
Communications in
Commun Math Phys 101,153-172(1985) Mathematical

Physics
© Springer-Verlag 1985

Discrete Lattice Systems and the Equivalence of
Microcanonical, Canonical and Grand Canonical
Gibbs States

Paul Vanheuverzwijn*
Instituut voor Theoretische Fysica, Universiteit Leuven, B-3O3O Leuven, Belgium

Abstract. It is proven that a microcanonical Gibbs measure on a classical
discrete lattice system is a mixture of canonical Gibbs measures, provided the
potential is "approximately periodic," has finite range and possesses a commen-
surability property. No periodicity is imposed on the measure. When the
potential is not approximately periodic or does not have the commensurability
property, the inclusion does not hold.

As a by-product, a new proof is given of the fact that for a large class of
potentials, a canonical Gibbs measure is a mixture of grand canonical measures.
Thus the equivalence of ensembles is obtained in the sense of identical
correlation functions.

1. Introduction

There is a long standing tradition in statistical mechanics of modelling in terms of
classical discrete lattice systems: lattice gases and spin systems (including the Ising,
Ashkin-Teller, Potts and Zn models) are amongst the most intensively studied
objects in this research area [1]. A general and rigorous theory of their equilibrium
properties and phase transitions was recently undertaken by Pirogov and Sinai
[2,3] and continued in [4] for instance. The mathematical context is that of a
stochastic process taking values in some finite set, and indexed by the finite subsets
of an infinite lattice. The underlying measure is a grand canonical Gibbs measure
defined on the configuration space for the infinite system.

The present article is an attempt to justify this ansatz. Indeed, there are more
natural choices for the equilibrium measure: the canonical and microcanonical
Gibbs measures, for instance. We shall, however, prove the equivalence of the three
descriptions in the context of infinite systems. On a thermodynamical level, the
equivalence is well established in that Legendre transformations were shown to hold
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between the thermodynamical functions. But whether the three ensembles lead to
identical correlation functions, i.e. whether the measures are identical, is a much
more involved problem, not in the least by the occurrence of inhomogeneous
measures and interactions. It is the latter problem which is the main concern of this
paper.

The DLR equations [5,6] or suitable adaptations of these to the canonical [7] or
microcanonical [8-10] setting, rigorously define the equilibrium. (See definitions
2.2, 2.3, 2.4). Letting &(β,z) denote the set of grand canonical Gibbs measures (or
states) at an inverse temperature β and a chemical potential (vector) z, ̂ (β) the set of
canonical Gibbs states at an inverse temperature β and Jί the set of microcanonical
Gibbs states (all in connection with a fixed potential), the main problems to be solved
are the questions when Jί c [j ^(β) and when in turn ^(β) c (J <g(β, z), (the reverse

β z

inclusions holding in complete generality). In particular, the second inclusion has
been the object of numerous investigations, culminating in Georgii's work [7]. For a
wide class of potentials, including some non-uniformly bounded inhomogeneous
cases, it was shown that an extreme element of #(/?), is an extreme element of &{β, z)
for some z, thus solving the problem, since %>(β) and <$(β,z) are Choquet simplices.
When the potential is uniformly bounded, there is no further assumption involved
[7, Theorem 5.15] and in general, it is conjectured that the equivalence holds as soon
as with non-zero probability there is one particle of every type (in the lattice gas
language). An inhomogeneous, not uniformly bounded model, supporting this
conjecture was studied in [11].

Much less is known as to the validity of the inclusion Jί a (J <g(β) (or the
β

corresponding one for the extreme elements). Under the extra hypothesis of
translation invariance of the measures and an additional technical assumption (a
sufficient condition for its validity being that all local probabilities be strictly
positive). Thompson proved the statement for translation invariant, finite range
potentials with a certain commensurability property. [8, Theorem 3.1. and Lemma
3.7].

Denoting by e x ^ , ex^(β),... the set of extreme elements in Jί etc. our main
result (Theorems 3.3 and 3.4) shows that the inclusion exJί cz (Jex^(β) holds without

β

the assumption of translation invariance of the measures nor of the interaction, but it is
assumed that no local event has zero probability. This hypothesis is not restrictive if
we wish to obtain elements in %(β) with finite /?, or states in &(β, z) with finite β and
nonzero z. Our conditions on the potential are: "approximate periodicity" (Defi-
nition 2.1), finite range and a certain commensurability property. The first
hypothesis is weak enough so as to include disordered systems and roughly means
that every local energy value should occur infinitely often. (We allow for multiple
component spins, and many-body interactions.) We expect that microcanonical
Gibbs measures with vanishing local probabilities are either ground states or ceiling
states, thus belonging to ^(oo) or ^ ( — oo) respectively, or else have the property of
excluding certain particle types. In Remark 3.8, a few examples are given.

Analogous results have been obtained before, for continuous systems by
Aizenman, Goldstein and Lebowitz [9], and in a more abstract setting by Preston in
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[10]. The discreteness of the spectrum and the non-periodicity require different
techniques. It should be possible however, to transpose the basic idea, a straightfor-
ward application of the mίcrocanonical hypothesis and of cluster properties, to
continuous systems. In fact, this basic step is a development of an idea we used
before, in collaboration with W. Sullivan, ([11]) to prove the equivalence of the
canonical and grand canonical ensembles in a certain highly inhomogeneous Ising
model. For the benefit of the reader we have included, in Theorem 3.5., an adaptation
of this proof to the equivalence canonical-grandcanonical in model systems with
uniformly bounded potentials. This proof may serve as an introduction to the proof of
the equivalence canonical-microcanonical which is more involved and which we
describe here.

