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Abstract. We consider the integrated density of states (IDS) p^W of random
Hamiltonian Hω = — A + Vω,Vω being a random field on Ud which satisfies a
mixing condition. We prove that the probability of large fluctuations of the finite
volume IDS \Λ\~1p(λ,HΛ(ω)), A <= Ud, around the thermodynamic limit p^(λ) is
bounded from above by exp{ — k\Λ\}, k> 0. In this case p^(λ) can be recovered
from a variational principle. Furthermore we show the existence of a Lifshitz-
type of singularity of p^λ) as λ -> 0 + in the case where Vω is non-negative. More
precisely we prove the following bound: p^(X)^exp( — kλ~d/2) as A->O+/c> 0.
This last result is then discussed in some examples.

Section 1. Introduction

Let Vω(x), xeUd, be a metrically transitive random field on Ud and let Hω be the
(formal) random Hamiltonian Hω= — A + Vω. Under very weak assumptions on
yω (see [11]), Hω is essentially selfadjoint on C%(Md) cz L2{Ud) and it is used to model
physical systems in presence of disorder, e.g. a particle in a crystal with random
impurities. The integrated density of states (IDS) p^/l), λeU, plays an important role
in the physics of such systems. The IDS p^iλ) is defined as follows:

pjλ)= lim —p(λ9HAn(ω)). (1)

Here {Λn}neN is a sequence of hypercubes increasing to Ud, | | denotes the
Lebesgue measure, and p(λ,HΛ(ω)) is the number of eigenvalues less than λ oϊH(ω)
restricted to L2(Λ) with suitable boundary conditions. It can be proved in great
generality that with probability one pj^λ) exists for all λeQ and that it is independent
of ω and of the chosen boundary conditions. Furthermore the measure on U whose
distribution function is p^ has support on the almost surely constant spectrum of
Hω. (See e.g. [1], [10] and references therein.) In the next section we study the large
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fluctuations of the finite volume IDS \Λ\~ * p(λ,H Λ(ω)) around the thermodynamic
limit p^λ). Following a recent method proposed by Ellis [5] we show that under a
mixing condition (^-mixing) the probability of these fluctuations is bounded by
exp( — IAI k) for some positive constant k. This is proved in Theorem 2.

In particular we show that \Λ\~1 p(λ,H Λ(ω)) converge geometrically to p^iλ) as
in the sense that:

for all δ > 0 and n sufficiently large, where M(δ) is a positive constant. If in addition
the random field Vω satisfies a stronger independence assumption than φ-mixing,
the above estimate is shown to be optimal in the limit A j Ud at least for elementary
events of the form:

A typical example in which this independence condition is fulfilled is the Anderson
model: H(ω) = — Δd + Vω on /2(Zd), — Δd being the discrete Laplacian and
{Vω(i)}ίeZd ϋd random variables.

A different problem is the behaviour of p^λ) as λ -• 0 + in the case where Vω is a
non-negative random field satisfying a φ-mixing condition.

In the last section, using an exponential estimate for the probability of large
deviations for weakly dependent random variables proved in Sect. 2 and a rigorous
version of an argument due to Lifshitz [14], we prove an upper bound on p^iλ) of
the form:

Poo(λ)^e-kλ'dl2 (2)

as λ-»0+ for some /c>0.
Under an additional independence assumption we also give a lower bound

of the same type but with a different constant k'. This result is then discussed in
the case when i) Vω is a positive function of a Gaussian random field,
ii) Vω= £ φ^ω.x — ί) with {<Pj(ω)}ίeZd iid random variables with values in

ieZd

l\Lp\ the Banach space of all measurable functions /:Rd-»[R such that:

