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Abstract. Debye screening is proven for a large class of classical Coulomb
gases at low densities. Among the models treated are jellium systems (where
particles interact with a fixed background charge), systems with arbitrarily
dilute fractional charges, and systems where the charges are not integrally
related. The interaction potentials of the corresponding sine-Gordon models
may have no symmetry and can have infinitely many stationary points which
are degenerate or nearly degenerate in energy.
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Introduction

The classical Coulomb gas has been the subject of several rigorous investigations
in the last few years. Brydges [1] established Debye screening for a lattice
Coulomb gas. His work was greatly generalized by Brydges and Federbush [3]
who considered the continuous statistical mechanics situation with a large class of
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allowable short range forces; see also [4]. These results were obtained in three
dimensions in a region of parameters corresponding to a dilute gas. Analogous
results hold in two dimensions at high temperatures and low activities. Frohlich
and Spencer [10] have shown that the two-dimensional lattice gas does not screen
in a regime of low temperatures and moderate activities. In their study of the three
dimensional U(l) lattice gauge theory [15], Gopfert and Mack expanded signi-
ficantly the domain of activities for screening in a lattice Coulomb gas.

The Brydges-Federbush analysis allowed for non-charge-symmetric systems,
but failed to deal with several interesting situations. As the charge of a species
tends to zero, or as its activity becomes large, the convergence estimates
deteriorate. Since a particle should decouple as its charge tends to zero (for
appropriate short-range forces), one ought to be able to handle these situations -
at least for slow enough growth of an activity as the corresponding charge tends to
zero. If the activity grows as the inverse of the charge, then the jellium limit of a
fixed background charge is approached. (Jellium is used as a model for ions
moving in a sea of conduction electrons in a metal.) Another situation which falls
outside the domain of [3] is where a species with a charge that is fractional with
respect to the other species has an activity much smaller than the other species'
activities. One would hope that such a species would not affect the system much.
Finally, if not all charges present are integral multiples of an elementary charge,
then the analysis of [3] fails. Integrally related charges are needed even in the basic
thermodynamic estimates of [18]. They are also important in Frohlich and
Spencer's analysis of the two dimensional Coulomb gas [10].

In this paper we extend the class of models known to exhibit screening to the
cases described above. We require a dilute system. Our restrictions on the size of
activities are considerably weaker than the ones in [3]. This is achieved with an
iterated Mayer expansion along the lines of [14].

In the sine-Gordon (or φ-) representation, the gas becomes a field theory with

interaction of the form £ zf(l — β ^ 1 / 2 e ^ ) ? where et is the charge of the ίth species and
i

zt is its activity. The situations described above correspond to local minima of the
interaction becoming nearly degenerate with the global minimum at φ = 0. The
situation of nonintegrally related charges corresponds to the interaction being a
nonperiodic function of φ. The background charge gives rise to an additional
interaction —iβll2zsesφ for some constant zses. It can be obtained from
zs(l — e

iβί/2eιφ) by taking the limit zs->oo, es-+0 with zses fixed.

As was pointed out in [3], the failure to deal with nearly degenerate minima of
the interaction can be traced to difficulties with bounds on ratios of partition
functions. This is symptomatic of models close to first order phase transitions, see
for example [17]. The development of techniques to handle systematically ratios
of partition functions [19, 16, 17] clarified the issues involved here and led to the
current investigation. As we shall see, the "phase transition" in the models we
consider can only occur with negative activities. Thus the basic physical input we
need is an estimate that guarantees that the φ = 0 minimum dominates the others.

The fact that the φ = 0 minimum always dominates may be somewhat
surprising. In P{φ)2 models, for example, it quite often happens that local minima
dominate global minima [17]. It was our initial hope that similar phenomena in
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the Coulomb gas would shed light on some behavior of ionic solutions: behavior
strongly dependent on concentration before the limiting law is reached in some
charge-asymmetric solutions [9], and phase separation [8]. In fact, no amount of
meddling with short range forces, charges, or activities within the domain of
convergence of our expansion can coax the model away from the φ = 0 minimum.

We set up the model in a finite volume as in [3]. There are 5—1 species of
particles, with species ί having charge ei and bare activity z ^O. There is a uniform
background charge (the "jelly"). We can think of it as the 5th particle, where the
limit es-»0, zs->oo has been taken with zses fixed. We can handle charges and
activities arbitrarily close to this limit as well. A careful analysis of the Mayer
series shows that if the radius of a particle tends to zero appropriately as zf->-oo
and ef->0, then the system converges to a jellium system. We will absorb the unit of
electric charge into the inverse temperature /?, so et is dimensionless.

We put lD=ίYJziefβγil2 Let ΛQΛ1 be rectangular boxes in IR3, with A built

from /^-lattice cubes (lD = lD will be defined below). Let ΔδΛ be the Laplacian with
Dirichlet boundary conditions at dΛ. We split the Coulomb interaction into a long-
range part and a short-range part, the former acting mainly at length scales from
λlD to oo. (The parameter λ is at our disposal, and is taken to be small.) The short-
range part must be cut off appropriately to avoid collapse, but the cutoff length
scale can be taken of the order of β, which is much smaller than λlD.The long-range
part is given by

u^y)Hi- Δ^r1 -{- Δ^+λ-X2)-1)^). (l.i)

Let σt be the density of species i. It is a sum of (5-functions at the positions of

particles of species i for iΦs, and it is a constant zs\es\ for i = s. Let J — ]Γ eiσi

i Φ s

+ (sgn£s)σs be the charge density. The interaction of the particles in the system is a
sum of three terms:

V=U+W-d09 (1.2)

U = \ J J(x)udΛ(x,y)J(y)dxdy, (1.3)

d0= Σ [2 Wθ(*α> *>?(«)- ί ϋi(α)sU«-^)σs(x)dx], (1.4)
α:i(α)Φs|. Λ' J

N Σ ί •σi(x)vij(x-y)σJ(y):dxdy. (1.5)
ί,j*s A' x/Γ

The kernel u0 is constructed as in (1.1) but with the infinite volume Laplacian A
replacing ΔdΛ. Subtraction oΐd0 thus corresponds approximately to removing self-
interaction terms. The colons in (1.5) indicate that such terms are not included in
W. The kernels vij = υji are the short-range part of the interaction; we shall limit
their size below by requiring certain estimates on their Mayer series. If we include
the force arising from the second term in (1.1), the actual non-Coulomb part of the
interparticle force is (in infinite volume)

e-\χ-y\lλlD
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The second term in d0 supplies a short-range force between the particles and the
jelly. Both terms in d0 will be absorbed into the activities.

To keep a specific example in mind, take a simple Coulomb system with hard
cores. Then we take for ij + s

e-\χ-y\/λlD

oo, ^ | * - y | < V ( L 6 )

P-|χ-y|MίD

^ ( s g n e s ) , (1.7)

with

~1''"'1 si, (1-8)

j ^ 3 . (1.9)

The length # parametrizes the stability of the system it is a short distance cutoff.
The condition (1.9) is needed only because we are interested in the limit ef->0, zieί

fixed. We could send e{ to zero with z{ fixed; then (1.9) would not be necessary.
Conditions (1.8) and (1.9) force Rtj to go to zero with e , but not too quickly.

There is a case of particular interest where all particles have charges of the
same sign, which must then be opposite to the sign of the background charge. In
this case stability is not a problem and we can study the pure Coulomb interaction
(1.6), (1.7) with some or all Rtj — 0. The constraint (1.8) is omitted and we put R = β.

The infinite volume limit is taken in two stages. With A a functional of the σt

inside A, put

= Σ | ^ ί e'^A. (1.10)

The multiindex N = {NV ...,NS_1) specifies the number of particles of each species

present, and zN/N\= J^zfyiV;!. The integral is over the positions of the £ Nt

ί ί Φ s

particles in A'. Taking A' to infinity, we obtain the expectation

where

Z o = Σ ^ f e~βiW~ά0)> ( U 2 )

U')N

Z= lim J(l)/Z 0. (1.13)
Λ' —*JR

Before discussing the A-* oo limit and stating our main theorems, we perform a
sine-Gordon transformation and a Mayer expansion.
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2. The Mayer Series and the Main Results

This section is in five parts. We begin with the sine-Gordon transformation. We
then digress on the Mayer series. Estimates needed for the cluster expansion are
stated, and conditions on the short-range forces sufficient to prove the estimates
are given. The conditions are verified for the standard hard core system. In the
third part, the neutrality condition is discussed, and in the fourth we state our main
theorems. We conclude with an outline of the proofs which form the body of this
paper.

2./. The Sine-Gordon Transformation

Let dμOdΛ{φ) be the Gaussian measure with covariance udΛ. We have the identity

and as a consequence

j ( Φ ) , (2-2)
where

dx) lim Z^^ζ- f e ^ ^

= eM. (2.3)

Here we have put

zt = zt exp(βefuo(x, x)/2 - β J vί{φzs\es\ dx\, i φ s. (2.4)
V IR3 /

2.2. The Mayer Series

The limit Λ/->IR3 in (1.11), (1.13), (2.3) is governed by a Mayer expansion. We
suppose that M can be written as

s -j s - 1

W = Σ ί β i Φ ) + ^ Γ Σ ίft l ii2Ui^2)e i l(xi)e i2(x2)+..., (2.5)
ί=l Z 1 h,i2=l

where

ρ A ( x ) = iρsβ
ll2esφ(x), ρs = zs = zs, (2.6)

and where each ρ i i ( i ι i ) ί t(x l 5 > -,xt) is independent of φ.
We define the basic length for exponential decay,

ι'2. (2.7)

We shall use units where ΪD=1 in Sects. 3-12. If av...,at are a set of unit lattice
cubes, a length L({au}) is defined in (A. 13) (see also [3]). It satisfies
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with bηA^0, YJbηA = l and
nA

V e - yLnΛ ((flu})/TD < ct - 1 (2$)

(αi, . . . ,βt ) :«u o = : α

for any 7 > 0. The sum in (2.9) is over ordered sets of t unit lattice cubes, one of
which is fixed. Furthermore LηΛ({au}) is the length of some tree on {al9 . . . ,αj and
possibly other points.

We require the following estimates on £ i l ? _ ? i t . It should be symmetric,
translation invariant, and it should satisfy

~l\βiu...JLHa2,...,a^(C1βλ%γ-ί fl \QKeiu\e-"*™ (2.10)
ΐ u— 1

(the norm taken with one variable fixed, and ίΐΐ2),

°(CMU», (2.11)

ί = l i

The parameter λ is the same as the one in (1.1); we need to take it small at a
number of points in this paper. Since zf is positive, (2.11) implies that ρ. is also
positive for λ small. Note that (2.12) is compatible with the jellium limit et->0, ziei

fixed. We also assume a bound

sup\ei\ = em^Cs. (2.13)
i

We obtain these estimates for suitable zi9 ei9 β, vij9 λ using the Mayer expansion
in the appendix. Convergence depends on stability estimates and estimates on two-
body forces. The following measure of the size of two-body forces will be used:

l (2.14)

Our most general result is contained in

Proposition 2.1. Suppose there are splittings υij = v^j + vlj9 vlj = v"j + vfj satisfying
conditions (i), (ii):

(i) Let W$, Wχ> W£ be the N-body interactions constructed from v°ip υ\p υ"j as in
(1.5). Then

βW°^-C6{β/R)N whenever W^<oo, (2.15)

independently of Wj$ 9 (2.16)

(2.17)

(ii) The following two-body estimates hold:

, (2.18)

l, (2.19)

eμΨn. (2.20)
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Suppose in addition that em^C5 and that

ΨD, (2.21)

Σzrf (2-22)
ί = l i

Then logZ(φ), defined in (2.3), admits an expansion (2.5) satisfying (2.10)-(2.12),
provided λ is small and

Σ Zie?β* = (β/lD)2 ^ Clλ
2e-^R. (2.23)

i

Here cv c2, Cv C2, C 3 depend only on C4, . . . ,C 9 .

We prove this proposition in the appendix, using the iterated Mayer expansion
formalism of [14]. We expand in the least stable part of the interaction first, and
afterwards expand in vfj. Conditions (2.18), (2.19) are best understood if one thinks
of Yukawa potentials with ranges /?, λlD. The basic expansion parameter for the i;?.
expansion is

sup

for the vjj expansion it is

sup

Since i;?. has a relatively short range β [see (2.18)] the large factors eCeβlR

coming from (2.15) can be handled using (2.23). The longer-ranged interaction vjj
has improved stability (2.16), (2.17) and so causes no problems. Thus we do not
require λ2<ζe~cβlR as in [3]. This leads to much improved conditions on activities
in Theorem 2.3 below. For the same reasons, a similar splitting was used in [15] to
treat a lattice Coulomb gas. There the self-energies of the particles (not included in
our model) were sufficient to ensure the analog of (2.23) for β large and z of order
unity.

We now apply Proposition 2.1 to our standard hard core system.

Proposition 2.2. Suppose that (2.23) holds, emSC5, α<(2/UD)~\ and

Σ Ϊ 3 * ϊ λ 2 . (2.24)

Then the hard core system (1.6)—(1.9) can be split into υ°ip v
n

ip vfj9 vίs satisfying (2.15)-
(2.21). Thus if λ is small and (2.22) holds, then Qiu_it satisfies (2.10)-(2.12),

If all charges have the same sign and ^ = 0 for all i, j\ then condition (2.24) can
be omitted and R can be set equal to β in (2.15), (2.23).

