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Abstract. We consider a one-dimensional system of particles on the half line
R+ = [0, oo) interacting through elastic collisions among themselves and with
a "wall" at the origin. On the first particle a constant force E is acting, no
external forces act on the other particles. All particles are identical except the
first one which has a larger mass. We prove that if E is such that the Gibbs
equilibrium state exists, the corresponding equilibrium dynamical system is a
Bernoulli flow.

1. Introduction

Consider the semi-infinite mechanical system consisting of a gas of infinitely many
particles on the half line R + = [0, + oo), interacting through elastic collisions with
each other and with a "wall" at the origin. The mass of the first particle (i.e. the one
closest to the origin) M is assumed to be larger than the common mass m of the
other particles. A constant force E > 0 is acting only on the first particle (or "heavy
particle," henceforth h.p.). The Gibbs equilibrium measure for all values of the
temperature and the particle density such that E<P, where P is the thermody-
namic pressure that the gas exerts on the wall, is stationary in time. In [2], using
techniques introduced in [1], it was proved that the corresponding dynamical
system is a Bernoulli flow for E<P/2.

In this paper we extend the result to all values of E < P, by giving a simpler and
more general proof. The main point is that instead of proving loss of memory by
explicit probabilistic estimates, as in [1] and in [2], we make use of the following
general features of the system: i) the fact that the invariant measure is locally
absolutely continuous and the interacting subsystem (i.e. the h.p.) is confined, and
ii) the local smoothness of the dynamics, i.e. the phase point of a finite particle
system at time t is "almost always" a smooth function of the initial data. Our
methods of proof in their present form could be applied to a large class of systems

On leave from Dipartimento di Matematica e Fisica, Universita di Camerino, Camerino,
Italy. Partially supported by NSF Grant DMR-81-14726



500 C. Boldrighini

of classical statistical mechanics consisting of a confined interacting subsystem in a
free gas bath.

We give now a brief description of the main ideas in the proof.
It is easy to see that a point in the infinite particle phase space X can be

determined almost surely by knowing the history of the h.p. {^(OlteiR1- We prove a
condition of asymptotic independence between past and future for the process
{qo(t)}, which is stronger than α-mixing (or "strong mixing"), and implies that
our dynamical system is Bernoulli.

This particular type of "loss of memory" for the process is brought about by the
following circumstances, which have been given a mathematical expression
already in [1, 2].

Since the interacting subsystem (the h.p.) is confined near the origin, all the
incoming (i.e. negative velocity) particles which are far enough did not collide in
the past. Therefore the conditional distribution for them, for the condition that the
past history of the h.p. is fixed, is essentially given by the equilibrium one. This led
in [1] to the proof of the almost sure existence of infinitely many "cluster times"
(c.t.'s), i.e. times for which the sets of the particles colliding with the h.p. at earlier
and later times are disjoint. C.t.'s are produced by particular configurations of
incoming particles, which last long enough to allow the particles that collided at
earlier times to escape so far that they cannot be reached by the h.p. The history of
the h.p. after a c.t. can be reproduced inside "most" of the atoms of partition of
phase space generated by the past history of the h.p., and this implies the K
property for the dynamical system [1].

In the paper [2] the Bernoulli property could be proved by relying on a "local"
mechanism of loss of memory provided by the dynamics. Namely, if we consider
the trajectory of the h.p. qo(t) for some initial particle configuration x, and the
corresponding trajectory qo(t) for the configuration x obtained from x by moving
the initial position and velocity of the h.p. of a small amount, then the difference
qo(i) — qo(i) becomes smaller in a way that is roughly speaking exponential in the
number of collisions up to time ί, until maybe a discontinuity occurs (because the
order of collisions changes), and the trajectories diverge. This important fact is
basic in the construction of an isomorphism with the free gas via the scattering
formalism (see [3]).

In the present paper we use this fact, together with the "almost deterministic
behavior" of the h.p. when it gets a very high speed, to show that the incoming
configuration which produces the c.t. can be chosen in such a way that, for "almost
all" initial situations in a finite region near the origin, it drives the h.p. towards an
attracting periodic cycle, independent of the initial situation. The property of the
process we need can be deduced directly from that (see Sect. 4), thereby
simplifying the proof of [2].

It is an unsatisfactory point of both papers [1] and [2] that the final step in the
proof of the existence of c.t.'s, which amounts to proving that the h.p. does not
catch up with the particles of its past, had to be made by using an explicit
probability estimate, for the particular distribution which we get after the c.t. This
estimate is based on a momentum balance, which involves the h.p. and the
incoming particles (the distribution of which is known to be close to the
equilibrium one), and neglects the outgoing particles, since we ignore their
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distribution. But the average momentum of the incoming particles makes up only
a half of the total pressure P, so the argument works only for E<P/2.

