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Abstract. We consider a one-dimensional system of particles on the half line
R, =[0, 0c0) interacting through elastic collisions among themselves and with
a “wall” at the origin. On the first particle a constant force E is acting, no
external forces act on the other particles. All particles are identical except the
first one which has a larger mass. We prove that if E is such that the Gibbs
equilibrium state exists, the corresponding equilibrium dynamical system is a
Bernoulli flow.

1. Introduction

Consider the semi-infinite mechanical system consisting of a gas of infinitely many
particles on the half line R , =[0, + 00), interacting through elastic collisions with
each other and with a “wall” at the origin. The mass of the first particle (i.e. the one
closest to the origin) M is assumed to be larger than the common mass m of the
other particles. A constant force E > 0 is acting only on the first particle (or “heavy
particle,” henceforth h.p.). The Gibbs equilibrium measure for all values of the
temperature and the particle density such that E <P, where P is the thermody-
namic pressure that the gas exerts on the wall, is stationary in time. In [2], using
techniques introduced in [1], it was proved that the corresponding dynamical
system is a Bernoulli flow for E < P/2.

In this paper we extend the result to all values of E < P, by giving a simpler and
more general proof. The main point is that instead of proving loss of memory by
explicit probabilistic estimates, as in [1] and in [2], we make use of the following
general features of the system: i) the fact that the invariant measure is locally
absolutely continuous and the interacting subsystem (i.e. the h.p.) is confined, and
ii) the local smoothness of the dynamics, i.e. the phase point of a finite particle
system at time ¢ is “almost always” a smooth function of the initial data. Our
methods of proof in their present form could be applied to a large class of systems
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of classical statistical mechanics consisting of a confined interacting subsystemin a
free gas bath.

We give now a brief description of the main ideas in the proof.

It is easy to see that a point in the infinite particle phase space Z can be
determined almost surely by knowing the history of the h.p. {go(t)};cg:- We prove a
condition of asymptotic independence between past and future for the process
{qo(t)}, which is stronger than o-mixing (or “strong mixing”), and implies that
our dynamical system is Bernoulli.

This particular type of “loss of memory” for the process is brought about by the
following circumstances, which have been given a mathematical expression
already in [1, 2].

Since the interacting subsystem (the h.p.) is confined near the origin, all the
incoming (i.e. negative velocity) particles which are far enough did not collide in
the past. Therefore the conditional distribution for them, for the condition that the
past history of the h.p. is fixed, is essentially given by the equilibrium one. This led
in [1] to the proof of the almost sure existence of infinitely many “cluster times”
(c.t’s), i.e. times for which the sets of the particles colliding with the h.p. at earlier
and later times are disjoint. C.t.’s are produced by particular configurations of
incoming particles, which last long enough to allow the particles that collided at
earlier times to escape so far that they cannot be reached by the h.p. The history of
the h.p. after a c.t. can be reproduced inside “most” of the atoms of partition of
phase space generated by the past history of the h.p., and this implies the K
property for the dynamical system [1].

In the paper [2] the Bernoulli property could be proved by relying on a “local”
mechanism of loss of memory provided by the dynamics. Namely, if we consider
the trajectory of the h.p. q,(t) for some initial particle configuration x, and the
corresponding trajectory §,(t) for the configuration x obtained from x by moving
the initial position and velocity of the h.p. of a small amount, then the difference
qo(t) —Go(t) becomes smaller in a way that is roughly speaking exponential in the
number of collisions up to time ¢, until maybe a discontinuity occurs (because the
order of collisions changes), and the trajectories diverge. This important fact is
basic in the construction of an isomorphism with the free gas via the scattering
formalism (see [3]).

In the present paper we use this fact, together with the “almost deterministic
behavior” of the h.p. when it gets a very high speed, to show that the incoming
configuration which produces the c.t. can be chosen in such a way that, for “almost
all” initial situations in a finite region near the origin, it drives the h.p. towards an
attracting periodic cycle, independent of the initial situation. The property of the
process we need can be deduced directly from that (see Sect.4), thereby
simplifying the proof of [2].

It is an unsatisfactory point of both papers [1] and [2] that the final step in the
proof of the existence of c.t.’s, which amounts to proving that the h.p. does not
catch up with the particles of its past, had to be made by using an explicit
probability estimate, for the particular distribution which we get after the c.t. This
estimate is based on a momentum balance, which involves the h.p. and the
incoming particles (the distribution of which is known to be close to the
equilibrium one), and neglects the outgoing particles, since we ignore their
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distribution. But the average momentum of the incoming particles makes up only
a half of the total pressure P, so the argument works only for E < P/2.

In this paper we are able to introduce, by a general argument, configurations
which, after producing the c.t. situation, approximately restore a typical situation
near the origin. This, together with the properties of the measure and of the
dynamics described above, allow us to make use of the equilibrium estimate for the
confinement of the h.p., and to extend the result to all E<P.

