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Abstract. Construction of canonical coordinates on polarized coadjoint orbits
of Lie groups is presented.

0. Introduction

Hamiltonian systems on orbits of coadjoint representation of Lie groups have
been studied in numerous papers [1-8]. The general theory of such systems
developed in refs. [1-4, 8] enables one to indicate cases of complete integrability.
However, to explicitly describe a Hamiltonian system one should be able to
introduce canonical coordinates on a requisite orbit. In the simplest case of the
fourth-order matrices such coordinates were introduced in the paper by Symes [5]
who used the M. Vergne algorithm [9]. This algorithm is applicable for any
completely solvable Lie group but practically it turns out to be very cumbersome.

This paper is an extended version of the preceding note [7]. We will give in it a
simple construction of canonical coordinates for orbits possessing polarization.
Some polarizations are shown for graded Lie groups. Making use of this method
one can explicitly parametrize the orbits of coadjoint representation of the Borel
subgroups of the real split Lie groups and describe the corresponding
Hamiltonians.

I. Polarizable Ad*-Orbits

In this section we construct canonical coordinates on polarizable orbits of
coadjoint representation of Lie groups. Let us recall some definitions.

Let ©* be a space dual to Lie algebra ©, then for functions /, # e #" = C°°(©*)
the Poisson bracket

is defined which continues the commutator in Lie algebra © considered as a space
of linear functions on ©* «x, ξ} stands for the value of functional xe©* on
element ξefδ). The kernel of form <x, [.,.]> coincides with the isotropy
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subalgebra ©x at all x e ©*, that is why the Poisson bracket on the orbits of
coadjoint representation is non-degenerate and defined by the symplectic 2-form
ω, the Kirillov form

ω(ad* ξ - x, ad* η x) = <x, [_ξ, η\) ,

where ad*£ x, ad*?/ x are tangent vectors to the orbit at the point x [10,11].
The polarization Sβ relative to x e ©* is called a Lie subalgebra in © which is

simultaneously the maximal isotropic subspace relative to form <x, [.,.]>, i.e.
<x, [Sβ, φ]> = 0 [11]. Evidently, the kernel ©^ of the form <x, [.,.]> is contained in

Let G be a connected Lie group corresponding to the Lie algebra ©. If φ is a
polarization relative to x, then Ad̂  3̂ is a polarization relative Ad* x, i.e. all the
points of the orbit G x possess polarizations, and submanifolds

(Ad* x +(Ad,-φ^nG-x; (1)

are fibers of the G-invariant fiber bundle of orbit G x over G/P, where P is a closed
subgroup in G corresponding to Lie algebra ψ. Note that inclusion P x C x + φ 1

is always fulfilled. To fulfill the inverse inclusion the Pukanszky condition is
necessary and sufficient,

x + fcG x. (2)

1. Not each element xe@* possesses polarization, for example, if © is a
semisimple compact Lie algebra, then polarization exists only relative to zero.

2. But if the Lie algebra is completely solvable, polarization does exist relative
to any element x e ©* and it can be constructed by means of the M. Vergne
construction [10,11].

3. If the Lie algebra is complex, polarization exists relative to any regular
element in ©* (i.e., relative to an element belonging to any orbit of the maximal
dimension [11]).

Lemma, (on canonical coordinates). Let tybea polarization relative to x e ©* and
Qbe a lagrangian submanίfold of orbit G x intersecting each fiber of lagrangian
fiber bundle (1) determined by polarization ψ, no more than at a single point. If qk

are coordinates on Q, q = q{qk)εQ, then from relation

-q (3)

canonical coordinates qk(x), Pk(χ) o n the orbit can be determined unambiguously.

Remark. If polarization satisfies the Pukanszky condition coordinates pk take any
values.

