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Abstract. Using the correspondence between the Clifford and exterior algebras
we write the Dirac equation in terms of differential forms. The covariances of
the theory are then examined. We show in detail the correspondence with usual
matrix methods.

Introduction

Kahler [1] has used a correspondence between Clifford and exterior algebras
associated with space-time to describe particles with half integer spin by means of
sections of the exterior bundle over space time (inhomogeneous differential forms).
In Minkowski space Kahler's equation decouples into four minimal left ideals of
the Clifford algebra, and is equivalent to four identical Dirac equations [2, 3].
Thus the Kahler equation is not the Dirac equation. Moreover, in an arbitrary
space-time the Kahler equation does not split into minimal left ideals. These
features of the Kahler equation are not inevitable consequences of using
differential forms for the description of half-integer spin, indeed we here show how
the Kahler equation can be modified so that, even in a curved space-time, it
describes fields lying in one minimal left ideal. In this way we are lead to the Dirac
equation.

We shall make contact with the usual matrix formulation of the Dirac equation
by making clear how, and in what sense, the Clifford algebra is a matrix algebra.
Since we regard the Clifford algebra as being embedded in the Kahler-Atiyah
algebra, a basis for this matrix algebra will consist of differential forms. This
differentiate basis is the main feature inherited from exploitation of the Kahler-
Atiyah algebra. It will be shown how co variant derivatives of this basis can provide
the usual "spin connection" terms in the curved space Dirac equation.

Having written the Dirac equation in terms of inhomogeneous differential
forms it is natural to question the compatability of the "spinoriaΓ nature of the
equation with the "tensoriaΓ nature of the forms. We shall argue that there are two
a priori distinct covariances; a trivial GL(4, R) frame covariance, and a GL(4, R)
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covariance under inner automorphisms of the Clifford algebra (corresponding to
change of representation of y-matrices). However, they may be combined to
reproduce the usual spinorial covariance of the matrix components of the
equation.

Since the cotangent space is a real vector space we are led naturally to consider
the real Clifford algebra. The doubling of degrees of freedom necessary for the
inclusion of charged fields does not necessitate complexifying the Clifford algebra.
We show how "charged" spinors may be described by non-minimal ideals, with the
U(l) transformation generated by Clifford multiplication.

Unless otherwise stated we shall use the conventions and notation of reference
[3]. For simplicity of notation we shall denote the Kahler-Atiyah algebra of the
cotangent space of the space-time manifold by si. For discussion of algebraic
properties si is regarded as (and sometimes called) a Clifford algebra. When
discussing field equations we shall regard elements of j / as sections of the Kahler-
Atiyah bundle over space time. Throughout we shall juxtapose symbols to denote
Clifford multiplication.

I. The Wedderburn Decomposition of si

Since si is simple, Wedderburn's principle structure theorem ensures that

si = 3xJίm, (I.I)

where 3 is a division algebra and Jtm is a total matrix algebra [4]. The degree of
the matrix algebra, m, is given by the number of pairwise orthogonal primitive
idempotents of si. For our algebra m — 4 (our space time metric has a signature
with three plus and one minus sign) and

i = txΛ, (1.2)

i.e. the algebra of real 4 x 4 matrices. Since we are interested in differentiating these
matrices we show how the matrix and division algebras may be constructed; this
essentially entails following the proof of Wedderburn's theorem.

If P is a primitive idempotent of si then PsiP = 3, where 3 is the division
algebra appearing in the Wedderburn decomposition (I.I). (Note that P is the
identity of 3.) We here have [5]

= 4S0(siP)P, (1.3)
where Sp projects the p-ίorm component of si.

