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Abstract. We consider the boundary-value problem for the mean curvature
operator in Minkowski space, and give necessary and sufficient conditions for
the existence of smooth strictly spacelike solutions. Our main results hold for
non-constant mean curvature, and make no assumptions about the smooth-
ness of the boundary or boundary data.

Introduction

An important problem in classical Relativity is that of determining existence and
regularity properties of maximal and constant mean curvature hypersurfaces.
These are spacelike submanifolds of codimension one in the spacetime manifold,
with the property that the trace of the extrinsic curvature is respectively zero,
constant. Such surfaces are important because they provide Riemannian sub-
manifolds with properties which reflect those of the spacetime. For example, if the
weak energy condition is satisfied, then a maximal hypersurface has positive scalar
curvature. This fact was important in the initial proof of the positive mass
conjecture [SY]. Other applications can be found in [ES] and [MT].

However, the use of these surfaces is restricted presently because their
analytical properties are not well understood. By considering extrema of the
associated variational problem, natural conditions for the existence of weak
solutions can readily be established [Av]. These extrema are a priori only
Lipschitz-continuous and may be lightlike (“go null”, in the terminology of [MT]).
Smoothness will follow from non-linear elliptic theory, provided we can show that
they do not go null.

We consider this problem in flat Minkowski space IL"* !, and give necessary
and sufficient conditions to ensure that extrema of the variational problem do not
go null. To be precise, we show (in Theorem 4.1) that for a given bounded domain
QCIR” there is a smooth strictly spacelike solution of the Lorentz mean curvature
equation with specified boundary values on 0Q, provided only that the given
boundary data spans some spacelike hypersurface, and the mean curvature
function is smooth and bounded on Q x IR. Since this result makes no assumptions
about the regularity of the boundary data or boundary, it can be applied to
problems over unbounded domains. We illustrate this in Sect. 4, using a barrier
construction due to Treibergs [T].

We mention that some results for the Dirichlet problem for zero mean
curvature were obtained in [B, F]; however both these authors make very
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restrictive assumptions about the boundary data. Using different techniques to
those presented here, Cheng and Yau proved a Bernstein theorem for maximal
hypersurfaces, extending earlier work of Calabi [CE, CY].

The outline of the present paper is as follows : In Sect. 1 we gather some simple
results about the variational problem in flat space. In Sect. 2 we prove a “mean
value” inequality and the a priori estimate (2.22). This estimate plays a key role in
controlling the variational extremum. The Dirichlet problem for smooth domains
and data is solved in Sect. 3, using the cone-like barrier functions (3.2) and a
global a priori gradient estimate. The “anti-peeling” Theorem 3.2 is perhaps of
independent interest. It says roughly that if the extremal surface contains a piece of
light ray, then the surface cannot “peel away” from the extended light ray. Finally,
in Sect. 4 we collect these results to prove the interior regularity of the variational
extremal.

“Postscript: C. Gerhardt has independently obtained the gradient estimate of
Theorem 3.5, and has shown that it can be generalized to non-flat spacetimes.”

1. The Variational Problem

We denote Minkowski space by IL"" ! ={(x,t): xeR”, teIR}, with the flat metric

n

Y dx}—dt*. Recall that C**(Q) is the class of locally Lipschitz functions on Q.
i=1
For this and other notation, we refer to [GT].

Let M be an n-dimensional hypersurface in IL"*! which can be represented as

the graph of ue C*(Q), where Q is a bounded domain in R". We will say that M is

weakly spacelike if |Du|=<1 a.e. in Q,
spacelike if {u(x)— u(y)| <|x — y| whenever x, ye Q, x+y
and the line segment xy C €2, and
strictly spacelike if M is spacelike, ue C*(Q) and |Du|/ <1 in Q.

Similar terminology will be used to describe the function u. Note that M must
be strictly spacelike for the Lorentz mean curvature to be well defined, but weakly

spacelike is sufficient to define the area integral, | ]/1—(Dul*dx.
Q

For physical reasons, a line of slope 1 is called a light ray. The light cone
Ceenin at (6, )ell"" ! is the union of all light rays containing (¢, &, ,):

C(§,€n+1):{('x’ Xn+ I)G]]‘n+1 :lxn+1 _én+ llzlx_illk"}-

If C.nM={{'} for all {'e M, then M (and u) is said to be acausal. This says exactly
that distinct points of M are spacelike separated. We observe that M spacelike is a
weaker condition than M acausal, although the two notions coincide when Q is
convex. The main theorems here do not require convexity of Q, and consider
spacelike surfaces, more generally than acausal surfaces.

Unless otherwise stated, no assumptions will be made about the regularity of
Q. The possible pathology of 0Q leads to the following
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Definition. If ¢ : 0Q—1R, and y: Q—1R is spacelike, then we agree that
p=¢ on 0Q

means that, for every x,€ 09, and every open straight line segment / contained in
and with endpoint x,,
Jim p(x)=(xo)- (1.1)

xel

Throughout this work, boundary values will be taken in the sense of this
definition. Of course, if 0Q is Lipschitz, then this is the usual definition. It is not
difficult to construct examples with points x,€0£2 at which y is not related to
@(x,) by this definition [since there may not be any line segments / as in (1.1)], but
it is also not hard to show that the set of “regular” points (i.e. boundary points
with such line segments) is dense in 0Q. For later reference, we note that if y, and
p, are two spacelike functions on £, agreeing with ¢ in the sense of (1.1), then
p, —p, extends to a Lipschitz function on R" which vanishes outside Q.

The Dirichlet problem

! DuDwu
Mu(x)= ( —‘—’—)Di-u=H(x,u(x)),
= o 0
(1.2)
u=¢ on 0Q,

where H:QxR—R and ¢:0Q2-R are given bounded functions, is the Euler-
Lagrange equation of the variational problem

maximize I(u)= j"{l/ 1—|Du®>— ujx) H(x, t)dt} dx

Q

amongst ue%(p,Q)={weC®(Q):w=¢ on dQ, and |Dw|=<1 a.e. in Q}.