Proof. Functions qk are constants on the fibers (1), therefore Vqk(y) e ©/©>,, and
expressions ad* Vqk(y) y are correctly determined for any y e (x + ψ^nG x. On
each fiber (1) ad*Fgfe(y) y is constant,

ad* Vq\y) y = ad* Vq\x) x (4)
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for y e (x + ^P x)nG x. Indeed, for any ξ e ©

<Άd*Vqk(y).y,ξ)

<zd*ξ y,Vq\y)y=-jt
t = 0

dtt=0

The conditions {q\qj} = 0 follow from isotropy of the fibers (1) since
Vqk(x) E φ/(5x. Accounting for these relations, we have the equivalence

{pi9 qj} = δ{ o — (x) = ad* Vq\x) x,

δί = <x, lVPi(x), PV(x)]> = <ad* Vq\x) x, VPi(x)) , (5)

0 = <χ, [_Vq\x\ Vqj{x)J) = <ad* Vq\x) x, P«£(x)> .

Recall that each fiber (1) is an open submanifold in the plane Ad* x + (Ad^ φ ) 1

and thus relations (3) determine, by virtue of (4) and (5), such coordinates qk, pk on
that {pi, qj} = δ{9 coordinates pt being affme on each fiber.

Let {ph Pj} = ωij9 then

ω = dpk A dqk -f ωtjdqι A dqj

and relations -— ω^ = 0 follow from closeness of the form ω. The isotropy of

submanifold Q implies that ω^dq1 A dqj = ω\Q = 0 or col7(g) = 0, hence the relations

Remark. One can sometimes reject the isotropy of submanifold (λ In this case
coordinates qk, pk defined from relation (3) satisfy the conditions

{q\ qj} = 0 , {pb qj} = δ{, {pi9 pj} = ωtJ{q),

and the symplectic Kirillov form ω is

ω = dpk A dqk + ωJcfidq1 A dqj.

Suppose, polarization S$ satisfies the Pukanszky condition (2). Then there
exists the smooth cross section

of the affme lagrangian fiber bundle

Gx ^G/P, (6)

which follows from contractability of the fiber x + ^J1 [12]. Let Q be an image of
cross section s in G x. Relation (3) gives the diffeomorphism

σ:T*β-+G xc(5*
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of the cotangent fiber bundle T*ζ) on the Ad*-orbit G x9 which is affine on each
fiber and independent of the choice of coordinate qk. Indeed, let q^qX^). Then

dqι= -^-rdqj and p;= ^r-^Pt on the manifold T*Q and Vqι= -r-^ Vqj on the orbit
oqJ J oqJ oqJ

G x. Hence

q+pkad*Vqk - q = q+pkad*Vqk • q.

Now, from the remark to the lemma it follows

Theorem. Let the orbit G x to permit polarization ψ satisfying the Pukanszky
condition (2) and QcG xbea global cross section of the fiber bundle (6). Denote
the Kirillov form on the orbit G x through ω and the standard symplectic form of
the cotangent fiber bundle π: T*Q^>Q through Ω. Then relation (3) determines the
symplectic diffeomorphism

affine on each fiber and independent of the choice of coordinates qk on submanifold

Q

Consequence. In order for the orbit G x to permit introducing the structure of a
G-invariant cotangent fiber bundle in a way that inclusion G x C (5* would be
affine on each fiber, it is necessary and sufficient for the orbit G x to possess a
polarization satisfying the Pukanszky condition and for the Kirillov form to be
exact.

Proof Necessity. The existence of polarization follows from G-invariance of the
fiber bundle (1). The other conditions are evident.

Sufficiency. Let us construct the lagrangian cross section. From the exactness
of the Kirillov form there follows the existence of such a form S on Q that ω\Q = dS,
and the theorem gives the equality

where Θ is the standard 1-form of the cotangent fiber bundle, Θ = pkdqk. Evidently,
the equation # + π*9 = 0 gives the required lagrangian cross section.

Remark. Novikov and Schmeltzer [6] have constructed the global (ambiguous)
"almost canonical" coordinates on orbits of the coadjoint representation of three-
dimensional Euclidean space motion groups diffeomorphic to T*S2, with
nonexact symplectic form Ω + π*(ω\S2).

Construction of coordinates on the orbit G x of coadjoint representation can
be simplified if there exists such a closed subgroup K of group G, that G = K- P
and KnPcGx (P is a subgroup corresponding to polarization 9β). Then the
submanifold K x can be taken as cross section Q and in order for the cross section
to be lagrangian it is necessary and sufficient that the Lie subalgebra ft
corresponding to subgroup K would be isotropic relative to the form <x, [.,.]). If,
in addition, polarization ψ satisfies the Pukanszky condition, we obtain the
structure of the cotangent fiber bundle T*(K x) (with standard symplectic form)
on the orbit G x.