The case of a nonconstant force E, subject to some natural conditions, would
require only minor changes in the proof.

The plan of the paper is the following. In Sect. 2 we give some definitions, state
the main results, and give the main facts about confinement of the h.p. and quasi-
deterministic behavior. In Sect. 3 we give our modified construction of cluster
situations, and in Sect. 4 we prove and the B-property.

2. Definitions, Statement of the Results and Some Preliminary Facts

The one-particle phase space is R2 = {(q,v) e R?:¢=0}, where q and v denote
particle position and particle velocity, respectively. & is the space of the locally
finite particle configurations in IR?%, with the usual topology of pointwise
convergence. Z is a polish space and the g-algebra of the Borel subsets of Z will be
denoted by M.

If xe%Z and ACR? is a measurable set, we denote by x, the configuration
xnA, and by I, the g-algebra generated by x ,. , will denote the phase space of a
particle system in A, which we shall sometimes identify with & ,={xe % : XR2\4
=0}. u, will denote the measure induced by the measure p on %, We shall
sometimes identify sets of Mt , and the corresponding subsets of Z ;. Since the space
is Lebesgue, for any o-algebra 9 C 9 there is a measurable partition 7’ associated
to it such that the regular conditional probability u(-|9) is u-a.e. equal to a
measure on an atom of 7’. In what follows we shall denote the o-algebra and the
partition associated to it by the same symbol and we write u(-|9'(x)) for the
measure on the atom containing Xx.

A point x e Z can be identified with a sequence: x = {g,(x), v,(x)}%, in which
the particles are labeled in order of increasing position, and, for equal position, in
order of increasing velocity. The mass of the h.p. is M, and its coordinates are of
course (qo, Vo). m<M is the common mass of the other particles.

For a fixed value of the chemical potential A and of the inverse temperature f3,
consider the Gibbs measure u° for a gas of free particles with common mass m. u° is
a Poisson stochastic field on R?. The thermodynamic pressure P and the particle
density ¢ are given by

BP= \/— P, g=pP. @.1)

If we now fix E < P, the Gibbs measure for the mechanical system we consider
in this paper can be defined as the measure y on & such that: i) the position g, of
the h.p. is exponentially distributed with parameter ¢ — fE=f(P—E), i.e.

u(qo<x)=[ﬂ(P—E)]-1:f:exp<—ﬂ<P—E)y)dy; 22)
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and ii) the distribution of the other particles x\(qq,v,) for a fixed position g,
coincides with the corresponding distribution for u°; and iii) momenta are
distributed independently of positions with a maxwellian law with average 0 and
dispersion 1.

The time evolution can be described as follows: all particles of mass m move
with constant velocity, and the h.p. with constant acceleration E/M, until the h.p.
either collides with the wall at ¢=0, and inverts its velocity, or it collides with
another particle, according to the collision laws,

V=aV+(1—ou, oc—M_m (2.3a)
w=—out+(1+a)V, T M4+m’ (2.3b)

where V and u are the ingoing velocities of the h.p. and of the light particle, and V*
and u’ are their outgoing velocities, respectively. We are using the standard device
of treating the light particles as “pulses,” i.e. we let them exchange “names,” instead
of exchanging velocities, when they collide among themselves. At collision,
particles are supposed to be in the outgoing configuration.

The dynamics defines a measure preserving flow {T;},.r on an invariant set of
full measure. By {7,°},.x we denote the free flow, i.e. the flow for configurations of
particles of common mass m. The measure u° is clearly invariant under this flow.

The main result of this paper is the following.

Theorem 2.1. If E <P the dynamical system (¥, u, T;) is a Bernoulli flow.

Proof (Preliminaries). Consider the process defined by the trajectory of the h.p.
qo(T;x), which we sometimes by abuse of notation will denote by g,(%).

We denote by {({°) the o-algebra generated by g,(t) for t=<t (t=71). The
assertion of the theorem will follow from the proof that for any >0 for the set

A= {x ssup |u(BI){o(x)) — u(B)| > 8} , (2.4)
Be(®
we have
lim p(49)=0 (2.5)

(see [4]). Equality (2.5) will be proved in Sect. 4.