(1.3)

Since Q is also bounded, I(-) is uniformly bounded on %(¢, 2). The equicontinuity
of € then gives a uniformly convergent maximizing sequence u,3uc €(¢, ). Since

the area integrand |/1—|p|* is concave, a semi-continuity theorem of Serrin ([M]
Theorem 1.8.1) shows that

lim sup j |/1—|Du,|*dx < j 1—|Dul?dx,

k—

and hence I(u) is maximal. Thus the variational problem (1.3) can be solved
provided only that %(¢, Q) is non-empty. This upper semicontinuity result is well
known also in the case of general spacetimes [ Av].

Proposition 1.1. The variational problem can be solved iff €(p, Q) is non-empty. The
solution is unique if H(x,t) is non-decreasing in t.

Proof. The first statement is clear from the above discussion.
Now suppose u, w are two solutions of (1.3), and set u,=u+t(w—u). Then by

the concavity of 1/1—|p|?,

[V1=IDuPdx=z(1—1) | |/1—|Dul*dx+t | |/1—|Dw|*dx.
Q Q Q
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Now H non-decreasing implies that jH(x, t)dt is convex, and thus I(u,) = (1 — t)I(u)
0

+tI(w). Since u and w both maximize I, equality must hold, and hence it follows

that
)/ 1—IDul>=(1—1)})/1—|Dul*+¢t}/1—|Dw* ae.in Q.

This implies that Du=Dw a.e. in Q. Since u=w on 0%, by a previous remark u—w
extends to a Lipschitz function on R", vanishing outside Q. Since D(u—w)=0 a.e.
in Q, we must have u=w, and the solution is unique. []

The following two lemmas enable us to compare solutions of the Dirichlet
problem and of the variational problem. The first is a general comparison
principle.

Lemma 1.2. For i=1,2 suppose u; is the solution of (1.3) with bounded boundary
data @, and bounded mean curvature H, Suppose also that

H,(x)£H,(x) forae xef.
Then
uy(x) Suy(x)+ sup (P2—94),

where sup (@, — @,) is taken in the sense of (1.1).
o2

Proof. Let C=s;2p(<p2—<p1), choose &¢>0 and define &, =u;+C+¢ and

QF ={xeQ:u,(x)>i,(x)}. Assume Q" is non-empty.

The function (u,—ii,), vanishes on JQ in the sense of (1.1) and hence
extends to a Lipschitz function vanishing outside Q. Clearly u, =i, on dQ", again
in the sense of (1.1). Define functionals I,,I, by

Iw= | (/1=IDul* —u(x)H{x)dx, i=1,2.
Q'{“

Then %, maximizes I, with respect to ii,|,,+, and u, maximizes I, with the same
boundary values. Then by uniqueness of the solution of this variational problem,
I,(i1,) <1I,(u,), and hence

[ V1=1Dii)Pdx< | (}/1—=|Duyl* + (i, —uy)H,)dx
o+ o+
= j( 1—|Du2|2+(a1‘u2)H1+(a1_”2)(H2—H1))dx-
Q+

Thus, since i, <u, on QF by construction, and H, <H, on ©, this becomes

{ (V/1=Dity)* —ii,H)dx< § (/1= |Duy)* —u,H,)dx,
o+ o+

which contradicts the maximality of I,(i,). Hence Q* is empty and since ¢ >0 was
arbitrary, the result follows. []
If H(x,t) is non-decreasing in ¢, then the concavity of ]/1—|p|*> and of

u(x)

— | H(x,t)de implies that any solution of the Dirichlet problem is also a solution
0
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of the variational problem (see [GT, Sect. 10.5] for a discussion). Thus the above
lemma allows us to compare solutions of the Dirichlet and variational problems.

The next result roughly says that the limit of solutions of the Dirichlet problem
is a solution of a variational problem.

Lemma 1.3. Suppose there is a sequence {u}Y in CQNW>%(Q) of strictly
spacelike functions with (weak) mean curvatures M w,=H,, H, measurable on Q

and sup |H,| < A, such that {u,} converges uniformly and {H,}{ converges weakly,
Q2

w=u  in C%Q),
(1.4)
H—~H in L*Q).

Then u is weakly spacelike and, with respect to its own boundary values, solves the
variational problem with mean curvature H.

Proof. Since each u, is weakly spacelike in Q and {u,} converges uniformly to u, it
easily follows that u is weakly spacelike. Suppose we C% () satisfies w=u on 9Q.
Then we must show that I(w)=<1I(u), where I is defined by

I(w)= [ (/1= IDW]> — w(x)H(x))dx .
Define ?
QY ={xeQ:w(x)>u(x)} and Q,={xeQ:w(x)—2/k>u(x)}.
We can assume (relabelling if necessary) sgp lu—u,| < 1/k, so that Q,CQ*. Clearly

we also have Q" —Q as k— oo in the measure sense. By a previous remark, u,
maximizes I,, so

[ (J/1=IDw]* =(w=2/k)Hdx < | (|/1—|Dul* —u,H,)dx,
Qk Qk
since w=2/k=u, on 09Q,. Since Q, and H, are bounded, this becomes

[ (V1=IDw]* —=wH)dx < [ (J/1—|Dw* —uH)dx +¢,,
Q) (9%

where ¢,—0 as k— co. Thus, since H,—H and u,=3u, letting k— oo and using the
upper semicontinuity of the area integral, we have

[ (/1= IDw*> —wH)dx < limsup | }/1—|Du,[2dx—
0+ k— o0 o+
< [ (J/1—|Dul*—uH)dx.
Q+

A similar argument applied to Q7 ={xeQ; w(x)<u(x)} shows that I(w)<I(u), as
required. []

| uHdx
Q+

2. Main Estimate for |Dul

Throughout this section, M will be a strictly spacelike, n-dimensional hyper-
surface, represented as the graph of a C? function u(x). Unless otherwise stated,
the domain of u will be R”, so ue C3(R"). Since M is C3 and spacelike, the induced



136 R. Bartnik and L. Simon

metric is positive definite, giving M a Riemannian structure. This enables us to
generalize many well-known calculations from the theory of minimal surfaces in
R"*! to the present case (see for example [GT, MS]). Although formally the
calculations are very similar, the estimates are quite different. For example, the
projection of a vector onto the tangent space of M is longer than the original
vector.