In this paper we are able to introduce, by a general argument, configurations
which, after producing the c.t. situation, approximately restore a typical situation
near the origin. This, together with the properties of the measure and of the
dynamics described above, allow us to make use of the equilibrium estimate for the
confinement of the h.p., and to extend the result to all E<P.

The case of a nonconstant force £, subject to some natural conditions, would
require only minor changes in the proof.

The plan of the paper is the following. In Sect. 2 we give some definitions, state
the main results, and give the main facts about confinement of the h.p. and quasi-
deterministic behavior. In Sect. 3 we give our modified construction of cluster
situations, and in Sect. 4 we prove and the ^-property.

2. Definitions, Statement of the Results and Some Preliminary Facts

The one-particle phase space is IR+ = {(#,v)elR2:g^O}, where q and v denote
particle position and particle velocity, respectively. SC is the space of the locally
finite particle configurations in R+, with the usual topology of pointwise
convergence. 3C is a polish space and the σ-algebra of the Borel subsets of SC will be
denoted by SR.

If x G i and ^4cR+ is a measurable set, we denote by xA the configuration
xnA, and by WA the σ-algebra generated by xA. 9£A will denote the phase space of a
particle system in A, which we shall sometimes identify with ί ^ ^ f x e ί : XRΪ\Λ

= 0}. μA will denote the measure induced by the measure μ on S£A. We shall
sometimes identify sets of WA and the corresponding subsets oi$CA. Since the space
is Lebesgue, for any σ-algebra 9JΓC9JΪ there is a measurable partition π' associated
to it such that the regular conditional probability μ( \W) is μ-a.e. equal to a
measure on an atom of π'. In what follows we shall denote the σ-algebra and the
partition associated to it by the same symbol and we write μ( \W(x)) for the
measure on the atom containing x.

A point xedC can be identified with a sequence: x = {qk(x), ĉ(x)}/c°=o m which
the particles are labeled in order of increasing position, and, for equal position, in
order of increasing velocity. The mass of the h.p. is M, and its coordinates are of
course (^o^o)- m<M is the common mass of the other particles.

For a fixed value of the chemical potential λ and of the inverse temperature β,
consider the Gibbs measure μ° for a gas of free particles with common mass m. μ° is
a Poisson stochastic field on R+. The thermodynamic pressure P and the particle
density ρ are given by

βP=]/%Le

βλ

9 ρ = βP. (2.1)
[/ pm

If we now fix £ < P , the Gibbs measure for the mechanical system we consider
in this paper can be defined as the measure μ on 9£ such that: i) the position q0 of
the h.p. is exponentially distributed with parameter ρ — βE = β(P — E), i.e.

(2.2)
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and ii) the distribution of the other particles x\(qθ9 v0) for a fixed position q0

coincides with the corresponding distribution for μ°; and iii) momenta are
distributed independently of positions with a maxwellian law with average 0 and
dispersion β"1.

The time evolution can be described as follows: all particles of mass m move
with constant velocity, and the h.p. with constant acceleration E/M, until the h.p.
either collides with the wall at q = 0, and inverts its velocity, or it collides with
another particle, according to the collision laws,

M-m (2.3a)

(2.3b)

where V and u are the ingoing velocities of the h.p. and of the light particle, and Vf

and uf are their outgoing velocities, respectively. We are using the standard device
of treating the light particles as "pulses," i.e. we let them exchange "names," instead
of exchanging velocities, when they collide among themselves. At collision,
particles are supposed to be in the outgoing configuration.

The dynamics defines a measure preserving flow {7^}ίe]R on an invariant set of
full measure. By {Tt°}teΊSi we denote the free flow, i.e. the flow for configurations of
particles of common mass m. The measure μ° is clearly invariant under this flow.

The main result of this paper is the following.

Theorem 2.1. If E<P the dynamical system {2£,μ, Tt) is a Bernoulli flow.

Proof (Preliminaries). Consider the process defined by the trajectory of the h.p.
qo(Ttx), which we sometimes by abuse of notation will denote by qo(t).

We denote by ζτ(ζτ) the σ-algebra generated by qo(t) for t^τ (ί^τ). The
assertion of the theorem will follow from the proof that for any ε>0 for the set

A\= \x:sup\μ(B\)ζo(x))-μ(B)\>ε\, (2.4)

we have

\imμ(Aτ

ε) = 0 (2.5)
τ-» oo

(see [4]). Equality (2.5) will be proved in Sect. 4.
The following results about the long time behavior of the h.p. (confinement) are

an easy consequence of the properties of μ and are proved in [1].

Lemma 2.1. There is a constant c>0 such that for μ-a.a. xeff,

< c ( 2 6 b )

For what follows we have to single out some regions of the one-particle phase
space.
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Definition 2.1. For any L > 0 , s > ί > 0 , we introduce the following subsets of R + ,

SL = {(q,v)eΈL2

+:qe[_OtL)}, (2.7a)

CL(t,s) = {(q,v)e'R% :q^L,q + vτ = L for some τe[ί,s)}, (2.7b)

i*L(0 = R2

+\CL(ί,oo), (2.7c)

l)). (2.7d)

We will set henceforth for brevity CL = CL(0, oo) and RL = RL(0,oo). Note that
CL(ί, s) contains the particles which cross L between times t and 5 for free motion,
a n d Γ L c C L .

