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Existence of Stark Ladder Resonances

Jim Agler1'2 and Richard Froese
Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. We show that resonances, in the translation analytic sense of Herbst
and Rowland, exist for the one dimensional Stark Hamiltonian, — d2/dx2 + q(x)
+ εx, with q(x) a trigonometric polynomial, provided ε is sufficiently large.

1. Introduction

The problem of describing the motion of a particle in a one dimensional periodic
solid pervaded by a uniform electric field has received considerable attention in
the physics literature (see, e.g. [1,10,11]). Controversy has centered about the
existence of so-called Wannier states, or Stark ladder resonances, which were
described by Wannier in [9]. The purpose of this paper is to prove that for periodic
potentials given by trigonometric polynomials resonances in the translation
analytic sense of Herbst and Howland [5] exist for large values of the electric field.

The Hamiltonian for the system in question is

2 >

acting in L2((R), where q(x)=Σ cneinx is a real valued trigonometric polynomial.
n

Here ε is the strength of the electric field. It is known that for ε Φ 0,σ(ί/(ε)) = R
and is purely absolutely continuous [3,4]. To describe translation analyticity we
begin with the unitary group of translations

(T(α)/)(x) = /(* + «) (1.1)

for αe(R and note that

a2

T(-a)H(ε)T(a)= - - y + εx + g(x - α)-εα.

Since q(x) has an analytic extension to complex x we can define the complex
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translated Hamiltonian

H(ε,a) = — —2 4- εx -f q(x — zα) — z'εα
ίl X

for αeίR. In the case at hand, since q(x-ioc) is bounded in x, 7/(ε,α) can be
defined as a closed operator on @(p2 + εx). Herbst and Howland prove (for a
much larger class of q) that σess(#(ε,α))^ [R — z'εα and σdisc(//(ε,α)) c
{z:-z'εα5Πmz5gO}. The eigenvalues in σdisc(#(ε, α))\(IR - z'εα) are the re-
sonances. They don't move as α changes once they have been "uncovered" by the line
containing essential spectrum. They can also be shown to be poles of suitable
matrix elements of the resolvent of H(ε) continued into the lower half plane. What
we prove is that for large values of ε,H(ε,α) indeed has eigenvalues not on the
line [R — zεα, for some value of α. Since there is the unitary equivalence

T( - 2πn)H(ε, α)T(2πn) = #(α, ε) - 2πεn

for neZ, the existence of one resonance implies the existence of a whole sequence,
the so-called Stark ladder.

We briefly mention some of the folklore surrounding this problem. The spectrum
of H(0) has the familiar band structure. Let Pn project onto the nlh band subspace
of H(0). Then for ε Φ 0 the operators PnH(ε)Pn and thus ^PnH(έ)Pn have discrete

n

spectrum. It is thought these bound states should persist as resonances when the
off-diagonal parts PnH(ε)Pm,n •=£. m are added to £ PnH(ε)Pn to give H(ε). Previous

n

work has centered about proving that the off-diagonal parts are small as ε jO
[2,7]. So far this approach has not led to a proof of the existence of Stark resonances.

We make no use of the above intuition. Instead we introduce an operator
inspired by the Birman-Schwinger operators common in Schrδdinger operator
theory. The fact that this operator is compact follows from work in [4].
Our results are summarized in the following theorem.

Theorem 1. Let q(x) be the trigonometric polynomial given by

N

flW= Σ c

ne
in\ cn6C,

n= -N

where c0 = 0, and cn Φ0/or at least one n>0. Let p= — id/dx. For ε>0 and αetR
define the closed operator

H(ε, α) = p2 + εx + q(x - zα) - z'εα (1.2)

acting in L2(IR) with domain ^(//(ε,α)) = @(p2 -h εx). Then there exists ε0 > 0 such
that for every ε>ε 0 there exists αeίR such that f/(α,ε) has an eigenvalue not
contained in the line R — z'εα.

In this theorem g(x) need not be real on the real axis. However if it happens to be
real on the real axis, then the results of Herbst and Howland apply and Theorem
1 asserts the existence of Stark resonances. We suspect, but cannot prove, that in
fact ε0 may be taken to be zero in Theorem 1.
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2. A Bίrman-Schwinger Type Operator

Let the symbol [ ]1/2 denote a branch of the square root, fixed throughout the
rest of the paper, which is analytic in the lower half plane. Throughout this paper
ε > 0 and Imμ > 0. Define

M(ε,μ) = O2 + εx-μr1/2, (2.1)

where p— — id/dx. Let

S(ε,μ,z) = M(e,μ) £ cnz"eίn* M(ε,μ), (2.2)
n= -N

where the cn are the coefficients in q(x) (see Theorem 1). We have the following
analogue of the Birman-Schwinger principle.

