | |m_i + ||| Him,tan *s replaced by

Σ
|α| 5jm— 1 orα n = 0

then uk+1 satisfies (A4) with the factor Fγ omitted. I

Remark. The u° used to start the above iteration is not the one suggested in [14],
but is analogous to the ones used in [1,5], which deal with one particular system.

Proof of Lemma A3. We will let U be the solution oϊL(f)U = G, ί/(0) =fMU = 0
on dΩ, where G is to be chosen so that GeHm and d!t/(0) = "φ<0)", O^i^m.
Assuming by induction that "3j[/(0)" = "djw(O)" for 0 ̂  i ̂ j (which clearly is true
when 7 = 0), we find that it will also hold for i=j+ 1 provided

dΐGφ) = "d{F - \_dl A\uf\dtu - \_dl A\uy\uXj - [Si, BM = o"

(interpreted to be an expression in terms of / and F). Theorem 2.5.7 of [8]
guarantees the existence of a G in Hm having these derivatives of t = 0 provided
δ/G(0) e Hm~j~ 1/2(O), which can be shown to hold by using the assumptions on F
and /, (A 8), and the fact (to be proven in Appendix B) that

for m^ I - + 1, if AeCm and heXm, then A(h)eXm and

; (A24)

^ ^ J +2, then (1 + P | | D may be replaced by (l + | | |ΛC:ί)(l

Proof of Lemma A4. Let fc1 = |||"tι(0)"lllm-i + lll"M(0)"|lli.t.n Define udμ(t = 0)",
where A = A°, AJ, or B by formally taking d\ of Ait, x, ύ) and setting d{u equal to

0^j^i, and let

Let k3 be a constant such that || ||co^/c3 | | ||HΓj]+i and k4 a constant such that
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Let G ^ ) be such that (A24) implies

| |μo(.),^(.),B( )III

let G2( ) be such that (A24) implies

Now define Λ0 = 2F1(l/c1,2fc2)(fc1 + 1), where Fi is the Fx in (A4), and for
^Rn define

= 1 + G2(\/R)a + [2F4(2fc2, c2)G2{\/Rγ{γ2R + X 4 \\F | |H M ( [ O i Γ o W l 1 ^ ,

where a is the α in (A 5). Also for R ̂  Ro, pick 7\ = TΊ(JR) such that Tx ̂  εo/k3g(R),

)s l /c l s c 2 ) , and

0
Suppose D e Z ( S Γ l ) , where R and ^ satisfy the above conditions. Then for

\v(t,x)-f(x)\ίt sup |»,|g

Hence, since A°(t, x, υ), etc. are in Xm by (A 24), Theorem A1 shows that there is a
unique w in Xm([0, T J Ω) satisfying L(υ)w = F, w(0)=/, Mw = 0 on 3Ω. These
equations together with the fact that d\v(0) = "3JM(0)" 9 0 <; i ̂  m, imply that δjw(0)
= "5{M(0)", 0 ^ i ^ m , as well. Now

and

F3(| | |Ao,^,B|| |m f Γ l,c2)}e-F 2 tΊ||F(Ollli^l for O^ί^
o

Hence by (A 4),

Similarly, (A5) shows that | | M | | m , Γ l ^

Proof of Lemma A 5. A Standard L2 Energy Estimate.
The following continuation principle was also used in Sect. 3.

Theorem A 6. Suppose the hypotheses of Theorem A 2 are satisfied with

m > m +2^that^A2ίH^^) has a solution u in XΓjf\+2(l0, T~];Ω) with T^T0, and

that 0 , u(t, x)) 6 No for x e Ω, 0 ^ t^ T. Then UΈXm([0, T] Ω).