The following results about the long time behavior of the h.p. (confinement) are
an easy consequence of the properties of 4 and are proved in [1].
Lemma 2.1. There is a constant ¢>0 such that for p-a.a. xe &,

oo(Tex)

i) 11tr£1 irsg)p W c, (2.6a)
.. . 9o(Tix)
ii) hgl isgp loglt] <c. (2.6b)

For what follows we have to single out some regions of the one-particle phase
space.
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Definition 2.1. For any L>0, s>t >0, we introduce the following subsets of R?%,

S.={(g,v)eR% :qe[0,L)}, (2.7a)
Cy(t,s)={(qg,v)eR% :q=L,q+vr=L for some t€[t,s)}, (2.7b)
Ry (=RI\C,(t, 0), (2.7¢)
I={(gveR%:q2L,0zv2 —|/Lexp(—(¢/)/L+1).  (27d)

We will set henceforth for brevity C,=C,(0, 00) and R, =R;(0,00). Note that
C,(t, s) contains the particles which cross L between times ¢ and s for free motion,
and I; CC;.
Proposition 2.1. Consider the sets
Ay ={xeX :xp, =0}, (2.8a)
6 ={xe % :qo(Tixg,)<]/Llog,|t], t<0} . (2.8b)

Then:i) lim u(s/, &) =1andii) for xe 4 N6 Tx=Txp, OT’xc, for t<0and
L—oo

there are no negative (i.e. negative velocity) particles which collided with the h.p. in
the past at the right of L.

[Roughly speaking I is the region where such particles must be located if the
bound (2.8b) holds.]

Remark 2.1. If  we introduce the “time-reversed” sets R}
={(¢,v)eR% :(q, —v)eR.}, I;" ={(q.v)eR% : (g, —v)€I.}, we see that from
Proposition 2.1 it follows for the sets

A ={xeX 1 xp. =0}, (2.8a)
6 ={xe & qo(Txry) <|/Llog. 1,120}, (2.89)

we have 1) lim u(</; &, )=1 and ii) for x € /] N&;" no positive particle at the
L-ow

right of L will collide with the h.p. in the future.

As in [1], we make use of the fact that the motion of the h.p., when it gets a
speed much above average, becomes “almost deterministic.” For Llarge we divide
the interval [0, L) in x(L)=[L}/*] pieces of length /= L/x(L): I,=[(k—1)¢, k),
k=1,2,...,k(L). Consider the sets % ={xeZ :|cardx; .y:—of|<s} with
s=s({)=¢3", and the sets

k(L)
#= 1) 2P, 2.9)
k=1
B = {xef&”: max |v]<clog1/2L}, (2.10)
(g,v)ex[0, L)xR'
B, =B, B @.11)

For x € %, the particles are “uniformly distributed” in [0, L), and velocities are not
too high.

Lemma 2.2. There is a constant ¢>0 (see Eq. (2.10)) such that
lim w(4%,)=1.

L=
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Proof. The result is proved in [1, Lemma A.1] for the case E=0, and can be
extended to all values of E € [0, P] almost without change.

The following proposition makes precise the idea of “almost deterministic
behavior” for a high speed h.p.

Proposition 2.2. Let xe %, and consider the configuration X=xg, U(q,v) with
—v(l—a)e (e, et +1), a>a,=glog(l/a), and q+vty=L for some t,e(0,1/2).
Then, for L large enough, the evolution of X for positive times is such that:

i) after colliding with (q, v) the h.p. hits the wall at a time t, > t,, and for t >t,
never inverts its velocity;

ii) (g,v) and all the other particles which collide with the h.p. after time t, and in
[0, L), get a positive velocity larger than w,=e**, for 0<i<min(a,a—a,);

iii) after time t, the h.p. crosses the points k¢ +clog!/? L with a velocity smaller
than Vy,(k), and at a time larger than t,,(k), and crosses the points k¢ — clog*/* L with
a velocity larger than V,(k), and at times not exceeding ty,(k), for k=2,3, ..., k(L),
where the quantities,

Vi (k) = (1— ) [o] o420 ~(1 4-¢,), (2.11a)
Vo (k)= (1—a) [v|oked+ o)1 —¢p), (2.11b)
4
tm(k)=to+ Vilk—1)" (2.12a)
4
) =to+ 5 o (2.12b)

er=e VT and g=s/¢, do not depend on x € B,

Proof. The proofis done in [ 1] for the case E =0 (Proposition A.1). Its extension to
the case E >0 is straightforward, since the correction to the motion of the h.p. due
to the force E becomes negligible for large L.

We need for what follows an easy extension of the results above.

Remark 2.2. Consider the sets ;% ={xe% :|cardx,, «[o,)—0¢/2|<5/2},
k=x(L)+1,...,2x(L), and
2x(L)
Bf= () B®. 2.9)
k=wr(L)+1
As for Lemma 2.2, it is not hard to prove, following the lines of Lemma A.1 of [1]
that lim w(%;)=1. Moreover if xe %] and (q,v) is as in Proposition 2.2 with

L—-

a>3a,/2, assertion iii) of Proposition 2.2 can be extended to all k up to 2x(L), by
taking for k=x(L)+h, h=1,

—_—

h
(L+§ o(1—o0)

V(b)) =(1—a) [v|a (1+¢,), (2.11a)

(L'*’%)Q(l + o)

V, (k) =(1—a) o] (1—¢;). @.11b)

From Remark 2.2 we obtain the following result.
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Corollary 2.1. If xe B,n%; and (q,v) is as in Remark 2.2, then in the history of the
h.p. in the configuration X =xg, (g, v), there is a time te(ty, 1), depending only on
(g,v), such that i) qo(TiX) € (L +£, L+ 5¢), ii) vo(T;%) € (V,,, Vay) with V,,=V,(x(L)
+5), Var="Vp(x(L)+1), and iii) all the particles which at time O were in [0, L)
collide by time t with the h.p. and get a positive velocity larger than e*" for some
Ao>0.