Lemma 1. Fix αeIR and ε>0. Let S(ε,μ,z) be as above and let #(ε,α) be given
by (L2). Then /f (ε, α) has an eigenvalue at λ iff S(ε, μ, z) has an eigenvalue at — 1, with

for some choice of αelR.

Proof. Suppose Jί(ε,α) has eigenvalue A. This means there exists ι/
such that

ff(ε,αWr = λtfr. (2.3)

This equation can be rewritten as

M"V= -t f (x- ΐαW, (2.4)

where M = M(ε,λ + ieα). Here we use that ^(#(ε,α)) = «^(M~2(ε,/l + zεα)). Using
(2.4) it is easy to see that φ = M"1^ satisfies

S(ε,/ί + ϊεα,eα)0 = -φ. (2.5)

Conversely, if (2.5) holds for some φeL2, i.e. if S(ε, λ + iεα,eα) has eigenvalue — 1,
then it follows that ψ = Mφ is in ^(/f(ε,α)) and satisfies (2.3).

For any aeR we have the unitary equivalence

T( - a)S(ε, μ, z)T(a) = S(ε, μ + βα, eίflz),

where T(α) is given by (1.1). Thus S(ε,λ + iεα,^α) has eigenvalue - l i f f
S ( ε 9 λ + iεα + εa,ecί+ia) has eigenvalue — 1 for some αeR. The proof is complete.

Given Lemma 1, the following theorem implies Theorem 1.

Theorem 2. There exists μ0 and ε0 with Imμ0 >0 and ε0 >0 such that for every
ε > ε0, 5(ε,μ0,z) /zas eigenvalue — 1 /or some t a/we of z.

We conclude this section with an outline of the proof of Theorem 2. We will
show that S(ε,μ,z)e</4, the fourth trace ideal class (see [8] for definitions and
properties of trace ideals). It then follows that S(ε9 μ, z) has eigenvalue - 1 iff
det4(l + S(ε,μ,z)) vanishes, where det4 is the regularized determinant. We will
show that for some fixed μ0 with Imμ0 > 0, Indet4(l + S(ε,μ0,z)) is analytic in z
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for | z |<l . Thus for |z| < 1

Indet4(l + S(ε,μ0,z)) = £ f,(e)zf. (2.6)
<?=0

Let δ denote the set of ε for which S(ε,μθ9z) never has eigenvalue — 1, as z ranges
through C\{0} If εeS* then det4(l +S(ε,μ,z)) never vanishes, so the left side
of (2.6) is entire in z and it will be shown that in that case that case the left side
of (2.6) is in fact a polynomial of degree at most 4^. Thus, $ must lie in the zero
set of/, for all t > 4iVγ A calculation showing f5Nι does not vanish for large ε will
complete the proof.

3. Proof of Theorem 2

Instead of dealing with S(ε,μ,z) directly we work with an operator unitarily
equivalent to it. For ε > 0 let U (ε) = exp(jp3/3ε) This operator is common in the
theory of Stark Hamiltonians as it has the property that

Define

R(ε9μ9z)=U(ε)*S(e,μ,z)U(ε).

Using the identities

e'ίxxf(p)eiκc = f(p + α), for / bounded and measurable, (3.1)

and

/ / »\3 / \ / / n \ 3 / \

U(ε)*eίnxU(ε)=ei(nl2)xexpl - M P + ? ) / 3 ε ) e x p l M P - ^ J / 3 e \eί("mx

= exp (- in3/12 ε)ei(n/2)x exp ( - -p2 Vί(n/2)JC,
V ε /

it is easy to see that

Λ(β,μ,z)= f cπz"Kn(ε,μ), (3.2)
«= -N

where

/ „ \
:-μ]~1/2. (3.3)

Since R has the same eigenvalues as S it will suffice to prove Theorem 2 with #
in place of S. The following lemma uses the method of computing integral kernels
introduced in [4].
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Lemma 2. For ε > 0, Im μ > 0 and n ̂  0, Kn(ε, μ)e«/4 and