Σ I ί l / ( * - 0 l p d x | p < + oo, C o being the unit cell in Ud around x = 0. The singular
ieZd C o

behaviour (2), known as the Lifshitz singularity [14], was already proved by means
of Wiener integrals by several authors (see e.g. [6], [16], [17], [18]) for the case in
which Vω(x) = £ φ(x — ̂ (ω)), where φ is a positive function on Ud with sufficient

decay at infinity and {Xi(ω)}ief^ is a realization of the Poisson random field on Ud. In
this case it is even possible to compute exactly

lim -λdl2\nPoo(λ) = K

using the Wiener sausage techniques developed by Donsker and Varadhan [4]. We
also refer to [21] for a discussion of the same problem for the Anderson model. The
reader mainly interested in the Lifshitz exponent may skip Sect. 2 with the exception
of Lemma 2, the proof of which is needed for the proof of Theorem 4.
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Notations and Assumptions. Throughout all this paper A will denote an arbitrary
bounded hypercube in Ud and \Λ\ its Lebesgue measure. On the space L2(Λ) we will
consider the selfadjoint operators with compact resolvent H^,H^ defined as form
sum by:

where — ΔΉ

A, — ΔΏ

A are the Neumann and Dirichlet Laplacian respectively (see e.g.
Reed-Simon IV [19]) and VeLP(Λ), p = 1 if d = 1, p > 1 if d = 2, p = d/2 iϊd ^ 3. We
will denote by {λk(HA)}keN. {λk(HA)}km their eigenvalues (counting multiplicity)
and by p(λ,HN

Λ), p(/l,H^) the positive nondecreasing functions on IR defined by:

and analogously for ρ(λ,HA). Finally we will denote by Co the unit cell in Ud around
x = 0, and by Ct the set C o + i, ieZd.

Now VJx), xeMd, be a measurable random field on ίRd on which we assume:

(A) i) There exists on the probability space (Ω,J%P) a group of measure-
preserving metrically transitive transformations {T f} ie// = Ud or / = Zd, such that
Vω(x + i)=VTιω(x)VxeUd,\/ieL

ii) E{ J \Vω{x)\pdx] < + o o , where /?>max(2,^/2) and E{ } denotes the
Co

expectation with respect to the measure P.

iii) Let V~(x) = min(0, Vω(x))\ then J | V~{x)\qdx ^ C < + oo for some
ct

q > max(2, d/2) and a positive constant C independent of ieZd and ωeΩ.
(B) For any ΛaUd let Γ^ be the σ-algebra generated by Vω{x),xeΛ, and let

f,g be two arbitrary random variables on Ω such that:

0 I0loo< + oo
ii) g is ΣΛί-measurable, / is ΣΛl-measurable,

where Λί,Λ2 are bounded subsets of Ud with ΛinΛ2=φ. Then:

\E{f-g} -E{f)E{g)\£\g\nE{\f\}φ{d{Λl9Λ2))

with φ(x)-*0 as x ^ + oo. Here d(ΛliΛ2) denotes the Euclidean distance between
Λ1 and /t 2 .

It is known (see e.g. Billingsley [3]) that (B) holds if the random field Vω satisfies a
φ-mixing condition. Let now HA(ω) = - ΔD

Λ + Vω and HA(ω) = - ΔN

Λ + Vω. Using
(A) it is possible to prove (see e.g. [10]) that the following limits exist for almost all ω
and all λeQ:

lim - — p μ , H 5 » ) = p o o ( λ ) = lim ~--p(λ,HN

Λn(ω)\ (3)

where {Λn}ne^ is a sequence of cubes increasing to Ud and p^{λ) is a nonrandom,
nondecreasing function on U. Furthermore for any bounded cube A a Ud and any
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λeU p^λ) satisfies:

\A\~ιE{p(λ,H^(ω))} ^ Poo(λ) ^ \A\~ιE{p(λ,HN

Λ(ω))}. (4)

The function p^W is called the integrated density of states (IDS) for the selfadjoint
operator Hω = — Δ + Vω. Finally we define the positive measures on IRμ^(ω), μ^(ω),
μ^ whose distribution functions are \A\~ιρ(λ,HD

Λ(ω)), \A\~ιp(λ,HN

Λ(ω)) and
pjiλ) respectively.