Canonical Coordinates on Coadjoint Orbits of Lie Groups 557

2. Polarization of Graded Lie Algebras

Construction of polarization of the coadjoint representation orbit, if any, may be a
very complicated problem even in the cases when a definite algorithm exists. A very
simple construction may be indicated for special orbits of Z+"graded Lie algebras.

Let© = Σ ©k be a Z+-graded Lie algebra and ©* = Σ ©*& be a dual space

with dual grading ©*fc = (Σ ©A1,

Hereafter we shall consider special orbits containing the elements xe©* f c .
Evidently, isotropy subalgebras for such elements are graded,

©*= Σ ® x > ί, ©,,, = (5,0©,,

and at even k subspace ©k / 2 is orthogonal to its complement Σ ©i relative to the
form <x, [.,.]>. /Φfe/2

Theorem. © = Σ ©i^ theΈ+-graded Lie algebra and x e ©t Λ , /c>0. Suppose that

at even k there exists a (ΰx0-invariant maximal subspace ©£/2 of space ©fe/2 ίsotropic
relative to the form <x, [., .]>; at odd k dΰ'k/2 = 0.

^ + Σ ©j (7)
i<k/2 j>k/2

is the polarization relative to x satisfying the Pukanszky condition and at odd k for
any ξeS$

A d * x p r x = x + a d * £ . x . (8)

Remarks. 1. If x e ©$, then © + = Σ ©i C ©x? and in order for polarization in ©
i>0

relative to x to exist, it is necessary and sufficient for polarization ?β0 in © 0 relative
to x\(δ0 to exist. ^5n©0 can be taken as φ o and ^ 0 + © + as ^ . The Pukanszky
conditions for φ and ^β0 fulfilled or not simultaneously.

2. It is evident that the dimension of the orbit G x is

2dim©fc/2/©£/2 + 2 Σ dimad*©, x .

3. If Lie algebra is completely solvable and its graduation agrees with filtration
of the algebra with its derivative series, polarization (7) can be constructed by
means of the Vergne construction described in [10,11].

Proof Let k be odd. Then

©= Σ <5ί+ Σ
i<k/2 j>k/2
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is the sum of two isotropic subspaces and Σ © is a n ideal in ©, hence
j>k/2

y = <Sxn Σ ©,+ Σ ©
i<fc/2 j>k/2

is a subalgebra and, consequently, polarization. Besides, for ξ e ?β

(adf)2 x e Σ ©?+;-* = 0,
Uj>k/2

and hence Eq. (8) and the Pukanszky condition follow.
2. Let k be even and ©£/2 be an isotropic subspace in © k / 2 complementary to

©k/2? ©k/2 = ®k/2 + ®k/2 Then © is the sum of two isotropic subspaces,

© = / Σ <&i+(δif2) + (<&'kf2 + Σ ©A.

By assumption [©*,()> ©ίί/2]C©fc/2 Consequently

/ + Σ ®j
i<k/2 j>k/2

is the polarization. Taking into account the grading of polarization, φ = Σ %>we

get

Φx= Σ ^ , ^ = ad*%_ rx,

and for the subspace 91 = Σ P̂i?
i>Jt/2

Ade*xp9! x = x+ Σ φ,1,
i<fc/2

since for ξ e Σ ©ί? Ad* * x = x + ad* ξ x. Let ξ e ̂ / 2 , then
ί>Jfe/2

and there exists such η(ξ)e9βk that ad*^(ξ) x = ^ ( a d * ^ ) 2 x. Consequently

Ad*xp(<s_^}) x = x

Finally we get: for ξ e %/2 and ζ e Σ %,
i>kjl

hence the Pukanszky condition follows.
The theorem conditions are fulfilled for the Borel subalgebras of semisimple

split Lie algebras. Indeed, the following holds

Proposition. Let © = Σ©k be a split semisimple Lie algebra graded by the height of
roots. Then for any fe, subspace ©k can be decomposed into a linear sum of
commutative subalgebras ©j> and ©£, ®fc = ©£ + ©£ spanned on the root subspaces
and consequently (50-invarίant.