We shall use the summation convention on repeated indices with the following
ranges 1=4j,...=n, 1=<0a,f,... <n+1. For u only, we denote partial derivatives
u o%u
= u=—
ox;” Y 0x0x;

The flat metric on IL"*! will be denoted {-,-> or y=diag(1,1,...,1, —1), so
s =<e, ez in terms of the natural basis {e,} of IL""'. The norm on spacelike

n 1/2
vectors is | X || =<X,X )2, while |x|= (Z xf) denotes length in IR”, and V is the
Levi-Civita connection of #. !

Since M is a graph, M= {(x,u(x)):xeR", ue C3(R")}, we have coordinates
(x45--.,x,) on M with coordinate tangent vectors X;=e;+u,e, ., i=1,...,n The
induced metric on M is then

by subscripts, so u;= and so on.

gij=<Xi,Xj>=5ij_uiuj, 1§i,j§n,

and hence detg;;=1—|Du|”. The quantity v=]/1—|Dul*> will prove to be very
important. Let v be the upward normal to M, normalized by {v,v>=—1,

1
v=—Du,1)=ve;+ Vv, €,1 1>
v

2.1
| . 2.1)
vi=-u;, i=1,...,n, Vv, ,;=—
v v
The inverse g'/ is then
gi=06,+vy;, 1=i,j<n. (2.2)
We will use raised indices only for g*, and nowhere else.
The second fundamental form can be calculated directly,
1
Aij: <Xi’ Vva> = ;uij N
. 2.3)
[A4]>= gijgklAikAjl = 2 gijgkluikujl >
and the mean curvature of M is thus
. 1 ..
H=g"4;;=—g"u;. (2.4)
v

Let % CIL** ! be an open neighbourhood of M, and let Y be a C* vectorfield on
9 and fe C*) be such that D, , f =0. Then the differential operators d =grad,,,
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div,,, and 4,, may be expressed

5f=5af €y
0 1 0
0,f =g — i=1,... ) =V, —
lf g 6xj 4 ! 4 s1, n+1f vvlaxifa
div, Y =¢%X; e, Y7,
Ay, f =divy grad,, f =g 0o f 4 f 2.5
MJ — IVMgr M =4 axax viax . ()

iV i

By decomposing Y into components normal and tangential to M, Y=Y*+ Y”, we

obtain
div,, Y=div,, YT —<{(Hv, Y). (2.6)

The induced volume form on M is dA =vdx, where dx is Lebesgue measure on R”.
Now suppose GCM has C* boundary éG with outer normal ¢ in M. Using (2.6)
and Stokes’ theorem, we have

[ divy, Ydd=— [ CHv,Y>dA+ [ <Y,0>du, 2.7)
G G oG

where du is surface measure on 0G. Setting Y= fdg in (2.7), where f, ge C*(G),
yields

[ (€0f.09>+ f Ay9)dA= [ f<og.0)du,
G oG (28)

[ 94y f ~ fAug)dA= | Lgof — fog,o>du,

G 3G
where the second result is just Green’s formula. Setting Y= fge,, feCL(M),
ge CY(M) gives

1
§f5n+ 1gdA= - jg5n+1fdA—' j _ngdAy
M M M 2.9)

[ fo,gdA=— [ gb,fdA— [ v,fgHdA, i=1,...,n.
M M M

The restriction of the Lorentz distance function to M is very important. By
abuse of notation, we treat x, yeIR" also as points of M, and define

10x, y)=(1x — 1> = (u(x) — u(y))*)*'*.

The distance from a fixed centre point (&, u(&)) will be written I(x) if there is no
chance of confusion. Direct calculation using (2.5) then gives

o112 =1+1"2(nX = &2,
AM(%IZ):n+<Hv’X—C> s

where X — & is the vector (x — & u(x)—u(&))ell"" !, and [=I(x) is taken relative to
(& u(é)). The Lorentz ball is then

Lp=Lg(&)={(x,u(x)eM; lx,O) <R} CM, (2.11)

(2.10)



138 R. Bartnik and L. Simon

and has projection Ky into R”,
Kp=Kg(&)={xeR" I(x,&)<R}.

Since |Du|<1, (x— &) DG > [x— &> — lu(x)— w(&)|-|x— ¢, so [ is increasing on
outward rays from &, and K, is starlike with respect to . In case u is defined only
over a (nonconvex) domain €, so u is perhaps not acausal, we must modify this
definition to ensure that K is still starlike. Thus in general we define K by

K(&)={xeQ; xECQ, I(x,&)<R}CQ, (2.12)

where x& is the line segment joining x and & This agrees with the previous
definition when K,C CQ.

We can now demonstrate monotonicity and mean-value formulae analogous
to those in [MS]. For convenience, take the fixed centre point (£, u(£))=(0,0), and
let X denote the position vector (x—¢& u(x)—u(£)ell"*!. Let feC*(M), and
substitute f and g=2%(0*>—I?), where g is a constant, into Green’s formula (2.8),

(f} G@* =PV Ay + f 4 GIP)dA= afG Gle* = 1)of + f6G 1), opdp.  (2.13)

Now let G=L,, and assume ¢ >0 is such that 0L,ndM =@, so o =||6l|| = '6l. Using
(2.10), this becomes

[ {nf +3(* =) Ay f+ fHX, v)}dA= [ fl||ol||dp.
L, oL,
Using the following special case of Federer’s coarea formula [F, Theorem 3.2.12],
Do{J faa}= [ f1al™"du, (2.14)
Lo oL,

and (2.10), we arrive at the monotonicity formula
Dg{e‘" ] fdA} = [ 07" G(@* )4y f + FHLX, v))dA
Lo Lo
—DQ{ Lj I XX, v>2dA}. (2.15)

Note that the integral in the final term tends to 0 as ¢|0, since M is C? and strictly
spacelike, and thus <X, v>=0(x|?) as |x|—0. Also, since | approximates geodesic
distance in M for |x—¢&| small, if f is continuous at & we have

" | fidd-w,f(&) as ol0,
Lo(d)

where w, is the volume of the unit ball in IR".