Proof A standard continuation principle says that u can be continued in Xm as
long as x,u(t,x)eN0 for all xeΩ and |||w|||m remains finite. (By Theorem A2, if
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^ c then u has a solution for a time interval [ί0, t0 + ε] of fixed length, so
gluing together these solutions on the interval [0, ε], [ε, 2ε], etc. produces an Xm

solution for as long as |||w|||m ^ c, since the hyperplane ί = constant is noncharacter-
istic.) Also, by induction it suffices to prove |||w|||m τ < oo under the assumption that

I IMIL-LΓ^C.
Now u satisfies the linear equation Lu = F, where L = L(w), so u obeys (A 6), (A 7)

with A0 = AΌ(u)9 etc. The point is that (A 6), (A 7), and (A24) are all essentially linear
in the highest norm, so

by (A 24) and (A 7), and substituting this into (A 6) shows

and hence by GronwalΓs inequality

on [0, T] . Substituting this into (A7) shows | | | M | | | O T ^ C .

Remark. Theorem (A 6) remains valid when the boundary is characteristic if
(A4)-(A7) hold with ||| | | |m t a n is replaced by some ||| | | |m Eι norm; in particular, it is
valid for system (5.2), (2.2), (2.3).

Appendix B

We will prove the following calculus inequalities used in Appendix A:

\\\fg\\\k^ci\\\f\M\\g\\)k-i + \\\f\\\k-i\\\g\\\ύ, ^ ^-J + 2 , (B2)

IKD^ίD^L^clll/lll^lll/llli-ZllMII^III^III^ (B3)

with 0 < α ; < l , provided l α l ^ s ^ l , \β\^s2-l, |α| + |j3| + ^ <sι + s2,

) , m^\-\+l; (B4)

, then (1 + PIID may be replaced by (l + | | | /« : ί )( l + IPIIL).

Remark. Except for the inclusion of time derivatives, these inequalities are well-
known; see e.g. the appendix of [10].
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Proof of (Bl).

where α = (α o ,α l 5 . . . ,α j and Dx = dx

t°d%\... dd

x"nί etc. Any term with \β\ = k is

by Sobolev's inequality, and if k= - + 1 = |α| just switch / with g. Otherwise

(B3) applies. (B2) is proven similarly.

Proof of (B3). We will use Holder's inequality \[fg\\LiS 11/11 LP}\ΘIILJ>> where

Pi

and the Gagliardo-Nirenberg inequalities ([19], p. 27)

where j<m, j/m<a< 1, — =\-\ , 2<p< oo,

derivatives. It suffices to find estimates of the form

where j<m, j/m<a< 1, — =\-\ , 2<p< oo, and D 7 includes only spatial

Given a1 and α2, Pi, and p 2 are denned by — =j;-\ — and
Pi n

1 = 1 , Ij8|"j8o-fl2^2-i8o)

P2

 2 w

so we just need to satisfy the conditions

n L J -

in - τ <

iv)
5 2-α 05 2-α 0

1 = l α | - α o - α 1 ( 5 1

Now if ax and α2 were set equal to one, the right side of v) would equal [|α| + \β\
— (s1 +s2)]/n which is < — \ by assumption. On the other hand if a1 and a2 were
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set to and -r̂ , respectively, the right side of v) would equal zero.

s1— α0

 s2~Po
Therefore since s1 — α0 and s2 — β0 are both positive, there exist aγ and a2 satisfying

ii) and iv) that make v) hold. Then M - Ό - " i f r i - " o ) a n d III - β0 - a2(s2 - «0) a r e

n n
both negative and their sum= — \, so i) and iii) are satisfied.

Proof of (B4). We allow A to have explicit time and space dependence also. Now

| | | m is a sum of terms of the form

with O^p^m and |α| + Σ|/?(ί)|;gm, and each term is

By induction starting from (Bx) and (B2) we can show that 111up\ \\m ̂  c\ \ \u\ ||£ for p ^ 1

when m^ m +1 and HMIL^cHMHίî llMIL for p ^ l when m^ Γ^l +2, and

then (B 4) follows easily.
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