Remark L It follows from (A) that:

i) the measures μD

Λ(ω), μN

Λ(ω) are locally bounded uniformly in ω and in A ^Co.

ii) There exists an a0, + oo > a0 > — oo, such that μ^(ω) = μN

Λ(ω) = 0 on ( — oo,

a0) for a.e. ωeΩ and A=> Co.

Section 2. A Large Deviation Result

In this section we examine how the limit (3) is attained in that we provide an upper
bound on the probability of large fluctuations of the measure μ^(ω) around the
thermodynamic limit μ^. In order to simplify the discussion we restrict both μ^(ω)
and μ^ to a bounded interval \_ao,b~\ where a0 is defined in Remark 1 and b > a0 is a

b b

continuity point of p^(λ). With this choice J f(λ)dμD

Λ(ω,λ) -> J f(λ)dμaQ{λ\ as A ] Ud

for any continuous function / on [flo,&]. For notational convenience we denote
μ^(ω)|[αo b] again by μ%o) and analogously for μ^. By Remark 1 for any ωeΩ and
any A => C0,μ^(ω)andμ0 0 are elements ofM^ J, the space ofpositiveBorel measures
on [ί?0,fc] with total mass less than a sufficiently large constant k. We equip M^k

h

with the weak-*-topology and define for a measurable set A c M^k

b:

PΛ(A) = P({ω;μD

Λ(ω)eA}). (5)

It is not difficult to show that the set appearing in the right hand side of (5) is
measurable (see for instance [8]), so that PΛ is well defined. Let now C( [a0, fc]) be the
space of real continuous functions on [flo,£?] and G + (G_)^ C([aQ,b~\) be the set of
nondecreasing, nonpositive (nonincreasing, nonnegative) real continuous functions
on [α0, b~\. To study the behaviour in A of the measure PΛ we need the following two
results:

Lemma 1. Assume that the function φ in Assumption (B) satisfies: φ(x)S
exp( — x(d + ε )), ε > 0, for all sufficiently large x. (Here d denotes the dimension of
Ud.) Let {An}neM be a sequence of cubes of size n centered at x=0. Then for
any geG_ (respectively G + ) :

F(g) = lim IΛJ"1 ln£{exp(<0,μ^(ω)>|ylj)}
/j-> + oo

exists and it is a convex function onG _ (respectively G+). The symbol < , ) denotes the
duality between C([ao,b~\) and M^o'

k

b.
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Proof. Once the existence of the limit is proved convexity follows from the Holder
inequality. Let us prove existence for geG + . The case geG_ is similar. Let for any

(6)

Using the monotonicity in A of the eigenvalues λk{HD

Λ{ω)) of HΏ

Λ(ω) (see e.g.

[19]):

λk(HD

Λ(ω)) ^ λk(HD

Λ,(ω)) if A a Λ, (7)

we have:

(8)

Furthermore using (B) if Λ1 and A2 are two disjoint cubes at distance d(A1,A2) = Ro,
one has:

FAι uΛ2(g) ^ FΛι(g) (FΛ2(g) + exp(|0|TOfc|yl2|)φ(Λo)). (9)

Using now the assumption φ(R0)Sexp( — RQ+E)) for Ro sufficiently large and
the same type of arguments used in satistical mechanics to prove the existence of the
entropy for tempered potentials (see e.g. [22]), we get the statement. •

Lemma 2. Let Vω satisfy (A) and (B) and letforfeG+vG_, Yn(ω) = </,μ f i

Then Yn(ω) converge geometrically as rc-> + oo to (fμ^ ) , i.e. for all δ > 0 and all
sufficiently large n:

P(\Yn(ω) -(fμΰΰ}\>δ)^ exp( - \An\M{δ)\

where M(δ) > 0.