We will apply (2.15) with f=1% >0 to obtain important estimates. By direct
calculation, using D;v;=v"'g*u,; and (2.3)-(2.5),

lov]|?= gijvkvluikujl )
) (2.16)
Ayv=—v||A||*+ S | 6v)>—v?6,,  H.
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This formula can also be derived from the Jacobi field equation. Using (2.3), (2.5),
and (2.16) we now have

Ay =™ Ay + afoe— 1)v* " 2| 6v||?

=—av°“2{ Y uizj—oc(uii)z—(l—oc)vHu,.i+vzH2+(1—a)lviuijlz}

ij=1

—0d, (" H),

g S . . 1
where [vau, |>= Y ( Y v, j) . Using the inequalities ab <ea® + gbz for any ¢>0,
1\i=1

13
=1\

n
(u)* Sn Y uzSnYug,
1
we can estimate

A" < = Co* 2L ud 4 vy 1)+ 5v*H? — b, (0" H),

1 .\ .
where o< — and C are positive constants depending only on n.
n

Using this estimate in the monotonicity formula (2.15) yields

DQ{Q_" | v"‘dA}

Lo

§—C -" %Q—n—l(QZ_IZ)( Z ui2j+ Zl|"i“ij|2)vr2dA
j=

Lo L,j=1
+ [Lo7 " Ye*— ) Gv*H?— 06, , (" 1 H))dA
LQ
+ jg‘”"‘H(X,v}v“dA—DQ{f (X, v>zl_”'zv"‘dA}, (2.17)
Lo L,

If (eCY W), MC CIL*"!, and D, (=0, then
16812 =¢"D LD, L =IDLI* +(v;D)*.
Since vd,,, ;{=v,D,{ by (2.5), we thus have
08,5, (S 8¢], provided D, ,(=0. 218

The §,, ,(v** 'H) term in (2.17) may be estimated by integrating by parts (2.9) and
using (2.10) and (2.18):

— [ (@2= 10, (" H)A= | (0~ PWH?dA—2 [ v** ' HIS,, ldA
Lo Lo Lo
< [ oR™M|61)* +(e+ R)H?)r*dA,
Le
where R =g will be determined later.
Now suppose sup|H|<A< oo, and estimate H{X,v)<LI2H?+1]172(X,v)2
Defining
w(e)=07" | v"d4,

Le
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the monotonicity formula now becomes
w(e)— (A% +3aR™ " + 504’ R)y(o)
< —Co " [ 32 =PYQ ul A v 1P * T 2dA
Lo

+o "X, v>zl'zv“dA—Dg{j (X, v)zl‘”‘zv“dA}. (2.19)
L, L,
For any feC*(R), the coarea formula (2.14) shows that
f@f gdA=Dg{5 (f(@)—f(l))gdA},
L, Lo

and hence we can write the last two terms of (2.19) as — T'(p), where

T(o)= | (1— %)l‘"‘%r %Q’"l_z] X, v)M%dA.

LQ
Using the integrating factor
I(o)=exp{—3(A%* +aR ™ 'o+aA’Ro)},
(2.19) becomes

I(Qw(e) = —CI(@e "~ | 30> =) ufs+vu |~ 2dA—1(0)T'(0) .
te (2.20)

To help integrate this expression, define the step function A(t)=0, t <0 and A(t) =1,
t20. Then for any g integrable on M, we can write

[ gdA= | Xo—1gdA.

L, M
Now integrating (2.20) from 0 to R and using this device and Fubini’s theorem
gives

I(R)Y(R)— w (&)< —C j Qudi+ v P2

R R
(f Lo Me? =P (9)Me— l)d@) dA— g I(0)T'()de .
0

Integration by parts and the remarks after (2.15) that f X, v " 2dA—0as |0
R
shows that jI "()de =0 and may be discarded, yleldmg

o0& =I(R)R™" f v*’dA+ CI(R) j S Zu A v [Pt 2dA,  (2.21)

ij

where

1 1 1
lZ—n _IZR—-n RZ——n’ >
Wn—2' o 21—2) nz3,

Sgh= og(R/)—1(1—1?/R?), n=2,

50 Sg()>0 for [<R.
One estimate which can be derived from (2.21) is
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Lemma 2.1. Let Q be a domain in R" and let ue C*(Q) be strictly spacelike and have
bounded mean curvature, sup|Hu|=A. Let ¢€Q and R>0 be such that
Q

K, z(§)C CQ, where K () is the connected Lorentz ball defined by (2.12). Then there

1
are positive constants o< — and C depending only on n, such that
n

Cexp(A’R*+1)(&)=ZR™" | v" dx+R*™" | Yujdx. (2.22)
Kr(®) Kr(®)

Proof. Note that for [<R/2, Sg(l)> C(n)R*~". By approximation, (2.21) holds for
ue C?(Q) also. Then using the definition of I(R) and discarding parts of (2.21), we
arrive at (2.22). [

3. Barrier Functions and Global Gradient Estimates

An important property of the Lorentz mean curvature operator .# is that there
are spherically symmetric functions defined on R"— {0} with constant mean
curvature. The geometry of these functions is such that they prove very useful as
barrier functions. Two important applications are the “contained light ray”
Theorem 3.2 (cf. [MT, p. 124]) and the boundary gradient estimate Corollary 3.4,
which leads to the solvability of the Dirichlet problem for sufficiently smooth
mean curvature, boundary and data.

Suppose w is spherically symmetric about {eR”, so w=w(r), where r=|x—¢|.
Let " denote differentiation with respect to r, so

conf T )’
M(w)= _—] .
w)=r (]/ 1—w(r)?

