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Abstract. We consider the integrated density of states (IDS) p_(4) of random
Hamiltonian H, = — 4+ V,,V, being a random field on R? which satisfies a
mixing condition. We prove that the probability of large fluctuations of the finite
volume IDS |A4| ™! p(4, H ,(w)), A = R% around the thermodynamic limit p(4) is
bounded from above by exp{ —k|A4|}, k> 0. In this case p_ (4) can be recovered
from a variational principle. Furthermore we show the existence of a Lifshitz-
type of singularity of p, (1) as A— 0" in the case where V,, is non-negative. More
precisely we prove the following bound: p_ (1) < exp(— kA~ %?*)as A»0"k> 0.
This last result is then discussed in some examples.

Section 1. Introduction

Let V,(x), xeR?, be a metrically transitive random field on R? and let H,, be the
(formal) random Hamiltonian H = — 4 + V. Under very weak assumptions on
vV, (see [11]), H,, is essentially selfadjoint on CF(R?) = L*[R%) and it is used to model
physical systems in presence of disorder, e.g. a particle in a crystal with random
impurities. The integrated density of states (IDS) p (1), A€ R, plays an important role
in the physics of such systems. The IDS p_ () is defined as follows:

) 1
Pe(A) = lim —p(AH, (). )
An R4 | n
Here {A,},.n is @ sequence of hypercubes increasing to R? | - | denotes the

Lebesgue measure, and p(4,H ,(w)) is the number of eigenvalues less than 4 of H(w)
restricted to L?(A) with suitable boundary conditions. It can be proved in great
generality that with probability one p_ (1) exists for all AeQ and that it is independent
of w and of the chosen boundary conditions. Furthermore the measure on R whose
distribution function is p_, has support on the almost surely constant spectrum of
H,.(Seee.g.[1], [10] and references therein.) In the next section we study the large
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fluctuations of the finite volume IDS |A| ™! p(4,H ,(w)) around the thermodynamic
limit p (4). Following a recent method proposed by Ellis [5] we show that under a
mixing condition (¢-mixing) the probability of these fluctuations is bounded by
exp( — |A4|k) for some positive constant k. This is proved in Theorem 2.

In particular we show that |A| ™! p(4,H ,(w)) converge geometrically to p (1) as
ATR? in the sense that:

P47 p(AH 1 (0)) — po(A)] > 0) S e~ 14IM@)

for all § > 0 and n sufficiently large, where M(9) is a positive constant. If in addition
the random field V,, satisfies a stronger independence assumption than ¢-mixing,
the above estimate is shown to be optimal in the limit AT R at least for elementary
events of the form:

{0eQi]4 ™ p(2,H @) Z x).

A typical example in which this independence condition is fulfilled is the Anderson
model: H(w)= —A4,+V, on [*(Z%, — A4, being the discrete Laplacian and
{V (i) };cz« 1id random variables.

A different problem is the behaviour of p (1) as A 07 in the case where V, is a
non-negative random field satisfying a ¢-mixing condition.

In the last section, using an exponential estimate for the probability of large
deviations for weakly dependent random variables proved in Sect. 2 and a rigorous
version of an argument due to Lifshitz [14], we prove an upper bound on p_(4) of
the form:

Poh) Se k" @)

as A—07 for some k> 0.

Under an additional independence assumption we also give a lower bound
of the same type but with a different constant k’. This result is then discussed in
the case when i) V, is a positive function of a Gaussian random field.
i) V,= Y ofw,x—i) with {¢;(®)};,z« iid random variables with values in

ieZd
[Y(L?), the Banach space of all measurable functions f:R?—R such that:
Y 1§ 1f(x=i)Pdx|P < + o0, C, being the unit cell in R? around x = 0. The singular
ieZd Co
behaviour (2), known as the Lifshitz singularity [14], was already proved by means
of Wiener integrals by several authors (see e.g. [6], [16], [17], [18]) for the case in