Let μ be an extreme microcanonical Gibbs state. The microcanonical DLR
equations (see Definition 2.4 below) prescribe equal probabilities to all local
configurations in a certain finite volume, having the same particle numbers and the
same conditional energy for a given boundary condition. Assume that two local
configurations ξ and ξf are given in some volume Λ, with equal particle numbers but
not necessarily equal energy. We may assume in addition that ξ and ξf are equal on
the "inner boundary δΛ." (δΛ denotes the set of sites in Λ, interacting with Λc.)
Assume that the potential is periodic; it is then possible to find a volume Δ, a large
distance away from Λ, and two configurations η and η' in Δ such that the joint
configurations (ξ, η) and (ξ\ η') in A u Δ have the same particle numbers, the same
energy value and are equal on δ(ΛuΔ). Therefore, by the microcanonical
hypothesis, (ξ, η) and (ξ\ η') have equal probabilities: μΛκjΔ(ξ,η) = μΛuΛ (ξ'> η')- Since
μ is extreme, it is clustering and we have μΛ(ξ) μΔ(η)—μΛvΔ (ζ>rl) =

μΛuΔ(ξ\η')^μΛ(ξ') μAn')- By construction, we have in addition that the particle
numbers of η and η' are equal and that the energy difference between ξ and ξ equals
that between η' and η. In the limit where the distance (Λ9 Δ) tends to infinity we
obtain, provided all local events have strictly positive probabilities, that

μΛ(ξ)/μΛ{ξt) = μJflΊ/μJri) (1-4)

and it is not hard to see that (1.4) implies the existence of a function/of exponential
type of the energy difference such that μΛ(ξ)/μA(ξ') =f(E(ξ) - E(ξ')). In view of the
relation between ξ and ξ', and in view of the commensurability condition, this
implies the canonical DLR equations: local configurations with the same particle
numbers have probabilities whose quotient equals the quotient of the exponentials
of their energy values, (allowing for negative temperatures).

When the potential does not have the commensurability property or when it is not
approximately periodic, it is not hard to find examples of microcanonical Gibbs
measures that are not canonical (Example 3.7 and Remark 3.9). On the other hand,
the condition that no local configuration has zero probability is necessary in order to
obtain canonical Gibbs measures at finite inverse temperatures. It is well known that
grand canonical (g.c.) and canonical Gibbs measures at finite temperatures, and
admitting all particle types, have strictly positive probabilities for all local events. (In
the g.c. case, this prevails when no z-component vanishes.)

To further clarify the condition that there be no local events having probability
zero (i.e. that the measure be everywhere dense), we shall study elsewhere the one
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dimensional chain with translation invariant interactions in more detail. In
complete analogy with the property that with non-zero probability there is a particle
of every type (in the canonical case this implies an infinity of particles of every type),
we show that a microcanonical Gibbs measure in one dimensional systems, is
everywhere dense, as soon as with non-zero probability there are infinitely many
basic configurations of every type. In a chain with nearest neighbour interactions at
most, a basic configuration is a configuration in a set consisting of two nearest
neighbour sites. Hence in a ( + 1, — 1) nearest neighbour chain, there are four basic
configurations: ( + 1, + 1), ( + 1, — 1), (— 1, + 1) and ( + 1, + 1), and these events
should occur infinitely often in order for the microcanonical measure to be
everywhere dense.

In general, if the potential is of range D, the chain is partitioned in intervals (cells)
of length (D — 1), and a basic configuration is a configuration in a set consisting of
two nearest neighbour cells.

In summary, we have obtained a clear understanding of when an extreme
microcanonical Gibbs measure μ is a canonical Gibbs measure for some finite
inverse temperature β. It is necessary and sufficient that μ be everywhere dense, a
property which for one-dimensional systems is equivalent to the occurrence of
infinitely many basic configurations of every type. We conjecture that not
everywhere dense microcanonical Gibbs states are precisely the ground or ceiling
states, or else, have the property of excluding certain particle types. Additional open
problems are listed in Sect 5.

The reader interested in the main results only is referred to Theorems 3.3 and 3.4,
Examples 3.7, 3.8 and 3.9 and the proofs in Sect. 4.

2. Microcanonical Gibbs States

Introduce a finite set F whose elements a, /?,... represent the different types of
particles (or spin values). The particles are supposed to live on a lattice L, which for
simplicity will be taken to be Zv; if multiple occupation of lattice sites is excluded, the
configuration space for the infinite system is Ω = FL. For Λ aL, let ΩΛ = FΛ.
Configurations in Ω are denoted by ξ, */,...; their projections onto ΩΛ ("local
configurations") by ξΛ,ηΛ, -and when A = {*;}, xeL, ξ{χ)j will be written ξx. If no
confusion can arise, the reference to A will be omitted. If A1 nA2 = φ and ξeΩΛι,
ηeΩΛl, then (ξ,η) or ξ, η or ξη denote the joint configuration in A1vA2.

The symbol Iω (or Iω) denotes the characteristic function for the event
{ξ:ξΛ = ωΛ};

Often it is convenient to reformulate the model as a stochastic process taking
values in F and parametrized by the set of sites in L. Random variables Sx(xeL) and
SΛ(Λ c L) are defined by Sx(ξ) = ξx, SΛ(ξ) = ξΛ.

For every point a in F, (particle) number variables Na

Λ are
defined by Na

Δ(ξ) = \{xeΛ\ξx = a}\. Let Na = Na

L. Here and in the following
the symbol |. | denotes the cardinality of the involved set. Finally the following
vector valued number variables will be used: NΛ(ξ) = (Na

Λ(ξ))aeF and N(ξ) = NL(ξ).
In this connection, we denote by IΔ

Λiη)(.) the characteristic function for the event
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By a potential Φ we mean a family {φΔ} of real valued functions on Ω, indexed by
the finite sets in L, such that φΔ(ξ) depends on ξΔ only. By definition φΔ(ξ) = φΔ(ξΔ).

Throughout the paper, the potential is assumed to have a finite range D and to be
"approximately periodic" as will be explained shortly. For some of the final results,
the following commensur'ability condition must be imposed:

V& Vι/, V4 1 S VΔ2:φΔi(ξ)/φΔ2(η)eQ

whenever φΔl(η) Φ 0.

With respect to a finite range potential Φ, it is useful to introduce for a finite set A

in L:

dΛ =

δλ =

Λ = ΛudΛ.