Proposition 2.1. Consider the sets

Φ (2.8a)

(2.8b)

TTien: i) lim μ{^LnSj) = 1 and ii) /or x e stfLc\$L. Ttx = TtxRly Tt°xCL for t^ 0 αmZ
L-» oo

ί/zere are no negative (i.e. negative velocity) particles which collided with the h.p. in
the past at the right of L.

[Roughly speaking ΓL is the region where such particles must be located if the
bound (2.8b) holds.]

Remark 2.1. If we introduce the "time-reversed" sets R£
= {(q, v) GR2

+ : (q, -v)e RL}, ΓL

+ = {(q, v) eR2

+ : (q, -v)e ΓL}, we see that from
Proposition 2.1 it follows for the sets

: X Γ L + = 0 } , (2.8aO

(2.8bO

we have i) lim μistf^ π ^ / ) = 1 and ii) for x e stf£ ^ L n o positive particle at the
L->oo

right of L will collide with the h.p. in the future.
As in [1], we make use of the fact that the motion of the h.p., when it gets a

speed much above average, becomes "almost deterministic." For L large we divide
the interval [0,L) in κ(L) = [L1 / 5] pieces of length ί = L/κ(L): Ik = [_(k-\y, fef),
fc=l,2, ...,κ(L). Consider the sets &i£) = {xe!!ί':\caidxIkXW,i — Qί\<s} with
s = s(ί) = / 3 / 5 , and the sets

# ί = (I @l\ (2.9)
k=ί

G9£\ max | ί ; |<clog 1 / 2 Ll, (2.10)
{q,v)ex[OίL)x]B} j

For x e f L the particles are "uniformly distributed" in [0, L), and velocities are not
too high.

Lemma 2.2. There is a constant c>0 (see Eq. (2.10)J such that

lim μ(βj) = 1.
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Proof. The result is proved in [1, Lemma A.I] for the case £ = 0, and can be
extended to all values of E e [0, P] almost without change.

The following proposition makes precise the idea of "almost deterministic
behavior" for a high speed h.p.

Proposition2.2. Let x e J L and consider the configuration x = xRLu(q,v) with
-v(l-oί)e(eaL, eaL+l), α > α 0 = ρlog(l/α), and q + vto = L for some toe (0,1/2).
Then, for L large enough, the evolution of x for positive times is such that:

i) after colliding with (q, v) the h.p. hits the wall at a time t1 > ί0, and for t>tγ

never inverts its velocity;
ii) (q, v) and all the other particles which collide with the h.p. after time t1 and in

[0, L), get a positive velocity larger than wo = eλL, for 0<λ<min(a, a — ao);
iii) after time tγ the h.p. crosses the points kt + c log 1/2Lwith a velocity smaller

than VM(k), and at a time larger than tm(k), and crosses the points fcf — clog 1 / 2 L with
a velocity larger than Vm(k), and at times not exceeding tM(k), for k = 2, 3,..., κ(L),
where the quantities,

VM(k) = (l-a) Mα f c ^ ( 1 - σ ) (l + ε L ) ? (2.11a)

σ ) ( l - ε L ) , (2.11b)

εL = e~v^ and σ = s/tf, do not depend on xe &L.

Proof The proof is done in [1] for the case E = 0 (Proposition A.I). Its extension to
the case E > 0 is straightforward, since the correction to the motion of the h.p. due
to the force E becomes negligible for large L.

We need for what follows an easy extension of the results above.

Remark2.2. Consider the sets f L

+ ( f c ) - { x e ί : |cardx / k X [ θ 5 θ θ )-ρ//2|<s/2},

l,...,2κ(L), and

@ί= T f ^L+(fe) (2.90
k (L)+l

As for Lemma 2.2, it is not hard to prove, following the lines of Lemma A.I of [1]
that lim μ{βΐ) = 1. Moreover if x e j £ and (q, v) is as in Proposition 2.2 with

L-*oo

a > 3ao/2, assertion iii) of Proposition 2.2 can be extended to all k up to 2κ(L), by
taking for k = κ(L) + h, h ̂  1,

F M ( fc)^( l -α)Nα( L + ^ ρ ( 1 " σ ) ( l + ε L ) , (2.11a')

VJk) = (l - α ) | φ ( L + ^ ρ ( 1 + σ ) ( l - β L ) . (2.11bO

From Remark 2.2 we obtain the following result.
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Corollary 2.1. If xe ^Lr\^l and (g, v) is as in Remark 2.2, then in the history of the
h.p. in the configuration x = xRiy{q, v), there is a time te (ί0,1), depending only on
(q, v), such that i) qo(Tμ) e{L + ί,L + 5«0, ϋ) vo(T(x) e (Vm9 VM) with Vm = VJκ(L)
+ 5), VM=VM(κ(L)+l), and iii) all the particles which at time 0 were in [0, L)
collide by time t with the h.p. and get a positive velocity larger than eλoL for some
λo>0.