This proposition can be proved by accounting for all the root systems.
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3. The van Moerbeke Theorem

In this section we will construct canonical coordinates and Hamiltonian systems
on some orbits of coadjoint representation of Borel subalgebras of the semisimple
Lie algebras. The construction of Hamiltonian systems with the set of the first
integrals in involution is based on the van Moerbeke theorem [1].

Recall first some facts on semisimple Lie algebras [13]. Let © be a Lie algebra.
The form

Oc,j/) = tr(ad:x ad};) (9)

on © is called the Killing form; Lie algebra © is semisimple if its Killing form is
nondegenerate. We shall consider split semisimple Lie algebras. For them there is
the decomposition

(10)

connected with the root system. Subalgebra ©° (the maximal commutative
subalgebra since the operators ad x are semisimple for all of its elements x) is the
split Cartan subalgebra, its dimension is called rank rfc© of algebra ©.

The Lie algebra © is completely determined by its system of roots zl —by the set
of nonzero linear functionals α on the Cartan subalgebra ©°, such that

[ft,x] = <α,ft>x (11)

for any he©° and any xe©α, where ©α is the root subspace - the nonzero
subspace of all elements xe© satisfying relation (11). Let us mention the
properties of the root system A

[©«, ©'] = ©«+' (12)

if α, /?,α + /JeJ;0 + [©a, © ~a] C ©° if a e A the dimension of each root subspace ©α

is equal to 1, dim ©α = 1. The root system can be represented as a union of positive
A+ and negative A ~ roots, A=A + uA~, and A~ = —A+; in the set of positive roots
A + one can choose the basis Π = {αl5..., αr}, r = r/c©, from simple roots αt since any
root OLGA± can be unambiguously expanded over simple roots with integer
coefficients, positive or negative simultaneously,

miGΈ+. (13)

This Killing form (9) restricted on ©° is nondegenerate, (®α, ©*) = (
hence (®α, ©~α)Φ0 for ace A. There is a classification for semisimple Lie algebras
[13]. Let us finally define decomposition (10): subspaces

© ± = Σ ©α are nilpotent subalgebras spanned on the root subspaces correspond-

ing to positive and negative roots. The solvable subalgebras ©+ =©° + © ± are
called the Borel ones. Let us determine the height |α| = ± Σ m i f°r anY r o ° t oc e zl±.
Integer numbers m{ are coefficients from expression (13), |α| > 0, if α e A + and |α| < 0
if α e A ~. It is seen from relations (11) and (12) that the height of the root gives in
algebra © the grading
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where © 0 = ©° and ©fc = Σ ©α at fcφO; the Killing form gives nondegenerate
|α|=fc

pairing of subspaces ©fc and ©_fe.
There exists an involutive antiautomorphism τ of algebra © such that

τ © α = © ~α, algebra © is represented as the sum © = © s + ©α of subspace ©s, such
that τ |© s = l and subalgebras ©α such that τ | © α = — 1 which are orthogonal,
(® s ,© a ) = 0.

Evidently, polynomials Ik(x) = tr(ad x)k are invariants of adjoint representa-
tion which is equivalent to the coadjoint one as a consequence of nondegeneracy
of the Killing form. According to the Chevalley theorem, there are exactly r
independent polynomials, r = rkdΰ, in algebra /(©) of invariant polynomials.

Example. The Lie algebra © = d(w,R) of matrices nxn over R with nonzero
trace.

The Cartan subalgebra ©° is the subalgebra of diagonal matrices, r/c© = n -1.
The root system: Δ + = {ccu} and A " = {αj7}, 1 ̂  / <j <; n, where <αem, h} = hee - hmm,
/xe©°, αΛ = α fc>Jk+1, lrg/c<n are simple roots; the height |αβ m | = m —/. The root
space ©α, α = α£j is one-dimensional subspace of the matrices x all the matrix
elements xem of which, except for xij9 are zero. Subalgebras ©+(©±) are
subalgebras of (exactly) upper-triangular and lower-triangular matrices. ©fc is the
subspace of the matrices, all the elements of which, except for those on the kth

diagonal, are zero. The Killing form (x,y) = 2n-tr(xy). The involutive antiauto-
morphism τ is the matrix transposition, © s is the space of symmetric matrices and
©α is the algebra of skew-symmetric matrices. Ik(x) = tr (xfe), 2^k^n generate the
algebra of invariant polynomials /(©).