The internal energy EΛ(ξ) for ξeΩΛ, A finite is defined by:

EΛ(ξ)= Σ ΦM) (2-1)
ΔcΛ

and for a given boundary condition η in ΩΛC, the conditional energy of ξ in ί2Λ is
defined by

EΛ(ζ\η)= Σ ΦAM (2.2)
Δ ΔnΛ^φ

Equation (2.2) in turn defines the following function:
IE/ηAηCΛ\.) is the characteristic function for the event EΛ(.\ηΛc) = EΛ(ηΛ\ηΛc).
For ieL, let Tt be the translation defined by

^ VfeeL.

Occasionally, an arbitrary translation will be denoted by T.

Definition 2.1. A (finite range) potential Φ is said to be approximately periodic if for
all finite A there exists an adapted sequence {An}π with respect to Φ, i.e.:

There exist kneL such that

An=Tkn{A\

dist(/i,/ln)->oo as n->oo,

EΛ( \ ) = EΛn(Tkn(.)\Tkn(.)).

Loosely speaking, every local energy value should occur infinitely often in the
lattice. Clearly, translation invariant or periodic potentials (i.e. potentials that are
invariant under some subgroup of L) are approximately periodic, but it appears that
the notion comprises in addition the potentials that typically occur in disordered
systems. See Remark A.I in the appendix.

For α in some ΩΔ, let Na

Λ(ξ) denote

zA and ΓB(α) = ^ J | .
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When the potential is translation invariant, it is possible to find coupling constants
Jα, indexed by the configurations in some sd a ΩΔ (A centred around the origin),
such that

EΛ(ξ\η) = Σ JJίmξ, 1) - Nx

SΛ(ξ, η)l (2.3)
ctesf

It is assumed that the set sύ is chosen to be minimal. The commensurability
hypothesis then reduces to: JJJβ eQVα,/J in si with Jβ Φθ.

As an example, the nearest neighbour Ising chain (with F = {1, — 1})

EΛ(ξ\η)=~J Σ (SiSi+1)(ξ9η)

may be written as in (2.3) using the following objects: A = [0,1]; srf = {α = (1,1),
β = (- 1, - l ) , y = (1,-1), δ = (-l9l)}czΩΔ and Ja = Jβ=-J; Jy = Jδ=+J.

The following σ-algebras are essential for the definition of Gibbs states. (An
algebraic formulation is given in the appendix, Remark A.2.) #" is the algebra
generated by the product topology on Ω (with the discrete topology on F). J ^ i s the
algebra generated by {Sx9xeΛc}, SA is generated by &Λ and NΛ, and S)A is the
algebra generated by SΛ and EA{.\.). The tail field &'«, = c\!F Λ, the symmetric field
$ ^ = n $ Λ and the field Q)^ = n <2)A are defined by intersection over all finite sets in
L. If μ is a probability measure on (Ω,!F\ μΛ(.\^A) denotes the conditional
probability of an event in A with respect to μ and $F A. μA{.\$A) and μA{.\@A) have
analogous interpretations.

Definition 2.2 [5-7]. A (regular Borel) probability measure μ on (ί2, &) is a grand
canonical Gibbs measure (or state) for the potential Φ, at an inverse temperature β

and an activity z (a vector in UF

+ with £ z(a) > 0) if for all finite A in L, and all ξ in

= γ*Λ(ξ\.)μa.s. (2.4)

with

fΛ(ξIiί) = \ZΛM\ 'U [Φ):Γ Λ ( { ) exp [ - βEΛ(ξ\η)l (2.5)
aeF

where

ZAz(η) is a normalization factor.

Definition 2.3 [7]. A (regular Borel) probability measure μ on (β, J^) is a canonical
Gibbs measure for Φ, at an inverse temperature β iff for all finite Λ, and all ξ in β Λ :

^ Λ « I O = 7Λ.N>1(.)«I-) μa s. (2.6)

with

r W < ^ ) = / ^ ω ( 0 exp [ - βEΛ(ξ\η)HZANΛJηΓ * (2.7)

where ZΛ NΛ{η) (η) is a normalization factor.

Definition 2.4 [8-10]. A (regular Borel) probability measure μ on (Ω9&*) is a micro-
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canonical Gibbs measure for Φ iff for all finite A and all ξ in ΩΛ:

Λ a Λ n ) ξ \ . ) μa.s., (2.8)

with

(2.9)

The set Jί of all microcanonical Gibbs states is nonempty: ground states belong
to Ji. More generally: whenever a sequence of microcanonical Gibbs distributions
{vΛ(.\ηΛc)}Λ converges—and by compactness every sequence has a convergent
subsequence—its limit is a microcanonical Gibbs state.

In a standard way, one shows that the set of microcanonical Gibbs measures is a
Choquet simplex, and that a microcanonical Gibbs state is extreme in that set iff 9)^
is trivial. (It suffices to show that if μ(.) and μ(f.) are both microcanonical Gibbs
states, t h e n / e ^ and conversely.) (Compare [12, Theorem 2.1], [8, Lemma 3.7], or
see Remark A2 in the appendix.)

As a consequence it is sufficient to study extreme microcanonical Gibbs states.
Let us remark that the microcanonical hypothesis will enter only through a

simplified statement as described in Lemma 4.1.

3. The Main Results

In the present context, a measure μ is everywhere dense (that is, μ(θ) > 0 for every
nonempty open subset θ of Ω) iff for all finite A and all ξ in ΩΛ, μA(ξ) = μ(SΛ = ζ) > 0.

The main results—holding for everywhere dense measures—will be formulated
in this section. Most proofs will be given in Sect. 4, and the notion of everywhere
dense microcanonical Gibbs measure will be clarified in Sect. 5.

Definition 3.1. The spectrum Σ(Φ) (or Σ if no confusion can arise) of a finite range
potential Φ is defined to be the set of all differences of the form (σ - τ) with
σ = EΛ(ω), τ = EΛ(η\ with ω, η belonging to some finite ΩΛ, with NΛ(ω) = NΛ(η)
2LndωδΛ=ηδΛ.

Remark 3.2. If Φ is a linear combination of the number variables JVα, that is,

EΛ(ξ\η) = EΛ(ξ) = Σ JaN
a

Λ(ξ\ for some family of J α , then clearly, Σ(Φ) = {0}.
aeF

The converse statement, however is not necessarily true. The following is a
counterexample.