Proof As for Corollary A.I of [1] the proof reduces to checking that ίm(/c(L) + 4)
>tM(κ(L) + 2), which is a consequence of the fact that σ(L//)jO as L->oo.

3. Construction of Cluster Situations and Loss of Memory

We first illustrate the local mechanism of loss of memory for the process {qo(t)} in a
particular case, which we use in our construction.

Suppose that E = 0, and that the h.p. is at L/2, L > 0, with a velocity w > 0, and

collides there with a particle of velocity — V= — w, followed by an infinite
1 — α

sequence of particles ξk = (L/2 + kτV, — V), k= 1,2,..., with τ = L/w. Then the h.p.
undergoes a back and forth motion colliding at time tk = kτ with ξk at L/2, and
moving with constant speed w. We now change the initial position and velocity of
the h.p. a little bit, and consider incoming particles ξk close to ξk. We describe the
motion in terms of the quantities bk — qk — L/2 and ck = wk — w, where qk is the
position which the h.p. has at time tk if we neglect the feth collision, and wk is the
ingoing velocity of the h.p. We set σk = (bk,ck), ξk = ξk + (sk — kτuk,uk) and λk

= (sk,uk). We have

(3.1a)

with

A has a double eigenvalue — αe(—1,0). This implies that if we have an initial
σ0 Φ 0 small enough, the motion of the h.p. induced by the particles ξk (i.e. for
λk = 0) loses memory of the initial perturbation and goes exponentially fast to the
periodic cycle described above. It is not hard to see that such 'localization
property" of the sequence ξk holds also for E > 0, by suitably redefining the limiting
cycle and the map φ (see [2]).

In constructing cluster situations we have to take care of recollisions after
focalization. We now identify some local configurations, in the interval [0, L]),
which are not likely to give recollisions.

By Definition 2.1 we have R + = 5 L u C L u C L

+ , with Cl
= {(<?,ϋ)elR+ :(q, —v)eCL}' Correspondingly we decompose x e i as x = yκjz
KJZ + , with y = XSL, Z =XCL, Z + = xc +. Let vL be the distribution of y induced by μ. It

oo

is a measure on &SL = \J SCψ^ where 9Cψ is the j-particle space, which can be
; 0

interpreted as a subset of (SL)J. We can then identify the restriction vL\%U) = L
a measure on R 2 j which is equivalent to the Lebesgue measure m2j on its support.
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Consider the set

i+=£+nstfL (3.2)

[see Eqs. (2.8a), (2.8b')]. S£ e WlR + and we can identify it with a subset of ΘCRt By
Proposition 2.1 and Remark 2.1, if x e i£ and xnΓ^ = 0 there are no recollisions
in the future with positive particles which are outside [0,L).

. (3.3)

So, setting

Zy = {ze%CL'.yκjzeS£}, ye%SL, (3.4)

and

YL = {yeSrSL:βL{Zy)>l-ε}, (3.5)

we find by the Chebyshev inequality that for L large enough

S ) > l - ε . (3.6)

If y e %SjJ then in its evolution for t < 0, there will be, for vL-a.a. y, a time so(y)
such that for t<s0, Tty contains only negative velocity particles. Therefore for
some time s < s0 we will have that i) all particles except the h.p. are at the right of L,
and ii) qo(Tsy)>L/2. A time for which conditions i) and ii) hold will be called an
"exit time" for y.

We take aj > 0 such that vψ(YLn3ί'^) > 0 and a point y* e YL such that there is a
neighborhood of y*, °U, and a time 5*, so that vψ(YLr\ύίl)>0, s* is an exit time for
all y e °lί, and the map Ts*, as a map R2j->R2j* is C00 on °ll with nonzero jacobian.
Then clearly the image Ts*% = %{1) is an open set, and Γ_s* is a C00 map which
inverts Ts* on %{ί\

If y! 6 %{1) we can represent it as y1 = (Q, yx), where g = ŷ  n S L = (^0, r 0) gives
position and velocity of the h.p. and yt = y 1 n CL = yx\Q. Let v^ denote the measure
induced by vψ on ̂ ( 1 ) via Ts*, and Y^ = T s*7Ln^ ( 1 ). Then clearly v^Y^) > 0, and,
since by the properties of vψ and of 7]*, v^ is equivalent to the Lebesgue measure
m2j on ̂ ( 1 ) , Y[ί] has at least a density point yf = (2^, j?f).

Definition 3.1. In what follows for each L and ε the integer) > 0, the negative time
5*, the neighborhood °lί{l) and the density point y* = (Qt,y*) of the set Y[l) will
denote fixed entities constructed as above.