Thus the equation .#(w)=/, constant, may be integrated giving

[x—¢| K+ 1/1;:"
n
wx)=w&)+ | dt, (3.1)
0

1 2
l/th—Z_'_ (K_l_;/ltn)

where K and w(¢) are constants of integration. Two properties of w are immediate
from (3.1):

(1) IDw|<1 except at £, where w has a light-cone-like singularity (unless K =0,
when w is a hyperboloid). Also, (1—|Dw|) is O(|x— &*"~ 1), positive near &.

(i) By taking K sufficiently large positive (negative), w can be made arbitrarily
close to the forward (backward) light cone from & over a bounded set.

We note that the analogous computation for the Euclidean mean curvature
yields solutions defined only in the complement of a ball of strictly positive radius.
Although such solutions can be useful, in this case the solutions (3.1) provide much
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stronger information. For K>0 and A€R we have candidate barrier functions

lx=¢l K~ e
n
wh=wi @)+ | d, (3.2)
0

1 2
[/tz"‘2+ (K——At”)
n

with mean curvatures FA. Then by noting that D?w is arbitrarily large in
transverse radial directions near £, and then choosing K sufficiently large and
£eIR" appropriately, we see geometrically that the functions w* do indeed yield
barrier functions. This observation is important enough to formulate precisely (the
detailed proof is given in the appendix).

Proposition 3.1. Suppose QU is C*, U open, I' COQnU is compact, and suppose
the boundary data ¢ :0Q2—-R has an extension § satisfying

[P(x)— PO =(1—0y)x—yl, xeQ, yel,
SUPg o0l DBl <K
for some constants 0,>0, k. Let A =0 be given, and x,€I'. Then there is K >0, and
base points (¢*, w*(EF)) such that the functions w* defined by (3.2) satisfy
w (%) > ¢(x)
w™(x) <o(x)
w*(xo) = @(x),

MwE)=TFA.

}, xe0Q\{x,},

Further, there is a strictly positive constant 0 =0(x,0,, A, Q,I', %) independent of x,
such that
sups|DwE[<1-60<1. (3.3)

The final estimate (3.3) shows that for ue C%(Q), such that [.#u|< A, u=¢ on
0Q, we have the boundary gradient estimate |Du(x)|<1—6, xeI', provided Du(x)
exists. Note also that this assumes that @ is (strictly) acausal — this requirement will
later be weakened to § strictly spacelike.

The next result shows if graph u contains a segment of light ray, then it
contains the whole of the ray extended to 0Q xIR.

Theorem 3.2. Let ue C% () be a solution to the variational problem (1.3) with
bounded H. Suppose there is a line segment Xyx; C CQ such that

u(x,)=u(xy)+tlxeg—x., Vte[0,1], (3.4)

where x,=x,+t(x; —x,). Then this equation holds for all teR such that x,€ Q and
XoX,CQ.

Proof. Suppose (3.4) does not hold for t<0 [a completely analogous argument
holds if (3.4) fails for t>1]. This means

u(x,)>u(xy) +tlxyg— x|, for some ¢<O0. (3.9)



Lorentz Mean Curvature Equation 143

By choosing a new x, and x, (on the line containing the original segment), we can
assume (3.4) Vee[—41], (3.5) with t=—4, and that the Euclidean ball
B, =B,),,— 1, |(x))CCQ. Let By=By, _. (%), and let C, and C, denote the
backward light cones with apexes at (x,, u(x,)) and (x,, u(x,)) respectively. Then for
x€ By\{x,:te[ —3,0]}, we have

u(x) = C,(x)>C,(x).
We can now use the strict inequality (3.5) for u(x,), t= —1. Thus
u(x)>C,(x), VxedB,,

and we can find K sufficiently large such that the spherically symmetric function
w™(x) with mean curvature A=supH and base point (x,, u(x,)) satisfies

u(x)>w”(x)>C,(x), VxedB,.

But w™ is strictly spacelike away from x,, so w™(x,)>u(x,), te[—%,0), and this
contradicts the comparison Lemma 1.2 applied with Q=B,~{x,}. [

The following lemma will be used to prove an a priori boundary gradient bound
for strictly spacelike data, generalizing Proposition 3.1.

Lemma 3.3. Let QCIR" be a bounded domain and A be a given constant. Define the
function classes :

9D C{ye C%0Q) : |y(x)—w(y)| < |x— y| whenever x=+y and xyCQ}
and @ is compact with respect to the uniform norm on C°(0Q),
F ={ueC*Q):|Du(x)| <1, VxeQ, |.Au|£A and u=y on 0Q for some we P}.

Let r>0 be given, and let x ,, x,€Q be any two points satisfying |x, — x,| =r, and the
open line segment X,x,CK. Then there is a strictly positive constant
0=0(n, A, Q,r, D) such that, for any ue Z, |u(x,)—u(x,)| <(1—0)r.

Proof. Suppose there is no_such 6. Then we can find a sequence {1*} C#, and

weakly spacelike i on Q, He L*() such that sup,|u* — |0, A ()= H*~H in

L*(Q) and there are points x,,x,eQ satlsfymg XX, CQ and |i(x,)—ii(x,)]
=[x, —Xx,|=r. But Lemma 1.3 shows that @& is a solution of the variational

problem with mean curvature H with respect to its boundary values. Theorem 3.2

now shows that the segment of light ray over X, x, in graph u extends to a segment

of light ray between points of Q2 x IR, contradicting the fact that ii|,,e 2. [

Note that this does not give an interior gradient bound.

Corollary 3.4. Let QCIR" be a bounded, C* domain, and suppose the boundary data ¢
has an extension pe C*(Q) such that supz|Dp|<1—0,<1, sups|D*@|<x for some
constants 0,>0 and x. Let ue CX(Q)nC Q) be strictly spacelike and satisfy
supg | A ul = A, and u= @ on 0Q. Then there is a positive constant 0=0(0,, A, k, 2, n)
such that sup,q|Du|S1—-60<1.