Proof. As for Corollary A.1 of [1] the proof reduces to checking that t,,(x(L)+4)
> t,,(k(L)+2), which is a consequence of the fact that ¢(L/£)|0 as L—o0.

3. Construction of Cluster Situations and Loss of Memory

We first illustrate the local mechanism of loss of memory for the process {g,(t)} ina
particular case, which we use in our construction.

Suppose that E=0, and that the h.p. is at L/2, L>0, with a velocity w> 0, and
collides there with a particle of velocity —V = — %Zw, followed by an infinite
sequence of particles & =(L/2+ktV, — V), k=1,2, ..., with 1= L/w. Then the h.p.
undergoes a back and forth motion colliding at time t, =kt with , at L/2, and
moving with constant speed w. We now change the initial position and velocity of
the h.p. a little bit, and consider incoming particles &, close to &,. We describe the
motion in terms of the quantities b,=g,— L/2 and ¢, =w,—w, where §, is the
position which the h.p. has at time ¢, if we neglect the k™ collision, and w, is the
ingoing velocity of the h.p. We set g, =(by, ¢,), & =&+ (sp—ktuy, u) and 4,
=(sy, ). We have

Ok s 1=(b+ 15 €+ 1) = @(04, X4) = A + By (3.1a)
with
(o —oz (=0 —(1-w)r
A_<0 —oz)’ B—< 0 —(l—oc)>' (3.1b)

A has a double eigenvalue —ae(—1,0). This implies that if we have an initial
0,40 small enough, the motion of the h.p. induced by the particles &, (i.e. for
4, =0) loses memory of the initial perturbation and goes exponentially fast to the
periodic cycle described above. It is not hard to see that such “focalization
property” of the sequence &, holds also for E > 0, by suitably redefining the limiting
cycle and the map ¢ (see [2]).

In constructing cluster situations we have to take care of recollisions after
focalization. We now identify some local configurations, in the interval [0, L]),
which are not likely to give recollisions.

By  Definition 21 we have R3Z=S,0C,uC{, with C;
={(q,v)eR? : (g, —v)e C,} Correspondingly we decompose xe % as x=yuz
vz, withy=xg,,z2 =xCL, z* =Xc;- Let v, be the distribution of y induced by p. It

is a measure on %, = U 4§, where Z§ is the j-particle space, which can be

interpreted as a subset of (S ). We can then identify the restrlctlon Vilgu = =v{) with
a measure on IR? which is equivalent to the Lebesgue measure m?/ on its support.
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Consider the set
éF =6 ndy, (3.2)

[see Egs. (2.8a), (2.8b)]. & € My, and we can 1dent1fy it with a subset of Z,. By
Proposmon 2.1 and Remark 2.1, txe é; and xn I} =0 there are no recollisions
in the future with positive partlcles which are outside [0, L).

WL 1M, () =, (z: yoze &), (3.3)
So, setting
={ze%, youzed}, yeZs,, (3.4)
and
Y,={yeZs, : 12,(Z)>1 ¢}, (3.5)
we find by the Chebyshev inequality that for L large enough
vi(Y) =p({x e X : (& |Ms, (x))>1—e})>1—e. (3.6)

If y € Zs,, then in its evolution for ¢ <0, there will be, for v;-a.a. y, a time 54(y)
such that for t<s,, T,y contains only negative velocity particles. Therefore for
some time s < s, we will have that i) all particles except the h.p. are at the right of L,
and ii) qo(T,y) > L/2. A time for which conditions i) and ii) hold will be called an
“exit time” for y.

We take aj> 0 such that v’(Y,nZ¥) >0 and a point y* € ¥, such that thereis a
neighborhood of y*, %, and a time s*, so that v{’(Y,n%) >0, s* is an exit time for
all ye %, and the map T, as a map R%-R% is C* on 4 with nonzero jacobian.
Then clearly the image T,.% =" is an open set, and T_g is a C* map which
inverts T, on %V,

If y, eV we can represent it as y, =(Q, y,), where Q =y, NS, =(qo, Vo) gives
position and velocity of the h.p. and y, = y;nCp =y,\Q. Let v{ denote the measure
induced by v{? on %V via T, and Y{" = T. Y, n%*). Then clearly v{)(Y{") > 0, and,
smce by the properties of v and of T, v{ is equivalent to the Lebesgue measure

7on W, YV has at least a density point yf=(Q,, J¥).