We will now show that there is a set # L , μ(^L) > 0 such that for some time r > 0
(Trx)SL is in the neighborhood °U. %>L is written as an intersection

(3.7)

where J / L is given by Eq. (2.8a), $'L e 90!^ is given by

(3.8)

[see Eqs. (2.8b), (2.10), (2.90, (2.8aO] and &LeWiClX^ for r = 5* + τ* (τ* is given
below) is defined by the condition that xCi.(o,r) belongs to a neighborhood f̂ , to be
specified later, of the configuration x2, which is made of the following particles:
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i) a particle (q, ΰ) as in Remark 2.2. By that remark in the configuration jc'
= xRly{q, v) the h.p. will be at some time t depending only on (q, v), in the interval
(L + Λ L + 5/), with a velocity less than VM;

ii) a particle (q^v^, qί>5/ + L, such that qί + v1i=L + 3£, and
tJ1 = — (1 — α)w, with αί^/vv<^/3, where η is as small as will be required later;

iii) a sequence of particles ζk = (qk9vk)9 k = 2,3, ...,iV, such that ϋk=—V
= - ((1+ α)/(l - α))w, and ^ + (ί + L/2w + kL/w)ϋk = L/2, gfc > 5/ + L.

Clearly in the evolution of x// = x / u(^ l 5 ίJ 1 )u I U ζk) the h.p. collides with
\fc=_i _/

(qί9 ϋx) at some point q e (L + f9 L + 5/) at some time ί: | ί-1\ < 2(1 - α) (ί/V), and
gets a negative velocity — F(l — e j , e t ε (0, τy/3). \iijL— Θ(L~1/5) is small enough,
the h.p. bounces off the wall and crosses L/2 at some time t + (3L/2F)(1 + ε2) with
|ε2|<f/. (This estimate holds for all E<P since the force E gives a negligible
contribution to the trajectory for w large.) η should be small enough for the motion
of the h.p. to be attracted by the periodic cycle described at the beginning of this
section.

In addition we place in CL(0, r)
iv) a particle ξN+1 = (qN+1,vN+1) with qN+ί >5/ + L and qN+1+τvN+1 = q',

for some q'e(q$9L), where q% is the position of the h.p. corresponding to Q^
= (gg, i g) (Definition 3.1), τ is the time at which the h.p. would cross q' if it collided
with (qN, vN) exactly at L/2 with outgoing velocity — w, and vN+ x is such that in the
configuration x!" = x"vξN+1 the h.p. inverts its velocity and crosses at time τ* the
point q* with velocity v*;

v) the whole configuration T-τ*yf.
By construction, in the evolution of x = xwuj5f at time τ* a configuration close

to y\ appears, and (Trx)SL ε ^ . For the whole configuration x the situation can be
different because when the h.p. gets out of [0, L), as described in i), it may collide
with particles which at time 0 are outside the region # L u CL(0, r). But if τ* is chosen
large enough, which can be done by increasing N, the region {(q, v)\qe[L,L + 5f\9

q + vt<5£}nCL(r,oo) is contained in ΓL. So, if x e ζ , xnC L (0,r) = x2, xestfL,
there are no such particles and (Trx)S]L = (Trx)SL e ύU. Also τ* should be large so that
T®τ*yfnΓL = 0 (this is possible because all velocities in yf are nonzero) otherwise
our conditions are incompatible.

If we now consider some x2^^cL(o,r) close to x2, it will have a particle ξN+1

= (qN+ΐ, vN+ x) close to ξN+ v Position and velocity of the h.p. at time τ* will then
again be close to g* a n d are a function of σN+1 = (qN+1 — L/2, wN+ί — w) (here
qN+ί is the position of the h.p. at time τ N + 1 = (ΛΓ + 3/2)L/w and wN + 1 is its
incoming velocity) and of ξN+ v Denoting by Q position and velocity of the h.p. at
time τ*, and setting λN+1=(qN+1+τvN+ί-q', vN+1-ϋN + 1), we find

where A* and 5* are obtained by the matrices A and B of Eq. (3.1) by replacing τ
with t* = τ* — τN + ί.

We can now define the neighborhood % by prescribing that a configuration
x 2 G Ψ*2 is made of:

Γ) two particles (q,v) and (q^v^ such that

m a x ( | ι ; - ϋ \ , \ ( q - L ) / v - { q - L ) / ϋ \ , \ υ x - ϋ 1 1 , I f e - L ) / v 1 - ( q x - L ) / ϋ 1 \ ) < η l 9
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ii7) a sequence of particles ζk = (qk,vk)
 s u c h that K= (<lk + vkτu ~ L/2, vk