Proof We put

oo if \x-y\SRtj

0 otherwise,
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where β = min{β, λlD}. Since vn

u is a positive operator, β W£ is bounded below by the
N

sum of the self-energies, which is £ ^? ( α )O(j5~ 1)^C 7N. We have
α = l

since α<(2i/ D ) " 1 <(2β)~\ We obtain (2.19) and (2.21) similarly after noting that
K / x - y)l ^ k ^ K - 21 + A " % 2 ) ~ \x, y). Note that (2.23) and (2.24) imply that R/lD

< cλ. Thus uR < c, and so

where we have used (1.9) and (2.24). Of course this estimate is not needed if all Rtj

vanish.
We now prove (2.15). This is trivial when all charges have the same sign.

Stability is proven in the general case by considering first a comparison system
where each charge e. is smeared over the surface of a sphere of radius RJ2 and
multiplied by a constant so that it interacts with charges outside the sphere with
the original Yukawa potential. The constant is bounded by 1 for all values oϊRjβ.
With self-energies included, the interaction is positive [7] and thus the N-body

N

interaction Wβ is bounded below by — c ]£ ef{a)/Ru, the sum of the self-energies. It
α = 1

remains for us to bound the difference W$ — W$ from below, assuming the hard
core conditions \xa — Xβl^R^i^ are satisfied. We need only be concerned with
pairs aφβ such that

Rm m ^\xΛ-xβ\< (Rm m + R

m m)β, (2-25)

since terms violating the second inequality cancel between W% and W%. We can
assume Rn<R . for i<j by a relabeling of species. Then we need only consider
pairs α, β with z(α) < i(β). For each a and each i > i(α) there are no more than some
fixed number of β with ί(β) = ί and satisfying (2.25). (All such β are spaced apart by
at least R m m but are within RWi^) of xa.) The ocβ term in W$ or in W$ can be
estimated by the corresponding Coulomb interaction. For W$ the ocβ term is
therefore bounded below by - \emei{β)\/Ri{a)i{β) by (2.25). For W£ we know that the
potential created by the larger particle at xβ is nowhere greater in magnitude than
cem/Rmm. Thus the ccβ term in - W$ is bounded below by -c\emem\/Rmm

^ —c\emem\/Rmm. Combining the above bounds yields

WN> Σ Σ -c\emei\/Rmi,
α = 1 i Φ s

and (2.15) follows by using (1.8). This completes the proof. •

2.3. Neutrality

We require a neutrality condition as in [3]:

Σ β A = 0 (2-26)
ί = 1
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This condition puts implicit constraints on the activities zf. The origin of the
condition is the need for φ = 0 to be a stationary point of M, whose most

s

important term is Σ j ρ.(eiβi/2eιφix) — 1). Condition (2.26) may seem more natural

when one considers the behavior oΐ M^) = Σ ρ f ^
1 / 2 β ι ψ in the complex φ-plane.

i=ί

On the imaginary axis, φ = ia, αeIR we find that M^ia) is a convex function of a
since

Thus M^ia) has a unique minimum for real α, and it would be advisable to pass
the ^-integration contours through this saddle point. [In fact ReM^iα + b)
^ ReM^iα) for α, beIR] A complex translation φ->φ + ia is equivalent to sending
ρ^ρ'^ρfi'^2^ in Mx(ia). After the translation we find

0 = ^ M 1 ( i f l ) | β = o = Σ ~ ^ 1 / 2 , (2.27)

and so (2.26) is satisfied with ρ'. replacing ρ..
Physically we expect that a system with a set of activities not satisfying (2.26)

would expel charges to dΛ, thereby placing most of the system in a background
potential a. This would "renormalize" the activities as above, and neutrality would
be recovered. Lacking the ability to prove that this occurs, we settle for condition
(2.26) above. Of course one can always adjust the background charge density ρses

to obtain neutrality.

2.4. The Main Theorems

In the sine-Gordon language the main objects of study are the Λ-^ΊR3 limit of

dμ^dA{φ)

where si is a functional of φ(x). The observables we will consider in (1.11) are of
the form WA

^=ί/A OΠ^W. ( 2 2 9 )
α = l

with fA a continuous function of compact support, or

Λ = Γ W * α ) (2.30)
α = 1

with xa + xβ if ia = iβ In (2.28) we take

^ = f [ etf
ι/a««*(*«> (2.31)

α = 1

with |αj^.4 o . Given the results on the convergence of the Mayer series, it is an
exercise to show that (A)>Λ can be expressed as convergent sums and integrals of
expectations <^/>$. We now state our main results about these expectations.
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Theorem 2.3. Consider the purely Coulombic systems with hard cores given in (1.1)-
(1.13), (2.28)-(2.31). Let C4, C5, C 1 0 , δ be given, and suppose that

and

λ2. (2.32)

Then there are constants c2, c3, c4 (depending on C4, C5, C10, δ) such that for λ^
and

(2.33)

the following result holds. Consider the neutral models satisfying Σ Qiei~® (or

i= 1

adjust the background charge density ρses to achieve neutrality); for these the
infinite volume limits of <^>$ and (A}Λ exist and satisfy

c^, (2.34)

e-a-Wi^uppt^'Svipptm/iD (2 35)

and

\<A>\ύcA, (2.36)

\(AB> - (A} <5>| ScAcBe-{1-δ)distisu™tΛ>su™tB)llD. (2.37)

The constant cA depends only on fA, wA and the activities of the species in A likewise
for cB.

If the charges of the particles all have the same sign, and if Rtj = 0 for all i,j9 then
(2.32) can be omitted and R can be replaced with β in (2.33).

Theorem 2.4. For systems with more general short-range forces, let C 4,..., C9, δ be
s

given, and put α = (l — δ/2)/lD. Suppose em^C 5, Σ zi\ei\ = i^4.Y,ziei^ an^ let vtj split
i=\ i

into i;? , v"j, vfj9 vίs satisfying (2.15)—(2.21). Then there are constants c2, c3, c 4

(depending on C4, . . . ,C 9 , δ) such that for λ^c4, β/lD^e~C3/λe~C2βlR, and Σ QPi

= 0, the infinite volume limits of <^/>$ and (A}Λ exist and satisfy (2.34)-(2.37).

Theorem 2.5. Consider the sine-Gordon theories defined by the measure eMdμOdΛ(φ)

with M given by (2.5), (2.6) and with the covariance of dμ0 dΛ{φ) given
s s

in (1.1). Suppose that em^C5, Σ &N = C 4Σ& e ?> Σ Qiei = ®> Qί = ®> and 1D
i=ί ί i = l

= ίD(ί + O(C2λ
2))eO{C3βl{λlD)\ Suppose further that Qiu_3it is symmetric, translation

invariant, and satisfies (2.10) with A ^ c 4 and OL = (1 — 5/2)/ID. Then for β/lD^e~C3lλ,
the infinite volume limit of <^/>^ exists and satisfies (2.34), (2.35). Here c3, c 4 depend
only on C 1 ? . . . , C 5 , δ.
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Using Proposition 2.2 we reduce Theorem 2.3 to Theorem 2.5. With
α = (1 - δ/2)/lD the condition (2λlD)"* > α is satisfied for /I small. The estimate (2.23)
is implied by (2.33), so we obtain (2.10)—(2.12). The hypotheses of Theorem 2.5
are immediate consequences. By expressing particle density expectations in terms
of (^-expectations and using (2.10H2.12), (2.36), (2.37), we obtain (2.34), (2.35).
Similarly, Proposition 2.1 reduces Theorem 2.4 to Theorem 2.5. We shall hence-
forth concentrate on proving clustering in the ^-representation for systems as in
Theorem 2.5.

The expansion involves two lengths besides ΪD: L' > ΪD > L. We take L'/ΪD and
ΪD/L to be large integers which may depend on the constants Cv C2, etc. appearing
in Theorem 2.5, but which are chosen before λ and β/ΐD.

2.5. Outline of the Proof

In Sect. 3 we define a partition of unity for the set of field configurations, basing
the construction on the shape of the leading term in the interaction potential.
Stationary points can come arbitrarily close in energy to the φ—0 stationary
point, and they can move off the real axis. Thus it is important to set up a precise
tradeoff between the energy of a stationary point (extracted in Sects. 7 and 8) and
the size of the interaction coefficients (estimated in Sect. 9). A space-dependent
field translation is made for each term in the partition of unity.

In Sect. 4 we prove the basic estimate on ratios of partition functions with
different boundary conditions. We show that partition functions in which φ->0 at
the boundary dominate corresponding ones where φ takes some other value at the
boundary. This is the essence of the thermodynamic stability of the 0 = 0
stationary point. The proof is quite short, however the proof of the corresponding
result for the constrained partition functions generated by our expansion is much
more difficult. In Sect. 11 we use our expansion to reduce the problem to the
unconstrained case of Sect. 4.

Section 5 presents the expansion. Dirichlet decoupling is needed in order to
produce the right partition functions for Sects. 4 and 11, and this necessitates a
number of new features. In Sect. 6 we control the combinatorics of the expansion
and state a sequence of convergence estimates proven there and in Sects. 7-10. The
final section uses the expansion to prove exponential clustering and existence of
the infinite volume limit.

3. The Peierls Expansion

In this section we consider the leading term

in the action — M of Sect. 2 and choose the values of φ that will make important
contributions to the partition function. The point φ = 0 is a global minimum for S,
and in units where ΪD = 1,

S"(0)=Σ<?A?i8=l- (3.2)
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We need to consider values of φ for which S(φ) comes close to this minimum. The
set of such values will be denoted Jf. The set ffi is constructed in the following
lemma. Let 7 be a fixed constant close to, but less than, 1/2. We use

as a measure of how close minima need to come to the φ = 0 minimum to be
relevant.

Lemma 3.1. There exists a set of real numbers J^ containing 0 and a set of intervals
*/ = {[h — δh,h + δh~] : he Jtf2} with the following properties:

where

ηh = min{(βReS{h))1/2,η}, (3.5)

(iii) hnhr contains at most one point if hή^h',

(iv) -^τ=ηβ'υ2ύδhS4ηβ'112 far all heJf. (3.6)
2 |/2

Proof Suppose φ is such that ReS(φ)S4η2β~1. Then by (3.2), (3.3),

. (3.7)

Since ReS>0, the first inequality in (3.7) implies that

|(ReS)'|^2j/2ιjj8-1 / 2 (3.8)

for
Now suppose ReίS'((/)())^2f/2jS~1. The remarks above imply that there exist

ι < Φi = Φo = Φ3 < Φ4. a n d he [φ 2 , φ 3 ] a local minimum of ReS, such that

) = ReS(φ4) = 4fy2j8-1, (3.9)

= ReS{φ3) = 2η2β~1, (3.10)

RQS(φ)el2η2β-1

94η2β'1^ for φslφ^φ^ulφ^φj, (3.11)

1 ] for φ e [ φ 2 s φ 3 ] 9 (3.12)

-1 for ψe^φj , (3.13)

t-Φ^-^nβ-112. (3 1 4 )
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Each excursion of ReS below 2η2β~1 will be contained in a neighborhood [φ^h),
Φ4CO] satisfying (3.9)—(3.14) above. We define J^x to be the set composed of all ft's
arising from this construction. Since S(0) = 0, fflγ contains 0 and ηo = 0. For
define

(3.15)

By (3.14), δh^—-ηβ~112, so the lower bound in (iv) is satisfied. By (3.13),
1/2

\h — φA{h)\ and \h — φo(h)\ are no larger than 4ηβ 1 / 2, so the upper bound in (iv) is
also satisfied.

It is clear that no two /h's constructed so far intersect. In fact, (3.7) and (3.14)
imply that

^0 for φe[h-δh9K]9{ReS)'(h-δh)£ - =ηβ,

2 (3.16)

^ 0 for φ e [ ^ 1 2

1/2

and so (ReS)"^l implies that dist(/h,/hO^ }/2yηβ~112. Notice that (3.7) shows

^mzz{\h-φ2(h)\,\h-φ3(h)\}> (3.17)

so that ReS(h±δh)}z2η2β~*. Thus all regions not yet covered by intervals 7h have

The set Jf̂  will contain arbitrarily large positive and negative h\ Let J be an
interval [hί + δhί, h2 — δh 2] with h2 the smallest element of ^ larger than /zr Since

~1 for φeJ , any fteJ has the property that

^ + ̂ Γ 1 for φeJn[h-L 0 /2, f t + L 0/2], (3.18)

where LQ = 2\/2ηβ~1/2. Cover J with n = [|J|/L0 + l ] equal intervals of length
| J | / M ^ L 0 . (We are writing \J\ for the length of J and [•] denotes integer part.)
These intervals are centered at

l l , . . . , n - l , (3.19)

and they cover J precisely, with no overlapping. We put

112, (3.20)

and define ffl2 to be the set of all hJk arising from this construction, letting both J
and k vary. It is now easy to check that the lemma holds with J^ = J^1uJf2.
Equations (3.13) and (3.18) yield (i) for the two types of /τ's (ii) and (iii) have also
been satisfied. Condition (iv) has been proven for heJfv For hsjf2, (3.20) supplies

the upper bound. We showed above that \J\^]/2yηβ~112 so that
1

hjk 21/2
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The Peierls expansion can now be generated by inserting an appropriate
partition of unity into the measure. We divide A into L-lattice cubes Ωa. In each
such cube we define an average field and a fluctuation field:

Aa = L~z \ φ{x)dx9 (3.21)

δ{x) = φ(x)-Aa{x) for xeΩa. (3.22)

Let h denote a function on some region (such as A) taking values in Jf and
constant on L-lattice cubes. The Peierls expansion is the identity

ί l - l l i w - W i ^ (323)

α \h{Ωa) \ Ωa ) !