Definition 3.1. In what follows for each L and ¢ the integer j >0, the negative time
s*, the neighborhood #") and the density point y}=(Q,, §¥) of the set Y» will
denote fixed entities constructed as above.

We will now show that there is a set €, u(%,) >0 such that for some time >0
(T.x)s, is in the neighborhood %. % is written as an intersection

CL=6NF Ny, (3.7)
where o/ is given by Eq. (2.8a), &7 € My, is given by
EL=6NBNBf AL (3.8)

[see Egs. (2.8b), (2.10), (2.9), (2.8a)] and F, € M, o, for r=s*+1* (t* is given
below) is defined by the condition that x., ,,) belongs to a neighborhood 75, to be
specified later, of the configuration X,, which is made of the following particles:
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i) a particle (¢, 7) as in Remark 2.2. By that remark in the configuration X’
=Xg,V(q,v) the h.p. will be at some time t depending only on (g, %), in the interval
(L+¢, L+ 5¢), with a velocity less than V);

ii) a particle (G,9;), §;>5/+L, such that §,+o,i=L+3/, and
v, = —(1—o)w, with ol /w<n/3, where y is as small as will be required later;

iii) a sequence of particles & =(Gy, ), k=2,3,...,N, such that §,=—V

= —((1 +)/(1 —a))w, and G+ (t+ L/2w+kL/w)d,=L/2, §> 5/ + L.
N
Clearly in the evolution of X" =x'U(g,,5,)u| U & | the h.p. collides with
k=1

(G,,7,) at some point § € (L+¢, L+ 5/) at some time 7: |t — ] <2(1 —a) (¢/V), and
gets a negative velocity — V(1 —¢,), &, €(0, #/3). If /L= O(L" '/5) is small enough,
the h.p. bounces off the wall and crosses L/2 at some time 7+ (3L/2V)(1 +¢&,) with
le,] <n. (This estimate holds for all E<P since the force E gives a negligible
contribution to the trajectory for wlarge.) # should be small enough for the motion
of the h.p. to be attracted by the periodic cycle described at the beginning of this
section.

In addition we place in C,(0,r)

iv) a particle {1 =(qy+1,Oy+1) With gy >5/+L and Gy, +Toy+1 =4,
for some q’e(q§, L), where g§ is the position of the h.p. corresponding to Q,
=(g&, v¥) (Definition 3.1), T is the time at which the h.p. would cross ¢’ if it collided
with (Gy, Ty) exactly at L/2 with outgoing velocity —w, and ¥y, ; is such that in the
configuration £” =%"U&y, , the h.p. inverts its velocity and crosses at time t* the
point g§ with velocity vg;

v) the whole configuration T°_.p*.

By construction, in the evolution of X = X" Uyt at time t* a configuration close
to y} appears, and (T;X)s, € %. For the whole configuration x the situation can be
different because when the h.p. gets out of [0, L), as described in i), it may collide
with particles which at time 0 are outside the region R; U C(0, 7). But if t* is chosen
large enough, which can be done by increasing N, the region {(q,v): g€ [L, L+ 5¢],
q+vi<5/}nCy(r,00) is contained in I'. So, if xe&;, xnC(0,r)=%,, x€.o,,
there are no such particles and (T,x)s, =(T,X)s, € %. Also t* should be large so that
T .y# NI, =0 (this is possible because all velocities in J* are nonzero) otherwise
our conditions are incompatible.

If we now consider some x, € Z¢, (. close to X,, it will have a particle &y,
=(qn+1> Uy 1) close to &y, ;. Position and velocity of the h.p. at time t* will then
again be close to Q,, and are a function of oy, =(4y+;—L/2, Wy, —w) (here
dn+1 1s the position of the h.p. at time 7y, =(N+3/2)L/w and wy,, is its
incoming velocity) and of &y, ;. Denoting by Q position and velocity of the h.p. at
time t*, and setting Ay, =(gy+1+T0ns+1—9 Oy+1—0Un+1), We find

0*=Q0—Q,=A%0N+1+B* Ay, 1, (3.9)

where A* and B* are obtained by the matrices 4 and B of Eq. (3.1) by replacing t
with t*=1*—1y, .

We can now define the neighborhood ¥, by prescribing that a configuration

X, € ¥, is made of:
1) two particles (g,v) and (g4, v,) such that

max(|jv— o, [(q—L)/v—(§— L)/l v, — 01 ],[(q: — L)/vy — (G — L)/o, ) <11,
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ii) a sequence of particles &, =(q,v,) such that A, =(q,+v.t,—L/2,0,
—0,)€K,,(0) for k=2,3,...,N, and 7,(k+1/2)L/w;

iii') a partlcle fN+1—(CIN+1,UN+1) such that Ay, € (B*)"'K,0);

iv) a conﬁguratlon TC.p, for y, € Wy(3¥);

where  Ky(xo)={xeRZ?:|x—x,|<d}, for >0, x,€R2% Wy,
={yeR>™2:|y—y,| <6}, yoeR* "2 For any given choice of ¢ [in Eq (3.5)] and
UM, § should be so small that K;(Q,) x Wy(5%) c V. Clearly if 5 is small enough
we can choose 77, 17,, N, and 6 such that (T,x)s, € % for x € €. It is plain that u(%,)
>0.