Proo/. Let denote the

-— ~ -
4|n|ε(Imμ)2

norm. Then | |X| |J= ||K*X|||, so it
suffices to show that K*K is Hubert-Schmidt for K = KΛ(ε,μ). Since (see [6],
p 496)exp(— zip2) has integral kernel

exp ( - itp2)(x9 y) = (4πit) ~ 1/2 exp (i(χ - y)2/4t),

the integral kernel for K = Kn(ε,μ) is

/4πm\~ 1 / 2

= ™

(3.4)

, y) -< «3/12ε[εχ _ -,-

V £ /

exp(iε(x - y)2/4n)eί(nl2}ylεy -

Thus has integral kernel

K*K(x,y)= j K(u,x)K(u,y)du =
4πn

n,
exp ϊ y -

^(x-y)w p"
— oo

Now set f(x) = \εx - μΓ1 and let / denote the Fourier transform of /. Then

\\κ*κ\\2

2 = 16π2

8πn2 Λ -•ί ί dxdy =
4π\n\

Since ||/||2 = π/εlmμ, this concludes the proof of Lemma 2.
The next lemma plays a technical role in our proof.

Lemma 3. Let m^4 and let ni...9nm be non-zero integers. Let Kn. = Kn.(ε,μ)
n

for ε>0 and Imμ>Qbe given by (3.2). Define σ = £ n, .

Then

trί
j = 2π(ίf

(4πi)1/2 C
-m + l /2

exp [ --(
o
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where Ωm is the region

m - l

Ωm = {(u1,...,um_ί):ui^Q for ΐ = l , . . . , m - l and £ W f ^ l } ,
i = l

αk and βk are given by (3.6) below, and

fc-1 m-l

k=l 7=1

Proof. From the definition of Kn., it follows that

/ m

., = exp -— Σ »3

Using the representation
00

0

and then repeatedly applying formula (3.1) we obtain

7=1

2
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7=1

where αk, βk are any pairs of real numbers satisfying αk + βk = 1 for each fe. The
expression inside the braces is quadratic in p. It can be written Ap2 + Bp + C with
y4 = σ. Now assume σ / 0 and let

With this choice of αk and βk,B = Q and
m ί σ σ k~1 m~1

C = Σ M - A - ι + « * + Σ ^~ Σ «Λ ,

where all undefined sums, e.g. αw and β0, are equal to zero.
Using (3.4) and (3.5) one can compute an integral kernel for ΠKnf Since the

resultant kernel is continuous, the trace of ΠKn. is equal to the integral along the
diagonal of this kernel. Thus

-l/2

• f (β*-μ)-'J-J«p ί Σ
- o o o o \ ε j=ι

/ / m - l \ \ / j \

•exp i σ- Σ ξj)X)πp(--C\dζ1 'dξm-1dx.
\\ 7=1 / / V £ /

(3.7)

We split the integral over ^ •••<!;,„_! into two parts. Let

!̂-^-!, (3.8)

(3.9)

^ no-

where /(^,x) is the integrand from (3.7), i.e.

\ / / ro-i \ \ / I \

ξ,)^*-£*,)*)«*(--€).

We claim that

:0. (3.10)
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First, note that F2(x) has an analytic extension to the half plane, Imx < Im(μ/ε).
Since Imμ > 0, (3.10) will follow by Cauchy's theorem if we can show that

(3.11)

for large |x| in the lower half-plane. If σ < 0, then

Im -|F2(x)| £ J - JI/K^ldδi

and (3.10) follows trivially.
We now consider the case σ > 0. In (3.9) the change of variables ξj = pcθj for

_ 1 = p 1- £ ωj yields

where

In this formula C is a quadratic polynomial in p. Thus,

(3.12)

Now integrate the right side of (3.12) by parts. This gives

, , /Yσ)exp(ίσμ/ε)J

Since for Imx<0,

00

exp(iσx) J /;(p)exp(i(μ/ε - x

Eq. (3.13) implies (3.11). This proves (3.10) when σ τ^0. It also establishes Lemma
3 for the case σ < 0, since, if σ < 0, then F l ( x ) = 0. To handle the case σ > 0 note
that F! (x) extends to be entire in x. By an analysis similar to the one above we obtain

. λ /(<τ)exp(ΐσμ/ε) exp(iσx)