which V,(x) = ) @(x — x(w)), where ¢ is a positive function on R with sufficient

decay at infinity and {x,(w)},.y is a realization of the Poisson random field on R’ In
this case it is even possible to compute exactly

lim —A"*Inp () =k,
A-0t
using the Wiener sausage techniques developed by Donsker and Varadhan [4]. We
also refer to [21] for a discussion of the same problem for the Anderson model. The
reader mainly interested in the Lifshitz exponent may skip Sect. 2 with the exception
of Lemma 2, the proof of which is needed for the proof of Theorem 4.
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Notations and Assumptions. Throughout all this paper A will denote an arbitrary
bounded hypercube in R? and || its Lebesgue measure. On the space L*(A) we will
consider the selfadjoint operators with compact resolvent HY,H% defined as form
sum by:

HY=—A%+V,

HY=—4%+V,
where — A%, — AL are the Neumann and Dirichlet Laplacian respectively (see e.g.
Reed—Simon IV [19]) and Vel?’(A),p=1ifd=1,p>1ifd=2,p=d/2ifd = 3. We

will denote by {4 (HY)}en- {A(HY) }1en their eigenvalues (counting multiplicity)
and by p(4,H?Y), p(4,H?Y) the positive nondecreasing functions on R defined by:

p(AHY) = {keN;A(KY) < A},

and analogously for p(4,H?%). Finally we will denote by C, the unit cell in R? around
x =0, and by C, the set C, + i, ieZ*.
Now V,(x), xeR?, be a measurable random field on R* on which we assume:
(A) i) There exists on the probability space (2, %,P) a group of measure-
preserving metrically transitive transformations {T,},.,I = R? or I = Z¢ such that
Vo(x +1)=Vy (x)VxeRY, Viel.

i) E{ ||V, (x)Pdx} < + oo, where p>max(2,d/2) and E{ - } denotes the

iel

Co
expectation with respect to the measure P.

iii) Let V_(x)=min(0,V,(x)); then [[V5(x)[%dx=<C<+o0 for some
C;
q > max(2,d/2) and a positive constant C independent of ieZ¢ and weQ.
(B) For any A < R’ let X, be the g-algebra generated by V,(x),xe A, and let
f,g be two arbitrary random variables on Q such that:

) 19l < + 00, E{|f]} < + 0,
ii) g is X, -measurable, f is X ,,-measurable,
where A,,4, are bounded subsets of R? with 4, N4, = ¢. Then:

IE{f g} — E(/)E(9)| £ |9l E{| [} 0(d(A,,45))

with ¢(x) >0 as x — + co. Here d(A4,,4,) denotes the Euclidean distance between
A, and 4,.

Itis known (see e.g. Billingsley [3]) that (B) holds if the random field V,, satisfies a
¢-mixing condition. Let now H(w) = — 4% + V,, and HY(w) = — 4% + V,,. Using
(A)itis possible to prove (see e.g. [10]) that the following limits exist for almost all @
and all 1eQ:

1 1
lim — p(A,HY (0)) =p ,(A) = lim — p(A,HY (w)), 3)
AntRa|A, At re |,

where {A,},.n is @ sequence of cubes increasing to R? and p(A) is a nonrandom,
nondecreasing function on R. Furthermore for any bounded cube 4 = R? and any
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AeR p (1) satisfies:
A7 E{p(, HY@))} £ po(A) S 1417 E{p(3, H ()} )

The function p_(4) is called the integrated density of states (IDS) for the selfadjoint
operator H, = — A + V. Finally we define the positive measures on Ru A(w) 1),
1, whose distribution functions are |A4|™!p(1, H2(w)), |4|” ' p(Z, HY(w)) and
0.(4) respectively.

Remark 1. 1t follows from (A) that:

i) the measures p5(w), 1} (w) are locally bounded uniformly in @ and in 4 =C,,
ii) There exists an a,, + 00 > a, > — 00, such that u2(w) = (@) =0on (-
agy) for a.e. weQ and 4> (.