-vk)eKη2(0) for fc = 2,3, ...,JV, and τk(/c+ l/2)L/w;
iiiO a particle ξ N + 1 = (qN+l9υN+1) such that λjv+x e(B*)~ 1Kδ(0);
iv') a configuration 7 ^ * ^ for j ^ e Wδ(yf);

where K,(x0) = {̂  e R 2 : |x-x ?l<<3}, for <5>0, x 0 eIR 2 , Wδ(y0)
= {yeΊR.2j~2:\y — yo\<δ}, y0EΊR.2j~2. For any given choice ofε [in Eq. (3.5)] and
%{l\ δ should be so small that Kδ(Q+) x Wδ(yf)cWa). Clearly if η is small enough
we can choose ηl9 η2, JV, and δ such that (Trx)SL e % for x e ^ L . It is plain

We first investigate the distribution of position and velocity of the h.p. at time
τ*. We use the notation XI=XRL, X2 = xcL(o,ry Moreover m*t will denote the
probability distribution induced on σ* [Eq. (3.9)] by the restriction of μ( \WiRL(x))
to c€h and m* the normalized Lebesgue measure on Kδ(0) extended to R 2 by setting
m*(D) = m*(DnK/0)) for any measurable set DC IRA || || will denote the variation
distance between measures.

Proposition 3.1. There is a constant c 1 ? independent of x such that for all x e ^ L ,

| |m* 1 -m* | |<c 1 (5. (3.10)

Proof In addition to σN+l9 λN+1 we introduce the variables σh λk, fc = 2,3,..., JV
corresponding to the collision times τfe = £ + (/c+χ)L/w. They are related by Eq.
(3.1) for τ = L/vv, and, because of the contracting property of A we have || σN+ x \\ < δ2

for Y\,y\uY\2 small enough. Note that, since for xe$'L μ{ \WiRL(x)) coincides with μ°
when restricted to 9JlCjL, the λks are independent of the σks and, in particular, λN+1

has a distribution which is concentrated on (B:¥)~'1Kδ(0) by condition iii') above,
and is a.c. with a smooth, positive density. For σN+1=0 we have, by Eq. (3.9)
σ* = B*λN+u and the distribution of σ*9 m*, is concentrated on Kδ(0). m* is a.c.
with density (Mδ)~1g(σ), where g is a function independent of δ and such that: a)
<7GC°°,b) inf g(σ) = 0 o >O,andc) limπδ2g(0)/Mδ= 1. Since | |σ N + 1 | | <δ2, m^

σeKδ(0) <5->0

has support in Kδ + δ2(0). IϊvN+ x( |x x) denotes the distribution oϊσN+ί induced by
the restriction of μ( |9JΪ^(x)) to ^L and DcKδ+δ2(0) is a measurable set, we have
by Eq. (3.9),

K ( D ) - m * ( D ) \ = \$vN+ άdσM (rh*(D- A*σ) -m*(D))\,

and

K ( D - A*σ) -m*{D)\ < (Mδ)"1 f \g(λ + A*σ) -g(λ)\dλ < C'δ.
D

A similar estimate shows that

\\m*-m*\\<C"δ.

C and C" are constants independent of δ. Proposition 3.1 is proved.
Consider now the probability distribution / ^ of the whole configuration yί

= Qu(Tτ*x)CL{Oi î D induced by the restriction of μ( 19Ji^(x)) to ^ L . ^ is a product

4V = m * x ^ , (3.11)
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with support in Wδ = Kδ + δ2(Q%) x Wδ(yf) CIR2-7, where m*x is obtained by shifting
m*x to Kδ+δ2(Q%), and m is the measure on Wδ induced by μ°. We denote by / ( 1 ) the
normalized Lebesgue measure on Wδ = Kδ{Q^) x Wδ(yf), extended to R2-7 as above.

Proposition 3.2. There is a constant c>0 independent of x such that for x e<$L,

Proof Let m denote the normalized Lebesgue measure on Wδ. Since m, like m* of
Proposition 3.1, is obtained by normalizing a measure with smooth positive
density on Wδf one easily derives that \\m — m\\ <c'δ, and the result follows from
Proposition 3.1.

Finally we have

Proposition 3.3. lim S{ί)(Wδn Y^) = 1.

Proof Since Wδ is a neighborhood of fixed geometrical shape of y^, which is a
density point of Y^\ we have

We are now able to prove that for "most" xec€h τ* is a cluster time, i.e. the
particles that collide before τ* and after it are two disjoint sets.

Proposition 3.4. Let ^ denote the subset of ̂ L for which τ* is a c.t. Then for any
ε > 0 one can find Lo such that for L>L0, and for a suitable choice of the parameters
ηί9 η2, δ and N (in conditions i^-iv') above) we have

Proof. If x G c^LQs^LnSL there are (by Proposition 2.1) no negative particles of the
past with q>L. Moreover those that collide between times 0 and r do not recollide
by construction until time r. So, by Remark 2.1, τ* is a c.t. if Trx e $£ n a/jj". The
condition Trx e siΊ is satisfied for all xe^L because: i) xnΓ^ =0 by definition of
$'L [Eq. (3.8)], ii) no positive particle in [0, L) can be in Γ^ after time t because they
all collide with the h.p. and get a high velocity, and iii) all the other particles that
collide before time r either go away with a velocity larger than that allowed by Γ£
or are still in [0, L) at time r (those specified by condition iv')). The condition
Trx G <fL