Proof. Let x,€09. Since Q is C%, |DP|<1—0, and ueC*(Q), it follows from
Lemma 3.3 that there is r=r(22,0,)>0 and 6, =0,(0,, 4, Q2,r,n)>0 such that

[u(xg)—ux)=(1—0,)r, VxeQnoiB,(x,).
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Proposition 3.1 applied to u restricted to B,(x,) yields barrier functions w* at x,
with [Dw*(x,)| <1—60<1, where = 0(0,, 4, x, Q,r,n)>0. This holds uniformly for
Xo€0Q, so the result follows. [J

Using the Jacobi equation (2.16),

AMvn+1=vn+1”A“2+5n+1H7 (36)

we see that when H is constant, v, , satisfies a maximum principle, and hence
Corollary 3.4 yields a global a priori estimate for [Du| and thus the ellipticity of
A u. However, we can do better:

Theorem 3.5. Let QCR" be a bounded domain, and suppose ue CHQ)NC(Q) is
strictly spacelike and supg|-#u| < A. Further suppose ¢ =ul,, is bounded, and that
there is a boundary gradient estimate for |Du| of the form

1
/1—=[Dul*

Then |Du| satisfies the global estimate : supgv, . ; ScK(LA)"" 2+ 1), where c¢=c(n)
and L=diamQ+sup,,|¢|.

SUPsoV,s 1 <K, where v, =

Proof. Note that ¢ will be used to denote any constant depending only on n. We
may assume K =2. From (2.9), if {e C}(M), then

[ 8,y 1ldA=— [ v,, H({dA. (3.7)
M M

Substituting {=u(v,,;—K)%, ¢=2 and noting that §,, ,u=v2,,—1 =(1—-K )2,
when v, 2 K, we have

(1_K_2) j (vn+1—K)q+V3+ 1dA
M

SLA[ (Vs — K4V, dA+qL f V1= K 0,4 1 Vs 41dA.
M M

Using the inequality (2.18) and K =2, this becomes

1
T f (Vn+1—K)‘in+ 144
M

SL2A% [ (vy, — K)MdA+G2L* [ (v, — K)5 2[6v,, 1244, (3.8)
M M

We estimate the |dv,,,[|? integral by noting that (2.8), (2.9), and the Jacobi
equation (3.6) give

[ (O¥ys 1, OOAAS | (HO,, (+v,, HdA, (eCHM), (20.
M M
Setting {=(v,,, — K)% ! yields
J e =K 20v,,,117d4
M

_ 1 _
=4 j (Vs 1 — K% 2Vn+1”5vn+1”dA+ —1A2 j (Var 1 — K% 1Vn+1dA,
M q— M
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and hence, since g=2,

j Vs — K420, ,17dA 342 y (4, — K4~ 2v2, JdA. (3.9

Using this to simplify (3.8), we have
j (Vpa1— K)oV, dAS13¢2 L2 A2 j Vs 1 —K) 202, dA. (3.10)
M

M

Setting f= Ll’ the Sobolev inequality in R" implies
n—
(j (vn+ 17 K)liﬂdX)l/B é ¢q 5 (vn+ 17 K)q*-_ 1|Dvn+ lldx 4 c= C(n) :
Q2 Q

Since [Dv,, {|=|0v,4 ], and dx=v,, ;dA, this becomes
( [ Ousr— K)?fdx)”"
Q

1 £ _
éé‘cq j (Vn+1_K)q+V3+1dA+’Cq j (Vs 1 — K% 2||5v,,+1|[2dA.
€ M M

2

Setting = Lq and using (3.9) and (3.10), we have finally
( [ Oy —K)qfdx)”f’ Scq*LA? [ (v, — K)§ 2y, dx. (3.11)
Q2 Q

Using the inequality (a+b)'<a'? +b'#, a,b=0 and (3.11) yields
(KqﬂL"+ j(v,,H—K)‘de)”” <L UKU 4 eq?LA? [ (v 0 — K 2,4 ydx. (3.12)
2 Q

By considering the sets where v,, ; 22K and v, , ; <2K separately, the right side
may be estimated by

cq*(LA*+ L~ 1)(K"L" + [0y 1 — K dx).
Defining I, by ’
1,= (KqL"+ ,{ 1 —K)4 dx)”“,
and setting g=2p"""1, m a positive integer, we can write (3.12) as
Lypm S(C(LA*+ L7170
and this holds whenever m= 1. Iterating yields
Lypm S(C(LA?+ L™ 1)*HZPHBEA | (3.13)

m

where the sums are taken as ), . Using (3.10), I, can be estimated by
n=1

fOps—K)idx<cL?A? [ v,,,dx, where Q. =0n{v,,,=K}.
o] 24

Then by noting that v, ; <e+3e” {(K*+(v,,,; — K)2), and setting e=cL?A?, we
have

[ (s 1 — K)2dx S cL"KX(L*A* +1),

2
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and hence I, <cL"*K(L*A?+1). Since Y f"™=n—1and Y mp~"=n*—n, (3.13)
1 1

implies
LypmScK((LAY" 2 +1).

We obtain the required estimate by letting m— oo and noting that

lim (K"+ [ Oaer— K)adx)“q =max{K,sup(v,,, ~K)}. O
q— o Q

This a priori global gradient bound leads to the following existence theorem for
the Dirichlet problem.

Theorem 3.6. Let QCR" be a bounded, C** domain for some o.>0, and suppose the
boundary data ¢ is bounded and has an extension pe C**Q) satisfying [DP|<1—6,
in Q, for some 0,>0. Let He C%*(Q x R) be bounded, with supq, g |[H| < A. Then the
Dirichlet problem M#u(x)=H(x,u(x)) in Q, u=¢ on 0Q has a strictly spacelike
solution ue C**Q). Further, there is a positive constant 0=0(A,2,0,, »)>0 such
that |Du|=1—-0<1 in Q.

Proof. The conditions on Q and ¢ ensure that Corollary 3.4 and then Theorem 3.5
can be applied, giving a global gradient estimate which guarantees that ./ is a
priori uniformly elliptic. [GT, Theorem 12.7] now gives an a priori estimate for
lullctp@)y for some B>0, and then [GT, Theorem 10.4] gives the required
result. [

As previously noted, if H(x,t) is non-decreasing in ¢, then the solution is
unique. If He C*%Q xR), k>0, then by [GT, Theorem 6.17], ue C**%%Q) and if
HeC®, then u is C® also.