Let v = 1 and F = {a, b}, and in the notation of (2.3), let

EΛ{ξ\η)= Σ JXyίNn^rj)-Nx

dyΛ(ξ,η)l
x,yeF

with N%(ξ;η) denoting the number of couples of nearest neighbour sites in A of the
form xy, contained in (ξ,η). Thus D = 1, but it follows that Σ(Φ) = {0} iff Jaa +
JM = Jab + Jba The proof will be omitted.

However, if—again for general F—F contains a point 0 (to be interpreted as a
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vacancy) with the property that there is a normalization of the energy such that Wl,
Vω in ΩΛ, VkφΛ:

EΛ(ω) = EΛu{k}(ω,0),

then indeed Σ(Φ) = {0} iff Φ is linearly dependent on the particle number variables.
Again the proof will be omitted.

The main result now reads:

Theorem 3.3. Ifμ is an everywhere dense, extreme mίcrocanonίcal Gibbs measure for
an approximately periodic, finite range potential Φ with commensurable coupling
constants, then μ is an extreme canonical Gibbs measure for some finite (but not
necessarily positive) inverse temperature β. Moreover μ(Na = oo VαeF) > 0 and β is
unique iff Σ(Φ) Φ {0}.

Conversely, ifμ is a canonical Gibbs measure with μ(Na ^ 1 VαeF) > 0, then μ is an
everywhere dense mίcrocanonίcal Gibbs measure. (Approximate periodicity or com-
mensurability are not needed for this implication to hold.)

Theorem 3.4. If in addition to the hypotheses in the first part of Theorem 3.3, there
exists a finite A, and ξ, η in ΩΛ with

ii) NΛ(ξ) = NΛ(η%
iii) EΛ(ξ)<EΛ(ηl

and'w) μA(ξ)>μΛ(η\
then μ is a canonical Gibbs measure for some positive β.

The proof of Theorem 3.3 will be postponed to Sect. 4. Theorem 3.4 on the other
hand, is an easy consequence of Theorem 3.3.

The next result does not hinge on the approximate periodicity nor on the
commensurability of the potential, but holds for the class of uniformly bounded
potentials, that is Φ satisfies

sup Σ Halloo <<*>. (3.1)
xeL ABX

Although the equivalence canonical-grandcanonical was prove in much more
generality by Georgii [7, Theorem 5.15], we include a proof as it may help to clarify
the basic idea in the more difficult case of the equivalence microcanonical-
canonical. The proof is basically that of Theorem 3.2 in [11].

Theorem 3.5. // μ is an extreme canonical Gibbs measure for some finite inverse
temperature β and some uniformly bounded finite range potential Φ, then μ is an
extreme grand canonical Gibbs measure for β and some activity vector z, with
za(aeF) Φ 0 whenever with non-zero probability there is a particle of type a. Conversely
ifμ is a grand canonical Gibbs measure for (β, z) with zaφθ VαeF, then μ is canonical
and μ(Na=oo\/aeF)>0.

Lemma 3.6. // Φ is a uniformly bounded potential, and μ a canonical Gibbs measure
for some β, such that μ(Na ^ 1 \JaeF) > 0, then μ is everywhere dense. Conversely ifμ is
canonical and everywhere dense, then μ(Na = oo VαeF) > 0.

Proof If μ is canonical and μ(Na ^ 1 VαeF) > 0, then it follows from [7, Lemma
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5.33] that μ(Na = oo VαeF) > 0. For the direct part, suppose there is a A and a ξ in ΩΛ

with μΛ(ξ) = 0. Since μ(Λffl = oo VαeF) > 0, there is a 4 => A and an 7/ in ΩΔ with μ4(jy)
> 0 and Na

Δ(η) ̂  JV^f) VαeF. Select an ω in Ω 4 with NΔ(ω) = NΔ(η) and with ωΛ = ξ.
Then from (2.6), (2.7), it follows that μΔ(ω) > 0, and hence μΛ(ξ) > 0, which is a
contradiction. (Compare Lemma 4.3 in [11].)

Conversely, if μ is everywhere dense, then trivially μ(Na ^ 1 VαeF) > 0, and again
from [7, Lemma 5.33], it follows that μ(Na = oo VαeF) > 0.

Proof of Theorem 3.5. The converse part is the easier one. Let F = (a1,... ,α | iΓ |). If μ is
grand canonical Gibbs it is canonical as is seen from (2.4-2.7) or Remark Al in the
appendix. Let An denote a sequence of translates of some volume Ao with \A0\ = \F\9

and consider ξ° in ΩΛo with (£°) = (a x , . . . ,α | f,). Denote by ξn the translates of ξ° in
ί2Λ n and let dist (Λθ9Λn) -• oo. Since zfl / OVαeF and since the potential is uniformly
bounded, it follows from (2.4), (2.5) that

Hence μ(Na = ooVa<EF)>0.
For the direct part, we assume that μ is an extreme canonical Gibbs state for

(/?, Φ) with the property that

μ(Na ^ 1 for all a in F) > 0.

For N in Z F we denote by π(N) the set

{(0,φ'):3 finite A:φeΩΛ,φ'eΩΛ,φδΛ = φ'δΛ, and JVΛ(φ)-NΛ(0') = ΛΓ}.

Choose an arbitrary representative (ζ, ζ'joΐπ(N) in a volume Zi0 and let {Δo} be a
sequence of translates of Δo (Δn = Tn(^l0)) with the properties that dist(^ 0,zy-> oo
as n-> oo and dist(A,Δn) > 2D for all n.

Define configurations 77", 77"1 in Δn by:

and η'n = Tn(ζ).

Then we obtain for all (ξ, ξ') in

ϋ N Λ υ „„({, 77") = JVΛ(£) + ΛΓ4ii(»r) = NΛ(ξ) + NΔo(ζ')

= N + NΛ(ξ') + NΔo(ζ) -N = NΛu Δn(ξ', rΓ). (3.2)

Hence we obtain from the canonical prescription (2.6) and (2.7) and (3.2),

μΛuΛξ, n") = μΛ. AJL?> '7'") exp [ - βEΛuΔψ,(ξ, r\") + βEΛu Δn(ξ\ η'n)l (3.3)

But when dist (Λ,Δn)> 2D, we have

- βEΛu Δn(ξ, nn) + βEΛu Δn(ξ', n'n) = - βlEΛ(ξ) ~ EΛ(ξ'Ώ - βίEΔn(ηn) - EΔn (/?'")]