Let us consider the Borel subalgebra ©_ and identify the dual space ©* with
the subalgebra ©+ by means of the Killing form. Then the coadjoint representa-
tion is given by

where x e © + and £e©_.
Recall that canonical equations on ©* have the form

where H is Hamiltonian on ©*. For ©* = © + we get

x=-lVH(x),x]+.

Let x = x+=x° + x+, then x + τ(x+)e© s, and determine the Hamiltonian

for / el(©) on the space © + .

It follows from the Kostant-Symes theorem [2,4]

Theorem (P. van Moerbeke [1]).

1. Canonical system

(14)
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is equivalent to the Lax equation

L=[_M,L], (15)

where L=x + τ(x+) and M=VI(L)+ - VI(L) .
2. Functions Hj, Je/(©) are the first integrals of the system (14) being

pairwise in involution.
3. Statements 1 and 2 hold on subspace 3[R-Ln(5+ for arbitrary ideal SDΐ in ©_,

which is natural to identify with (©_/9JΪ)*.

Remark. Goodman and Wallach [8] have shown that if integrals Hj are restricted
on orbit G_ x+ of coadjoint representation, the number of functionally independ-
ent integrals is equal to the dimension of projection of the orbit on ©° parallel to
© + .

Let us present the proof of the theorem following [1],

I. Expand L and VI according to (10),

L=L~ +L° + L+ , VI=VΓ + F/° + VI+ .

Then for any xe© + , L=x + τ(x+),

Hence

Since / is invariant of the adjoint representation,

] = 0 or

Making use of symmetry [ VI ~ — VI+, L], we get the first statement of the theorem,
since

2. Let J\J"eI(($>). Then

{HJ.9HJ,.}(X) = (X9IVHJ.9VHJ.. ])

= ([x, VHrl VHr,) = (lL,MΊ + , VHr)

where the last equality follows by symmetry [ί^Af] and VJ"{L), M'=VJ'+

- VJ'-, and the last term is (M\ \yj\L\L\).
3. The in variance of subspace 9JΪ1 relative to the action of algebra ©_ implies

the last statement of the theorem.

4. Examples. Toda Systems

This section is a direct continuation of the preceding one. We will calculate the
series of Hamiltonian systems on orbits of the coadjoint representation of Borel
subalgebras of the split simple Lie algebras. Let us make some preliminary
remarks.
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We shall consider only such orbits of the Borel subalgebra © _ which are not
orbits of some Borel subalgebra 21 _, 21 φ ©, with the natural identification. Such
orbits will be called eigenorbits. As was shown by Goodman and Wallach [8] these
are those and only those orbits on which the number of independent functions in
involution of the form Hk(x) = tr(adL)k (from the van Moerbeke theorem) is
maximal and equal to the rank of algebra ©. For simplicity we will assume that the
orbits cross only one root subspace ©α, α e A +, and will call such orbits elementary.
The simple criterion of the eigenvalue of an elementary orbit which crosses ©α is
contained in the paper by Goodman and Wallach [8]: in expansion oc = Σmkotk

over simple roots αfe, lfg/c^r/c©, all mfe>0.
Examples of elementary eigenorbits are given by maximal roots for A- and C-

series (and only for them), the dimension of orbit being equal to 2r/c© and the
Hamiltonian systems according to the van Moerbeke theorem being completely
integrable. Eigenorbits of dimension 2r/c© according to Goodman and Wallach
[8] will be called Toda orbits.