We first investigate the distribution of position and velocity of the h.p. at time
¥, We use the notation x; =xXg,, X,=X¢, o, Moreover m¥ will denote the
probability distribution induced on ¢* [Eq. (3.9)] by the restriction of u(- |Mig, (x))
to %, and m* the normalized Lebesgue measure on K,(0) extended to R? by setting
m*(D) =m*(DNK40)) for any measurable set D CIR?. || - || will denote the variation
distance between measures.

Proposition 3.1. There is a constant c,, independent of x such that for all xe %,
[m¥, —m*||<c,d. (3.10)

Proof. In addition to gy, 1, Ay+; We introduce the variables oy, 4, k=2,3,...,N
corresponding to the collision times 1, =t+ (k+3)L/w. They are related by Eq.
(3.1)for t = L/w, and, because of the contracting property of A we have ||y, ;| <62
for n, 1y, 1, small enough. Note that, since for xe &7, u(- Mg, (x)) coincides with u°
when restricted to M, the 4,’s are independent of the ¢;’s and, in particular, Ay,
has a distribution which is concentrated on (B*) ™! K,(0) by condition iii’) above,
and is a.c. with a smooth, positive density. For oy, ;=0 we have, by Eq. (3.9)
o*=B*1y, 1, and the distribution of ¢*, ri*, is concentrated on K4(0). m* is a.c.
with density (M;)~'g(c), where g is a function independent of § and such that: a)

geC®,b) inf g(6)=g,>0, and c) hm 16%g(0)/M;=1. Since |oy 4| <62, m*
o’eKa(O)
has support in K, ;2(0). If vy, (-] x,) denotes the distribution of oy , ; induced by

the restriction of u(- Mg, (x)) to ¥, and D CK;. 52(0) is a measurable set, we have
by Eq. (3.9),

m3 (D) —m*(D)| =] vy + (dolx,) (*(D — A*a) —m*(D))|,
and
[m¥ (D—A%0)— *(D)|<(M(,)'1£Ig(A+A*o—)—g(i)|d/1<C’5.

A similar estimate shows that
| —m*|| < C"d.

C’ and C” are constants independent of 6. Proposition 3.1 is proved.
Consider now the probability distribution /() of the whole configuration y,
=QU(T:X)c, (0, |+ induced by the restriction of u(- | Mg, (x)) to €. 7)) is a product

(D =¥ x 1, (3.11)
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with support in W;= K,H,,Z(Q*) x Wy(p* )C]RZJ where ri} 1s obtained by shifting
m¥ to K. 52(Q,), and i is the measure on W; induced by u We denote by V) the
normalized Lebesgue measure on W;=K(0,,) X W;(5¥), extended to R? as above.

Proposition 3.2. There is a constant ¢>0 independent of x such that for xe €,
68 —¢M) <cd. (3.12)

Proof. Let m denote the normalized Lebesgue measure on W, Since m, like it* of
Proposition 3.1, is obtained by normalizing a measure with smooth positive
density on W;, one easily derives that |m—ri| <c’6, and the result follows from
Proposition 3.1.

Finally we have
Proposition 3.3. lim /V(W;n YY) =1.
0—0
Proof. Since W; is a neighborhood of fixed geometrical shape of y¥, which is a
density point of Y*), we have
Wy YY)
ij(Wa) -0

We are now able to prove that for “most” xe%,, t* is a cluster time, i.e. the
particles that collide before t* and after it are two disjoint sets.

(W YD) =

Proposition 3.4. Let €7 denote the subset of €, for which ©* is a c.t. Then for any
&> 0one can find L such that for L> L, and for a suitable choice of the parameters
N1, N2, 0 and N (in conditions i'}-iv’) above) we have

WEL) —mEr) <ew(®,)-

Proof. If x e 6, C o/ ,n&; there are (by Proposition 2.1) no negative particles of the
past with g > L. Moreover those that collide between times 0 and r do not recollide
by construction until time r. So, by Remark 2.1, t* is a c.t. if T,xe & N/, . The
condition T,x € o7} is satisfied for all x € €, because: i) xn I, =0 by definition of
&; [Eq. (3.8)],ii) no positive particle in [0, L) can be in I';" after time  because they
all collide with the h.p. and get a high velocity, and iii) all the other particles that
collide before time r either go away with a velocity larger than that allowed by I';"
or are still in [0, L) at time r (those specified by condition iv")). The condition
Txe &y issatisfied for x e €, if y=y(x) =(T,x)s, = Tjwy1 € Yo and z=(T,x)c, € Z,
[see Egs. (3.4), (3.5)]. So if we set