Let {PJ, i = l , . . . , 4 , be a complete set of pairwise orthogonal primitive
idempotents of si. Then the simplicity of si ensures 3 c 1 2 , c 2 3 , c 3 4 e si such that

Let c13 = c12c23 etc., giving

P^CijPfrj-1, V i J = l , . . . , 4 , (1.4)

with Cifjk = cik (no sum). Let

eiJ = PicijPj = Picij = cijPj. (1.5)
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T h e n e ί Je j A = e ί / P / P p e j A = 0 for jΦp, (1.6)

— eik

That is the {eo } have the algebra of an "ordinary" matrix basis. Completeness of

the {PJ gives ^

0 ( j i i ) i j Γ ι (I 8)

U

If we denote the matrix components of si by Atj then

SoW = Σ ^uso(eo) = Σ AtjSoPfitjPj) (1.9)

— Σ ^ii^θ(^i) — 4 Σ ^ii ?

Transposition (denoted τ) is an anti-involution such that

e y

Γ = e ; /. (I IO)

In this way the definition of transposition depends on a choice of matrix basis. We
can relate transposition to the main anti-involution, ξ, by

ξ (1.11)
for some C.

The main anti-involution is defined by

ξX = X i fXis acovector, (1.12)

and satisfies

[ ^ (1.13)

where [p/2] denotes the integer part of p/2. On general grounds we must have
ξC= ±C; in fact, for this algebra we have

ξC=-C. (1.14)

We now give an explicit example of the above.

P2Ule)(l+e),

p 3 =έ(i+ e ° 2 )( i- e

1 ) , ( }

P4=ϊ(l-e02)(l-eι).
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The {ea} is an orthonormal coframe with (e°)2= — 1, (ei)2=l9 i= 1,2,3, and
eO2 = e°e2 etc. Choosing cί2 = e03, c 3 4 = e0 3, cί3 = e3 we construct the following:

X
1

2

3

4

1

1

e03

e3

e°

2

e03

1

-e°

-e3

3

e3

e°

1

e03

4

-e°

-e3

e03

1

This yields the following matrix basis, ey.

H
1

2

3

4

1

Pi

e03P1 = P2e
03

e3Pι=P3e
3

e0P^PAe
0

2

Pιe
03 = e03P2

Pi

-P3e°=-e°P2

-P4e
3=-e3P2

3

Pie

3 = e3P3

P2e° = e°P3

p.

P4e
03 = e03P3

4

p PO — p0p

rxe — e r4- p 2 e 3 = - e 3 p 4

P3e
03 = e03P4

p*

(1.17)

It can be checked that (1.11) is satisfied by

= e 1 2 3 . (L18)

II. The Decomposition of the Even Sub-algebra

The involution η is defined by ηX = — X if X is a covector, and satisfies

Elements that are even under η form a sub-algebra, ,s/ + . If P+ is a primitive
idempotent of si +, then

The volume 4-form, * 1, is denoted by z and satisfies z2 = — 1. Thus P + J / + P + is
the algebra of complex numbers, with "imaginary" element z and identity P+.
(Note that z is in the centre of J / + .) The identity in J / + can be written as the
sum of two orthogonal primitive idempotents, and Wedderburn's theorem
then gives

i.e. the algebra of complex 2 x 2 matrices. In fact,

2
stf+= T[ A + ε

<x,β=l

(Π 4)
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with

and

where

p r

<xβΓβ Caβ

We denote transposition in si+ by \ and relate it to ξ by

f~1 +

where we have

ξC+ = -C +

for some C + e ^ + .
Since primitives in si + are not primitive in si 3 x: ηx = — x,

- l and Vα.

57

(Π.5)

(II.6)

αi.7)

αi.8)

(11.9)

(II. 10)Then {Pα

+^(l+x)} is a set of pairwise orthogonal primitive idempotents
of si. In fact, we may choose x such that

xεaβ = ε*βX, Vα,β. (11.11)

So if we expand in a matrix basis as in (II.4)

X — Σ Aao*£an , (11.12)

since xz= — zx. If we follow the approach above to construct the matrix basis
for si then we have

= xC+ . (11.13)

Thus transposition in «s/ induces hermitian conjugation in si + . The following
complements the previous example.