(!f",iΓ). (3-4)

As μ is an extreme canonical Gibbs state, μ is trivial on i x [7, Theorem 1.32] and
therefore on & m. Thus, from [6]

lim \μΛuΔΛ(ξ,rn~μΛ{ξ)μΛn(n")\ = 0 (3.5)
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and

Mm \μΛκjΔn(ξ\η'n) - ^ K ' K . f o ' " ) ! = 0. (3.6)
n-*oo

Combining (3.3)—(3.6) and the boundedness of the potential, we obtain

lim {μΛ(ξ)μΛJrn " ^ ( ^ K M ( ^ ) ^ ( ^ ί'to^fa", η™)) = 0. (3.7)
n~* oo

Hence, from Lemma 3.6 and again the boundedness of Φ:

We claim that it is possible to find a subsequence nk and η° such that

lim μΔn (ηnk) > 0.
n k->oo k

This claim follows from an argument, which for reasons of clarity, will be stated in
Lemma A.3 of the appendix. (It basically follows the above reasoning.)

From (3.8) we obtain for at least one subsequence Tn9 and for all couples (ξ9 ξ') in
π(JV):

The limit in (3.9) does not depend on the chosen subsequence, nor on the
particular choice of Tn9 η, ξ, ξ\ provided the configurations belong to π(N). It
therefore defines a function g on ZF, and it may be checked that g(N + M) =
g(N)g{M) and g{ — N) = g(N)~x. To avoid repetition, see the corresponding
argument for the transition microcanonical-canonical in Lemma 4.5. It follows that
there is a z = (z(a))aeF such that

Since \F\ ̂  2, z is uniquely determined. We have therefore obtained that for all Λ9 all

Π
aeF

- βEΛ(ξ) + βEΛ(ξ')l

It follows from a compatibility argument (see the corresponding result in the proof of
Theorem 3.3) that μ is a grand canonical Gibbs state for β and z. μ is an extreme
grand canonical Gibbs state as it is an extreme canonical Gibbs state. •

We conclude this section with a number of remarks and counterexamples.

Example 3.7 (Incommensurable potentials). Let v = 1, F = { — 1, + 1}, α, ^
with α = ( + 1, + 1), y = ( - 1, - 1), and JJJγφQ. ( J α , J y / 0 ) , all other coupling
constants being zero. Then (2.3) reads: EΛ(ξ\η) = JaM

a

Λ(ξ,η) 4- JγM
Y

Λ(ξ,η) (with
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Choose βaφβv and define conditional probability distributions μΛβ(.\.)9 with
β = (βa,βy),by:

μΛ,β(^) = (l/ZΛ(ι/))exp [ - βJaM
aΛ(ξ, η) - βyJyM\{ξ, η)l

The family μΛβ(. |.) is consistent. It follows that every limit point of μΛβ(. |.) has
the given μΛtβ( \.) as conditional probability measures with respect to J* Λ . The
existence of a limit point μβ is guaranteed by compactness arguments.

Clearly μβ is not a canonical Gibbs measure. (Calculate e.g. μΛ β{ξη,NΛ) =

On the other hand, μβ is a microcanonical Gibbs measure since the specification
of a value for EΛ(.\.) uniquely determines, by the incommensurability of Ja and J r

the numbers Na

Λ and Ny

Λ. (Compare [9].)
The example shows that the commensurability of the coupling constants is an

essential condition. Of course, it is possible to eliminate pathologies of the kind
described in the example by the requirement that the function of the energy
difference, which relates probabilities of local configurations with the same particle
number should be a continuous function of the energy difference, (cf. Lemma 4.4.)
However, it is hard to formulate an elegant a priori condition.

Remark 3.8. Not everywhere dense microcanonical Gibbs measures. Microcanon-
ical Gibbs measures that are not everywhere dense are abundant in the following
example. The potential is that of the ferromagnetic Ising chain in zero-external field:
F = {-1,1} and

EA(ξ\η)=-J Σ SxSx+1(ξ,η)

Introduce the following configurations and the point measures associated with them
(using the same notation):

and the families

Next define the

o +

δ__

{̂ -+}«eZ

transformation

(I°ξ)x = ξx(

:(δ + )n =

:(*-)„ =

: ( 5 - +

:(<S«_

I ° 9 l

- i )

- ) m =

+ L =

e o n

+ 1
_ 1

= +
= -

= -
= +

Ω:

ί + 1 andl

1

1

1

1

Vn,

Vn,

if m

if m

if m

if m

< n

^ n ,

< n

^ n .

( - 1

It may be checked that the measures δ +, δ _, δ\ _, (5"_ + , and their transforms under
Γ and Je, are all microcanonical Gibbs measures. For the original measures, the
argument goes as follows. The specification of boundary spins, of N\ , NX and the
value of EΛ, determines a unique configuration, whence conditions (2.7) and (2.8)
easily follow. δ +, <5_, δ\ _, <5"_ + constitute the set of ground states of the Ising model
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and correspond to the β = + 00 case in the canonical and grand canonical language.
The same argument works for the transformed measures. These are the ceiling

states (β = — 00) for the Ising model. It would be interesting to fully characterize the
set of not everywhere dense microcanonical Gibbs states: are there other possibilities
besides ground or ceiling states or states where some particle type is excluded?

Remark 3.9. For highly non translation invariant potentials, a microcanonical Gibbs
measure need not be canonical Gibbs.

Let L=N°,F = {a, b}, and use /(.) to denote the characteristic function for the
event between parentheses. Define an energy of the form

EΛ(ξ\η) = Σ W&Ί) = Si+I{ξ,η) = a),

where J ί = 1 0 ~ i . Then the J{ are commensurable, yet every energy level is
nondegenerate, since

ΣJi=ΣJj if and only if M = N.
ieM jeN

Define conditional probability distributions μΛfβ with βel^iN0), and such that
β. φ β. for at least one pair i #7, by

Γ - Σ / W M ί , η) = Si+1 (ξ, η) = a) J.
[ ] ή 0

= WZA(η)) exP

By the consistency of the μΛtβ and a compactness argument there does exist at least
one measure μβ with the given μAβ as conditional probability measures with respect
to J^ Λ . Clearly, μβ is not a canonical Gibbs measure.