Define E by writing

M= Σ$QiΦ)dx + E. (3.24)
i= 1

Using the identities

t Q& = 0,Jδ(x)f(A(x)) = 0,ΣQtefβ = 1,
i=ί i

we can rewrite (3.23) as

Z= ΣleGeE™v(-iHΦ-h)2)dμ0ίdΛ(φ), (3.25)

where

0 = 0^ + 02, (3.26)

eGι=\\r{Aa), (3.27)

( 1 2 8 )

i= 1

We next translate the Gaussian measure from φ to ψ = φ — g using

ί"o,8Λ(v)

(3.30)
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We also absorb the mass term — \ψ2 into the measure, which changes the inverse
covariance to

Q 7 = Ue2 + ί = λΨD(- AdΛf -ΔδΛ+ί. (3.31)

Denote the new measure by dμdΛ(ψ) and put

N=$exp(-^ψ2)dμ0>SΛ(ψ). (3.32)

The result of translation and mass shift is

Z = NΣίeGeEeRdμΰΛ(ψ), (3.33)
h

where

R^-ΪΠψ + β-hy-^gu^g-Ϊψu^g + ̂ ψ2. (3.34)

Before defining the translation g(x) we need to generalize the set of partition
functions we will need to consider.

Definition. Let Fbe a connected region composed of unit lattice cubes. Let {
denote the components of dV, and let σo(V) denote the external boundary
component of V. Let ho(F) be a function on the components of δV with values in
Jf. It specifies the boundary condition φ->ho(σ) at σ.

We need a restriction on what functions h can occur in V with boundary
conditions h0.

Condition A. If there is a σ with ho(σ)φho(σo), then h(x) = ho(σ') for dist(x, σ')<L
whenever ho(σ') φ ho(σ).

Definition. If there is a σ with ho(σ) φ ho(σo), then we call ho(σ)eJf the leading
boundary condition of (h0, V) and denote it hι

0(h0, V). If all σ have ho(σ) = ho(σo),
then hι

0(h0, V) is defined to be ho(σo). The union of all σ with ho(σ) = /io(ho, V) is
called the leading boundary of V and is denoted LdV.

We will need to exercise some care not to violate this condition, especially in
Sect. 11. The leading boundary condition of V is the only boundary condition that
discontinuities in h can approach.

Let si be a bounded function of φ that factors across unit lattice cubes. Write
jtf(V) for the part of si localized in V. We define some fixed h partition functions
by analogy with (3.34):

Z f t (h 0 , , ) ί ( ) d μ g v { ψ ) ,

Zh(h0,V) = Zh(h0,V,ί).

The measure dμsv(ψ) = dμδV(φ - g) has covariance

CdV = (λ2ll{-Δav)
2-Δav+\)-\ (3.36)

and G(V), E{V) are defined as in (3.24) and (3.26)-(3 29) but with all integrals
restricted to V. The following formula for R(V) generalizes (3.34):

R(V) = -1 ί (ψ+g - h)2 - \ \ (g - tio(ho, V))u-g

ι

v(g - hι

0(^, V))
V V

- ί Wllviϋ - Λ'oO>o.n)+H Ψ2 • (3-37)
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The full partition function can now be written as

h ) . (3.38)
h

We now proceed to define g(x) for the partition function Zh(h0, V, stf\ We
modify the definition in [3] only slightly. Pave IR3 with cubes of edge length Z//4.
Let Sf denote the intersection of V with the union of all Z//4-lattice cubes that are
at least Z//4 from discontinuities in h. If the L-lattice cube Ωa has a face in common
with σ, we consider Ωanσ to be a discontinuity in h if h(Ωa) φho(σ). On ^ we put
g = h. Let {^} be the connected components of V\ίf.

Define he

β by extending h \ fβ smoothly to R 3 with no discontinuities at d/β\dV
or in ~fβ. On components of ~V touching fβ we have he

β = hι

0(h0,V). Let
Γβ = dVrλfβ and put

gβ-hι

o(ho,V) = (λΨD(-Δry-AΓβ + lΓ\hl-hι

o(ho,V)). (3.39)

Note that gβ-+hι

0(h0, V) at d/βndV. We define g by smoothing near δ/β, as in [3].
Define Bfβ to be the union of the unit lattice cubes of fβ touching dfβ\dV. Let χβ

be a C00 function equal to zero outside /β, equal to one in fβ\Bfβ, with 0 ^ χ ^ 1,
and with Vχβ normal to 3V at dK In addition we assume that χβ{x) = 0 or 1 if
dist(x,df)tk\ for a nY face of the unit lattice making up dV. We now define

g = Xβdβ + (l-Xβ)h in fβ. (3.40)

We use Γ^ in (3.38) instead of dV or δΛ so that the definitions will be invariant
if V is reduced by inserting Dirichlet data outside ββ. The restriction on where χβ

changes from 0 to 1 is to avoid possible singularities at edges or corners of dV.
Note that we do not absorb quadratic expressions from §ρij(x,y)εi(x)εj(y) into the
measure as in [3]. Doing so would not help with convergence when expanding
about minima which are not copies of the φ = 0 minimum.

4. Stability of the 0 = 0 Stationary Point

In generating the cluster expansion of the next section, Dirichlet data is inserted on
surfaces in the unit lattice that are at least a distance L' from discontinuities in h.
When we have full Dirichlet data on a surface, nonlocal terms in E connecting the
inside to the outside will have been interpolated away. Thus the measure factorizes
across the Dirichlet surface.

Suppose we have a connected region V whose boundary is a Dirichlet surface.
If V is free from terms differentiated down from the exponent G + E + R, and if
each component of 3V is in a region where h(x) = hoeJtf?, then we resum all the
terms of the Peierls expansion in V to yield a (slightly modified) partition function
in V. Modifications arise from the constraint that discontinuities in h lie at least a
distance L' from dV, and from other constraints arising in the expansion in the next
section. The expansion depends on being able to replace this partition function by
one where hQ is replaced by 0. The error is a ratio of partition functions which must
be bounded by a surface effect.

In Sect. 11 we control ratios of partition functions by an inductive procedure to
remove the constraints. The induction terminates when an unmodified partition
function

ΣKV) (4-1)
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is obtained. Here ho(σ) = h0 for all σ and there are no restrictions on the sum over
h. Thus the whole procedure depends on an a priori bound on ratios of unmodified
partition functions. We supply the bound here since it is the physics behind the
stability of the φ = 0 stationary point.

A more convenient form for Z(h0, V) can be obtained by translating from ψ to
ίp = ψ + g — h0. The construction of g through a χβ with Vχβ normal to dV at dV
insures that g — ho = Δdv(g — ho) = 0 at 8V. Thus the translation is compatible with
the Dirichlet data (see [3]). We have

eR{V)dμdv{xp) = JV- xeR{V) exp( - \ f ψ2) dμo,dV(ψ)

2ί(ψ + 9-h)2-2ί(9~K)uδv(9~K)- \ψudv(g-ho)
V V V

- j ψUQv(h0 ~g)-{\{hQ- g)uaγ{h0 - g)\ dμ0 dv(ψ)
v v I

= Ny1 Qxpί - jl {φ-h)2\ dμ0 δv(xp). (4.2)
\ v I

Here dμOfdv(ψ) has covariance udv and

Nv= jexp/J — ̂ ψ2\dμ0 dV(ψ). (4.3)

As in the derivation of (3.25) from (3.23) we have

i . (4.4)

The second step resummed the Peierls expansion in V.
The next proposition contains the main result on ratios of partition functions.

It is a kind of correlation inequality and is not amenable to proof with expansion
techniques.

Proposition 4.1. The unmodified partition functions with Dirichlet boundary con-
ditions defined in (4.1) satisfy the following inequality:

\Z(ho,V)\£Z(0,V). (4.5)

Proof We write eM{V) in (4.4) in grand canonical form again. We can eliminate the
restriction on integrations in M(V) by setting φ(x) = 0 for xφV because then

ε.( x) = ̂ 1 / 2 e ^ ( x ) - l = 0 . Using (2.3), (4.4), we have

o 1 ! ^ j e-ewcxp(iβ''2ΣemΦ(xj)dμ0,ev(ip)
N\N \ /

(4-6)

- 1 lim Z^Σ^J ί e-^exp/iΓ2 Σ emh0+ Ji
Λ'^ΈL3 N i V ! (Λ')N \ α:xαeF V
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We have replaced φ with φ + /i0 everywhere in V. The reason for using this
representation is now clear: The integral over ψ is manifestly positive and so it can
be left alone when we take absolute values. The phase factors involving h0 go
away, and we can reverse the manipulations in (4.6) to obtain

lim Z o ' Σ — j e-ew

Λ ^W.3 N -W ! U')N

= Z(0,V). (4.7)

We have substituted φ for ψ in V to make the last equality more transparent. •

Remark. If we had not eliminated the constraint that h = h0 near δV, then
resumming the Peierls expansion in V would have left remnants of the partition of
unity near δV. Pushed back into grand canonical form, these functions are Fourier
transformed. After taking absolute values and returning to sine-Gordon language,
the functions are drastically modified. Any reasonable approximate characteristic
function χ(A) has the property that |||χΠ|L«>~c|logj8|. These divergent factors
would cause problems with our expansion because they would have to be beaten
by factors of λ while β<βo(λ) = ce~c/λ.

5. The Cluster Expansion

We develop the cluster expansion along the lines of [3], but a number of new
devices are needed to handle the special requirements of our situation. An
inductively defined expansion is needed to allow sufficient flexibility. Dirichlet
decoupling is needed so that partition functions inside clusters will have Dirichlet
boundary conditions to enforce the condition φ = h0 at δV. With the Dirichlet
decoupling procedure we use, many contractions to a cube could occur without
long contraction distances to compensate. As in [11], the region to be isolated is
expanded appropriately to avoid this problem. We also expand the region to be
isolated to be as connected as possible, though this is probably not essential.

We derive the expansion first for a fixed h(x) in a connected region VQΛ, with
Dirichlet boundary conditions enforcing φ = ho(σ) at each component σ of δV.
Suppose that the support of $ί(V) is contained in S, a union of "special" lattice
cubes. We think of J / ( F ) as determining S, even though jtf(a) = 1 is possible for a
cube aQS. We order the unit lattice cubes lexicographically. Write
β i ^ t p J i + ̂ ^ ^ ^ f e ^ 1 ! where i = (iv i2, /3)eZ3.

Then
ai<aj if i1<jί

or ίι=Jι and i2

<ji

or ίί=j1J2=J2> a n d h<J3 (5Λ)

lϊX1,X2 are two unions of unit lattice cubes, then we say Xί is beforeX2 if the first
cube inX x is before the first cube inX2. The basic quantities to be expanded are
Z^(h0, V, sd) and Z^(h0, V), defined in (3.35), where h satisfies Condition A of Sect. 3.
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The expansion generates an increasing sequence of regions XVX2, - ;Xk Their
boundaries yi = dXi are contours for the insertion of Dirichlet data. Given a
sequence of interpolation parameters s = {sl9...,sι_1} we define interpolating
covariances C(s) with full Dirichlet data on dV and partial data on yv ..., yt_ v Put

Cy = (λ2l2

D(-Ay)
2-Δy+lΓ\ (5.2)

where A has Dirichlet boundary conditions on y. Then we define inductively

Cy(s1,...,sι) = sιCy(s1,...,sι_1) + (ί-sι)Cyuγι(s1,...,sι_ι). (5.3)

Finally for s = {s1,...,sι_1} we write

) = Cdr(sί,...,sl_1). (5.4)

A
ds,_1

eyCΓ{s) = CΓ^(s), (5.5)

δyCΓ(s) = CΓ(s)-CΓuy(s), (5.6)

we have

Cy(sv...,sι_1) = eyiiCy(sv...,sι_2) + sι_1δyιιCy{sv...,sι_2)

= •••= Π ( ^ + vU C r ( 5 7 )
α = 1

Since each ya separates yβ from yδ if β<a<δ we have δ ^ e ^ δ ^ C ^ O . Thus

i - l / - I

Cy(51,...,sz_1)= Σ Σ ^ r ^ . M J Mv^r^ i-^- iCy + ̂  ^-iCr

This yields the formula

d ι~ι

— C(S^ . . . , 5 ^ ^ = 2u Sη{l)' 'Sl-2^yηil) ^yl-i

(^yχu...uyrl{l)-1^dV' ^ ' ^

Nonlocal terms in £(F) coupling across contours yt are interpolated with a
factor sz. For unit lattice cubes av...,at we define

St{ai,...,a^^ Σ ί ρί l,...,(t(x1,...,x()c(l(x1)...ε/t(xί). (5.10)
*- i i , . . . , i t α i x ... x α t

Then we have

00

£(*0= Σ Σ ^(fli. .fl,). (5.11)
ί = 2 ( α i , . . . , a t ) : α I C F

When Xz is being decoupled from F\A ,̂ E(V,sv...,sι_1) is replaced by
E(Ks1 }...5s z). The new version is the same as E(V,sί,...,sι_ί) except that terms
with some pair of cubes (a^cij) separated by yι are multiplied by sv We say

(α1,...,α ί) are partitioned by yz. Thus all the terms in E(V,sl9...,sι_1) are
dsι_1
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partitioned by yι_v For each such term define η(l) to be the smallest integer such
that the cubes are partitioned by yη{ιy Since theXj are increasing, the term acquires
factors sη(l)...sι_ί in the interpolation process, and we have

ysι-iΣ Σ
(α1 ; ...,αt) partitio
by y ^ but not by γη(l)_1

E(Ks1,...,s ϊ_1)= Σ s

η(iysι-iΣ Σ
asl- 1 η(l)= 1 f = 2 (α1; ...,αt) partitioned by yfί(i) and

(5.12)

Definition. Let ^(/ι, h0, F) be the set of all faces of unit cubes in V that are at least a
distance LJ from discontinuities in h. [For this purpose we define h(x) = ho(σ) for
xφV near σ.] The union of all faces in 3$(h, h0, V) breaks V into a number of
connected regions. We call the resulting regions the elementary regions associated
to h. Each Xt will be a union of elementary regions.