Let

P + _ p I p p+ _

where Pt etc. are given by (1.15). Choosing

gives the following basis, εaβ.

(11.15)

α \

1

2

1

e 0 3 Pί-=P 2

+ e 0 3

2

PϊeO3 = eO3Pl

n
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III. Inner Products on Ideals

We can define spin-invariant inner products on the minimal left ideals of si and
j / + (cf. [6]). If φ = φP, ψ = ψP, where P is a primitive idempotent in si, then

with C as in (1.11) so that C~iξP = PC~1. (This bracket defines a mapping into the
algebra of real numbers with identity P. This algebra is trivially mapped into the
algebra of real numbers with identity 1 by projecting with So.) As a consequence of
(1.14) we have

{Φ,Ψ)*=-(Ψ,Φ)*. (IΠ.2)

The spin-invariance follows from

In fact, elements Q of PIN(3,1) satisfy ξQ = Q~1 if V-^QVQ'1 is a space
orientation preserving transformation on the space of covectors. (Actually, this
corresponds to what is called in the physics literature Racah time-reversal. We
intend discussing these discrete transformations in more detail elsewhere.)

Given that ξP = CPC~1 we have

P = BPB'1,

where P = ξηP, B = zC. Also

B=-B iff ξC=-C (III.5)

(cf. [5]). Proceeding as above we define

(φ,ψ)p = B-ίφψ = 4S0(B
and observe

(φ9ψ)p=-(ψ,φ)p

and

= (Φ,Ψ)* if S = β " 1 . (ΠL8)

All time-orientation preserving elements of PIN (3,1) satisfy Q = Q~1

9 and so this
is a "parity" invariant inner product. The two inner products are related by

We introduce a spin-invariant inner product on the minimal left ideals of s#
by defining

for α, β E si + : ocP + = α, βP + = β, P + primitive in si + . Spin (3,1) in variance follows
since

Qesi+: ξQ = Q-i if βGSpin(3,l) (111.11)

(see e.g. [7]). This is the usual symplectic metric on the space of 2-component
complex spinors.
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IV. A Majorana "Neutrino" Model

We now use the preceding formalism to examine a model involving a "Majorana
spinor"; that is, a field lying in a minimal left ideal of si. The field equations are
obtained from the action-density 4-form

A = S0{C-1ξ(φP)d(φP)}z = S0(φPj(φP))^z, (IV.l)

φesi and P is primitive in si. This is an obvious modification of the Kahler action
[3] describing a field lying in one minimal left ideal. [Note that the adjoint
properties of d, S0(ξφdψ)z = — S0(ξψdφ)z modd, together with (1.14) prevent A
being exact without recourse to further anti-commuting parameters.] In the
following section we shall show the relation of this action to the Dirac action. The
operator d can be written in terms of the pseudo-Riemannian connection,

=eaV
Xa

where {Xa} is an arbitrary frame and {ea} its dual. Thus (IV.l) contains no
preferred frames.

However, it does contain a particular idempotent P. All primitive idempotents

are similar, F = SPS\ C'-ξS^CS-1, (IV.3)

where S is an arbitrary invertible element of si and C satisfies CιξPC~ι

We now show that if we supplement these transformations by

then A/ = S0(C/-1ξ(φ/P')d(φ'P/))z = A. For brevity we set

then use of (1.3) readily gives

A - A = 4S0(C ~' ξψeaxp)S0(P VXS ~ιS)z. (I V.6)

The first factor vanishes by virtue of (1.13) and (1.14). The covariance given by
(IV.3), (IV.4) is a GL(4, R) covariance, since S can be any invertible element. This
covariance corresponds to the usual freedom to choose a representation of the
y-matrices. For we may extend a given P to an orthogonal set {PJ, and hence
construct a matrix basis {eί7 }. If {e-7} denotes the basis obtained in this way from Pf

h

where

Thus the transformation which acts from the right in (IV.4) appears as a
transformation from the left on the components with respect to the transformed
basis.