On the other hand, μβ is a microcanonical Gibbs measure since the specification
of a value of EΛ(.\.) uniquely determines a configuration.

4. Proof of the Main Result

For the sake of simplicity in formulation and notation, the results will be formulated
and proven in a translation invariant setting. The adaptation to approximately
periodic potentials is straightforward: it suffices to choose appropriate "adapted
sequences" in the following proofs.

Lemma 4.1. Let μbea microcanonical Gibbs measure for a finite range potential. Ifφ,
ηeΩΛ with

iii) EA(φ) = EA(η\
then μ(SΛ = φ) = μΛ(φ) = μΛ{η)

Proof. It follows from (iί) and (iii) that for all ω in Ω:
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and together with (i) and (2.9) this implies vΛ(φ\ω) = vΛ(η\ω). Hence

ίdμ(ωΛc,NΛ(ω)9 EΛ(ωΛ\ωΛe))vΛ(φ\ω)

= j dμ(ωΛC, NΛ(ω), EΛ(ωΛ\ ωΛC))vΛ(η \ ω)

In the remainder of this article, the microcanonical hypothesis will enter only
through the above mentioned result.

The following two lemmas are preparatory for the main Lemmas 4.4 and 4.5.

Lemma 4.2. If Φ is translation invariant and has finite range, Σ(Φ) is a group.

Proof. Let pι,p2eΣ. Then, pi = σi — τi9 with

for some Λl9Λ2 and ω{eΩAχ, ηιeΩΛλ with NΛi(ωi) = NΛt (ηι) and (ω%Λι = (ηi)δΛi;
i = 1,2. (Definition 3.1). Let T be a translation such that dist (Λx, T(Λ2)) > 2D. Then

EΛ2(ω2) = ET(Λ2)(Tω2),

and

It follows that px + p2eΣ if p l 9 p2εΣ. •

Lemma 4.3. Let μ be an everywhere dense, extreme microcanonical Gibbs measure for
a translation invariant, finite range potential. Let {Λn} denote a sequence of translates
of a volume Λo such that dist (Λ0,Λn) -> oo as n -> oo. Let ζn denote the corresponding
translates in Λn of some configuration ζ° in ΩΛo. Then lim sup μΛn (ζn) > 0.

n~* oo

Proof: Suppose lim μΛn (ζn) = 0.

Let ηneΩΛn denote the translates of some configuration η° in ΩΛo. Define
Δn = ΛnudΛn. Choose an arbitrary configuration φ° in dΛ0, and let {φn} be its
translates in dΛn. The microcanonical hypothesis implies with Lemma 4.1 and the
translation invariance of the potential that, whenever dist (Λθ9Λn) > 2D:

^ o u Λn (η°, Φ°> ίπ, Φn) = ̂ o u Δn (ζ°, Φ°> n\ Φn\ (4. i)

Since μ is extreme microcanonical, it is trivial on Q) ̂  (cf. Sect. 2), and therefore on
J ^ . Thus we obtain from [6]:

\μάo^n(n0,Φ0^Φn)-μΛ0(n0,Φ0)μΛniί^Φ")\ = 0, (4.2)
Π-+OO

and

0, Φ°> n\ Φn) ~ μΔo(ζ°, Φ°)μΔn{riH, Φn)\ = 0. (4.3)
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Then (4.1), (4.2), (4.3) and the hypothesis that lim μΛn(ζn) = 0 imply for all φ°:
n ~* oo

limμΔo(ζθ,φ°)μάn(η«,φ' ) = 0.
n-*oo

Since μ is everywhere dense, we have for all φ°:

\imμΔn{ηn,φn) = 0.
n-* oo

Thus, for all η°eΩΛo: lim μΔn(ηn) = 0, which is a contradiction since £/^n(*7w) = 1.
Π-+00 0

•
Lemma 4.4. Let μ be an everywhere dense, extreme microcanonical Gibbs measure for
a translation invariant, finite range potential. Then there exists afunctionf on Σ such
that for all A, and any couple of configurations φ, φ' in ΩA with

i) NΛ(φ) = NΛ(φ'),

then

Proof. Let π(σ) be the set of couples of configurations (φ, φ') belonging to a given
spectral value σ, i.e. there is a finite A such that φ, φ'eΩΛ and

i) NΛ(φ) = NΛ(φ%

U) ΦδΛ = Φ'δΛi

iii) EΛ(φ)-EΛ(φ') = σ.

Choose an arbitrary representative (£,£') of π(σ) in a volume Δo. Let {Δn} be a
sequence of translates of Δ0(Δn = TnΔ0) such that

dist (Δ0,Δn) -> oo and dist (A,Δn) > ID for all n. (4.4)

Define configurations ηn, ηfn in Δn by

η'n = Tn(ζ). (4.6)

Then for all (φ, φ') in π(σ):

a) NΛκjΔn(φ9ηη = NΛκjΔn(φ'9η'H)
(from (i), (4.5), (4.6))

b) ( 0 ^ % Λ U ^ ) = ( 0 / ^ / % ^ U ^ )

from (ii), and (4.5), (4.6)

c) EΛu Δn(φ, ηn) = EA(φ) + EΔn(ηn) = EΛ(φ) + ^ 0 ( Γ )
= EΛ{φf) + σ + £ J o ( 0 - σ = £ Λ u J n (0' , ̂ y/w)

from (4.4), (4.5), (4.6) and the translation invariance.
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Properties (a), (b), (c) and Lemma 4.1 imply:

Since μ is an extreme microcanonical Gibbs measure, μ is trivial on 3)^ and therefore
on ^ O0. But then it follows from [6] that

lim \μΛ.An(Φ,rin)-μΛ(Φ)μΔn(ηn)\ = 0, (4.8)
w—• oo

Hm \μΛuΔn(φ',η'°) -μA(Φl)μΛM")\ = 0 (4.9)
fl->00

Then (4.7), (4.8), (4.9), the everywhere density of μ and Lemma 4.3 imply

βΛ(Φ) ; _π-oo ^ 1 Q j

The quotient of the limits clearly only depends on σ = EΛ(φ) — EΛ(φ'\ and hence
defines a function on Σ. •

Lemma 4.5. Assume the conditions of Lemma 4.4 ίo hold. The function f on Σ defined
in Lemma 4.4. satisfies:

=/(σ)/(τ), (4.11)

/ ( - σ) =/(σ)- x /or α// σ, τ m 2λ

//m addition the potential satisfies the commensur ability condition, there exists a β
in U such that f{σ) = exp [ — βσ~\for all σ in Σ. IfΣ Φ {0}, β is uniquely determined.