={xeb,:y,(x)e M, zeZ} (3.13)

(here and in the following y = Tjy,) we have €7 C ;. Consider the g-algebra My,
with Ry =R, Ul UCL(0,7). Clearly %, My, and, since no negative particle
outside C;(0,r) can collide before time r for xe %, y, is Mg, -measurable and
zeZ, is equivalent to x € Z,={X:X¢, . o € T2, Z,}. So for xe €, we get

WG Mg, () = xyp(y)u(Zg) A 1) -



510 C. Boldrighini
Setting Ry =R, uI', CR}, we have My, CMy, and, taking expectations, we find

WEL Me; (0))=E s, - sty (V1)U (Z5| o 1) | Mgy (%))
=YernaVE(z, - Xy )RO(Zy] o 1) Wgy (x))
= (E L |Mg; (x)) Y&) £8dy Du(Zy) ot 1), (3.14)

where x; =xg, and /() is the probability distribution of y, induced by the
restriction of u(-|Mg;(x)) to %, (which coincides for x € & Nn.o/; with the one
induced by the restriction of u(-|Mg, (x)) to &.). By Proposition 2.1 and the
Definitions (3.5), (3.4) of Y, and Z,, we see that for L large enough u°(Z;|.o/}) is
close to 1 for all y € Y, so that by Propositions 3.2 and 3.3, if § is small enough, we
get for xe & N,

WELI Mgy (%)) Z w(E | Mgy (x)) (1 —¢) - (3.15)

The proof is accomplished by taking expectations.

4. Proof of the Main Theorem

Throughout this section L, #, 1, #,, 06 and N are supposed to satisfy all the
requirements for which the previous results hold.

The proof is based on the fact that for almost all trajectories there is an
infinite number of cluster times of the type described in the previous section.

Proposition 4.1. For any ¢>0 there is an Ly such that for L> L, the measure of the
subset of & for which the limit

1 K
li AT, 4.1
Kl—r»r:o 2K+1 j=z—K tei(Tiw) @D

(see Eq. (3.13)) exists and is positive is larger than 1 —e.

Proof. Consider the o-algebra {; = Mg; v (o, where as above Ry =R, U, and by
P vIM” we denote the smallest g-algebra containing both M’ and IM”. By
Proposition 2.1 the atoms of {; which are contained in &,N.«Z; coincide with
corresponding atoms of My, so that Eq. (3.14) gives for p-a.a. xe & 0o/,

WELI () Z (B LI (x)) (1 —8)>0. (4.2)
Since {,C{, we find

u({x: (L] Lo(x) > 01 Z (&N ).

Consider now the discrete transformation T, = T;, and let {} be the g-algebra of the
ergodic components of T,. Since the space is Lebesgue, {} is associated to a
measurable partition and clearly (¥ <{,(mod0). Therefore

ulx: w(ELICF))> 0 2 w(brn e/ 1)
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and, since the right-hand side tends to 1 as L— 00, the result is proved. Note that
since €7 C%6y, w(€1|(F(x))>0 implies an infinite number of c.t.’s for x.

Definition 4.1. For t>0 we set
Ri(t)={(g,v)eR? :q+vte R, LI},
1O =RI\R](1),
Cro= Mgy v L

Remark 4.1. 1) Any function of (T;x)g; ), t€[0,7] is 4 L.-measurable, since all
particles in R} (¢) either are in R}(z) at time 0, or collide for some ¢" € (0, t], or both.

i) If xe &0 1, since qo(T- ,x) < ]/;log+ =inf{q:(q, v) € C[(1)} (see Proposition
2.1) for all 120, we have T_ %, =T_ (6,0 )N{X: T Xc; 0 € F L}

Definition 4.2. We set for brevity
éSL(k) =T (i), FP={x: Tzoxc}g(r) €FL}, {P= CL,kr ,  (43a)
and .
gk = ﬂ (g,fl(‘j))c ’ (g(k} T kr(nggk 1> (g— 1 =‘%‘) ] (43b)
j=0
where ()¢ denotes the complement. By Remark 4.1, ii) the sets €\ are disjoint.

Proposition 4.2. For any ¢>0, if L is large enough, we have

,u(U ‘é‘,ﬂ”) >1—¢.
k=0

Proof. We set ¢, = ﬂ (T, 6 k=20, =%, 4P =T ,,%.0 4 . By Propo-
sition 4.1, if Lis large enough ,u( U (6“") < U T1T.,% L) >1—¢/2. Since #f_,

k—1
U T ,%.C%;_,, we have %kbfggﬂ and (g"‘)\‘ﬁ"‘)—T L0 F 110G

D]k lmgk .- It is easy to see that U (Sn%5) C U A, where A, =(EW)nF®

NG, ;. Setting A7 ={x:qo(x) <L} we have u( U k) UM+ 3 pdenA)
and =0 k=0

MANND) =E (g, ()2, (6) (1= Ll ONUT L1 EE)