Proof Assume for definiteness feG+. Fix δ > 0, and let n and n0 be such that:

i ) £ { y j ^ < / , A l o o > + δ/2>

ii) n/n0 is even.

We then divide the cube An in {n/no)
d subcubes A^. Using (7), the assumption feG+

and the Chebyshev inequality for the exponential function, we get for any η > 0:

(10)

where Y^ω) = </,μ^ω(ω)>. To estimate the expectation on the right hand side of
(10), we first rearrange the product as:

= Π exp(Y;jΛ» Π

where i1=l...n/n0 labels from the left to the right the rows of cubes A{^o

perpendicular to the first axis, and then apply the Schwartz inequality. By repeating
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this in all directions we obtain:

Π expfYJ/lJ^)}. (11)
ijθdd,j=l...d

Using (B) we can bound the right hand side of (11) by:

{E{Qχp(YJΛJη2d)} + φ(no)exp(\f\mη\ΛJk2*)Yni2n*d. (12)

Let now vno be the measure on U given by vno(A) = P(Yno(ω)eA\ A a measurable

set in IR, and let

Here δ{x^ denotes the Dirac measure centered at x. Then we can rewrite (12) as:

[{μ~vno(x)exp(\ΛJη2dx)}-{\ + <p(«o)}]("/2"< (13)

Inserting (13) in (10) and maximizing with respect to η 2:0 we get:

-' i]. (14)

φK))]}

Let us now choose n so large that we can choose n0 such that:

μvno(x)xί(f,μx>+lδ, (15)

with this choice

is positive since it is the Cramer transform of the measure vno computed in a
point strictly bigger than jdvno{x)x (see e.g. [2]). Furthermore, since
vno -> δ{<fttιoo >} weakly, it is easy to check that /Πo(< /, μ^ > + δ) is bounded away from
zero uniformly in n0. This is turn implies that for large n0 which depends only on δ, ε,
/, the square bracket in (14) is positive, i.e.

M(δ) > 0 for all sufficiently large n.
The case feG_ goes analogously if instead of (7) one uses the inequality:

λk(H»(ω))^λk(HN

Λ(ω))^λk(HN

Λι^Λ2{ω)) for all ΛUΛ2 such that A1KJA2C:A and
Λ\Λ ϊ u A2 has zero Lebesgue measure (see e.g. [19]). Similar arguments also give the
same bound on P{Yn^{f,μ/χ)} — δ) thus concluding the proof of the lemma. D

Using the two Lemmas it is now easy to establish the main result. We first extend
the function F: G+ uG_-+M given by Lemma 1 to all C([ao,bJ) by setting:

F(f)= lim | Λ r
n-+ + oo

Clearly the above limit is well defined and the new function one obtains is convex
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from C([*zo,b]) to U. We then set for eachμeM^ J

λ(μ)= sup {</,μ>-F(/)}. (16)
feC{[ao,b))

The next result tells us that λ(μ) has a unique absolute minimum at μ^, where it is
zero.

Theorem 1. /« ί/ze hypothesis of Lemma 1 the following holds:

i) inf

ii) if μeM+J and μ =£ μ^, then λ(μ) > 0.

Proof. By the Jensen inequality F(f) ̂  </?μ00>V/eC([fl0,fc]); hence /L(μJ^0.
Thus it is sufficient to prove that for any μ λ(μ) ̂  0 and that if μ ηf= μ^, A(μ) > 0.
Clearly

V/eG + uG_.

Furthermore from the geometric convergence of < /, μ^n(ω) > to < /, μ^ > and a result
of Ellis (see Th. II 5.1 of [5]) it follows that sup {t </,//> - F(tf)} ^ 0 ,

equality holds iff </,μ> = </?̂ oo >• The theorem is now proved if we observe that if
μφ μ^ there exists a n / 0 e G + uG_ such that (fo,μ}=/= </o>/Oo) (iff not μ would
coincide with μ^ on the polynomials on [α0, b] and thus by the Weierstrass theorem

•

We can now establish an upper bound on the probability for large fluctuations of
μD

Λ{ω) around μ^.