Section 2. A Large Deviation Result

In this section we examine how the limit (3) is attained in that we provide an upper
bound on the probability of large fluctuations of the measure p3(w) around the
thermodynamic limit . In order to simplify the discussion we restrict both p3(w)
and p, to a bounded interval [a,,b] where a0 is defined in Remark landb>a,isa

continuity point of p_ (4). With this choice jf (AduB(w,A)— jf (Adu (A),as ATR?

for any continuous function f on [a,,b]. “For notational convenience we denote
U A(co)lla0 »; @gain by u P(w) and analogously for y_, . By Remark 1 for any weQ and
any A > C, pi5(w)and p, are elements of M, ¥, the space of positive Borel measures
on [a,, b] with total mass less than a sufﬁclently large constant k. We equip M,,O b

with the weak-x-topology and define for a measurable set A = M }:

P (4) = P({o;p(w)e A}). ©)

It is not difficult to show that the set appearing in the right hand side of () is
measurable (see for instance [8]),so that P , is well defined. Let now C([a,, b]) be the
space of real continuous functions on [ay, b] and G, (G_) = C([a,,b]) be the set of
nondecreasing, nonpositive (nonincreasing, nonnegative) real continuous functions
on [a,,b]. To study the behaviour in A of the measure P , we need the following two
results:

Lemma 1. Assume that the function ¢ in Assumption (B) satisfies: ¢(x)=
exp(— x>0, for all sufficiently large x. (Here d denotes the dimension of
RY) Let {A,},.n be a sequence of cubes of size n centered at x =0. Then for
any geG_ (respectively G ) :

F(g)= lim 14,17 In E{exp(<g,u7 (@) >4, }

exists and it is a convex function on G _ (respectively G ). The symbol { , ) denotesthe
duality between C([ay,b]) and M.
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Proof. Once the existence of the limit is proved convexity follows from the Holder
inequality. Let us prove existence for geG . The case geG_ is similar. Let for any
A>C,.
F (g) = E{exp({g,1}(@) )| A])}. (©)
Using the monotonicity in A of the eigenvalues A, (H5(w)) of H2(w) (see e.g.
[19]):
M(H () £ 4(HR () if A" = 4, ()
we have:
F9)<F,(g)if A'c A, ®)

Furthermore using (B) if 4, and A, are two disjoint cubes at distance d(4,4,) = R,
one has:

Fay 0a(9) = F 4,(9)(F 4,(9) + exp(Igl oo k| 4:))9(Ro)). ©)

Using now the assumption ¢(R,) < exp(— R¥*?) for R, sufficiently large and
the same type of arguments used in satistical mechanics to prove the existence of the
entropy for tempered potentials (see e.g. [22]), we get the statement. |

Lemma 2. Let V,, satisfy (A) and (B) and let for feG, UG _, Y (@)= f,u] (w)).
Then Y (w) converge geometrically as n— + oo to { f,u,. >, i.e. for all >0 and all
sufficiently large n:

P(|Y (@) = fipe, 1> 6) < exp( — |4,IM(9)),
where M(6) > 0.

Proof. Assume for definiteness fe€G, . Fix 6 >0, and let n and n, be such that:
i) E{Y,,} = {fike, ) +90/2,
i) n/n, is even.