Let aγ be the first cube in S if S + 0 or the first cube in F if S = 0. In the latter
case aί will be at the boundary of V so we can define Yί to be the elementary
region containing α l 5 and then Yx will have g = ho(σo) at its outer boundary. In
general we arrange for this to be the case by including in 71 all the elementary
regions that surround or contain av

Definition. A region R is said to surround a cube a if a ̂  R and if every curve from a
to infinity intersects R in a curve of finite length. A curve 7 surrounds a set y' if
y'^y and if every curve from y' to infinity intersects y.

Draw the shortest path from aλ to the elementary region surrounding aγ that
has the largest diameter. Let Tx be the set of cubes in IR3 that touch this path. Then
let yχ be the set of all elementary regions that have a cube in common with Tv If
no elementary regions surround av then Yί is the elementary region containing av

Finally we put X1 = Yί and yγ =dXv

The first interpolation attempts to remove interactions across γv There is a
decoupled term (sί =0) which factors across yl9 and there is an interaction term

0 a s i

The interaction term is expanded further and several new regions are defined,
depending on what term in the expansion is being considered. We have

4 (5.13)

where dμs(ψ) has covariance C(s) and where

κι=—E(V,sv...,sι)+ j dxdy—C(x,y,sί,...,sι)
USi y x γ USi

δψ(x) δψ(x) )\δψ(y) δψ(y)
(5.14)

There is only one term η{2)= 1 in the sums (5.9), (5.12). Let τ 2 e {1,2,3,4,5} signify
which of the five terms in (5.14) is being considered. There are sums over t for each
appearance of E in (5.14). The values are given by t2,t'2 (one or both may be
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superfluous, depending on τ2). The integrals over x,y in (5.14) are expanded into
unit lattice localizations, and dE/dsί9 δE/δψ are written as a sum of terms where
each vertex is localized in a unit cube. The cubes in which 8 or δ/δψ vertices are
localized will be denoted α2α. Some of these cubes are distinguished and denoted
α2α. Any cube containing a δ/δψ is distinguished. Cubes in which g = h are
distinguished. For each factor 8t2 or 8t2 we distinguish the first three cubes (two
cubes if t2 or ί2 equals 2). Distinguished cubes are ones where number divergences
can occur.

Having expanded out the interaction term, we construct the region to be
isolated at the next interpolation. For each factor 8t2 or 8t2, draw the shortest tree
graph that connects all the cubes a2a of the factor. Tree graphs connecting a set of
cubes must have a vertex in each cube but can have additional vertices. If there is
more than one shortest tree, choose one but let the choice depend only on the set
of cubes to be connected. When τ 2 is such that there are functional derivatives,
draw in addition a shortest path that travels from one δ/δψ cube to dY1 and then
to the other δ/δψ cube. It should depend only on the cubes and yv Define T2 to be
the set of cubes in R 3 that touch one of the trees connecting the a2a or that touch
the path from δ/δψ(x) to dYι to δ/δψ(y). The region T2 is a connected set
intersecting Xv Like T1? it may run outside of V. Define Y2 to be the union of all
elementary regions not in Xt that have a cube in common with T2. Finally put
X2=X1KJY2 and y2 = dX2. The region I 2 u T 1 u Γ 2 is connected. Using an in-
terpolation parameter s2, Dirichlet data is inserted at y2 and terms in E coupling
across y2 are interpolated away. Again there is a decoupled term and an
interaction term which we expand further.

The general step is similar to the step just described. When X /_1 is being
isolated, the operator ϊcι_ί is inserted as in (5.13). Using (5.8) and (5.10) we find
sums over η(ϊ) = 1,...,/— 1, over τx = 1,..., 5, over ίί5 ί'ί? and over localization cubes
aloc. The distinguished cubes a'la are defined as follows. As before, any cube
containing a δ/δψ is distinguished. We distinguish cubes in which g = h and which
have not been distinguished at earlier steps. The first three (or two) cubes in 8tι or
8t,χ are distinguished. We draw shortest trees connecting the cubes of 8tι, 8tί and a
shortest path from δ/δψ to dYη(l) to δ/δψ. Cubes touching the trees or the path are
included in Tv In addition any cube a satisfying

dist(a,aJ<(N(a'la)-ί)114 (5.15)

is included in Tt. Here N(a'la) is the number of interpolation steps in which a'la has
been distinguished. We define Y{ to be the union of all elementary regions not in

i

Xχ-.γ that overlap 7J, and we φxxiXι=Xι_1\jYb yι = dXι. Each regionXzu (J Tt is
i = 1

connected.
The expansion proceeds until each term has its largest region Xk decoupled

from F\Xfc or until Xk = V. At this point we have

Π ZΛ(h 0(^.),F ;,^). (5.16)
v,cv\xkU)
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Here Z specifies all the information needed to construct a term of the expansion.
We call it a cluster. It specifies:

A region V with boundary conditions ho(F);
An integer k ̂  1 for which sk — 0
A cube α1

Regions Tx and Yί =XV and a compatible htX1;
A contour γί = dXί;
For each 1 = 2, ...,fc:

An interpolation parameter 5 ί_1,
A valueof f/(/)6{l,...,/-l},
A type of term τz,
Indices ίz, ίj for ^-factors,
Localization cubes αία,
Distinguished localization cubes a'la,
A region Tz based on the trees and paths connecting the ala,
A region Yt and a compatible Λ \Ύb

A regionXz = X j . ^ ^ and
A contour yz = dXι

An observable s#{Xk).
These data are compatible in the sense that Z must arise from the expansion of

some ZΛ(h0, F, s#) as described above. For example V affects the covariances C(s)
and determines what part of Tt is not contained in Xv The sum over Z in (5.16) is
restricted to clusters arising from the expansion of ZΛ(h0, V, J / ) . When Z is written
in parenthesis after one of the above symbols, as in Xk(Z), we mean the value
specified by Z.

We have the following formula for ρ(Z):

1 = 2

(5.17)

where the operators κι are written in the order κk_ί... κv The form κ,_ t takes
depends on τ, for example we let τ, = 3 specify the term

κ ί_1(3,ί i,ί' ί,α i α)= j

In F\Xfc we have a product of decoupled partition functions, one for each
component Vt of V\Kk [see (5.16)]. Components do not interact since S-factors
coupling across γk have been interpolated away. Each component has boundary
conditions ho(l^). For σ a component of dVt the boundary condition ho(σ) is
defined to be the constant value of g at σ. The function h in ZΛ(h0(VJ), Vi9s/) is
understood to be restricted to Vv It must equal ho(σ) within a distance L' of σ\dV. It
cannot specify an elementary region that surrounds Xfe(Z), by our choice of 7\ and
Yv There are no other constraints on h in Vt arising from Z.

The partition functions Z/ι(h0(T
/J), P<, JS/) will not necessarily satisfy Condition A

unless some further conditions are placed on h, ho(V), and V. These will be imposed
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and Condition A will be checked each time (5.16) is applied. Assuming Condition
A for the moment, we need to check two things before we can say that the partition
functions ZΛ(h0(VJ), Vt, sd) produced in (5.16) agree with our earlier definition (3.35).
In order that R(V\ when restricted to Vt, should agree with R(Vt), defined in (3.37),
we need

and

u'Mg- Λ{,(ho(n V)) = u-Ld

ι

Vι{g- KiUVil V$ on Vt.

The subscript on g indicates which region was used in the construction of g as in
Sect. 3. In fact it does not matter whether V or Vt is used to construct g on V{

because only the part of dV touching J'β affects g in β^ New Dirichlet surfaces are
placed at least L' from discontinuities in h. Hence they are well outside of /β and
do not affect g there. The second condition is easily checked when hι

0(h0(V), V)
= /ιΌ(ho(F ), VJ ), because new Dirichlet surfaces in LdVt are at least L' from places
where h^hι

0(h0(V), F), and hence g = hl

0(h0(V),V) near the surfaces. When
hι

0(h0(V), F) + /z[)(h0(Ki), VJ we verify the sequence

ULMO~ K(ho(V\ F)) = u- \g- tio(ho(V\ V))

where u0 has free boundary conditions. The first step follows because Condition A
for Vt implies that LdV is far from places in V{ where h (and hence g) differs from
/ίo(ho(F), F). The next step is just the fact that UQ 1 = λ2l2

D{-Δ)2- Δ annihilates
constants. The third step follows because LdVtndV is far from places where
g φ/ιo(ho(Fί), Vt) by Condition A for F; the same is true for LdV^dV because it is all
new.

We wish to use (5.16) to derive an expansion for some full partition functions
(with h no longer fixed) which we define now.

Definition. Suppose we are given F, ho(F), and a set of cubes dV, where h is required
to equal ho(σo(F)), the external boundary condition of F. In addition, for each
interior component σ of d V we specify i(σ) — y or n, depending on whether /i's
specifying elementary regions surrounding σ are allowed or not. We may as well
assume i(σ) = y for ho(σ)Φho(σo) - otherwise no h9s would be allowed. All this
information will be denoted ¥ . Then we say that h is compatible with (h o,¥) if it
satisfies the above requirements.

We can now define

h compatible with (ho,V)

z ( h o , V H Z ( h o , γ , i ) .

We will always deal with (h o,¥) that satisfy the following two conditions.

Condition B. Every cube in dV is less than L' from σ0 or from a σ with i(σ) = n.

Condition A'. If there is a σ with ho(σ)φho(σo), then all cubes less than L' from a σ'
with ho(σ') + ho(σ) are in dV.
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Condition A' is just Condition A applied at the level of full partition functions.
Some comments on Conditions A' and B should help us to understand what

sorts of (h o,¥) can occur. If ho(F) specifies more than one boundary condition,
then an interior component σ has ho(σ)Φho(σo). The partition function would
vanish unless all such σ have ί(σ) = y. Condition B keeps cubes of dV away from
such σ. If a different boundary condition occurs on an interior σr, then Condition
A' includes nearby cubes in δV. Thus we must have ho(σ') = ho(σo). To summarize,
at most two boundary conditions are present, and if two are present then
components with ho(σ)φho(σo) have no constraints [ί((τ) = y and no nearby dV
cubes], and components with ho(σ) = ho(σo) have full constraints [i(σ) = n and all
nearby cubes in <9F] (see Fig. 1).

Note that Z(h0, F), defined in (4.1), is equal to Z(h0, V), where ho(σ) = h0 for all σ
and where V specifies dV=0 and i(σ) = y for all σ.

Equation (5.16) now yields the expansion

Z(h0, %sη=Σ β(Z) Π Z(ho(PQ, V, sfj. (5.20)
z vιςv\xk(z)

Here TL runs over clusters that arise in the expansion of ZΛ(h0, F, stf) for some h
compatible with (h0, V). We have summed over all h in ¥ compatible with a fixed TL
toobtain the factors Z(ho(PQ,% ^ ) All cubes of Vt closer than L' to dVv\dV are in
dVt. In addition, any cube in VtndV is in dVt. A component of dVt has ί(σ) = n if it
surrounds or equals some σ' of dV with i{σ') = n. A component of dV{ that
surrounds Xk(E) has i(σ) = n. Otherwise ί(σ') = y.

We now apply (5.20) to Z{0,Λ9s/\ putting dΛ = ύ. Equation (5.20) is to be
iterated by applying it to the partition function Z(ho(FJ),Ψ/, sd) that contains the
first cube of S that is not already part of some Xk(E). The process continues until
all cubes of S are used up. The clusters produced so far will be denoted with letters
\ . The expansion takes the form

^ ) = Σ ΓU(X,) Π Z(ho(^),V;). (5.21)

Note that all partition functions produced by this expansion have constant
boundary conditions and all interior boundary components σ have i(σ) = n. Thus
Conditions A' and B are satisfied.