Theorem 2. Let A c Mfl

+

o;£ b^ c/o5βrf απJ set Λ(A) = inf A(μ). Ttew m ίfce hypothesis of
μeA

Lemma 1, we /zαί e:

lim \ΛnΓ

Proof. Since Mα

+

o;£ is compact in the weak-*-topology, A is compact. Furthermore it
is easily seen that λ(μ) is lower semicontinuous so that inf λ(μ) = λ(μ0) for some

μeA

μoeA. Thus the second part of the theorem follows from Theorem 1. Using now
Chebyshev's inequality we obtain for all feC(\_ao,b~\):

μeA

>-IΛI^ln£{exp«/,^»>Mπ|)}]}. (17)
μeA

Taking the logarithm, dividing by \An\ and passing to the limit n-> + oo we get:

lim \An\-HnPΛn(A)S ~ inf {</,μ> - F(/)} V / G C ( K , 6 ] ) . (18)
«->• + oo μeA
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The result now follows by taking the supremum over / of the right hand side of
(18) and observing that since </,μ> — F(f) is convex in μ and concave in / and
furthermore A is compact:

sup inf{</,μ>-F(/)} = inf sup
/eC([αo,ft]) μeA μsA feC([ao,b})

by a result of Sion [23]. D

A simple application of the above theorem is to compute the probability of
events of the form {ωeΩ;ρ(E,H^{ω)) ^x\A\}. For this we let for any fixed E>a0:

F(t)= lim \Λn\-HnE{exv{tp(E,HD

Λn(ω)} teU.

According to Lemma 1 the above limit exists for all te U and it is a convex function of
t. Let λ(x) = sup {tx — F(t)} be its Legendre transform and domA = {x;λ(x) < + oo}.

Since F(ή is defined for all teU,άomλ is a closed convex set and F(t) = sup{tx

— λ(x)} (see e.g. [20]). It is also not difficult to see that dom λ has nonempty interior
(domA)ίnt. Let now A(x,E) = {μeMΩ

+

o;|;μ([αo,£]) ^ x}. Clearly A(x,E) is compact
in Mα

+

o;£. Hence from the above theorem we get for all xe(dom λ)ini with x ^ p^E):
lim P(ω p(E,H»(ω)) ^x\Λ\)g,- inf λ(μ) ^ inf sup(ty - F(ή) = λ(x), since λ

is a monotone increasing continuous function on [p^ (£), oo) n dom λ (see [20]). It is
an interesting question to decide whether the upper bound provided by Theorem 2 is
optimal in the sense that lim l/\An\lnPΛn(A)^ - A{A). The following theorem

says that this is the case, at least for simple events of the type {
\Λ\x}9 if one assumes a stronger independence property of the random field Vω. In
the following we use without comment the notations F(ή, λ(x) for the functions we
have just defined.

Theorem 3. Assume that the σ-algebras ΣCi>ΣcjiJ€Zd are independent for all i
Fix E>aQ. Then for all xe(dom/l)int with x^p^E):

lim —InP(p(E, HD

Λn(ω)) ^x)=- λ(x).
\Λ\

Proof. We only need to prove a lower bound. Let us fix noeM and let N be the
maximum number of disjoint hypercubes A^ of size nQ strictly contained in An.
Clearly \Λn\~ιN-*\Λno\ as n-> + oo. Then using (7):

(19)

The random variables p(E,HD

ΛA^))\^nQ\~1 a r e n o w independent by assumption so
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that we can apply standard large deviation results (see e.g. Azencott [2]) to get :

lim ^—\nP{p{E,HD

Λ (ω)) ̂  \Λn\x) ^ - supίtx-r^-r In E{exptp(E,HD

Λu(ω))} \

n-+ + ao\Λn\ " teM\ \Λn0\ /

(20)