+ is satisfied for x e %L if y - y(x) = (Trx)SL = T]s,ιy1 e YL and z = (Trx)CL e Zy

[see Eqs. (3.4), (3.5)]. So if we set

r^{xe^L:yi(x)eY^\zeZy} (3.13)

(here and in the following y = T^yJ we have Ψ^ C Ψ^ Consider the σ-algebra 93?̂ ^
with R^RjΛjΓ^CjJ^.r). Clearly ^Le^)lR'L and, since no negative particle
outside CL(0, r) can collide before time r for x e # L J yx is 9ϊt^-measurable and
z G Zy is equivalent to xeZy = {x: xCUrt ^ e T°rZy}. So for x e <gL, we get
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Setting R'[ = RLKJΓLCR'L we have WRLC9JίRί and, taking expectations, we find

xrί>(y1)μo(z;\^L)\mRL(x))

J / « V ( ^ I K ( 2 ; K L ) , (3.14)
y d )

where XI=XRL and ^ is the probability distribution of yx induced by the
restriction of μ( |9JϊκiW) t 0 ^ L (which coincides for xe$LnstfL with the one
induced by the restriction of μ( |90lΛi(x)) t o ^ L ) By Proposition 2.1 and the
Definitions (3.5), (3.4) of YL and Z y , we see that for L large enough μ°{Z'y\stfj) is
close to 1 for all y e YL, so that by Propositions 3.2 and 3.3, if δ is small enough, we
get for x e $'L

-ε). (3.15)

The proof is accomplished by taking expectations.

4. Proof of the Main Theorem

Throughout this section L, η, ηu η2, δ and N are supposed to satisfy all the
requirements for which the previous results hold.

The proof is based on the fact that for almost all trajectories there is an
infinite number of cluster times of the type described in the previous section.

Proposition 4.1. For any ε > 0 there is an Lo such that for L>L0 the measure of the
subset of ΘC for which the limit

1 κ

j=-κ

(see Eq. (3.13)J exists and is positive is larger than 1 — ε.

Proof Consider the σ-algebra ζL = 971^ v Co, where as above R'[ = K L uΓ L , and by
W\zW we denote the smallest σ-algebra containing both W and W. By
Proposition 2.1 the atoms of ζL which are contained in $Lnstf^ coincide with
corresponding atoms of StJΪ^, so that Eq. (3.14) gives for μ-a.a. xe

{x)) ^ μ(%L I ίάx)) (1 - ε) > 0 . (4.2)

Since ζ0 C ζL we find

μ({x: tin I Co(*)) > 0}) ̂  Itfί

Consider now the discrete transformation T^ = Tr, and let ζf be the σ-algebra of the
ergodic components of 7^. Since the space is Lebesgue, ζf is associated to a
measurable partition and clearly ζ |<ζ 0 (mod0). Therefore

0}) ^
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and, since the right-hand side tends to 1 as L-»oo, the result is proved. Note that
since # £ C # L , MĈ L I £*(*)) >0 implies an infinite number of c.t.'s for x.

Definition 4.1. For ί>0 we set

Remark 4.1. i) Any function of (Ttx)R>^t)9 ίe[0, τ] is ζL Γmeasurable, since all
particles in R'L(i) either are in R'&τ) at time 0, or collide for some t' ε (0, t], or both,
ii) If x ε $Lc\stfL, since qo(T_tx) <|/JL log+ ί = inf{g: (g, ι;) ε C£(f)} (see Proposition
2.1) for all ί^O, we have T_ τ ^ L -T_ τ (^nj/ L )n{x: Γτ°xCI(ί)G^L}.

Definition 4.2. We set for brevity

# l f c > = {x: Γ τ°xC I ( τ ) e #"L} , ft*> - fLfΛr, (4.3a)

and k

*y = 0 (Φ^Ύ (p(k) _ η-< c/p r\<& ((& = ΰf\ (A 'λhΛ
j = 0

where ( )c denotes the complement. By Remark 4.1, ii) the sets ^ψ are disjoint.