For each Vt with h o (F ) + 0 we multiply and divide by Z(0,Vf). Note that for
these Fί5 dVt is always the set of cubes at a distance less than 11 from dVv Also, any
interior components σ of dVt have i(σ) = n and ho(σ) = ho(σo). We also divide (5.21)
by Z(0, a)'"4', where a is some unit cube, a specifies $α = α, and \Λ\ is the volume of A
(the number of unit cubes in A). We put

Z(h0, V, O = Z(h0, V, J4)Z{0, a)" '"I,

)-lFl, (5.22)

so that (5.21) becomes

Z(0,/l,O= ΣSίίX,}) Π 2(0, V(), (5-23)
lj
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α b c
Fig. la-c. Situations violating or satisfying Conditions A' and B. In each of a-c let V be the large
rectangle minus the squares enclosing a y or an n. The shaded region is dV, and the σ£ label the
components of dV. The values of ^ σ j and i(σ2) are indicated by y or n. Suppose that ho(σo)
= h o(σ 2)φh o(σ 1), so that ^(a^) is the leading boundary condition of V. Then a satisfies Conditions A'
and B, b satisfies neither, and c satisfies B but not A'. If we changed i(σ2) to y in a, then A' would be
satisfied but not B. Now suppose that ho(σo) = ho(σ1) = ho(σ2). Then Condition A' is irrelevant, and
Condition B is satisfied only in a and c

where

π
F,:ho(Fi)ΦO

Z(0,Vf)
(5.24)

There are some compatibility conditions on all these sums over clusters. They
arise from the fact that at each application of (5.20) the set of clusters generated
depends on the available volume. Each X,. must arise in the expansion of some
component (ho(V;), ¥ ; ) of A \ [) Xt(X,.)

The next several sections will be concerned with proving good bounds on
To state the estimates we need some measures for how many convergent factors
are produced in the expansion.

Definition. Let d(Έ) be the sum of the lengths of the trees and paths connecting the
al0L, I = 2,..., k. Let δ(Z) be the number of functional derivatives δ/δxp specified by TL.

Put tx or t[ =
define

when τx is such that the corresponding ^-factor is absent. Then

t(Z) = max
1 = 2

(5.25)

For / a face of a unit cube in Xk(E), let δh(f) be the discontinuity in h across /.
Define

= sup π 1 δ

TλJφϊ^) s/(φ)
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Proposition 5.1. Consider the sum of clusters produced in the expansion (5.20) for
some fixed h0, V, and sέ'. Under the conditions of Theorem 2.4,

£|ρ(Z)|(c(LμΓ ί ( z ) / V^ (5.26)

We obtain in Sect. 8 a bound

i Z ^ a J Γ ^ l + cA, (5.27)

and so estimates like (5.26) will hold for ρ(Έ). The ratios of partition functions in

(5.24) will be estimated by a very mild surface term exp(e~cL3η2β~' I ( J X ^ ί ) The

surface effect is absent in the bound of Sect. 4 and arises from the constraints
dF Φ0 and i(σ) = n in each V . It is controlled by the expansion (5.20) applied
appropriately in an inductive argument. In the process we obtain bounds on the
"external" ratio of partition functions in

^ _ Z ( 0 , Λ , ^ ) _
>Λ~~ Z(0,Λ) ~

bounding the ratio by Qxplc{L)λ

6. Estimation of the Expansion

We wish to prove Proposition 5.1, assuming some bounds on parts of ρ{Έ). Our
first task is to bound the sum over TL in (5.26) by a supremum with appropriate
combinatoric coefficients included. Define

ρ^H^IMLμp^V1^^ (6.1)

We adopt the convention that ε and c denote small and large constants,
respectively, and different appearances can denote different constants. The size of c
depends only on the constants δ, C 1 ? C2, cvc2, etc. appearing in Theorems 2.2-2.4,
and not on λ, β/lD, L, or L. Dependence on one of these parameters will be written
explicitly, as in c(L). One can take ε small, but not depending on λ, β/lD, L, or L', so
that ε " 1 ^ c . Recall the discussion of L({αα}) in (2.8)-(2.10). Let {αiαi} and {alΛ2} be
the subsets of {ala} involved in the trees St]? £tί, respectively.

Proposition 6.1.

TL f

k

Π Γs <? /Vfe ^" ί L t | Λ ( { f l I β ' } )

\^(l)' ' S l 2 \ L D Λ e

Proof Write the sum over TL as

Σ Σ fώiΣΣ Σ Σ \ds2 i Σ- Σ (6-3)
k Y i . h f Y i τ2 t2,tί {a2κ} Yi,htY2 f f ( 3 ) = l τ 3 Yk,h \Yk



Jellium 541

with each summation variable compatible with the ones on its left. We convert
sums into supremums from left to right using the identity £ / ( T ) ^ supCτf(T),
valid for /(T), C Γ ^0 when τ τ

ΣC^gl. (6.4)
T

For the sum over k we put

Ck = c\ (6.5)

and (6.4) is satisfied.
For the sum over Hι = (Yb h Γ Y,) we put

CHι= Π ^ ^ ^ ( l + c e - ^ W 1 ) ! ^ ^ 3 . (6.6)

Consider the case 1 = 1. We first want to sum over Tv or equivalently the cube ac

closest to ax in the elementary region of largest diameter surrounding av By (3.6)
the smallest value of δh(f) is 2 ~ 3 / V 1 / 2 - Therefore

y ΓT g-εL3(<5fc(/))2<l+ y ^-εLVjS-Mdistίίn.αcJ+l)

1 * 3 ^ " 1 . (6.7)

A similar argument bounds the sum over the L-lattice cube Ωo farthest from ax

whose boundary contains a discontinuity in h. The cube Ωo contains or borders on
regions where h{x) = ho{σo(Vj) because this holds at the outer boundary of Yv

Therefore we can sum over h(Ω0) using

Λ(βo) n = 1

The term 1 in (6.8) corresponds to no discontinuity (in which case Ωo is the first
L-cube in α1). We continue applying (6.8) to L-cubes adjacent to regions where h
has been fixed. When h has been fixed in the cube containing Ωo, it determines a
minimal region that must be contained in Y. The region consists of all cubes less
than L from discontinuities in h. We continue summing over h in new regions
using (6.8) and expanding the minimal region to accomodate discontinuities.
Eventually the region will contain ^nV. The process stops when h has been fixed
in a region such that no cubes in V are less than L from discontinuities. At this
point Yx and h Γ Y1 are determined. Gathering the estimates yields

The corresponding estimate for l> 1 is easier, because Tx is determined by the {ala}
and we can take Ωo to be any cube in 7] bordering on Z z_ x or on dV. The estimate
(6.4) follows from (6.6) and (6.9).

We next consider sums over Tι = (sι_vη(ΐ)). Define

/ - 1

^1-1= Σ BSa-Sι-2\Ya\> (6-10)
α= 1

/ - - I _ ^ ( s 2 - i - l ) ^ i - i p 9 „ | y I ^ I I Ί
L Γ i ~ e bSη(l) '•• Sl-2\ϊη(l)\ ' I 0 - 1 1 ;



542 J. Z. Imbrie

Then we verify (6.4):

= l-e~Λι-ι^l. (6.12)

We can take Cτι = 5, Cti = ct{, Ctι = ctι, and (6.4) will hold for the τb ίz, and t\
sums.

Let dt{Έ) denote the part of d(7L) arising from differentiation with respect to
Sι-V We wish to bound the sum over {ala} using

-εdι(Z)

h Λ
In(i)\ \vA 1 \vA

as combinatoric coefficient. (Some of these factors may be omitted, depending on
Tj.) The sums over the δ/δψ cubes ami, alΰL2 are handled by the estimate

which holds because dffl) has a contribution from a path from αZSi to dYη(l) to α iδ2.
If we are dealing with the dEjds{_ 1 term in (5.14), then we use the fact that {ala} are
partitioned by yη(l) but not by ίy (̂Z)_ 1 to show that the tree connecting the {ala}
must intersect dYη{ly Thus we can sum over one cube on each side of dYη(l) using
(6.14). The remaining sums over the aloL can be estimated by using (2.9). Putting
these estimates together yields (6.4).

We need only gather the coefficients to complete the estimation. In (6.5) we
note that fc^ί(Z) + 1 in (6.6) we note that

Π L W " 1 ) | y i l / L 3 ^ e e | X k ( Z ) l . (6.15)
z = i

The factors \Yη{l)\ cancel between (6.11) and (6.13). Finally, we observe some
cancellations between coefficients in (6.11),

1=2 \Z=2 α= 1

= expfχ8(l-sC(...St_1)|YJf
\ α = l

(6.16)

completing the proof of the proposition. •

Proposition 6.2.

l\ (6.17)

Comparison of (6.17) with (6.2), (6.1) yields Proposition 5.1.
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Proof. Recall the formulae (5.17), (5.18) for ρ(Z). Let us rewrite R(Xk) using gc,
defined by

gc-hι

0 = CLdV(h-hι

0), (6.18)

where C~dV = u~dv+l and hι

0 = hι

0(h0{V),V). By (3.37), we have

= -Fγ-F2. (6.19)

Our construction of g insures that g-^hι

0 appropriately at LdV, so that
g — hι

oeD(uldy) and the replacement of uLdV with u0 is justified.
We now proceed with a series of estimates, some of which will be proven in

later sections. Combining them will yield the proposition. We have

(6.20)

(6.21)

because \gu^ιg^\\Vg\2 (see the proof of Lemma 5.2 in [1]).
The other term in R(Xk) satisfies the estimate

where p 1 can be large. The proof of (6.21) is similar to the one in [3]. The left-hand
side is calculated as

exp(iP! J (g - gc)C~Ms)C-Ld

ι

v{g - gc)) rg exp(cf (C^Vfe - gc))2),

using \\C(s,x,y)\dy^c (see Sect. 10). Where ^ = 0, we have g = h and
C^yig — g^O. In / ^ we are away from LdV\Γβ and he

β = h (recall that Γβ = LdV
n/β). Thus where χβ = ί, we have g-hι

o = gβ-hι

o = CΓβ(he

β-hι

ol and again
C^yig — g^O. Thus the integral on the right is supported where χβφ{0,1} for
some β. Call this set B. At yeBnfβ we note that Γ^ = 0 if h(y)ή=hι

0 so that

C^Vto " ΰc) = CLdvXβCΓβ(he

β - h(y)).

Note that he

β(x) = h(y) unless dist(x,j;)^L78. In Sect. 10 we bound \d$CΓβ(y,x)\ by

ce-\χ-y\i2 for | χ _ ^ | ^ £ / 8 ? j e έ , |α| ̂ 4 . Thus we can apply the derivatives in CldV

to obtain

ί (C£Mg-gc))2^c J ̂ (j^-^^l/2|^W-/z(y)l)2

The right-hand side can be bounded by e~cL' ^ (δh(f))2 as in [3]. By summing
β

over β, taking 11 large, and using (6.20), we obtain (6.21).
We consider next the functional derivatives δ/δψ in κx in (5.17). Each δ/δψ in a

cube a distinguishes a and counts in N(a). Let ί(α) be the number of factors εf that
are localized in α. The number of terms resulting from the application of all
functional derivatives is bounded by

Π (t(a) + N(a) + 4)Nia) g c m \[ (cN(a))cN{a). (6.22)
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To control derivatives of F2 we use the estimate

δF.
Πί δψ

This follows from the proof of (6.21), where we bounded j
δF.

δψ

(6.23)

by εFv The factor

λn can be extracted because at must be within L of a discontinuity in h. Thus a
piece of Fx is available for the bound (λN(a)yma)^ec/λ^eεL3η2p~1/L'\ By the
definition of \\jtf\\ we have

π
ί=ί

(6.24)

We will prove in Sect. 9 the following estimates on functional derivatives of G2

and E:

δnG,

δxpn

x)-h(x)\)(ί+\δ(x)\)2, (6.25)

ί\(av...,at)
<\nJ2

ί Π I
distinguished α

(6.26)

Here / is symmetric and | | / | | L i ^ l (the norm taken with one variable fixed). The
subscript α on (δ/δ\p(xa))n<x indicates that the operator acts only on ε α in (5.10).

We bound the factors produced in (6.25) and (6.26) by taking a supremum over
{ya}. For the factors \g — h\ we use

(cN(a)Γ 3 ) c N ( f l ) , (6.27)

which follows from the estimate L3(g(x) — h(x))2 ^ c F ^ Ω J , where Ωx is the L-lattice
cube containing x. The factors \ψ\ and |<5| are controlled using

\b/2

T\(cN(a)LΓ1)cN{a\ (6.28)
1 LPi (dμs)

with p2 large and even. This is proven using

lψy+lg (X)-L"3ί

The last factor is less than cL 1F1(ΩX); the other factors are handled by the usual
Gaussian integration estimates. We need |C(s,x,j;)|^cλ~1e~ l*~ :v l/2, which is
implied by (6.34) below. The factors ηh{Xί)β~1/2 are produced because we are not
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quite at a stationary point of the action when /i(x)Φ0. Hence large coefficients are
possible, but they are compensated by a vacuum energy term as follows:

Π(W*~1 / 2)e xPί Σ -elϊη^J-ΛzγiicNWL-'Y™. (6.29)
i \ΩxQXk I a

We now state the main vacuum energy estimates to be proven in Sects. 7 and 8.
The main estimate produces the energy factors used in (6.29) and controls the
remaining functional derivatives. With p 3 near 1 we have

3(dμs)

^{βll6ec/λ)ne3F'l4γ\N(a)cN{a)Qxp( £ - cL3η2

h(ΩJ-') Qxp{β1/6ec/λ\Xk\). (6.30)

The nonlocal interaction terms are estimated using
II E(Xk,su...,sk-i)\\ < cλ\Xk] εFi ί X
We \\LP4(dμs)=e e C A P Z

with p 4 large.
The various number divergences produced above are handled with exponential

pinning:

Π (cN(a)IΓ 3)cm) ύ c{L)m eεάm. (6.32)
α

This is proven by noting that there must be N{a)/2 lines in d{Έ) starting at a and
going a distance at least [(iV(α)—3)/2]1/4. Hence a factor exp( — εN(a)514) is
available in e~εd{Έ) for each a, and (6.32) follows by noting that the total number of
distinguished cubes is bounded by 2t(Z).