Goodman and Wallach [8] have found a method of getting elementary Toda
orbits: in Lie algebras of type A, D, £, all roots of which are of an equal length, the
Toda orbit is generated by the root α = α 1 + α 2 + ... + αr, while in the other Lie
algebras of type B, C, G2, F4 the Toda orbits are generated by the (short) root
αs = α i + α2 + + αr> a n d by the (long) root

where the mapping v :©$->©0, so that (ot,h) = 2 ' /ze©0, establishes the
\0C, CC)

duality between roots and coroots; the inverse mapping is denoted by the same
symbol. The Goodman-Wallach mechanism has exactly one exclusion: in the
exceptional Lie algebra G2, except for the roots as = ocί + α2 and oce = 3(x1 + α2 the
Toda orbit is generated by the root 2ocί + α2=^(α s + αe) (in all the other algebras
Kαs + oίe) either coincides with αs = αe or is not a root). There is the following

Proposition. ©_ is the Borel subalgebra of the simple algebra ©. The number of
elementary Toda orbits of the algebra ©_ is equal to the doubled multiplicity of
higher coupling within the Dynkίn scheme of a root system of Lie algebra ©.

Let us make a calculation in the remaining part of this section. Using the
theorem of Sect. 1 on elementary Toda orbits let us construct canonical
coordinates; sometimes we shall use polarizations different from those constructed
in the theorem of Sect. 2 to make Hamiltonians more natural.

We will fix some notations. For the root vector xa from ©α, α e Δ +, denote by ̂ 3
the polarization in ©_ relative to xa (it should be emphasized that for all
polarizations the Pukanszky condition will be fulfilled), by φ ' the (commutative)
subalgebra in 3̂ supplementary to the isotropy subalgebra of the element xα, by Λ
the subalgebra in ©_ isotropic relative to (xα, [.,.]) supplementary to the
polarization ^3, and by Q = expΛ xa the lagrangian section of the orbit G_ xα as a
lagrangian bundle given by the polarization φ. Here R + stands for the set of
positive real numbers; indices (ij), provided summation limits are not indicated,
take the values from 1 to r. The notations of roots and root vectors are taken from
Bourbaki [13,14].

Let us consider the parametrization of orbits.
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Series A. The root cc1 + ... + ar corresponds to the root vector Eltr+1. As an
essential part ψ of polarization ^ we take the commutative ideal of dimension r in
the algebra (5 _

Polarization ?β is supplemented by the isotropic subalgebra

ft = R ( E l f l - E r + l i Γ + 1 ) + Σ RE*,i
t = 2

Let us calculate the lagrangian section Q = expft-£ l j r + 1

expR.(EiΛ-Er+Ur+ι)-EUr+1=R+EUr+1,

k = 2

r

k = 2

Parametrize this section

i ι ι'r

and determine the gradients

the latter being determined correctly since they belong to the ideal Sfi' and thus
belong to polarization relative to any element q of section Q. Coordinates qt are
really constant on fibers of the bundle given by polarization Sβ. We find the element
of the orbit

itr+i+ Σ PflilEr+1J,Eitr+1'], qx>0

or
XA=ΣiiEi,r+l- Σ QiPjEij + ΣqiPiEr+Lr+l, 9 l > 0 . (16)

Series C. For the short root αs = α1 + .. .+α Γ (the root vector £ 1 ( _ r

calculating analogously to the preceding procedure, we obtain

~ Σ
2

(17)

- ^ Σ
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The manifold Q is reconstructed by the element of orbit xc when all pt = 0.
The long root aι = 2(x1 +... + 2α,._1 +ar corresponds to the root vector Elt-l9

Let us parametrize the lagrangian section Q:

Summing up three nonzero lines we get the element of section

Σ(Eq=-7=Σ<liqj(Ei,-j + Eι_i),

2]/2 u

Determine gradients

/̂ belonging to ideal ΣR(JE_f _,. + £__,-f) and belonging to polarization Sβ\ and

obtain the element of orbit

2 | / 2 i,7
.-d ~\ Σ wβ>u}-E-}.-l)> «i>0. (18)

Note that the gradients Vqt have singularities but the result obtained is
nevertheless correct. One should choose gradients lying in φ', then calculations
would be a bit longer.

Series B. For the short root ocs = ocί +.. . +α r (the root vector 2EίtO + Eoy.

(19)

1 - ,Γ Z7 Λ

qiPj{Ei j — h-j^i), qx > 0.
ϊ7ϊΣ«<(2E< > 0 + E0 >_ t) Σ
10 z î J
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For the long root ae = aί +... + α r _ 1 + 2αr (the root vector Eγ_r — Eγ_γ,

Λ = R(£ 0 ,.