We then divide the cube A4, in (n/n,) subcubes 4. Using (7), the assumption f€G
and the Chebyshev inequality for the exponential function, we get for any > 0:

P(Y, 2 {fitty, > + 0) Sexp{ — [4,n({ fope ) + 5)}'E{HCXP(YI,ZlA,,OIW)}, (10)

where Y{)(w) = { f, uho(w)). To estimate the expectation on the right hand side of

0

(10), we first rearrange the product as:

[Texp(Vi,l dulm =TT exp(Yi, A, lm [T exp(Yi,l4,,[n),
' ilei/en i,oldd

where i; =1...n/n, labels from the left to the right the rows of cubes A
perpendicular to the first axis, and then apply the Schwartz inequality. By repeating
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this in all directions we obtain:
E{Hexp(Yﬁ,OIAnoln)}gE{ I1 exp(YﬁlolAnolnzd)}. (11)

13
ijodd,j=1...d

Using (B) we can bound the right hand side of (11) by

{E{exp(Y,| 4,0 1129} + @(n0)exp(| f 1o 1] A, | K24} 12000, (12)

Let now v, be the measure on R given by v, (4) = P(Y, (w)€ A), A a measurable
set in R, and let

Vg = {Vng + @(1)0 5 1y 1 11 + (1)} L

Here 6,,, denotes the Dirac measure centered at x. Then we can rewrite (12) as:
[{J 7, (x)exp(| Ay, [ 1243) {1 + (1) } 172", (13)
Inserting (13) in (10) and maximizing with respect to 1 =0 we get:
P(Y, 2 filt, ) +0) Sexp{[ — | 4,114, 727]. (14)
[sup {(n(< S oo > + 8) — In [dT, (x)exp(1x)} — In(1 + (1)) ]}

nz0

Let us now choose n so large that we can choose n, such that:

i, (xS frp > + 29, (15)

with this choice

sup {1(< £y poo > +0) = In([d¥,,(x)e"™) } = 1, ({ f, oo » +0)

nz20

is positive since it is the Cramer transform of the measure ¥, computed in a
point strictly bigger than [d¥, (x)x (see eg. [2]). Furthermore, since
Vo = O(¢ 1. 5y WEAKIY, it is easy to check that I, (< f, u,, » + 6) is bounded away from
zero uniformly in n,. This is turn implies that for large n, which depends only on 6, ¢,
f, the square bracket in (14) is positive, i.e.

P(Y,Z {fitey > +0) S €™M,

M(6) > 0 for all sufficiently large n.

The case feG_ goes analogously if instead of (7) one uses the inequality:
AHY()) 2 A H(w)) 24 HY, () for all A, A, such that A4, U4, <A and
A\A; u A, has zero Lebesgue measure (see e.g. [19]). Similar arguments also give the
same bound on P(Y, << f,u, > — 0) thus concluding the proof of the lemma. [

Using the two Lemmas it is now easy to establish the main result. We first extend
the function F: G, uG_ - R given by Lemma 1 to all C([a,,b]) by setting:

F(f)= lim |4,]" InE{exp({ f, 13 (@)>]4,)}¥ feC([ao, bING, U G_.

n— +oo

Clearly the above limit is well defined and the new function one obtains is convex
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from C([a,,b]) to R. We then set for eachue M -*

ao,b

Mw= sup {{find>—F()}. (16)

JSeC([ao,b])

The next result tells us that A(x) has a unique absolute minimum at u, where it is
Zero.

Theorem 1. In the hypothesis of Lemma 1 the following holds :
D inf A = Ak,) =0,
HeM
ii) if ue My and p# p,,, then A(u) > 0.

Proof. By the Jensen inequality F(f)= {f,p, >V eC([a,,b]); hence Ap,)=<0.
Thus it is sufficient to prove that for any u A(u) = 0 and that if u+# u,, Au)>0.
Clearly

Mu) = stung{t<f;u> —F(tf)} VfeG,uG_.

Furthermore from the geometric convergence of < f, u3 () to < f, i, » and a result
of Ellis (see Th. 11 5.1 of [5]) it follows that sup{t<{f,u> — F(t/)} 20, feG, uG_,

teR
equality holds iff < f, u> = {f, u,, >. The theorem is now proved if we observe that if

u# u,, there exists an f,e G, U G_ such that { f,, u> # { fo, e, » (ff not x4 would
coincide with u_, on the polynomials on [a,, b] and thus by the Weierstrass theorem
on all C([ag, b])). O

We can now establish an upper bound on the probability for large fluctuations of
Wi(w) around pu,.