^(')= /(μ/ε-x) -
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Since for Imx>0,

σ

exp(iσx) j/'(p)exp(i(μ/ε - x)ρ)dp
o

σ

Ί + C2σ
m~1)Jexp((- Imμ/ε + lmx)p)dp

it follows that F ί ( x ) decreases rapidly enough in the upper half-plane to allow the
evaluation of the integral of (εx — μ)~ * F1 (x) by a contour in the upper half-plane.
Since (εx — μ)"1 has a simple pole there, this gives

f (εx-μΓίFi(x)dx = 2πiε-1Fί(μ/ε).
— ao

Using (3.7) through (3.10) and making the change of variables σut = ξt concludes
the proof of Lemma 3 for the case σ > 0.

The case σ = 0 requires a separate argument. We omit the details, noting that
the precise value of the trace when σ = 0 is not crucial in what follows.

From Lemma 2 it follows that for ε > 0, Imμ > 0 and z / 0,R(ε, μ, z)e./4. Thus
det4(l 4- R) is well defined. It follows easily from (3.2) that

Now choose M0 > 0 and a neighbourhood Jf of |z| = 1, and that for Imμ > M0

and zeΛ/*, || JR(ε, μ, z) || < 1. Then for such μ and z, Indet4(l + K(ε,μ,z)) is well
defined and analytic in z.

Lemma 4. // ε > 0 ana Imμ > M0, then In det4(l + R(ε, μ, z)) extends to be analytic
in \z\ for \z\ < 1.

Proof. If Imμ > MO and ze^Γ then ||K(ε,μ,z)|| < 1. Thus the eigenvalues {λk}
of R must satisfy sup|A k | < 1. Using this fact and Theorem 9.2(a) from [8], it

k
is not difficult to see that

lndet4(l+tf(ε,μ,z)H Σ (~1Γ tr(^(ε,μ,zΓ), (3.14)
m = 4 m

where the convergence is uniform for ze JΛ
By Lemma 3, tr (R(ε, μ, z)m) extends to be analytic on | z | < 1, so the conclusion of

Lemma 2 follows by the maximum modulus principle.
For the remainder of this section fix μ0 with Im μ0 > M0. Define the functions

/,(ε) for ε > 0 by

Indet4(l +R(ε,μ0,*))= Σ f &* (3 15)
<?=!

for |z| < 1. Let S denote the set of ε for which K(ε,μ0,z) never has eigenvalue
— 1 as z ranges through C\{0}.
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Let Λ/Ί be the largest integer such that cNl Φ 0, where cn denotes the coefficient
in q(χ).

Lemma5. // εe<f then Indet4(l + R ( ε , μ , z ) ) is a polynomial in z of degree at
most 4AΓ1 ? i.e. /,(ε) = 0 /or / > 4Nί.

Proof. If εe^ then In det4(l + R(ε, μ0, z)) extends to be entire in z. Using Lemma 2
and Theorem 9.2 (b) from [8] we see that

These two facts imply the conclusion of Lemma 5.
Lemma 5 shows that $ must lie in the zero set of /,(ε) for every £ > 4Nlt Thus the
following lemma will complete the proof of Theorem 2.

Lemma 6. The function f 5 N ί ( ε ) satisfies

Proof. From (3.2), (3.14), (3.15) and Lemma 3 it follows that

oo / 1 yn -I- 1
p5- l/2 f (c\ — e5-l/2 V V \~ L)

J S Λ f i VW — k / /
_ -̂' MI

cn ι- cn mtr(Kn,- KπJ

oo f 1 \m+ 1

= Σ Σ L4—

"m(4πi)1/2

( m \ / \

—— J] n7. J J exp I --C(m;ni;Ui) \duί...dum-ί.

The interchange of sums used to derive this formula can be justified by
noting that the series obtained from the substitution of (3.2) in (3.14) converges
absolutely for small |z|. To obtain the relevant estimate, use Lemma 3 to express
tr(KΠl - KnJ and the fact that \Ωm\ = ((m- I)!"1. We also used the fact that if

m

£ nj = 5N1 with n_ / <N 1 , then m must be at least 5. The series in m can be
j=ι
bounded by a fixed/! sequence for ε large. Thus, we can take the limit inside the
sum. Only the m = 5 term survives:

lim β5- _ _
J ^T TCΪJ

This establishes Lemma 6.
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