I ' ' " 1

r-ί

(20)

l

~ϊ Σ

In addition to Toda orbits let us calculate the orbit passing through vector
£ l s _ 2 —£ 2,-i of the maximal root

_1 > o + £o.i)+ Σ Σ R(£_ m , l k -£_ l k > J ,

)+ Σ Σ
m = l k = 3

1,1+ 2̂, 2 -£-1,-1-£-2, -2)

^i,i-£2,2-£-i,-1+^-2,-2)

(21)

Σ

\ Σ

+ Σ (qiqj-<li<ld

+ ̂  Σ
2k=3

D. The Toda orbit for the root αx +.. . + αr (the root vector £ l f l _r — Er_lΛ

is
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φ = K{Er,r-l-El-r.-r)+ Σ
i Φ r - 1

Λ=R(E_ r i l-E-1 > r)+ Σ uL
i Φ r - 1

*D=~ Σ ίi(£i,i-Γ-JBr-i>-i)+7Γίr-i(£Γ-i,Γ-£-r,l-r)
-ώίΦr-1 ^

^ i l . r - l - E l - r . l - Γ ) ( 2 2 )

Z ί Φ ι - 1

The orbit passing through the root vector £ l f _ 2 — £2,-1 °f ^ maximal root
α 1 +2α 2 + . . .+2α r _ 2 + ocr_1 + αr is obtained from parametrization of the corre-
sponding orbit of the Lie algebra of series B at qo = 0, po = 0.

Let us consider the Hamiltonians

HΛ(x)=$(L9 L), HB(C9D)(x) = (L, L)

on the Toda orbits (16)-(20), (22), and recall that L = x + τ(x+). Since
(L, L) = (L°, L°) + 2(L~, L+), then to calculate (L, ί) it suffices to sum up the matrix
element squares of the element x of the orbit: diagonal - with coefficient 1,
nondiagonal - with coefficient 2. Omitting trivial calculations, we obtain the
Hamiltonians

HA= Σ qfp]+ Σ

HB.,= Σ qfpj+ Σ qi
ί^j i<j

i - l

C,S= Σ <IΪP]+ Σ MjPiPj+ Σ

p
2
 + Σ qfp

2
+q

2
p
2
-1 - q

2
- iP

2
 -q

r
~ iq

r
p
r
 - iP

r
+q

2

i<j

All of these systems are completely integrable. These Hamiltonians can be
considered not on one orbit at qt > 0, but on the closure of both orbits, qγ > 0 and
qx<0, and we obtain the Hamiltonian systems in R2 r. The systems can be
naturally interpreted as oscillators on Riemannian manifolds (kinetic energy is
positively determined at <h+0).



Canonical Coordinates on Coadjoint Orbits of Lie Groups 567

Let us present the Hamiltonian for the orbit (21) passing through the root space
of the maximal root in orthogonal series B and D (in HD, qo = Po = 0),

1 r

HB(D) max = 2 Σ (qkPk+q'kPd2 + Σ ^

5f 2 " 2
• ̂  ( Po Σ <?/c + 2qopo Σ

Z \ fc=3 k=3

1/
T ίfoPo + Σ ( »
4 V fc=3

*?3

Σ 2 \ / 2 i v » fΆ

-41 Σ V

Let us give the results of the calculations for exceptional algebras. All the
calculations were made in the Chevalley basis [13] up to the signs of structure
constants N^β, α + βφO, and this was enough to calculate the Hamiltonians,

P

HG2i2Λ) = qM + «?) + 4^?(p^ + q2

2) + 3^r|(p| + q2

2),

3

4 , / = Σ ^?

i = 1

+ 2

3 3

Σ «?PJ+ Σ qfpl+ Σ
i<J^3 i = l i = l

9?

3 1 1
jΣqfpf-^q2

ωpi + τ) Σ qiqjPiPj
T i Z Z ω<ί<j

5

- Σ qiqsPiP8+qlp28+ Σ qfpj
i = ω+l i<j<8

ί = 2 qω i=ί ί=2

where for E6 (E79 E8) ω = 3, qt=q2 = O (ω = 29 qί=0; ω = ί9 respectively).
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