The factor exp( — εN(a)5/A) also beats the volume divergence associated with the
region around a of size ciV(α)3/4 included inXk. There is also a contribution to Xk

of size cd(Z) from the cubes touching the trees and paths in d(Έ). Finally, we have
contributions from cubes within L' of discontinuities in h. Altogether we can
estimate the volume divergences by

(6.33)

We need the following estimate on differences of covariances, proven in Sect.
10:

1(5 δ C (X V)\< Cλ~l z>-(l-a/2)dist(x,δY,,(I)ίy) C6 34)

Here disX(x,dYη{l), y) is the length of the shortest path from the cube containing x to
dYη{l) to the cube containing j/. The remaining convergence in d(Έ) comes from the
L({aa}) in (6.26), using the estimate

e-(l -δ/2)L({aoc})e(ί - 2δ/3 + 2ε)dτ({aκ}) ίy fo ^ g - ε L ^ ({α«})\- 1 < ^ ίβ ^5)

\ηA )

Here dτ{{aa}) is the length of the shortest tree connecting {αα}. The bound (6.35) is
easily proven using dτ({aa})^LηA{{aa}) and (2.8) with α = 1-5/2.

The proposition now follows from (6.20)-(6.35). We split up the dμs integral
using Holder's inequality, and each part is estimated above. The factors sηil)... sz_ 2
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cancel between (6.17) and (5.17). By (6.26), we have factors λ2t"2 for each δv Each
distinguished ε in St can come with a factor \ψ\ or it can be functionally
differentiated; in each case we must allow a factor λ~112 from (6.28) or (6.34).
Altogether we have a factor λi3t~4)/2 ^ λ t / 2 for each δv There must be at least δ(I)

k

— Σ Uz + O other functional derivatives which hit F2, ^, G2, Gί9 or some εf a
1 = 2

second time. These get factors λ~1/2 from (6.34) and factors λ, β 1 / 2, or β116 from
(6.23)-(6.26), (6.30). [The first derivative of st produces a /J1/2, but we use it to
cancel the β~ι in (6.26).] Extra powers of \ψ\ or \δ\ (and hence λ~1/2) are generated

k

in (6.25) but these are associated with a β112. Overall an extra δ(TL)— £ (ί/ + tί)

factors of λ112 are produced and thus a Aί(z)/2 is available, as required by (6.17). All
other factors are accounted for in (6.20)-(6.35), and Proposition 6.2 is proven. •

7. Derivatives of r(A)

In this section we use Cauchy's integral formula to estimate derivatives of r(A\
defined in (3.28).

Lemma 7.1. For any he Jf,

dA*

Proof. As in [3] we write

exp(L3 Σ g ^ * ' " " * - l))exp(L3 Σg ig'/"/2

(7.1)

exp(L3y2/2)

III. I V

Consider first the region

(7 2)

(7-3)

By Lemma 3.1 we have

We expand in x and y , use ΣQiei~® a n ( ^ (&εSy(h) = O to obtain

(7.5)
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for some y between 0 and y and some x between x and h. Only the h' = h term
contributes significantly in IV, so we have

(7.6)

Thus

and (7.1) follows for \Λ-h\^β'116 if we note that 1 — 2y is small and

(L3η2

hβ-ίl2)Ne-L3ηϊβ-ll2ScNcNβNI2. (7.8)

Next we consider the region

xelr, \x-h\^β-ll6/2, Ij^ZΓVWlδ, (7.9)

where the following bounds hold:

For the last bound we used the bound on \y\ to show that all terms in the sum
comparable to the h" term are correlated in phase. Thus all but the h" term can be
neglected for an upper bound. Altogether we have

\r(x + iy)\ S L3rtβ V 1 ^ ^ ^ " ^

The transition from h" to h in the second inequality was made using (3.5), (3.6),
assuming y is close to \ and the coefficient of L3η2β~x is fairly small. The resulting
Cauchy estimate for \A-h\^β~116 is

dN ,

dAN v

and (7.1) follows immediately. •

We use Lemma 7.1 to obtain more precise estimates on r(A) with no
derivatives.

Lemma 7.2. For any

L3rtβ\ 3l2βll6eL3(A-h)2/6). (7.13)

In addition,

3l2βί/6eL3A2lδ. (7.14)
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Proof The first bound is just the fundamental theorem of calculus:

h'eJP

<" r>~cL-^ηZβ~ ί/-t , /9l/6| A /.I -L3(A — h)2/S\ (π \ c\
—^c n yi ~t~cp \y± — r ί | c ) . yi.Lj)

For the second bound we take h = 0, use the estimate

U-eL*n2β~\ (7.16)

and handle the interpolation term as above. •

8. Vacuum Energy Estimates

This section is devoted to proving (6.30), (6.31), and (5.27). We need to extract some
of the small β and small λ behavior of the vacuum energy to avoid swamping the
convergence factors of Sect. 6. Other new features arise from the Dirichlet boundary
conditions, which prevent us from following [3] exactly.

Lemma 8.1. Let p 3 be close to 1. Then

S(β1/6ec/λ)ne3F^l\N{a)cN{a)exp( £ -cL^^J'1) exp(β1/6ec/λ\Xk\). (8.1)

Proof. Let D be the union of the L-lattice cubes containing x/s. We apply
Lemmas 7.1 and 7.2 to the factors r(Λ) in eGi to obtain

δ
eGi{ dμs(ψ)

ί)

— J ' • x J. ^ '

[cey "' *" j exp\2-J~ c L ^KΩJP l l ^ W P

< V f | ^ 3 G 2 | ( c L " 3 / 2 j 9 1 / 6 ) | s | Π eP3LHA(Ωu)~HΩoc))2/6

SQXk\D ΩXQS

^nlia )β~1)YlN(a)cN{a)(cβ)P3n/6.
I a

We have used ( l + x ) p ^ l + p x ( l + x ) p 1 and expanded the product over Ωa%D
into subsets S ofXk\D composed of L-lattice cubes. We take S to be the union of
the unit lattice cubes intersecting D or S nontrivially.

The next step is to use the bound

|eP3G2(«)| ^ ! + j p3\G2{a)etP3G2(a)\dt

(8.3)
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which follows from (6.25) and \G2{a)\^\2δ2. We expand the product over aQXk\S
a

into a sum over subsets T of unit lattice cubes. Denote by V(a) the quantity in
square brackets. Noting that (A — h)2S(ψ + g — h)2, we have the following bound
on (8.2):

Σ Σ ίexpf ί (2p3δ
2 + p3(W + g-h)2/6)}(cL^2β^ψKcβ)^2

SiXk\D TCXu\S [TuS J

• Π V(a)expfX - cL3η2

h(ΩJ- Λ Π iV(α)cN(α)(Cj?Γ"/6. (8.4)
aQT \ΩΛ ) a

The factors V(a) can be handled separately with Holder's inequality, still keeping
the coefficient of (ψ + g — h)2/6 close to unity. In each a Q % we pick up a factor
cλ~312 from the Gaussian integration (6.28). We prove below that

jexpί J (2qδ2 + q(ψ + g-h)2/6)}dμs(ψ)^e3F'l4ec\Tu^\ (8.5)
bus J

for q>p3 near 1. Thus we can sum over S and Tin (8.4) to obtain the estimate

Σ Π
SiXu\D aQXk\S

^ ^ ^

/

£ Σ ^Mβmeclλ\Xk\S\)ec^/λe^F^(cL~ ^2β^f\ (8.6)
SgXk\D

gQxp(β ί l6ec/λ\Xk\)e3p3Fί/*

which proves the lemma.
To prove (8.5) note that C(s) is a convex combination of covariances of the

form

so by [3, Eq. (9.67)] it suffices to consider that case only. We use (ψ + g — h)2 ^ 2ψ2

+ 2{g-h)2 to obtain

Jexp/ j (2qδ2 + q(ψ + g-h)2/6J\dμ(ψ)e-2qFίiT^)l3

- f qgu^gβ). (8.7)
TuS )

Let P be the operator which projects out the constant component of a function in
each L-lattice cube. Then

δ2 = (Pφ)2 = (Pψ + Pg)2^ 2(Pψ)2 + 2(Pg)2. (8.8)

We have MQ 1 ^ — ΛN (Neumann boundary conditions on all L-lattice cubes) and
-ΔN^cL~2P, so that

(8.9)

Thus for small L we can estimate (8.7) by

Jexp( J (4q(Pψ)2 + qψ2/3)dμ(ψ). (8.10)
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We now bound (8.10) by e

clτ^{lλ as in [3, Appendix 3]. We have

\ ̂  \\ C\!\

^ | |Cy\cL\- AN) + 2qβ)Cy2\\ ^2q/3 < 1,
((8.11)

again with L small. In addition,

tr CΓ(%qPχTu-sP + 2qχTuSβ) ^ c tr (C Γ χ T u 5 ) ^ c\ TuS\/λ, (8.12)

where we have used (6.34) for the estimate CΓ(x,x)^c/λ. This completes the proof
of (8.5) and the lemma. •

Lemma 8.2. Take p4 < oo. Then

We \\LP4(dμs) =
 e e e X P 2^ b L j rlh(Ωΰc)P ^O.l̂ j

\ΩxQXk )

Proof. We use (6.26) with nt = 0 and two ε 's distinguished for each St to bound

00

\^ Σ ΣW2y~1e~il-δl2)Laa°)Ίdy1dy2f(y1,y2)
ί = 2 {αα}

j - Ky,)\ + ηHyi)β-1/2) (|φ(y2)| + 1 ^ 2 ) - h(y2)\ + ̂ ( y 2 ) i S- 1 / 2 )

I (8.14)

We have used [3, Lemma 9.6] and the fact that the norm of the integral operator
associated to / is bounded by \\f{yv )\\Lί^l. The second and third terms are
bounded by εF1 +ΣεL3η2

(Ω(χ)β~1. For the first term we use

j exp(J cp4λ
2ψ2)dμs(ψ) ^ ecλ^ , (8.15)

which follows from

W<^ ( 8 1 6 )

tr(C(S)2cp4λ
2χXk)Scλ,

using again \C(s,x,y)\^c/λ. This completes the proof. Q

Proposition 8.3.

i Z ^ a J Γ ^ l + cλ. (8.17)

Proof. We have

Z(0, a) = Zo(0, a) = f eGMeG^^a)dμda{φ). (8.18)

Use the bound of Lemma 7.2 on | φ l ) — 1| to show that

g cL-9/2/?1/61 \eE^\ expJj 252 + φ2f6\ dμjφ)

(8.19)
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We have used Holder's inequality, Lemma 8.2, and (8.5). Next we use (6.25) to
show that

3 , (8.20)
a

and hence (6.28), Lemma 8.2, and (8.5) imply that

' sup J(1 + |φ(x)|)3k£(α)| exp/j 2δ2\ dμda(φ)

3 / W / A g d . . (8.21)

Finally we use (8.14), (8.15) to estimate

|J eE{a)dμda{φ) - 1| ̂  f a 2 J J ψ2j exp JcA2 J φ 2 j d μ j φ )

^cλecλSiCλ. (8.22)

The proposition follows from (8.19), (8.21), and (8.22). Q

9. Functional Derivatives

We prove (6.25) and (6.26). Functional derivatives of G2 and E need not be small
when /zφO. However, we can bound them by small factors times functions
involving ηhβ~1/2, which can be controlled by the corresponding vacuum energy
term.

Lemma 9.1. For any rc^O,

δnG,,

+ \g(χ)-h(x)\)(l + \δ(x)\)2. (9.1)

Proof. We have by (3.29)

G2 = J Σ QiiG'aixKix) + G[{x))dx, (9.2)

where

ί, (9.3)

Gi

c = eiβil2e'δ + 1

ίβe2δ2-iβίl2eiδ- 1.

Since 4̂ = ψ + g — δ, we have

-h\ + \δ\)+ l /21/ l-cos jβ 1 ' 2 ^. (9.4)
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Other possible derivatives are easily estimated as follows:

δn .