Up to this point the discussion has placed no restriction on the metric g. We
now discuss covariance under isometric diffeomorphisms of Minkowski space. If
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L:M->M:L*g = g, then (L*P)2 = L*P if P2 = P. Thus

L*P = QPQί for some Q. (IV. 10)

Since we have already established the invariance of A under changes of P, there is
no loss of generality in choosing P such that gePin(3,1). Use of this inner
automorphism invariance readily gives L*{Λ(φ, P, C)} = Λ(L*φQ, P, C) if
ζQ = Q~1, i.e. if L is space-orientation preserving. If we expand ψ as in (IV.7) and
set Q=ΣQijeih then

* ij lJ υ ψ' = L*φQP (IV.ll)

The Clifford multiplication by Q provides the usual "intrinsic spin" transformation
whilst the diffeomorphic image of the components accounts for "orbital"
contributions.

We may obtain the field equations for φ (in a general space time) by taking
arbitrary φ variations of (IV.I). This yields

(If we were in Minkowski space with covariantly constant P, C then this would
simply correspond to one ideal projected out of the Kahler equation.) We can cast
(IV. 13) into a more familiar guise.

Suppose ]{eϋ}:^ ί j = [Σ,,e;JFy, (IV.14)

where the bracket denotes a Clifford commutator. (The existence of such a basis
will be demonstrated shortly.) Then

WΞFΛSeyS-1)

= VXSS~ V + S[ΣX, ey]S " ι + etj'SVxS-'

W = [Σχ.ey'] (IV. 15)

with Σ'X = SΣXS~1 + VXSS-1. (IV. 16)

Since C was defined by eβ = C~ιξtijC, we have

rχ*jι=irχC- ι c - c - 'ξτxc, e , . j . (iv.iη

Comparison with (IV. 14) gives

VxC~1C = Σx + C~1ξΣxC, (IV.18)

where the central part of Σx is chosen such that

S 0 ( ^ ) = i S 0 ( ^ C - 1 C ) . (IV.19)

Use of (IV.14) and (IV.18) gives the matrix components of (IV.13),

(IV.20)
a, i

We have used (IV.5) and (IV.7).
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In this equation ΣXa is seen to play the role of a connection. We finally make
contact with the usual curved space Dirac equation by relating Σx to the
pseudo-Riemannian connection. If {ea} is orthonormal then

where {ωpq} are the connection 1-forms, and ix is the interior derivative. If

e?=Σfifiij (IV.22)
U

with ya

tj constants, then Vxe
a= Σyψx^ t h a t is, from (IV.14) and (IV.21) we have

chosen a matrix basis such that
eM. (1V.23)

Choosing an orthonormal frame to have constant matrix components correlates
the choice of frame with the choice of matrix basis. Thus this condition is only
preserved if a change of frame is accompanied by an orthogonal transformation on
the matrix basis. This is in accord with the usual rules for the spinorial covariance
of the Dirac equation [cf. (IV. 8)].

The action (IV. 1) is a functional not only of φ but also of some P (with an
associated C) and the metric. We emphasize that there is no independent
connection, the only one present being the pseudo-Riemannian one obtained from
the metric structure. In a complete theory it would be desirable that all degrees of
freedom be dynamical. If P is taken to be idempotent then variations of P (and C)
for a given metric give no new equations since the established invariance of A
shows that these variations can be compensated by a variation of φ. However, since
P is idempotent it is important to correctly treat it in the metric variations that
provide the stress tensor which would provide the coupling to gravity. (We will
elsewhere demonstrate how this may be accomplished.)