4. Main Results for Dirichlet Problem

The results of the previous sections combine to prove three theorems about the
Dirichlet and variational problems. The main result, Theorem 4.1, gives a
necessary and sufficient condition for the regularity of the variational solution,
and hence for the Dirichlet problem to be solvable. Corollary 4.2 makes explicit
the relationship between the Dirichlet and variational problems, while Theorem
4.3 gives an alternative necessary and sufficient condition for the solvability of
Dirichlet problem. As an application of these results, we describe and prove a
slight generalization of the existence part of Treibergs’ recent classification of
constant mean curvature hypersurfaces in IL"*! [T].

We emphasize that Q is only assumed bounded. Thus, if 0Q has pathology, the
boundary values will always be taken in the sense of definition (1.1).

The main point of the proof of Theorem 4.1 is showing that the surface cannot
“go null” [MT]. We do this by using the estimate (2.22), applied to C%
approximating hypersurfaces, to show that going null at a point implies going null
in an open neighbourhood, and then Theorem 3.2 applies.

Theorem 4.1. Let QCIR" be a bounded domain, and let H be a given bounded
function, measurable on QxR and continuous in the R-component, with
supg «r |H| < A. Suppose also that ¢ : 0Q—R is bounded.
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Then there is a strictly spacelike ue C{(Q)nW? %(Q) satisfying
Mu(x)=H(x,u(x)) in Q,
u=¢ on 09 (in the sense of (1.1))

if and only if there is a spacelike function v : Q>R with =@ on 0Q (in the sense of
(1.1)).
Remark. By standard regularity theory for quasilinear uniformly elliptic equations,
we know that u will automatically be of class C¥** (C®) in Q if H is of class C* (C®)
in Q.
Proof. By mollification we can construct C® approximants £,, yp, which satisfy
Q,CQ, dist(2,0Q)=<1/k,
supg, Dy, |=1-6,<1 for some 6,>0,
supg, [y -y =1/k.

We also mollify H to get H,eC®(2xR), and such that H-H,—»0 in
L*(Q % [—a,a]) for every a>0. Theorem 3.6 now gives a strictly spacelike, C*
solution 4™® to the Dirichlet problem on ©, with H, and ,|,q,.

By passing to a subsequence, we can ﬁnd a weakly spacelike ue C% () such
that %=y and  sup, [u®¥—u|<1/k.  Since  (by  construction)
H,(x,u®™(x))> H(x, u(x)) in L*(2), Lemma 1.3 shows that u is the solution of the
variational problem with mean curvature H*(x)= H(x,u(x)) and with boundary
data o.

We now consider the limit function u. Let l(x,y) be the Lorentz distance
function with respect to u,

1x,)=VIx—yP—(x)—u(y)?, xyeQ,

and let K(x) be the projected Lorentz ball defined by (2.12). The corresponding
objects with respect to u® will be denoted by a superscript, e.g. I®, K{®.

Let x,€ Q. If there is ye Q2 such that I(x,, y)=0 and X,y C 2, then Theorem 3.2
shows that this segment extends to a light ray between points of 0Q xR,
contradicting the condition that vy is spacelike. Thus there is R>0 such that

K 4 x(x,)C CQ. Simple estimates of the functions I, I® show that there is §R>r>0
and k, such that for |x—x,/<r and k>k,, K, R(xO)CK(") (x) CKgl(x,), and also
K‘Z"}((x)c C Q. Now applying the estimate (2.22) to u®, using these inclusions and
noting that B,(x,) CK,(x,), we obtain

Yuldx <c(n, 4, Rw¥(x))*, VxeB,=B,(x,), “.1)
KY ()
| Yuldx=c(n,A,R), (4.2)
By(x0)
109 L2y S 1% L2k, oy S €1, A, RNOP(X))*,  Vx€B,. (4.3)

The estimate (4.2) shows that {u®} is bounded in the Sobolev space W2 %(B,),
so by Rellich’s theorem and the weak compactness of bounded sets in W?2, there
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is a subsequence converging strongly in W' 2(B,) and weakly in W% *B,). By
passing to this subsequence, we see that u has weak second derivatives and

uP—u in Wh*(B,), (4.4)
WP =y in W>B,). 4.5)

Then (4.4) implies that [0 o5 ,= 0]l 2, Now if [[v]125,=0, (4.1) and (4.5)
show that

H MUH L2(B,) é lil{n lnf || uff) || L2(B,) é C li;n il’lf(il’]fBr (U(k))a) = 0 .
- -0

Then Du is constant in B,, and since |[Du|=1 a.e. in B,, u|p_is linear with slope 1. In
particular, graph u contains a piece of light ray which is impossible, as before. Thus
[0l 125, >0, and then (4.3) shows that v®(x) = ¢>0 for all xe B, and k= k,. Hence

Du(x)?<1—c*<1, VxeB,(x,). (4.6)

Thus Lipy u< |/ 1— c? <1, so [GT, Sect. 10.5] shows that u is a weak solution of
the Dirichlet problem. Then [GT, Theorem 8.24], applied to Du as in Theorem 2.1,
shows that for H measurable Du is Holder continuous in a neighbourhood of x,,
so ue C+H(Q)nw* Q) for some f>0. []

Remarks. (i) The local estimate (4.6) guarantees that u is strictly spacelike in . It is
easy however to construct examples where this does not extend to Q.

(i) If He C**Q x R), then [GT, Theorem 6.13] shows that ue C*%), and if
H is C** C* then u will be C**2* C*® respectively.

(ii)) As observed previously, u will be unique if H(x,t) is non-decreasing in t.