Gι

v

V b
IIV

δ . VII

<$" .
<v c

= β \e^\ , r =

(9.5)

δxp2 c

If at least one derivative hits Gj,, or if we consider the G[ term, then we have the
bound

ί = l

= (cjS)max(1/2 ( "- 2 ) / 2 i ( l + |<5|)3. (9.6)

We have used \e,\^c, YJQiefβ = ΐD=ί. If G'a is undifferentiated, the first term in (9.4)
is handled similarly, leading to the bound

1 1"2 '"" 2 ) / 2 } ( M + \0-

The second term leads to the estimate

(9.7)

β, 1/21/1 - cos j ? 1 ' 2 ^ ( jS 1 / 2 | e i i r x ( 2 "»(l + l

^ Σβ^/» (Σβi(i-«
\ί=l / \ί=l

= (ReS(/ι))1/2(cj9)max!1/2 ("-1 ) / 2 )ι (9.8)

when ηh = (βReS{h))112 [see (3.1) and (3.5)]. When ηk = η, we use
η~1 = 2e m ( l-2y)~ 1 / 2 ^c to bound the first line by

, (9.9)

to prove (9.8). This completes the proof. •

Lemma 9.2. The estimate

(cβ)"«12

<x:n«>0

•ί Π lβιl\\ψ(y«)\+\g{y«)-h{yMnH?J-m)dyxy({y«}) (9.10)
distinguished α

ftoWs /or some symmetric f with | | / | | L i ^ 1 (the norm taken with one variable fixed).
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Proof. We bound 8f(ya) as in (9.4):

Ig.l = | ( ^ 1 / 2 h _ j I

For the undistinguished α's we use |ε f | ^2. For the α's with n α > 0 w e use

(9.11)

(9.12)

Applying (2.10) with α= 1 — δ/2, we obtain

ί TT^ίi H(yv->ytK(yι)---φtln

VII

δ \ -

[δψ(xa)Ja β l

α l x ... x at

• Π o^
a:na>0• π
distinguished a

^J), (9.13)

where Wf^ ί t | | L i ^ l . We sum over species indices using

ί = i ί = i (9.14)

the third bound proven as in (9.8) and (9.9). Estimate (9.10) is immediate. •

10. Derivatives of Covariances

We establish here all the covariance estimates used in this paper. The following
formula will prove useful:

where

r± =(2l2

Dλ2Γ ![1 ± γl-4λΨD-] .

Recall that lD = 1 + O{λ2) + O(β/λ\ so for small λ and β we have

(10.1)

(10.2)

(10.3)

The following lemma contains the main result (6.34) on differences of covariances.

Lemma 10.1. Let dist(x, dYη{l), y) be the length of the shortest path from the unit cube
containing x to dYη(l) to the unit cube containing y. Then

λ 1 < 1 4 ' 2 ) ^ ^ ' ' > . (10.4)
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Proof. We use the path space representation [12, 6] for the two covariances

(-ΔΓ + r + )-\x,y)=]dte-r*'$P'xJdω)χr(ω). (10.5)
0

Here P^dω) is the conditional Wiener measure on the set of all paths starting at x
at time zero and ending at y at time t, and

, forsome t ' e [ ° ' t ]

otherwise.

We see that δy acts on CΓ by inserting a factor (1 — χy(ω)) in the Wiener integral:

'ΪKJdω) Π (l-χyα(ω))χΓ(ω)^0. (10.7)
a = η(l)

Consider the case where dist(x,dYηil),y)^.l. Drop the e~r + t term and the
factors (ί — χya(ω)) for ŷ(Z) + l ^ α ^ / + l for an upper bound. Note also that

Zr(ω) S (1 - Zar,(1)(ω)), since

IV / IV / "f \»/ -•-

Let {Fa} be the unit cube faces comprising dYη{ly Then (1 — χdYηil){oή)S Σ

(1 — #Fα(ω))>a n c* we have the following estimate on the left-hand side of (10.4):
00

a 0 a

^ce-{l-δl2)άist{x,dYv{l),y) # ( 1 0 > 8 j

The first step made use of standard estimates on conditional Wiener integrals
[20,12, 6].

When dist(x, dYη(lyy)<l we drop all characteristic functions χΓ(ω) and
(1 —χ (ω)). This yields the free co variance which is exactly calculable as

\ - 1/2

(10.9)

This completes the proof. •
In Sect. 6 we used the estimate

y p

χ - y V 2 , (10.10)

for | α | ^ 4 , |x — y\>L'β9 and χβ(y)φ{0,1}. We use some Poisson kernel techniques
from [5]. It suffices to prove the estimate for each term in (10.1). Let B be a unit
cube containing y such that dist(y,dB\Γβ)^\ and BnΓβQdB. Such a cube exists
because of the condition χβ(y)e{0,l} for dist(j;,δ/)^ 5 / a face of Γβ. Let fo(z)
= (—ΔΓβ

J

Γr)~1(z,x) = Cr}Γβ(z,x) be defined for zedB, with r = r+ or r_. We have
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x~> l / 2, with / 0 = 0 at dBnΓβ. Considered as a function of y, CrΓβ{y,x)
solves the Dirichlet problem for (— A -f r) with boundary values / 0 on dB. There-
fore we have the Poisson kernel formula

Cr.rβ(y>*)= ί J-Crtd]&,z)f0(z)dz. (10.11)
dB Onz

Note that Cr dB has an explicit series representation in terms of(—A+r)~ \ using
the method of images. Thus derivatives of Cr>dB{y,z) are bounded for \y — z\^j,
where the integral in (10.11) is supported. Thus \da

yCr Γβ{y,x)\^ce~^x~^12, and
(10.10) follows.

The estimate J|C(s,x, y)\dy^c was needed in Sect. 6. It follows from the fact
that C(s) is a convex combination of Cr's, each of which is bounded by
c( — A+r_)~1 by (10.7). The bound is obvious for this kernel.

11. Ratios of Partition Functions

Our task is to control the ratios of partition functions produced in the expansion
of Sect. 5. We reduce inductively the constraints on h implied by V. When all
constraints are gone, Proposition 4.1 can be applied.

Definition. Let v(ho,Y)=l if a component of δV has ho(σ) φ ho(σo), and let
v(h0, V) = 0 otherwise. Let n(Ψ) denote the number of components of δV for which
i(cή = n. The function c(Ψ) = \δV\ + n(y) measures the effect of constraints on our
estimates for ratios of partition functions.

Proposition 11.1. Suppose h0, V are such that Conditions A' and B of Sect. 5 hold.
Under the conditions of Theorem 2.4,

Z(ho,Y)

Z(0,¥)

Proof. We use a double induction. We assume the proposition for all V that are
strictly contained in V and for all V with c(Ϋ)<c(V). When c{Ψ) = v(h0, V) = 0 the
proposition reduces to Proposition 4.1, so we can take c(V)>0 when v(h0, V) = 0.
We may as well assume h 0 Φ 0.

We define S(ho,V) to be the first cube adjacent to a component of dV with
ho(σ)φho(σo) [Case 1]. If no such component exists, 5(h0, Ψ) is the first cube in δV
[Case 2] and if oV = 0 it is the first cube adjacent to a component of δV with
i(σ) = n [Case 3]. In Case 2 we define V by deleting S(h0, V) from δV. In Case 3 V
is defined by switching i(σ) from n to y for σ adjacent to S(h0, Ψ).

In Cases 2, 3 we write

= Z(h 0 ,V')- X Zh(h0,V)
h compatible with (ho, V) but not (ho,V)

zh(o,viZ ( U , V ) [ h compatible with (0,V) but not (0,V)

Σ Zh(h0,V), (11.2)
h compatible with (ho,V) but not (ho, V)
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and apply
cube. This

the expansion (5.16) to
yields

-(h v) z ( h°' vV(o

-ΣΣβW

each

π
ΣΣQ
h X

Zh(\

V),

(X)

using S = S(l

π u
F,gF\Xk(X)

J. Z. Imbrie

i o ,¥) as the special

h ° ^ Vi)

(11.3)

Fix X and sum over h compatibte^with X. We^obtain a product of partition
functions Z(ho(T^),¥ i). A cube is in dVt if it is in dVnVi or if it is less than L' from
Xk(X). Note that h must generate an elementary region surrounding a boundary
component adjacent to S(h0, V) in Case 3. However, all such regions are included
inZ k (X) . Hence a boundary component σ of V{ has i(σ) = n if it surrounds Xk(X) or
if it surrounds or equals a boundary component σ' of F with i(σ') = n. Otherwise
j(cr) = j . The result of resummation is

Z ( h n , ¥ 0 r x-, -r-r Λ
Z(K^)= ' ' Z(Q,¥)+ Σ β W Π Z(ho(^.),¥.)

Π Z(ho(F;),¥.). (11.4)

The first sum over X is over all clusters generated in the expansion of Zh(0, F) for
some h compatible with (0,¥) but not with (0,¥) [Class 1]. The second sum over
X is similar but with h 0 replacing 0 [Class 2]. Class 3 contains X = 0 only,
representing the first term in (11.4).

As in Sect. 5 we multiply and divide by Z(0, ¥.) and incorporate the ratios
Z(ho(F i),¥.)/Z(0,¥ ί) into a connected object

y(h (v\ w\
X in Class 1

S(ho,V,X)=.

Z(0,¥.) '

Z(0,Vi) '
X in Class 2 (11.5)

^ > Xin Class 3.
Z(0,V) '

If we recall that

lio,V) = Z(ho,V)Z(0,a)" | F |,
(11.6)

then (11.4) becomes

(11.7)

We can derive an equation similar to (11.7) in Case 1 by applying the
expansion (5.20) directly to Z(h0, V) with si= 1 and S = S(h0, V). We multiply the
expansion by ratios of partition functions, and (11.7) follows with

s(ho,v,X)=g(X) Π \1Z, • ( n 8)
ViQV\Xk(%)
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We would like to apply the proposition to the ratios of partition functions in
Ξ(h0, Y, X). It will be useful to recall the comments on Conditions A' and B below
Eq.(5.19).

Condition B is satisfied for the ratios of partition functions occurring in (11.5)
and (11.8). This is because we only attempt to change i(σ) from n to y when dV=0.
New cr's are generated with i(σ) = n.

To understand why Condition A' is satisfied, consider first Cases 2 and 3. The
function ho(F) is constant over the boundary components of F New boundary
conditions can arise in Vt, but always with full constraints. Thus Condition A' in
the proposition is not violated. In Case 1, consider new exterior boundary
components σ o (F ). These components can only surround other σ(V^ with
i(σ(Vi)) = y [otherwise the X generating Vi would have been incompatible with
(ho(F),Y)]. Hence all interior σ(Fj) have no constraints and σo(V^ has full
constraints, which verifies the condition. Now consider new interior boundary
components of Vv Again these arise with full constraints and so do not violate the
condition.

Finally, we note that the induction hypotheses apply to the ratios of partition
functions in (11.5) and (11.8). They occur either in regions strictly contained in For
else in Y and c(Y)<c(Y).

Before estimating the expansion (11.7), we need a lemma to control ratios of
partition functions with zero boundary conditions. Suppose we have (0,Y)
satisfying Conditions A' and B. IfX is a collection of cubes in V, we want to control
the effect of deleting J^from Y. Let^^} be the components of V\X. Define V as in
(11.4). Put a cube in dVt if it is in d V or if it is less than L' from X. Put i(σ) = n if it
surrounds any part oϊX or if it surrounds or equals a boundary component σ' of F
with i(σ') = n. Define

Z(0,Y\X) = f ] Z(0,Y ). (11.9)
Vi QV\X

Lemma 11.2. Under the conditions of Proposition ίί.ί,

(11.10)

Proof The induction for this lemma proceeds in parallel with the one for the
proposition. We assume the proposition for V strictly contained in F This is
allowed since the proof of the proposition for V uses this lemma only for regions
contained in or equal to V. We also assume the lemma for larger Xv Then for A a
cube of X2,

Z^ΎψC^X^WZiO/

(11.11)

and we are reduced to the case whereX2 = Δ, \Δ\ = 1. Only the component of
containing A is modified from numerator to denominator in (11.10). Calling this
component Yo, we need only prove that

(11.12)
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Expand the denominator using (5.20) with J / = 1 and S = A. After multiplying by
ratios of partition functions we obtain

Z(0,¥oHZ(0,aΓ'^Σρ(Y) Π

= Z(0,V 0\J)+ Σ βOO Π ^ % ^ 2 ( 0 , V o \ X f c ( Y ) ) . (11.13)
Vnontrivial Fi:ho(Fj)Φ0 A υ > WίJ

The last step used the fact that ρ(¥) = l for trivial Ys, that is, for Ifs with
| = 1 and h constant. We now have

Z(0,V0)-Z(0,V0V1)_

Z(0,V0\Λ) ¥ n o ntiv i ai
ρ l

 V J Λ Φ O Z(0,V;) Z(0,VO\/I) '
(11.14)

and we can apply the induction hypotheses to each ratio of partition functions.
The last ratio is bounded by (1 + c(L)A) |Xk(¥)l ~x because more is deleted from ¥ 0 in
the denominator than in (11.12). As mentioned above, we can apply the
proposition to the ratios Z(ho(^), V^/ZίO, Yf) because each ¥• is strictly contained
in ¥ . Also, Condition B for V implies Condition B for Ψ0\Λ and the ¥/s.
Condition A' is satisfied because boundary components of Vt have ho(σ) = 0 except
for σo(FJ), which arises with full constraints.