Proposition 4.2. For any ε>0, if Lis large enough, we have

μ(\J
\t = o

00

ΛΌO/. We set fk= f] (T.^J fc^O, / _ ! = # , ^ = Γ _ Λ π A - , By Propo-
J > = : 0 / oo \ / oo \

sition 4.1, if Lis large enough μl (J (%ΐ))=μ\ U ̂ _ f e^L > 1 -ε/2. Since /k

c_x

fc!
— \J ί-jrWL^-^k-U W e n a v e ^L -^^L a n α ™ L \™ L

£-i It is easy to see that Q ( / k n ^ ) C U ^fc where Ak = (£tk))c

k=0 k=0

^ . Setting Λ£ = {x: ίo(x)<L} we have /z( 0 ^ J ^ M Λ 0 + Σ
and ^ = 0 / * = 0

(4-4)

where we have used the Schwartz inequality, and the fact that JίL, S^ e ζψ* and
that for x ε Λ , μ(^lk>\ζΐKx)) = μ0(^\T°k^L) = μ°(^L\^L). Since

M ^ 1 A W i , we get, for L large
°{^L){\ -μo(#-L))(/[-1)/2, and hence

μ
k=o

o o \ ^->

4) (4.5)
00

since α Σ (l-a)k/2<2 for all αε (0,1). Since μ{Jίζ) > 0 the result follows.
v — n L -^ oo
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Proposition 4.3. Let Beζ\ τ>(fc+l)r. Then there are numbers bk such that

Co W) = bkμ(^ \ ζo(x)) (1 + ήΐ(x)) (4.6)

and for any ε>0ιf Lis large enough we can assume \ήι(x)\<ε, for all k<(τ/r) — 1.

Proof By Remark 4.1, observing that an atom of C^} contained in T_kγ{β'Lcλsέr

L)
evolves into an atom of ζL = Cl0) (see Proposition 4.1) contained in β'Lc\s$L, we have

^rB \ ζL(Tkrx))

_ krB \ ζL(Tkrx)) (\-η2) (4.7)

with ^ 2e(0,ε/2) [we have used Definition 4.2 and Ineq. (4.2)]. Since, for χ e ^
yι(x) G Y^1} and τ* is a c.t., the history of the h.p. for ί > τ * depends only on yx and
z'(χ) = xCL{ri oo) e T°rZy. Therefore, reasoning as in Proposition 3.4 [Eq. (3.14)], and
observing again that an atom of ζL contained in $hr\stfL coincides with a
corresponding atom of SJl^, we find, setting xx =(Tkrx)RL,

T_ krB I ζL(Tkrx)) = μ(^L \ U^x))^ ^ Λ ^ i V W I ̂  L) (4.8)

with

where

B(k) = {()>i(x), z\x)) :xeV"LnT_krB) .

By Proposition 3.2 we find, putting together Eqs. (4.7) and (4.8), and setting bk

I CL(Tkrx))bk(l + ή\)

with |ίJί |<ε if L is large enough and δ small enough. Equation (4.6) follows by
taking conditional expectations.

To accomplish the proof of Eq. (4.1) we need the following result.

Proposition 4.4. For any ε > 0, if L is large enough

μ (\x: Σ \μ($V I Co W) - μ^ΐ]) I > ε}) < e, (4.9)
Q

Proof. With the notation of Proposition 4.2, and by Definition 4.2, we have
nAk = φ and (if)uAk = ̂ )r\(Sk_ι= 2tfk, which implies

Moreover for X G / L μ(jek\ζL(x)) = μ(J^k\cΛ
r

L) = μ°(jek% so that for x e / L

μ(^k\ζL{x)) — μ(^fk) = μ(J^k\J^L)μ(J^[). Taking expectations, since CoCCL? w e s e e
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that

+(μ{^D)2μ(^k I ^ L ) -μ(Ak\ c0)+μ{Ak).

Summing up, and taking into account the fact that the Aks and the Jffc's are
disjoint, we find

0 0 / co

Σ iμi^P I Co) ~~ μ&V) I = μi^l I Co)+μ(^D+μ[ U ^ &
/c=0 \fc = O

-μ(\J Ak\ζ0),

and the result follows, as in Proposition 4.2, from Ineq. (4.5) and the fact that

lim
L-*oo

Proof of Theorem 2.1. Let η > 0 be a small number. By Propositions 4.1 and 4.4 we
/ 00 \

can choose the parameters in such a way that μ [j Ή^ >l—η, and the measure
\k = 0 J

of the set Jίu for which Σ I μ ^ l C o W ) - ^ ^ ) ! <V and μ( U ^ I C o W ) > 1

— η, is larger than 1 — η. Moreover we can assume that \ήι\<η (Proposition 4.3).
For x G Jίγ we have

00

\μ(B\ζo(x))-μ(B)\ ^ Σ \μ(Bn<i<£>\ζo(x))-μ(B
k = 0

Moreover, by Proposition 4.3, since bke [0,1], for x e J l 5

^ Σ
k = 0

Hence

C0(x)) -μ(B)\ <5η+ J (μ(tf?>|ζQ(χ

Since lim Σ μ(^fc)) = 0, if τ is large enough \μ(B\ζo(x)) — μ(B)\<6η on a set J(2,
ko-+oo k = ko

μ(Jί2) > 1 — 2τ/ Taking 77 = ε/2, if 3ε < α, we get

lim sup sup μ({x: \μ(B \ ζo(x)) - μ(B)\ > a}) < μ(Jίc

2) < ε.
τ^oo Beζτ

Since ε is arbitrarily small, Eq. (2.5), and hence Theorem 2.1, are proved.
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