Proof. To prove the first statement, suppose the couple (φ, φ') belongs to π(σ), and
the couple (η, η') belongs to π(τ). We may assume φ and φ'eΩΛ, η and η'eΩΔ with dist
{Λ,Δ)>2D. Then

σ = EA(φ) - EM) + EM - EM = EA υ Δ(Φ> i) ~ EΛu A(Φ'> n\

and similarly

Hence

since σ + τ = £ Λ u 4 ( ^ , ̂ ) - EΛu Δ(φ\ ηf) and

i) NΛu Λ(φ9 η) = NΛu Δ(φ'> n) = NΛu Δ(φ', η'%

ϋ) (0» ί/Wu 4) = (Φ'> η)δ(Au A) = (Φ'> Λ ( Λ u A)'
That / ( — σ) =/(σ)~ 1 is immediate.
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Next, assume the commensurability property. If Σ — {0}, the existence of a β is
trivial. If not, choose σ φ 0 in Σ and let/(σ) = x. For any τ in Σ there exist numbers p,
q in Z such that pσ = qτ. The result then follows from (4.11):/(τ) = xp/q. •

Proof of Theorem 3.3. lϊΣ = {0}, the result is trivial, but β is not unique. Let Σ Φ {0}.
Lemmas 4.4 and 4.5 have shown that there is a β in IR such that

= exp [ - βEΛ(Φ) + /TCΛW)] (4.12)

for all Λ9 all ψ, φ' in ΩΛ with

(ii) φ δ Λ = φ'δΛ

Let M = /I udΛ, and suppose ω, ω' in ΩΛ satisfy

NΛ(ω) = NΛ(ω'). (4.13)

Then, from a compatibility argument

which equals, by (4.12):

= Σ
= μ[/ω ' exp [ - β(EΛ(ω\.) - EΛ(ω'\.)m (4.14)

But (4.14), together with (4.13), is an algebraic version of the canonical DLR Eqs.
(2.6), (2.7) ([7, Proposition 2.19]; see also Remark A2 in the appendix below), μ is
necessarily an extreme canonical Gibbs measure, for otherwise it would not be
extreme microcanonical.

Since μ is everywhere dense, it follows in particular that μ(Na ^ 1 VαeF) > 0, and
hence (Lemma 3.6) that μ(Na = oo VαeF) > 0. Conversely, if μ is a canonical Gibbs
state, it is a microcanonical Gibbs state, and if μ(Na ^ 1 VαeF) > 0, then μ is
everywhere dense (Lemma 3.6).

5. Comments

Apart from the condition of the everywhere density of the measure, the content of
Theorem 3.3 is quite clear. That condition was necessary in order to obtain
canonical Gibbs states at finite inverse temperatures or grand canonical Gibbs
states at finite β and nonzero activities za. Yet it is interesting to further clarify that
hypothesis.

If the system is one dimensional and the potential is translation invariant (it need
not have the commensurability property), it is possible to prove the following result:

Theorem 5.1. Let μ be a microcanonical Gibbs measure for a translation invariant,
finite range potential Φίn one dimension. Then μ is everywhere dense if and only if it has
infinitely many basic configurations with respect to Φ. •

In this connection we have:



Equivalence of Gibbs States 169

Definition 5.2. Let Φ be a translation invariant potential of range D o n a one
dimensional lattice. A measure μ on Ω = Fz has infinitely many basic configurations
with respect to Φ if it is possible to partition the chain into translates Λn= Tn(Λ0) of
some interval Λo of length (D — 1), with ne(D — 1)Z such that

)>0. (5.1)

Here Nξη (φ\ for φeΩ, denotes the cardinality of the set

Tn(ξ) = φΛn and Tn + 1(η) = ΦΛΛ+1}- •

Thus, the chain is partitioned in cells of length D — 1, and a basic configuration is a
configuration in a set consisting of two nearest neighbour cells.

The reader will remark that Theorem 5.1 is an analogue of Lemma 3.6, but it
must be stressed that the occurrence of one basic configuration of a given type does
not imply the occurrence of infinitely many of these (cf. Remark 3.8).

Theorem 5.1 will be proven in a separate publication.
We conclude with some open problems.
It would be interesting to extend, if possible, this analysis to the following

potentials:
1. long range potentials.
2. not-approximately-periodic potentials. In view of Remark 3.7 it is important to

determine the border case for which the equivalence microcanonical-
canonical still holds.

3. incommensurable potentials. Here the problem is presumably not too hard.
The first part of Lemma 4.5 holds and it therefore suffices to impose additional
conditions guaranteeing the function / obtained there, to be a continuous
function of the energy difference, since Σ(Φ) is dense in IR.

And finally:
4. Is it possible to characterize the set of not everywhere dense micro-

canonical Gibbs measures; are there other possibilities besides ground states,
ceiling states or states where some particle type is excluded? (corresponding to

the cases β= + co9β= — oo, and Y\ za = 0, respectively in the grandcanonical
aeF

setting). For an abstract characterization, see [10].

Appendix

Remark A.I'.Disordered Systems. The purpose of this remark is to show that certain
disordered systems do obey our condition of approximate periodicity. To avoid
notational complexity, we present a model where the disorder is on the nearest
neighbour coupling constants only, but it will be clear from the discussion that this is
not restrictive. To simplify even further, we assume that there are no other
interactions.