Since n0 was arbitrary it remains to prove that

λjx) = sup I tx - ~ I n £{exp tp(E,HD

Λ (ω)} 1 = sup(tx - FJή)
teU I \Λno\ "0 J teU

converges to λ(x) for all xe(άomλ)int as n0 -> + oo. Using once again (3) one has by
subadditivity:

lim
o-* +

ii) F(t) = sup F B 0 ( t ) = lim Fno(f).
»o tto~> + oo

Furthermore, taking the Legendre transform:

FJt) = sup{ίx - λjx)} ^ sup{fx -
X X

which implies: F(ή g sup{ίx — λ(x)}.
X

On the other hand:

Fno(t) + λno(x) ^ ίxVί,xEίR, so that, passing to the limit no-> + co: F{t) + λ(x) ^
txVt,xeM. Hence F{ή = sup{ίx — l(x)}. Thus I(x) as the pointwise limit of convex

X

functions is convex with Legendre transform identical to that of λ(x). It follows (see
Rockafeller [20]) that λ(x) = λ(x) for all xE(άomλ)int. Π

Section 3. Lifshitz Singularity

In this section we examine the behaviour of the IDS p^W as λ -> 0 + for non-negative
random potentials Vω (i.e., Vω(x) ^ OVxeίR^ a.e). Our main result is the following:

Theorem 4. Let Vω be an almost surely non-negative random field on Ud which

satisfies (A) and (B). Assume that E{\{xeCoiVω(x) =0}\) = p < 1. Then:

lim -λd/2\npoo{λ)^k>0

for some positive constant k.

Proof. From inequality (4) and the positivity of Vω, we get for any A 3 Co,

pjλ) ^ |ΛΓV(λ, - Δ^Piλ^H^ω)) < λ). (21)

We now choose A = A(λ) to be the cube in Ud centred at x = 0 of size L= L(oc,λ) =
π(l + oc)~1/2λ~1/2, where α is a positive constant, which will be fixed later on. With
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this choice we compute:

λ2(-<(λ)) = λ(l+a). (22)

Furthermore using a lower bound on the lowest eigenvalue of positive selfadjoint
operators due to Thirring [24] (see also [19]) we obtain VΛ. c Ud

x)\2(Vω(x) + ocλr1)}'1h (23)

where φoeL2(Λ) is the normalized ground state wave function of — ΔN

Λ, i.e. φo(x) =
\Λ\~1/2VxeΛ. Equations (22) and (23) together imply:

P(λί(HN

Λ(ω))<λ)^P(\Λ(λ)Γ1λ f dxiVnW + OLλΓ^il + ai)-1). (24)
Λ(λ)

Let now for λo>0, ξ(λ9λ0,ω) = \Λ(λ)Γ1 J dx(Vω(x) + aλo)~1λo.
Λ(λ)

The same argument used in the proof of Lemma 2 shows that the random variable

ξ(λ,λQ,ω) converges geometrically to lim E{ξ(λ9λQ,ω)} = E j dxλo(Vω(x) +
Λ-+0 + CQ

λocή ~1 as λ -• 0+. Furthermore by the dominated convergence theorem E{ J dx(Vω(x) +
Co

λ0oί)~1λ0} converges to oc~ίp as λo-+0 + . These two results together imply that if

(α + I ) " 1 > α"1/?, i e α >p(l ~p)~\ and ϋλ0 is such that E{ j dxλo(Vω(x) + αA0)~1} <
Co

(1 + α) ~1, we can find a constant M(α) greater than zero such that for all sufficiently
small λ:

1 J
Λ(λ)

£ P(ξ(λ,λo,ω) ^ (1 + a)" 1 ) ^ exp(
= exp( - M ( α μ - d / V ( l + oc)~2/d).

