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Abstract. The critical point limit law (scaling limit) of the suitably renoπnalized
energy variable is explicitly calculated for the two-dimensional nearest-
neighbour Ising cylinder with free edges. It is shown that the renormalization
factor has to behave as (2M2ΛΠnΛ/)1/2, where 2M denotes the number of
rows and 2N the number of columns. By first taking the limit M -» oo and
then N -> oo, the limit law is proven to be Gaussian.

1. Introduction

Let us consider d-dimensional Ising ferromagnets with pairwise interactions.
The Gibbs measure in a finite volume A c Zd for a given configuration {σΛ} at
temperature β~* and external field h will be taken as

\βΣ V^ + ̂ ΣXJΠW (i)
v, iJeΛ ίeA ) keΛ

^δ(σ-l) + δ(σ+l)l (2)

where J.. ̂  0 is such that the thermodynamic limit exists and ZA(β, βh) is the
partition function normalizing the Gibbs measure. Equation (1) defines the joint
probability distribution of the | A \ spins in the block A as usual for rf-dimensional
Ising models.

Let us define the random variables magnetization MΛ and energy EΛ for a
spin block A by

EΛ=- Σ VΛ <4>
iJeΛ

where 5. denotes the random variable associated to the Ith spin.
Up to this point, every concept has been introduced for one block spin A c Zd.

One may then ask the following question: what happens if one considers block
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spin transformations like unions? This problem is not yet well formulated since
one has not stipulated the objects on which the block spin transformations
operate. In the probabilistic approach to the theory of critical phenomena, one is
concerned with the way the block spin transformations act on probability distri-
butions (e.g. that of MΛ or EΛ) instead of how they act on the Hamiltonians
themselves as is done in the renormalization group theory [1-10]. More precisely,
one is mostly concerned with the fixed points of these transformations and their
domains of attraction. This is a well defined mathematical problem since it implies
that one has to find limit theorems for suitably renormalized sums of dependent
random variables.

A few months ago, Newman achieved a great progress [11] for regions in the
(β, h) plane away from the critical point (βc, 0): for models which satisfy the FKG
inequalities he proved that the suitably renormalized block probability
distributions for both the magnetization and energy converge weakly to a Gaussian
distribution when the volume of the block tends to infinity. At the critical point
however, the situation still remains unclear.

At this interesting point, some rigorous examples have been studied for the
magnetization variable [12-19] and the corresponding volume variable in fluid
systems [20]; but until now no such rigorous result has been obtained for the
energy variable. This is precisely the aim of this paper. The interest of such kind of
research has already been pointed out in, e.g. [9].

In the following, we study the critical point limit law (scaling limit) of the
suitably renormalized energy variable for the two-dimensional Ising cylinder
with free edges.

2. The Two-Dimensional Ising Cylinder with Free Edges

Consider a cylinder with 2M rows and 2N columns at each vertex of which a spin
variable Stj is associated (1 ̂  i ̂  2M, 1^7^ 2N). S.j takes the values σtj = ± 1
with equal probabilities. For a given configuration, the interaction energy will be
taken as (J > 0)

2M-1 2N 2M 2N

<?2M x 2*( K )) = - J Σ Σ σjkσ

j+1 k - Σ Σ σA+1 <5)
j = i fc = i j = i fc = i

with cyclic boundary conditions of the cylinder. It is well known that such a
system exhibits a critical point at the thermodynamic limit when sinh 2K = 1 and
h = 0. In order to study the probability distribution of the energy at this particular
point, we first establish a useful (see below) connection between the moment
generating function and the partition function.

Let E2M x 2N denote the energy random variable associated to (5). Since this
variable relates to the system as a whole, it is easily seen that the moment generating
function of this random variable may be written, for any real t < β:

<exp(ί E2M x 2N) y2Mx2N = Z2M x 2N(K - U)/Z2M x 2N(K\ (6)

where the mean value <( ) 2M x 2N has to be taken with respect to the probability
distribution of E2Mx2N or, equivalently, with respect to the finite Gibbs state
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induced by (5); K = βJ and Z2Mx 2N denotes the partition function of the system.
Therefore, the knowledge of the partition function implies that of the moment

generating function of E2Mx2N. Using the transfer matrix technique [14,21],
one obtains the following exact result

Z2M x 2N(K) = (2 sinh 2K)2MN(2 cosh K)~2N

2 'x Π {exp (2MγJ cos2 [<5'(ω)/2] + exp( - 2MyJ sin2 [δ'(ω)/2] },
ω > 0

(7)

where the product has to be taken over the values ω = π(2n — l)/2N with n = 1,
2, ... , TV; yω is the Onsager's function which satisfies

cosh yω = coth 2K cosh 2K — cos ω, (8)

and δ'(ω) is defined by

(j* - A)(e{» - B) 1/2 1

(eiω - A-l)(eiω - B~1) (AB)112

with A = coth K exp(2K) and B = tanh K exp(2K).
For convenience, let us now introduce the following:

Lemma. For any ω = π(2n — l)/2N with n= 1, 2, ... , N, one has uniformly with
respect to N :

| (3-4cosω + cos 2ω)- 1 / 2-ω~ 1 ^ cte. (10)

Proof of the Lemma. The only difficulty obviously appears for small values of ω.
Since for such values

(3 - 4 cos ω + cos2 ω)1/2 = ω(l + 0(ω2)),

one gets

(3 — 4 cos ω -h cos2 ω)~ 1/2 — ω~ J = — 0(ω) as ω -> zero. q.e.d.