V. The Dirac Theory

Throughout we have been concerned with the real Clifford algebra stf. As
mentioned in the introduction the inclusion of U(l) "charged" spinors is not
equivalent to complexifying the Clifford algebra. The Dirac action for a particle of
mass m is usually written in terms of a complex spinor. If we choose a Majorana
representation in which the y-matrices are real then this action can be written in
terms of the real and imaginary parts of the spinor. It is straightforward to see that
this is equivalent to

Λ = S0{B~1βd(x-B-ίόίdβ-mB-1όiβ + mB-1β(χ}z, (V.I)

where α = ocP, β = βP for P primitive in s$ and B as in (III.4). α and β are usually
encoded into the real and imaginary parts of a complex spinor. Of course, that may
be done here, but if we follow the analysis of the previous chapter (V.I) will not be
invariant under arbitrary inner automorphisms of the complex Clifford algebra. If
we set

^ ) , μ=j=(a-zβ), (V.2)
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then (V.I) can be written

Λ = S0{C-1ξμiμ-C-1ξλdλ + mC-1ξλμ-mC~1ξμλ}z, (V.3)

showing the relation of the previous model to the Dirac theory.
Although our algebra is real we have seen in Sect. II how the even sub-algebra

is a matrix algebra over the complex field. Since the operator ̂ changes the parity
under η we can decompose our equation into even and odd components. The field
equations obtained from (V.3) are

where

ω = 2S0(PVXaC
ίC)ea. (V.5)

If

p = ± P + ( l + x ) , (V.6)
then

* with u = uP + and u* = xux. (V.7)

(We use the notation of Sect. II.) This expresses a "Majorana spinor" in terms of
two inequivalent "Weyl spinors" that are related by complex conjugation.

S i m i l a Γ l y ' λ = W + XW*, W = WP\ (V.8)

The odd components of (V.4) are related to the even ones by complex conjugation,
so (V.4) can be written as a pair of equations in the even sub-algebra,

/y g\
/(wx)P++Ω(vvx) = mw,j

where
Ω = ω + ea{S0(VXaxxP+)-zS0(zVXaxxP+)}. (V.10)

In (V.9) we have the Dirac equation written as a pair of coupled equations for two
2-component complex "Weyl" spinors. If we set

(V.ll)

then the two equations in (V.9) can be added to give

We have Ψ = ΨP +, but Ψ $ sd +, that is, Ψ lies in a non-minimal left ideal of si. It is
trivial that if Ψ satisfies (V.12) then so does Ψz. Since z2= - 1 this is a U(l)
covariance; in fact, this is usually identified as the gauge symmetry of electromag-
netism. The usual electromagnetic coupling in (V.I) is

where A is the Maxwell 1-form. This leads to the interaction modifying (V.12) to

(ίtΨ)P++ΩΨ + AΨz =
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We stress that the encoding of a "charged" spinor into a certain non-minimal
ideal and the identification of right multiplication by z with the U(l) of
electromagnetism both follow from a faithful correspondence with conventional
wisdom. Furthermore (as will be demonstrated elsewhere), this formulation of the
electromagnetic coupling leads to a conventional coupling to gravity via the usual
stress tensor.

Conclusion

We have shown in detail the correspondence between an equation for a spinorial
section of the Kahler-Atiyah bundle and the usual matrix formulation of the Dirac
equation. We believe that this leads to a conceptual simplification: essentially, the
spin-frames and spin-connection are explicitly constructed from the exterior
bundle and the pseudo-Riemannian connection on space-time. We have shown
how the usual spinorial covariance is seen in this light to correspond to corre-
lating the choice of orthonormal frame to choice of ideal. (This corresponds to
the view taken in [8].)

The description of the Dirac equation in terms of a real Kahler-Atiyah algebra
offers new perspectives for incorporating interactions with other fields. In
particular, we expect to investigate in a further paper the stress tensor of an
interacting system in this formalism, together with the dynamical status of the
idempotents. Certainly, our work above implies that both the Dirac and Kahler
field theories are intriguing descriptions of half-integer spin systems in terms of
differential forms. Whether or not they are competing descriptions for funda-
mental fermions can only be ascertained by further scrutiny.
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