Note that Vt can surround boundary components of ¥ 0 , but any components it
surrounds must have i(σ) = y. [Otherwise the Y specifying V{ with ho(T .̂) + O would
never have arisen in the expansion.] Condition B implies that there will be no
contribution to c(¥.) from interior boundary components of ¥ . Thus we have

(11.15)

so that

Π ^Sίy £exp(«ΓrfΛ'2f-.z/3μW|)- ( 1 U 6 )

This and \Z(0,a)\~ι^ί+cλ yield the following bound on (11.14):

Z(0,Ψ0\Δ)
- 1 (11.17)

Ynontrivial

We have used Proposition 5.1 to bound the sum over ¥ , noting that ί(Y)^2 or

' 1 for nontrivial Y's, so that an extra factor c(L)λ can be

(11.18)

extracted. The bound (11.12) and the lemma follow from (11.17). •
We return to the proof of Proposition 11.1 by writing (11.7) as

Z(0,V)
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Consider the total of all the constraints c(¥ ) or c(V) in the ratios of partition
functions in (11.5) and (11.8). We can ignore V{ with h o(^) = 0 since the ratio
vanishes in that case. We have c ( ¥ ) ^ c ( ¥ ) - 1. For Xin Class 1 all the remaining
constraints are bounded by cL'3|Xfc(X)|. This is because the regions Vt not
surrounded by X have ho(]^) = 0 and contribute no constraints. Also, internal
boundary components of a V. with ho(VJ)Φ0 must have i(σ) = y, and there are no
constraints associated with such components by Condition B. For X in Class 2
there are constraints coming from regions not surrounded by X since they will
have ho(PQ φθ. However, by arguments as above we can bound the total constraint
by c(V)- 1 + cL'3|Xk(X)|. The same bound holds in Case 1 for the ratios in (11.8).

We now sum over X in Classes 1, 2 (Cases 2, 3) and over X in Case 1 using
Proposition 5.1. If Xis compatible with V but not V then there is at least one face
/ in Xfe(X) with δh(f) + O. The same holds for X in Case 1, since there must be a
discontinuity in h surrounding a σ with ho(σ)Φho(σo), and this discontinuity is
automatically incorporated into X We obtain

(11.19)

We have used the lemma on Z(0, Y\Xfe(X))/Z(0, Ψ) and the factors Z ^ a ) " 1 have
been bounded by 1 + cλ. This proves the theorem in Case 1 (when v(h0, ¥) = 1). If
we combine (11.19) with the contribution from Class 3, we obtain

7(h Ψ)
^\ 0? / ^(\ i ^-cL3n2β~ ι\ „„„/^-cL3n2β~ V^/TVA i\\ (1120)
Z(0,¥)

which completes the proof when v(ho,¥) = 0. Π

12. Proof Completed

We complete the proof of Theorem 2.5 by establishing convergence of the
expansion, exponential clustering, and the infinite volume limit. Proposition 11.1
and Lemma 11.2 bound the ratios of partition functions in (5.28) and (5.24) by mild
surface effects; the factors Z(0,a)" 1 in ρ are bounded by (5.27). Thus we can
estimate (5.28) by

ύ Σ cn^cw^ , (12.1)

where we have used Proposition 5.1 and \stf\ ^c for each sum over \ .
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Clustering is first proven in a finite volume using the doubled measure trick
[12]. We write

^J^^/^ \o& /A\™'/ Λ~ 2\\v^l ^2/V^l ^2)/Λ/Λ > \IL.L)

where 0 1 and φ 2 are two independent fields. Expand the φ1 partition function
Z(0, Λ, s^γ — J</2) using (5.21) with 5 taken as the set of cubes intersecting the
support of si. In this and subsequent expansions, consider clusters that intersect
or surround the support of (% later. Promote the rest of the expansion to the form
(5.23) by multiplying by ratios of partition functions. Next expand the φ2 partition
function with 5 taken as {JXk(Zr) from the first expansion. Proceed as above,

r

alternating φx and φ2 expansions, until at some point the union of the φί clusters
equals the union of the φ2 clusters. Outside this region we have the difference
Z(0, K ^ i ) — Z(0, V,£S2) = 0 multiplying the term. Thus we need only consider the
terms which extend as far as suppt JL

For these terms we expand once more each measure, taking S as the set of
cubes intersecting suppt J1. We now bound all the ratios of partition functions to
yield an estimate like (12.1):

2|<.s*»>*- < ^ > * < ^ > * | SΣ |ρ(Z 1 ) |e c ( L ) λ | * k ( Z l ) l . . Σ \mn)\ecimXk{Έn)l (12.3)

The Έr can be clusters associated with either measure, and the sum of their
diameters must be at least dist(suppt sd, suppt M). Note that

d{Έ) + sL3 £ (δh(f))2 + ct{Έ) ^ diam(Xk(Z)), (12.4)

so that the required exponential decay can be extracted from (5.26). When Έr does
not intersect suppt si or suppt J*, we either have ρ(Έr) = l or else we can extract at
least a factor c(L)λ from (5.26). Thus if we allow a factor cw^cw®, each sum is
bounded by 1 + c(L)λ. Each such factor can be absorbed into some e

c(Lϊλ\χ*Wrϊ\^ s o

that (12.3) is bounded by

cw«cw* exp(- (1 - δ) dist (suppt J / , suppt J*)).

It remains for us to consider the infinite volume limit. The cluster functions
ρ{Έ) depend on A through the differences of covariances

The second term, representing the deviation from the infinite volume limit, is
estimated by the methods of Sect. 10, yielding an extra factor e-

£ά{^x^dΛ\ Thus
ρ(Z) converges as Λ->IR3, and δρ(Έ) = ρ(Z)- lim ρ(Z) satisfies (5.26) with a factor

1 I R 3

o n the left-hand side. We also need convergence of
Z(0, Λ\Y)/Z(0, A). As in [1] we write

Z(Q, ^\y) Z(0, Λ'VQ = Z(0, ΛVQZjO, A') - Z(0, A'\X)Z(0, A)

Z{0,A) Z{0,Λf) Z{0,A)Z{0,A') ' ' )
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Expand each term in the numerator as in the clustering proof, going back and
forth between the A and A partition functions until the same region is deleted
from both or until the clusters reach the boundary. If the clusters have not reached
the boundary, then the terms cancel in (12.6) up to errors involving δρ(Έ).
Altogether we can extract a factor e-^(x>^^) from t h e ρ ^ y s a n d from t h e

δρ(Έ)% and the expansion can be estimated as before by e«mx\e-*&i*Hx,dAudA')t

Thus Z(0,Λ\£)/Z(09Λ) converges as Λ^IRΛ This yields convergence of

Appendix. An Iterated Mayer Expansion

This appendix is devoted to the proof of Proposition 2.1. The iterated Mayer
expansion formalism of [14] is well adapted to this problem, and we follow the
notation of that paper closely. The least stable interaction is υ°ip and we expand in
it first. We have the stability estimate (2.15) only when the hard core conditions in
vjj are satisfied. Thus we must preserve the hard core conditions when expanding
in 4

A 0-vertex is a single particle b with coordinates ξb = (ei{b),xb) and vertex
function

Λtt = ~zm. (A l)
In general an /-vertex α' is a finite non-empty collection {α} of (/— 1)-vertices, no
two sharing any constituents. [A 0-vertex is its own constituent, and the
constituents of α are the constituents of the (/— 1)-vertices in α.] Let C(α) be the set
of constituents of α, and write be a when fceC(α). The type [α'] of an /-vertex is an
equivalence class of /-vertices which contain the same number of (/— l)-vertices of
each type [α]. We denote by 7] the set of types of /-vertices. An /-vertex α has
coordinates {ξb}^a.

We can define 1-vertex functions through the formula

1 0 η 1 = 2

t
- βW°(s,oι.) ΓT ^Oίμ \ /A Λ\

' e 11 σ yζbj* i A 2 i
m = 1

where
υ*{ξb, ξc) = v*b)i(c)(xb - x c ) , * = 0 , 1 , n, R. (A.3)

Here α consists of ί particles b 1 ? . . . , bv The symbol § b stands for symmetrization of
the expression following in bv ...,bt. Interpolation parameters s and the tree η are
as in Sect. 5 we have 1 ̂  η(ϊ) < I The interpolated interaction is

This is a convex combination of interactions satisfying (2.15), so we have βW1(s, a)
^—C6(β/R)t. [We define σ^(ξα) only for ξa satisfying the hard core conditions

\χb~xc\=Ri(b)i(c) f° r b,cea.~]
The 2-vertex functions are defined using interpolations as above for vn, and like

e~βvR = 1 + s(e~βvR — 1) for the repulsive interactions vR. Let α' be a 2-vertex that
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contains t 1-vertices α l 5 ...,α f. The type of a 1-vertex is just the number of
constituents. Let JVĵ  be the number of 1-vertices of type [β] in α'. Then

Π

^ A-iΣ Π
0 η 1=2

m = l

Here we have defined

»*&,>£ J = Σ v*(ξb,ξc), *
beai,ceam

bΦc

(A.6)
Π Π

s,α')= Σ sm...S l l_!»"«„„,ξj + i Σ
1 ^m<n^t m- 1

and § α denotes symmetrization in α l 5 . . . , α r The factors exp[ — βvR{ξanι,ξaJ] in
H1(s,a') enforce the hard core conditions assumed in defining cΓαm(̂ αm)

We now use these vertex functions to write a formula for the potentials in the
s - 1

Mayer series (2.5). Writing \dξh for £ ί dxb> dL for ί Π d£b> £(ζb) = £i(b)(χb)> w e

have an expression for (2.3): i ( b ) = 1 Λ> b~a

)
Λ /Λ'->IR3 \[α]eT

lim exp/
3

Π [ 1 + ^ ) 1 - (A.7)
bea

There follows the formula (iM

Σ ίdξr+1...dξ,σ2

a(ξa), (A.8)
[oc]eT2

where the x-integrals now extend over IR3. The derivation of (A.8) follows the
corresponding derivation in [15] using the formalism of [14] and estimates on
σι

a(ξa) given below. The formulas for σ2 are modified to allow for the-different
interpolation procedure used (see the appendix in [2]).

We state bounds on σ1, σ2, and ρ using augmented tree graphs ηA, defined in
[3]. An augmented tree graph on {1, ...,5} is a tree η on 5' vertices, s'}£s9 together
with an injective map A from {1, ...,5} to {1, ...,5'}. Let α be a 1-vertex with ί ^ 2
and constituents fel5...,6ί. We claim the 1-vertex functions satisfy the following
estimates: ko^x^),

(A.9)
\ Π dxh\σl{ξ,,n

Λ)\txVlaLηΛ{xbi,...,xb)-\ύ Π I W i ί J t e W Γ 1 .
bea u— 1
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Here ηΛ runs over augmented tree graphs with s = s' = t. The coefficients b'ηA are
positive and sum to 1. We have let LηA(xbί,..., xb) denote the length of the tree on
xbι,...,xbt defined by ηΛ.

In (A.2), a tree η and a term specified by § b determine fjA and σl(ξa,η
A). We

integrate out each xκ using (2.15), (2.18). This absorbs the factor
exp[ttLηΛ{xbί, •• ?^b2)] a n d produces t— 1 factors of/?2 and at least a factor e i(bu) at
each vertex. We bound e~βw°{s>ot) ^ecβ{t~1)κ, and normalize the ^-measure defined
by the s-integrals by including a factor bounded by e*~*. This yields the coefficients
b'ηΛ. We then use β3ecβlR^cβλ2l2

D to obtain (A.9). When t= 1 we have simply σ ^ )
==^i(ί»i) i

A similar analysis applies to σ . If α has ί ̂  2 constituents, then

** (A. 10)

Each ^^ is an augmented tree with s = s' = t; LηΛ{Xy) is the length of the
corresponding graph on xoc = {xb}b€a We obtain (A. 10) by substituting (A.9) in
(A.5). We cancel denominators in factors uR against corresponding factors in
H1(s, α') The rest of H 1 ^ , α') can be bounded by 1 by (2.17). We have in addition

e-βw»(s,*')^ct-ι b y (2.16). Next we apply (2.19), (2.20) to the xb-integrals. This
yields factors ί(αt) t(aη{l)\ where each element ax of α has ί(αt) constituents. Thus a
factor e2{t~ι) should be included to allow for normalizing the ^-measure. Again
we have σ%{ξΛ) = zm if ί = l.

We can now prove (2.10). Write the sums over t and [α] in (A.8) as a sum over
nv n2, ••-, where rij is the number of elements of α containing j constituents. Then

we have Y4njj = t'^r, and t2= J^fij is the number of elements of α. We have for
j J

t\ t i
\~rr-\dx2...\dxr\dξr+v..\dξtΣb;A\σ2Ma,n

A)\.
\%Yl2 a2 ar ηΛ

( A n )

Note that by (2.4), (2.21), and uo(x, x) = (4πλlD)"1 we have zf = z^l 4- O(λ2))e°mλlD)\

Thus (2.22), (2.23) imply that Σz^βll^c, and using (A.10) we can bound (A.ll)

by

r\f\\ziueiu\{cβλ2llγ-1 Σ

Here L^({α t t}) is defined by taking the minimum of LηΛ(xΛ) over x 1 ? x 2 , ...,xt with
x ueαM, w = l , ...,r. For this minimal tree we can remove unnecessary vertices to
produce an augmented tree ηA with s = r, s'^2r— 1. A new convex combination

^ e x p [ " α L ^ ((α-})] = e "α L ( ( f l u } ) (A. 13)
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results. Putting y = cλ2, we have

t\ t ! 1 dr °°

r\d/l-2y

for 1 small. Thus we have the bound

y

-

When r = 1 we must include the contribution from an α with only one constituent.
We obtain

d y < » - - - ' - i 2 (A.16)

completing the proof of (2.11). Estimates (A.15) and (2.22) now yield (2.10) and
(2.12).
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