Theorem 2. Let A = M} be closed and set A(A) = inf A(w). Then in the hypothesis of
ped
Lemma 1, we have:

lim |4,/ 'InP, (4)< — A(4),

n— +oo

and A(A)>0 iff u, ¢ A.

Proof. Since M’} is compact in the weak-x-topology, 4 is compact. Furthermore it

is easily seen that A(u) is lower semicontinuous so that infA(y) = A(y,) for some
neA
o€ A. Thus the second part of the theorem follows from Theorem 1. Using now

Chebyshev’s inequality we obtain for all feC([a,,b]):
P, (A) S PCSpg (@) 2 infCf, )
ne

Sexp{ —|4,|[inf{f, 1) —14,|" " In E{exp(< f, 13, (@) > 4,1} ]} (17)

neA
Taking the logarithm, dividing by |4,| and passing to the limit n — + o0 we get:
lim |4,/ ' InP, (A) < — inf{<f,u> = F(f)} VfeC([ao,b]). (18)

n—+w HeA
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The result now follows by taking the supremum over f of the right hand side of
(18) and observing that since < f,u» — F(f') is convex in u and concave in f and
furthermore A is compact:

sup inf{<fiu>—F(f)} =inf sup {<fiud—F(N)}

feC(lag,bl) pecA ueA feC(lao,bl)

by a result of Sion [23]. ]

A simple application of the above theorem is to compute the probability of
events of the form {weQ; p(E, HY(w)) = x| A|}. For this we let for any fixed E > a,,:

F(t)= lim [A4,]"'InE{exp(tp(E, HS (w)} teR

n—+ow

According to Lemma 1 the above limit exists for all te R and it is a convex function of

t. Let A(x) = sup {tx — F(t)} beits Legendre transform and dom A = {x; A(x) < + c0}.
teR

Since F(t) is defined for all teR, dom 4 is a closed convex set and F(t) = sup{tx
xeR
— Ax)} (see e.g. [20]). It is also not difficult to see that dom A has nonempty interior

(dom A)™. Let now A(x, E) = {ueM} % u([a,, E]) = x}. Clearly A(x, E) is compact
in M % Hence from the above theorem we get for all xe(dom A with x = pw(E)
lim P(w; p(E,H(w)) = x|A])< — inf Au) = inf sup(ty — F(t)) = A(x), since 4

n—+ oo neA(x,E) y=x teR .
is a monotone increasing continuous function on [p . (E), c0) ndom A (see [20]). It is

an interesting question to decide whether the upper bound provided by Theorem 2 is
optimal in the sense that lim 1/]4, [InP, (A)= — A(A). The following theorem

n—+ o
says that this is the case, at least for simple events of the type {w;p(E, H%w)) =
|[A|x}, if one assumes a stronger independence property of the random field V,,. In
the following we use without comment the notations F(z), A(x) for the functions we
have just defined.

Theorem 3. Assume that the o-algebras ) ¢, ) ¢ i,jeZ* are independent for all i # j.
Fix E> a,. Then for all xe(domA)™ with x = p_(E):

lim i P(p(E, H} (@) Z X) = — Ax).

n+ o [A,]

Proof. We only need to prove a lower bound. Let us fix n,eN and let N be the
maximum number of disjoint hypercubes A of size n, strictly contained in 4,,.
Clearly |A,|"*N — |4, | as n — + co. Then using (7):