The result now follows from (21) observing that by WeyΓs result (see e.g. [19])
\Λ(λ)Γιp{λ, - ΔN

Λ(λ))^ const λdl2. D

As in the case of the large deviations for the IDS p^{λ\ we can strengthen the above
result if we assume that the σ-algebras ΣΛ. generated by disjoint regions At are
independent. For this let y(d) be the lowest eigenvalue of the Dirichlet Laplacian
- ΔD on the unit ball Bx in Ud and let τd = \B11. Then we have:

Theorem 5. In addition to the hypothesis of Theorem 4 assume that the σ-algebras

ΣC.,ΣC. i,jeZd are independent ifiφj. Suppose furthermore that P{ j Vω(x)dx = 0) = p
Co

satisfies: 0 <p < 1. Then:
lim - λ d d 2

Proof From (4) we have:

λ) (25)



Lifshitz Singularity 37

for any A => Co. Let now Bλ be the ball in Ud of radius R(λ) = {y(d)-λ'1 }1/2 and let us
choose in (25) A = A(λ) as the smallest cube which contains Bλ. We denote by
{Ci}^ίλl the smallest collection of cubes Ct which entirely covers Bλ. Then by (7) and
the min-max:

λ1(HD

Λ(λ)(ω))^λ1(Hl(ω))Sλ1(-AD

Bλ)+ J & C | I M * ) I 2 ^ ( * ) , (26)

where φ0eL2(Bλ) is the ground state wave function of Δ%λ. A direct computation
gives λx{ — Aβλ) = /I which together with (26) and (25) implies:

N(λ)

}) (27)

The theorem is now proved, noting that
1 =N(λ)y(d)~d/2λd/2τ;1 converges to one as λ-+0+. •

Examples

We conclude this note with a discussion of the results of Theorems 4 and 5 in two
examples which arise in models of quantum disordered systems.

Example 1. Let ξω(x), xeUd, be a metrically transitive Gaussian random field with
zero mean and unit variance such that

E{ξω(x)ξω{0)} =η{x) is integrate, ηeL}{Ud\

and Riemannian approximate, i.e.

lim £ adη(ai) = j dxη(x).

Let also F:Md-+ U be a locally bounded positive real function on Rd, polynomially
bounded at infinity and set Vω(x) = F{ξω{x)).

It is not difficult to see that the random field Vω satisfies (A) but not in general (B)
(see e.g. [7] for a discussion of the φ-mixing condition for Gaussian processes). In the
next theorem we prove that nevertheless a result similar to Theorem 4 holds.

Theorem 6. Let p^λ) be the IDS arising from the random field Vω. Then:
i) ίf\{x;F(x) = 0}\ = 0

lim -λd l 2\n{(P(Vω(0)<λ s))~ ι}\npjλ)^2ndq~ ιdd l 2{d + 2)" ( d + 2 ) / 2

for all 5 < 1, where q = J dxη(x).

ii) If\{x;F(x) = 0}\>0:

lim -λ" l 2 ln{pjλ)} ^π"'2sup(l + α ) - * 2 ^ ) ^ 1 ,
λ-*0+ <x>0

where G(α) = sup{ί(l + α ) " 1 - lnjexpία"1?)/? + 1 -/?}}, p = P(Vω(0) = 0) > 0.
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Proof. From the proof of Theorem 4 we have:

1 j ^(KJxHodΓ^α+αΓ1), (28)
Λ(λ)

where Λ{λ) is the cube of size L(oc,λ) = π(\ +oc)~1/2λ~1/2 and k a positive constant.
Chebyshev's inequality for the exponential function gives for any t ̂  0;

1 j dxλiVnW + ody^il+ai)-1)
Λ(λ)

dxλt(Vω(x)+ aλ)~1)}. (29)
λ)

We can now use recent decoupling inequalities for stationary Gaussian random
fields with an integrable correlation function [13] to get:

£<exp( j dxίλ(KJx) + αA)- 1)i^£{exp(^λ(l/ω(O) + αλ)- 1 )} β " I | ' 1 ( λ ) l . (30)
I \Λ(λ) J

If we insert (30) in (29) and maximize with respect to ί ̂  0 we obtain:

P(\Λ(λ)\-χ ί ^xA(FJx) + a A ) - 1 ^ ( l + a ) - 1 ) ^ e x p { - | / l ( ^ - 1 G ( a , A ) } , (31)
Λ(λ)

where Gfaλ) = sup{r(l + α ) ~ x - ln{£(exp(ίλ[Kω(0) H-αλ]"1))}}.

For any 5 < 1 the estimate:

£{exp(d(Fω(0) + αλ)" ')} £ exp(ία " 2)P(Fω(0) < λs)

od)" ^ ( ^ ( 0 ) > As) (32)

gives:

G(α, A) ̂  sup {ί(l + α ) " : - In {exp(α " ' t)P(Vω(0) g 2s)

+ exp(tλ(λs + aλ) -1(\ - P(Vω(0) £ λs))} = G(α, A). (33)

We consider the two cases:

lim P(F ω (0)^A s )= p = 0 and p > 0 , separately corresponding to |{xeRd;F(x)

= 0}| = 0 and |{xelRd ;F(x) = 0}| > 0. In the first case, p = 0, it is easy to see that:

lim G(α,/l){ln(P(Fω(0)</ί s)~1)}~1=α(l+α)""1 Vα>0. (34)
A-O +

Thus in this case the statement follows from (31), (33), (34), the definition oϊΛ(λ) and

α>0

For p > 0 we explicitly compute:

lim G(θL9λ) = sup {ί(α + 1)~x - ln{exp(α~ x ί )p + 1 - p}} = G(a). (35)
Λ-+0

Thus the theorem follows from (31), (33), (35) and the definition ofΛ{λ). It is also easy
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to show that in this case

sup(l +α)"d / 2G(α)>0. D
α>0

Example 2. Let /X(LP) be the Banach space of all measurable real functions on Ud

with:

ί/p

ll/ll/1^ = Σ ί dx\f(x)\p <+oo.
ieZ* d

Let {ψi(co)}iez
d be ^(L^-valued iid random variables, p is as in (A), such that:

i) φo(ω,x) ̂  0 a.e. and 1 > P{φo(ω) = 0) > 0.
ii) There exist two positive constants fcA, k2 and a positive random variable */0(ω)

with E{\ηo(ω)\p} < + oo, such that:

^2^o( ω )l χ Γ α = <Po(ω>x) = ki*Jo(ω)lχΓα> α > d for all xelRd with |x | sufficiently large.
We then define:

Va{x)= Σψi^x~i\ (36)
ieZd

From i) and ii) it follows that Vω is a well defined random field on Ud which satisfies
(A).

A typical example is the case where the random variables <p, (ω) are of the form:
φi{ω,x) = qi{ώ)f{x), where {gf}ieZd are iid positive random variables with
E{\qo(ω)\p} < + oo and / a positive function in £X{JJ) such that fix) ~ \x\ ~a as |x| -»
+ 00. In [9] and [12] we proved that in this situation the spectrum of — Δ

+ ^<?i(ω)/(x — i) has a band structure and that in dimension greater than 1 it

contains the interval (E0,oo) for some Eo < + oo. For random fields Vω as given by
(36) Theorems 4 and 5 are modified as follows:

Theorem 7. Let Vω be given by [36) and let p^iλ) be the associated IDS Then:

i) if α ̂  d -{• 2 lim — |

ii) If d + 2 > α > d lim — |

The proof of this result can be found in [ 15] it follows closely the proof of Theorems
4 and 5 and uses for the long-range case d + 2 > α > d, an estimate on p^/l) proved
in [10] of the form:

$dxVJx)<λ
c0 J

where k is a positive constant.
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