Su(F o)) (ﬂ((‘gal(dk))c)#(gk— (A (4.4)
where we have used the Schwartz inequality, and the fact that A}, & e & and
that for xe A/}, W (k)la (x)) = 'uo(g-; Tt )= p(F| ). Since W%y,
AN)EWMG, | N) =1 —p(F)) L, we get, for L large w(4,n.AN7)
< (¢/8) 1 (F,) (1 — HO(F,))* =P, and hence

W0 4) s srramue 5 a-ere
<UD + (/4 @3

since a Y. (1—a)¥?<2 for all ae(0, 1). Since u(A5) —~5> 0 the result follows.
k=0 ®
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Proposition 4.3. Let Be (", 1> (k+ 1)r. Then there are numbers b, such that
W(BOGP|Lo(x) = b G Lo(x)) (1477,(x)) (4.6)

and for any £>0 if L is large enough we can assume |ij(x)| <e, for all k<(zt/r)—1.

Proof. By Remark 4.1, observing that an atom of &% contained in T, (&N )

evolvesinto an atom of {; = {!” (see Proposition 4.1) contained in &7 n.</;, we have
WBAEP ) = 14, (OGN T, BIC (T x))

=Ygy ,COUELN T, BI{(T%)) (1 —1i) 4.7)

with #, € (0, ¢/2) [we have used Definition 4.2 and Ineq. (4.2)]. Since, for x e €}
y1(x) € ¥V and t* is a c.t., the history of the h. p. for t>1* depends only on y, and
2 (X)=Xc, . ) € T°,Z,. Therefore reasoning asin Proposmon 3.4 [Eq.(3.14)],and
observing again that an atom of {; contained in &,N.</, coincides with a
corresponding atom of My, , we find, setting x; =(T;,%)g,,

WA T, BIE(TX) =61 C(T0) [ Ay i Bl )  (48)

with ’
B ={x: (y1(x),z(x)) e BY},
where
B®={(y,(x),z(x)): xe€;nT_,B}.
By Proposition 3.2 we find, putting together Eqgs. (4.7) and (4.8), and setting b,
= 1 £y BY| /)
HBAEE () = ke, OB LI LT )bi(1+ 17
= WGP+

with |fj]| <e if L is large enough and ¢ small enough. Equation (4.6) follows by
taking conditional expectations.
To accomplish the proof of Eq. (4.1) we need the following result.

Proposition 4.4. For any ¢>0, if L is large enough

u<{x : 3 @10~ () >s}) <s, 49)

Proof. With the notation of Proposition 4.2, and by Definition 4.2, we have ¢
mAkz(b and (g(k)uA /(k)mgk | =#,, which implies
W(@P|C) — @) = WA ) — () — (A E) + 4y -

Moreover for xe ., w(H#,|C.(x)=u(H|N,)=pu’(#), so that for xe. N}
W | EL(%)) — u() = (A, | N )u(NF). Taking expectations, since {,C,, we see
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that
WEPL o) — (B = (AN NE| o) — WA NF)
+ (WA (AN N ) — (4] o) +u(4y) .

Summing up, and taking into account the fact that the 4,’s and the s#’s are
disjoint, we find

3 G Lo)— MO SUAEIC)+ N+ 1 (OO Ak>

_H( 6 Aleo) >
k=0

and the result follows, as in Proposition 4.2, from Ineq. (4.5) and the fact that
lim pu(A5)=0.

L— o

Proof of Theorem 2.1. Lety>0be asmall number. By Propositions 4.1 and 4.4 we

o0
can choose the parameters in such a way that ,u< U %ﬂ") > 1 —n,and the measure
k=0

of the set ./, for which i |w(EP|o(x) — w(@*)| <n and u< Loj fé‘L")[CO(x)> >1
k=0 k=0

—1, is larger than 1 —#. Moreover we can assume that [/j,| <# (Proposition 4.3).
For xe ./, we have

H(BILo(0) ~ (B £ 3 [u(BAGE| L)~ u(BAGE) +21.

Moreover, by Proposition 4.3, since b, € [0, 1], for x e .#,,

[F1-1
Y (UBAGPILo(x) —w(BNEP)

k=0
Gl A
< X blu(@I0() ~ u@E)+ 20 <3n.

Hence

WBICCN — B <Sn+ 5 (WP IL()+u(@P)).
e=[1]

Since lim Y w(®@¥)=0,if is large enough |u(B|{(x)) — u(B)| < 65 on a set .4,,
ko= k=ko

u(AM,) >1—-2n. Taking n=¢/2, if 3e<a, we get
lim sup sup u({x (B Lo(x)) — u(B)| > a}) < p(M3) <.

T2 B

Since ¢ is arbitrarily small, Eq. (2.5), and hence Theorem 2.1, are proved.
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