Let Ω = { - 1, + 1} and B = {b\b = {ij} c L with dist(ij) = 1} be the set of
bonds. Put BΛ = {beB; b a A}. Suppose the bonds take values in some finite set X;
(In spin glass models K = { - J, + J} and in dilute ferromagnets K = {0, J} for some
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positive J.) If / = KB, and /Λ = KBA, an element; = (jb)heB, defines a potential Φj

in the following way. For b in B and ξ in ί2b:

=jb if ξ = (1,-1) or ( -1 ,1) ,

and Φj

Λ=0 whenever ΛφB. Then the local energies read:

ϊ,{i,i+\}nΛφφ

Let us denote (jb)bc:Λ b y j Λ , and define random variables on # by:

The disorder is introduced via a probability measure p on K and the
corresponding homogeneous product measure P o n / :

We shall now show that P almost surely, Φ ( ) is approximately periodic.
If A is an arbitrary finite set in the lattice, let Ω ^ denote the event that there is an

adapted sequence for A (Definition 2.1). Then

^ P(There is a sequence of translates An of A such that:
/lπ)-*oo as n->oo and JΛ = Jλ •)

Let An be any sequence of /1-translates with dist(/l,yln)->oo; then the latter
probability has the following lower bound:

lim lim P(3m:n ^ m ̂  k:JΛ = Jλ )
n-*ao fc->oo m

lim lim ( l - X lp(jΛ)(l - p ( / Λ ) ) k - - + 1 ] ) = 1.

Therefore, we have for all finite A: P(Ω°%)= 1, and the final result follows upon
taking the intersection over all finite A in L. •

Remark A.2. There exists an interesting and convenient formulation, in algebraic
terms, of the theory of equilibrium states. On Ω a number of transformation groups
are introduced.

°ll is the group of invertible? local transformations on Ω. (A transformation U is
said to be local if there exists a finite A such that {Uω)ι = ωt Vωe/2, Vie/1c. U is said
to act in A.)

Ψ* is the group of invertible, local transformations, preserving the particle
numbers. (That is, if V acts in A, then NΛ(Vω) = NΛ(ω)VωeΩ.)

For a potential Φ, i^(Φ) is the group of invertible, local transformations,
preserving the particle numbers and the conditional energies. (That is, if W acts in Λ9

then EΛ(Wω\η) = EΛ(ω\η) MωeΩΛVηeΩΛC) Define the following objects: for
let

UH-H = lim (EΛoU-EΛ\ UN-N = lim(NAoJJ-NΛ).
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It may then be shown that, writing Wf=f° W etc., the following results hold,

i) A state μ is a microcanonical Gibbs state for the potential Φ

ii) A state μ is a canonical Gibbs state for the potential Φ at an inverse
temperature β iff V7eτT, V/eC(β):

iii) A state μ is a grand canonical Gibbs state for the potential Φ at an inverse
temperature β and a chemical potential μ = (μΛ)fl iff Vt/eΦ, V/eC(β):

μ(ί/" Y) = μ(/exp (-β(UH- H)) exp (/ϊμ(t/ΛΓ - JV))). •

Lemma A.3. Lei μ foe an everywhere dense extreme canonical Gibbs measure for a
uniformly bounded, finite range potential Φ at some inverse temperature β. Let {Λn}
denote a sequence of translates of a volume Λo such that dist (Λ0,Λn) -» oo as n -> oo.
Let ζn denote the corresponding translates in Λn of some configuration ζ° in ΩΛo. Then

rimsupμΛ λ i(£")>0.
n~* oo

Proof Suppose

limμΛ n(ζ") = 0. (A,l)
n-> oo

Let η"eΩΛn denote the translates of some configuration η° in ΩΛa. Define Δn =
ΛnκjdΛn. Choose an arbitrary configuration φ° in δΛ0, and let {φn} be its
translates in BΛn. The canonical hypothesis implies whenever dist(/lo,/lπ) > 2£>:

A Λ I 0 , Φ°, C", Φ") = μ 4 o u Λn (C°, Φ0,»;", Φ")

u 4 n(Co,</>°, '?",</>")]. (A,2)

An easy proof of this statement follows from Remark A.2 in the appendix. (Remark
that NΛouΛn(η°Φ°, ζnφ") = NΔΰUΔn(ζ°φ°, ηψ.) But when dist (Δo, Δn) > 2D, we have

- βEΔuAn(η°, Φ°, C", Φ") + βEΔo^Δn(ζ°, φ°, η", φ")

(ri0, Φ°) - EΔo(ζ°, φ°)-\ - βlEΔn{ζ", φn) - EΔn(ηn, Φ"Ώ

°Φ°, ζ°Φ°) + log qΔn(ζnφ", η"φ"). (A,3)

Since μ is extreme canonical, it is trivial on Sκ [7, Theorem 1.32] and therefore on
&x. Thus from [6]:

lim \μΔo^Δn(r\\Φ°,C, Φ") - Λiofo°, Φ>An(C\ Φ")\ = 0, (A,4)
π->oo

and

lim \μΔ^ΔJζ0,Φ^η\φn)-μΔo(ζo,φ°)μΔn(η\φn)\=0. (A,5)
n~* oo

Since sup \qΔn(ζnφn, ηnφn)\ < oo by the boundedness of Φ, one obtains from (A,2)
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(A,3), (A,4) and (A,5):

lim ίμΔo(η°, Φ>Δn(ζn, Φ") - μΔo(C°, Φ°)μΔn(ηn, Φ")

• W ί > ° - ζ°Φ°)qΛn{ζnφn, ηnφnn = O (A, 6)

Now, (A,6) and (A,l) imply:

lim μΔo(ζ", φ°)μΔn(η", ΦΊq^Φ0, O ° ) ^ n ( ί > " , η"φn) = 0.
n —• o o

Therefore, since μ is everywhere dense and Φ is uniformly bounded:

l imμ^" ,φ") = 0
«-»• oo

for all η° in ΩΛo, and all φ° in ΩeΛg. But this is a contradiction, since V«:

Σ μΔn{rf,Φn)=\- •
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