L in P(p(E, H?, () 2 xI4,)) 2

J 14,
¥ ]lnP<Z p(EH (@), ! 2 i )(19)

i 'Ano

14,

The random variables p(E,H ’A)“,(a)))IA,,OI‘ ! are now independent by assumption so

il
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that we can apply standard large deviation results (see e.g. Azencott [2]) to get:

lim InP(p(E, H (@) Z | 4,]x) Z — sup (tx ~ o E{exptp(E,H} (w))} )

n—+ o0 nl teR lAnol

(20)
Since n, was arbitrary it remains to prove that

Ayo(X) = sup {tx — IZIT In E{exp tp(E,H‘A’m(w)} } =sup(tx — F, (1)

teR no teR

converges to A(x) for all xe(dom A)™ as n, — + co. Using once again (3) one has by
subadditivity:

i) lim 2, (x)=infl, (x)=A(x),

no— + oo

ii) F(t)=supF, ()= lim F, ().

no— + oo
Furthermore, taking the Legendre transform:

F, () =sup{tx — 4, (x)} Ssup{tx — A(x)}. VneeN,
which implies: F(t) < sup {tx — A(x)}.

On the other hand:

F, () + 4,,(x) 2 txVt,x€R, so that, passing to the limit n,— + co: F(t) + A(x) =
txVt,xeR. Hence F(r) = sup {tx — A(x)}. Thus A(x) as the pointwise limit of convex

functions is convex with Legendre transform identical to that of A(x). It follows (see
Rockafeller [207) that A(x) = A(x) for all xe(dom Aym, |
Section 3. Lifshitz Singularity

In this section we examine the behaviour of the IDS p  (4) as A — 0* for non-negative

random potentials V,, (i.e., ¥, (x) = 0¥ xeR? a.e). Our main result is the following:

Theorem 4. Let V,, be an almost surely non-negative random field on R* which
satisfies (A) and (B). Assume that E(|{xeCq; V (x)=0}|)=p < 1. Then:

lim —AY%Inp (1) =k>0
im0t

for some positive constant k.
Proof. From inequality (4) and the positivity of V,, we get for any 4 > C,,
Po(A) S 1A (4, — A7) P, (HY (@) < A). 21

We now choose A = A(4) to be the cube in R? centred at x = 0 of size L= L(x, 1) =
n(l + o)~ Y217 Y2, where o is a positive constant, which will be fixed later on. With
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this choice we compute:
A,(— AI/"I(M) = A1 + o). (22)

Furthermore using a lower bound on the lowest eigenvalue of positive selfadjoint
operators due to Thirring [24] (see also [19]) we obtain YA = R?

A(= A%+ V +ad) Z2min(,(— 4%), { [ dxlyo(x)P(V(x) +a2) ")} 1. (23)

where 1 ,€*(A) is the normalized ground state wave function of — 4%, i.e. Y/ (x) =
[A]|~12¥xeA. Equations (22) and (23) together imply:
PUL(HY(@)) <A S PIAGQ)| 714 | dx(V(x)+ad) " 2 (1 +a)77). (24)

A(4)

Let now for A, >0, &(4, 49, @) = |AA)| ™" | dx(V,(x) + ado) ™ .
A(2)
The same argument used in the proof of Lemma 2 shows that the random variable

&(A, Ag, @) converges geometrically to lim E{{(4, Ay, )} =E | dxAo(V,(x) +
A=0* Co
%)~ as A—0*. Furthermore by the dominated convergence theorem E{ | dx(V,,(x) +

Co
Ao®) " YA,} converges to ™ !p as 1, —0". These two results together imply that if

@+1)"'>a !pie.a>p(l —p)~, and if A, is such that E{ | dxiq(V(x) +alo) '} <
Co

(1 + )™, we can find a constant M(x) greater than zero such that for all sufficiently
small 4:

PAD| ™ [ dxMV, () +e) ™ 2 (1 +0)7 )

A(2)
S P(AsAgy @) Z (1 + ) 1) Sexp(— M(@)| AA)])
=exp(— M(x)A~r(1 + o)~ M)

The result now follows from (21) observing that by Weyl’s result (see e.g. [19])
| A~ p(4, — 4% ;) < const 142 O