We may now formulate the result :

Theorem. For the two-dimensional nearest-neighbour Ising cylinder with free
edges, the reduced variable

£ 2 Mx2* = ( £

2 Mx2»-<£2Mx2»>2Mx2»)/(2M2JVlnJV)>/ 2 (11)

at the critical point and for any real t, satisfies:

lim lim <exp(ί£ 2 M x 2 J V)> 2 M x 2 J V = exp(ct2/2), (12)
W-> oo M ->oo

where c is some positive constant.

Proof of the Theorem. Taking the logarithm of the moment generating function of
(11), one obtains the cumulant generating function which admits a Taylor's
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expansion about t = 0 of at least order 3 for any finite M and N. To simplify the
notations, we rewrite (7) as :

In Z2MX 2N(K - tJ) = In Z,(K - tJ) 4 In Z2(K - tJ\ (13)

where

In Z j (X) = 2MΛΓ In (2 sinh 2K) 4 2M £ y ω ,

In Z2(K) = - 2ΛΓ In (2 cosh K) 4
CO

and

/ω - ln[cos2 (<5'(ω)/2) 4- exp( - 4MyJ sin2(<5'(ω)/2)].

Let us consider the first term in the right-hand side of (13):

In Zj(K - tJ) = In Z^K) - tJ\ 4MN coth(2K) 4

-f (l/2)ί2/2 -

where the prime denotes derivation with respect to K. Using (8), one gets

?; = 2cosh(2K)[l -sinh-2(2K)]smh-1 yω

y^ = 4 sinh (2K) [ 1 - sinh ~ 2 (2K) ] sinh ~ l yω + 8 cosh2 (2K) sinh ~ 3 (2K) sinh " l ya

- 2 cosh (2K) [ 1 - sinh ~ 2 (2K) ] sinh " 2 yω cosh yω y^ .

At the critical point K = Kc, one has

sinh(2Kc) - 1,

cosh yω = 2 — cos ω,

sinh yω = 3 — 4 cos ω + cos2 ω.

Therefore,

In Zj(Kc - ίJ) - In Zj^) + 4MN^/2tJ

4 (\/2}t2J2\ - 8MΛΓ 4 32M£(3 - 4 cos ω 4 cos2 ω)"1/2

4

Equivalently, this may also be written as:

In Z1(Kc - tJ) - In Z^K^ - 4MN^/2tJ

= (l/2)ί2J2| - 8M7V 4 32M^[(3 - 4 cos ω 4 cos2 ω)~1/2 - ω~ x]
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Using Lemma 1 and the Schlόmilch-Lemonnier inequalities [22, p. 187], it follows
that the ^-contribution grows like 4MΛΠnJV. This obviously suggests a re-
normalization factor of the form (2M 2N In N)~ 1/2. With such a renormalization
and by first taking the limit M -» oo, one obtains

lim lim (In Z1 [Kc - tJ/(2M2N In
N-» oo M-+ oo

- In tJ(4MN/ln N ) 1 / 2 }

- ct2J\ (14)

where c is some positive constant. That this equality holds for any real ί follows
from the fact that for any t J, there always exists an integer M0 such that

M^M0=>Kc- tJ/(2M2N In JV)1/2 > 0. (15)

Let us now consider the second term in the right-hand side of (13). At the
critical temperature and with the renormalization factor (2M2ΛΠn7V)~1/2, one
has

In Z2\Kc - U/(2M2N In iV)1/2]

- - In (2 cosh [Kc - tJ/(2M2N In JV)1/2] } +

Using (9),/ω may also be written as

fω = In { [1 + exp( - 4MyJ] + [1 - exp( - 4M7J] cos δ'(ω)} - In 2,

where

cos δ'(ω) = \coth(2K) - cosh (2K) cosω]/sinh γω.

For K = Kc- tJ/(2M2N In A01/2, by first taking the limit M -> oo :

Kc-tJ/(2M2NlnN)1

lim = cos δ'(ω) (17)

This follows easily from the continuity with respect to K of cos δ'(ω). Moreover,
since for a fixed ω:

= cosh y -f sinh y ^ inf < cosh y sinhyω

one gets

and, therefore,

lim exp( — 4My
M-^oo

-0. (18)
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Combining Eqs. (16-18), one deduces that

lim (In Z2[Kc - tJ/(2M2NIn Λ/) 1 / 2] - In Z2(Kc)}0. (19)
M->oo

This result holds also for any real ί since there always exists an integer M 0 such
that (15) is valid.

It now suffices to consider simultaneously (14) and (19) to get the announced
result (12).

q.e.d.

We have thus proven that, by first taking the number of rows to be infinite,
the sequence of random variables (E2Mx2N) converges weakly to a Gaussian
variable as M, N -> oo. This shows that Newman's remark [9, following Eq. (2.45)]
on the Gaussian character of the tail of the limit distribution may be extended
to the whole distribution. One recovers the same limit law as in the well known
central limit theorem but, due to the strong dependence of the random variables Stj

at the critical point, one has to choose a renormalization factor of the form
(2M2ΛΠnΛΓ)1/2 which is obviously stronger than the usual one for sums of in-
dependent random variables, i.e. (2M2N)1/2. This last factor is precisely the
appropriate one away from the critical point as may be shown using the same
technique.
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