As in the case of the large deviations for the IDS p_ (1), we can strengthen the above
result if we assume that the o-algebras X, generated by disjoint regions A; are
independent. For this let y(d) be the lowest eigenvalue of the Dirichlet Laplacian
— A" on the unit ball B, in R? and let 7, =|B;|. Then we have:

Theorem 5. In addition to the hypothesis of Theorem 4 assume that the o-algebras
2ep2c; i Jj€Z* are independent if i #j. Suppose furthermore that P( | V,(x)dx =0)=p
Co

satisfies: 0 <p < 1. Then:
lim — A*?1In{p (1)} <In{p~*}(»(d))"*1,.
PR

Proof. From (4) we have:

PolA) 2 14| 7 E{p(, Hi(w))} Z |4~ P(2,(H}()) £ 1) (25)
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forany A4 o C,. Let now B, be the ball in R of radius R(4) = {y(d)- A~ }!/? and let us
choose in (25) A4 = A(4) as the smallest cube which contains B,. We denote by
{C, M the smallest collection of cubes C; which entirely covers B;. Then by (7) and
the min-max:

A (HY (@) £ A (H, (@) S 24— 45,) + | dx|Yo(x) ]V, (x), (26)
B

where o€ L*(B,) is the ground state wave function of 47 . A direct computation
gives A,(— 45,)= A which together with (26) and (25) implies:

N
polh) 2 |Au)r1P< [ dxV, 0 = 0) > {2y(d)r1}-mp( > [ dxV, )= 0>
Ba 1 Ci .

= {29(d)2™ '} " exp(~ N()In{p~}) 27)
The theorem is now proved, noting that
N(2)|B,| ™ = N(A)y(d) " 4*A%?z; * converges to one as A—0". O
Examples

We conclude this note with a discussion of the results of Theorems 4 and 5 in two
examples which arise in models of quantum disordered systems.

Example 1. Let & (x), xe R be a metrically transitive Gaussian random field with
zero mean and unit variance such that

E{,(x)¢,(0)} =n(x) is integrable, ne L'(R?),

and Riemannian approximable, i.e.

lim Y a%lai)= | dxn(x).

a0 jeza R
Let also F:R?— R be a locally bounded positive real function on R4, polynomially
bounded at infinity and set V,(x) = F(£(x)).

It is not difficult to see that the random field V, satisfies (A) but not in general (B)

(seee.g. [ 7] for a discussion of the ¢-mixing condition for Gaussian processes). In the
next theorem we prove that nevertheless a result similar to Theorem 4 holds.

Theorem 6. Let p_(A) be the IDS arising from the random field V. Then:
) i [{x; Fx) = 0} = 0

lim — A¥2In{(P(V,(0) < A%)” '}Inp (1) = 2nlg~ Ld¥*(d + 2)~“¥* 22

A—=07

Jor all s <1, where g = | dxn(x).
R4

i) If |{x; F(x) =0} > 0:

lim — #2In{p, (1)} Z 7% sup (I + @) "2 Gla)q ",
A0t a>0

where G(o) = sup{t(1 + o)~ ' — In{exp(a~'t)p + 1 —p}}, p= P(V,(0) = 0)> 0.

120



38 W. Kirsch and F. Martinelli

Proof. From the proof of Theorem 4 we have:
P SKAPP(AQ) T | dxA(Vyx)+ed) P Z(1+a)7 ),  (28)
A(A)
where A(4) is the cube of size L(x, A) = ni(l1 +a)~ /24~ 1/2 and k a positive constant.
Chebyshev’s inequality for the exponential function gives for any ¢ = 0;

P(IAD)™ | dxAV (%) +od) ™ 2 (1 +a)7)

A(R)

Sexp{ —|AA)|t(1 + o)~} E{exp( | dxAt(V,(x) +al) ")} (29)

A(4)

We can now use recent decoupling inequalities for stationary Gaussian random
fields with an integrable correlation function [13] to get:

E{exp( [ dxtA(V,(x) +ad)~ 1)} < E{exp(qtA(V,(0) +a2)~H}e 4@l (30)
A(A)
If we insert (30) in (29) and maximize with respect to t = 0 we obtain:

PAR) ™ [ dxA(Vy(x) +od) Tt 2 (1 + @)~ ) Sexp{ — [A(A)lg "' G@.d)}, (B
A(2)

where G(a,4) = sup{t(1 + o) ! — In{E(exp(tA[V,(0) +aA] )} }.

t=0

For any s < 1 the estimate:
E{exp(tA(V,,(0) + 22) ")} < exp(te ™ )P(V,,(0) < &)
+ exp(tA(A* + ad) T1P(V,,(0) > A%) (32)
gives:
G(a, ) Z sup {t(1 + @)~ — In {exp(a~ 1t)P(V,,(0) < 1)
+ exp(tA(As + ad) 11 — P(V,,(0) £ %))} = G(o, A). (33)
We consider the two cases:

lim P(V (0)<A)=p=0 and p>0, separately corresponding to [{xeR?;F(x)

im0t
=0}| =0 and [{xeR?*;F(x) =0}|> 0. In the first case, p =0, it is easy to see that:

lim G(o,A){In(P(V,(0)<A9) ™ H} ' =a(l +2)~" Vo >0. (34)
A=07F

Thus in this case the statement follows from (31), (33), (34), the definition of A(4) and
sup(l + OC)_(d/Z)_ ly = 2dd/2(d + 2)—d+ 212

a>0

For p >0 we explicitly compute:

lim G(a,4) = sup {t(x + 1) "' — In{exp(a~'t)p + | — p} } = G(a). (35)

Ai=0 t=20

Thus the theorem follows from (31), (33), (35) and the definition of A(4). It is also easy



Lifshitz Singularity 39
to show that in this case

sup(1 + &)~ *G(x) > 0. O

a>0

Example 2. Let /1(L?) be the Banach space of all measurable real functions on R?
with:

i/p
< + .

“f“z‘u}) = Z
iezd

Let {@,(w)};.z« be £*(L?)-valued iid random variables, p is as in (A), such that:

§ dx| f(x)l?
Ci

i) Polw,x) 20 a.e. and 1 > P(py(w)=0)> 0.

ii) There exist two positive constants k, , k, and a positive random variable #,(w)
with E{[ny(@)|?} < + o, such that:
kyno(@)|x] ™% 2 @o(w, x) 2 k,no(w)| x| % o« > d for all xe R with | x| sufficiently large.
We then define:

V,(x)= Z @;(,x — ). 36)

iezd

From i) and ii) it follows that V,, is a well defined random field on R? which satisfies
(A).

A typical example is the case where the random variables ¢,(w) are of the form:
o {w,x) =g (w)f(x), where {gq;};; are iid positive random variables with
E{|go(w)|?} < + oo and f a positive function in £*(L?) such that f(x) ~ [x| "*as [x| —»
+co. In [9] and [12] we proved that in this situation the spectrum of — 4

+Zqi(w) f(x —i) has a band structure and that in dimension greater than 1 it

contains the interval (E,,o0) for some E, < + co. For random fields V,, as given by
(36) Theorems 4 and 5 are modified as follows:

Theorem 7. Let V, be given by (36) and let p(1) be the associated IDS Then:
) ifa=d+2 lim —[(In{2} 17 In{ln{(p,(A) " '}} =4d/2,
A-0*

i) fd+2>0>d lim —[InA] " 'In{ln{(p,(A) " '}} =d@—d)~".

A—Q*

The proof of this result can be found in [15]; it follows closely the proof of Theorems
4 and 5 and uses for the long-range case d + 2 > a > d, an estimate on p_ (4) proved
in [10] of the form:

pol) S WP( [ dxV,0 < a)
Co

where k is a positive constant.
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