If the boundary data ¢ only satisfies a weakly spacelike condition, then the
arguments of Theorem 4.1 show that u is regular except along contained light rays.
This clarifies the relationship between the Dirichlet and variational problems:

Corollary 4.2. Let Q, H, and ¢ be as in Theorem 4.1, except that the extension y of ¢
need only be weakly spacelike. Define the singular set

K={xy:x,yedQ, x+y, xyCQ and |¢(x)— @y)l=Ix—y}.
Then any solution u of the variational problem is strictly spacelike and satisfies
Mu=H on Q\K. Furthermore,
utx+(1—t)y)=te(x)+(1—t)p(y), 0<t<l,
where x, ye 0Q are such that |p(x)— @(y)|=|x—yl, and xy C Q.

Proof. Proceed exactly as in Theorem 4.1. If x,e€Q, then either /(x,, 02)=0 and
hence x,€ K, or the estimates of Sect. 2 apply. [

We can express the conditions of the preceding theorems neatly by defining the
distance function

do(x, y)= ingf length<t,

where 2 = {piecewise linear paths in @ joining x and y}, and dy(x, y)= + 0 if 2 is
empty.
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Then it is easy to see that the variational problem (1.3) is solvable iff the
boundary data ¢ satisfies

|<P(X)_€D()’)|§d9(x, y)> vxa yeag,
since then the function

P(x)= yiegg (do(x,y)+0(y), xeQ,

is a weakly spacelike extension of ¢. If strict inequality holds,

lo(x)— () <dglx,y), Vx,yedQ, x=*y,
then the singular set of Corollary 4.2 is empty and thus we have shown:

Corollary 4.3. Let Q, H, and ¢ be as in Theorem 4.1. Then the following conditions
are equivalent :

(i) There is a strictly spacelike ue C{Q)NW?>*(Q) satisfying the Dirichlet
problem.

(ii) The boundary data satisfies

lo(x)— () <dg(x,y), Vx,yedQ, x*y.

The arguments of Theorem 4.1 show that the problem of constructing surfaces
over IR" with prescribed asymptotics and mean curvature reduces to that of
constructing suitable barriers at infinity. Many such barriers are given in [T] — we
use one of them to illustrate this remark. Treibergs defines the class 2 of positively
homogeneous of degree one convex functions on IR" whose gradient has length one
wherever defined. He proves the following theorem:

Theorem. Suppose u is an entire, spacelike hypersurface with constant mean
curvature H>0. Then the blowdown V, of u is in class 2,

1
V (x)= lim —u(Rx), xeR".
R-o R

Conversely, given any function Ve 2, and constant H >0, then there is a spacelike
hypersurface with mean curvature H such that V,=V.

We show that the converse generalizes to non-constant H:

Theorem 4.4. Let the “projective data” Ve2 be given. Let He C**(R") be strictly
positive, H(x)=>0. Then there is a C** hypersurface u with 4 u(x)= H(x), such
that V,=V (i.e. u has projective data V).

Proof. Let B, =Bp, (0) be an exhaustion of IR" by balls. Construct the function
2(x)=inf {V(y)+(n?6~2+|x—y|*)'/?}.
yeR”

[This construction is due to Treibergs. Note that the term (n?6~ 2 +|x— y|*)!/?
corresponds to a hyperboloid centred at y with mean curvature é.] Let u,€ C*(B,)
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be the solution of the Dirichlet problem over B, with boundary data ¢,(x)=V(x)
+4nd7', xedB,. Then the comparison principle shows that u,(x)<z(x)< V(x)
+nd~ ! and of course u,(x)>V(x), so we can find a subsequence u, converging
uniformly on compact sets. The arguments of Theorem 4.1 then show that the limit
function u is C** and satisfies .#u(x) = H(x). That u has blowdown V, follows from
the construction. []

We remark that since the asymptotic data is null, the Dirichlet problem over B,
has degenerating ellipticity as k— oo. Thus regularity of the limit surface cannot be
inferred from the usual Schauder estimates [GT].

Appendix. Proof of Proposition 3.1

Let D" denote the tangential gradient operator of 02 at x,eI'. Assume x,=0 and
that e,=(0,...,0,1) is the inward pointing unit normal to 0Q at 0; thus
D'=(D,,...,D,_,0) at 0. We can also assume that D'¢p(0)=ae,, e, =(1,0,...,0),
ae[—1+6,,1—-0,].

Let b=b,eR be such that

1—(Ae"* /n) b _
V&2 +(1—(Ae" 1 /m))? 1/1+b>

(A1)

whenever ¢ >0 is small enough to ensure that such a b exists, and let w* =w_ be as

in (3.2) with £=¢,=¢(—b,0,...,0, —1)/]/1+b?, with K=¢~ ! and with w*(£)=0.
The condition (A1) then says precisely that

D'w*(0)=ae, =D'¢(0). (A2)

Now let 7 be any unit vector in R", and let D, denote directional differentiation
in the direction of #. Then

Dw* (9)=7(x— cl)f" 2 (A3)
where, for telR,
_ 1—(eAt"/n)
N Em T i Gavy
and
DD”W+(x)gv(lx—él)[1 ((x 4] ” 0@ (Ad)
" x—¢] x—é

as e—0 (uniformly for xe Q).
Next, let B={xeR":|x|<¢!/?} and note that

xéx

1/2
—g 2o

inf, 5. B|
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as ¢—0. Thus by (A3) we have

X

infxe,-%Bl Dw*(x)=1—0(e'?) (A5)

x|
as ¢—0.

Since 0QN% is C?, we have from (A1) that
x=¢ x
[x—¢l Ix|

and hence [by (A4)]

=1-0,/8) for |x|Sese(l,% Q), x€0Q,

<D2w+(x)|;x,,%> >e7U20/8 for |x|<e, x€dQNB. (A6)

Next consider xe Q2N B with |x|>e&. For such points we have (x— &)-x =0, and
hence (A3), (A4) imply [for e<e(l’, %, Q,0,, A)] that

either I—;C—l-DwJ’(x); 1—(0,/8) or else (A6) holds for x. (A6")

Since |D?*@(x)| <k and [D'p(x)|<1—0, for xe dQn%, and since (A2) holds, it
now follows directly from (A6) and (A6'),

w(x)—w*(0)+@(0)=¢p(x), VxeBnoQ, (A7)

provided ¢>0 is sufficiently small (depending on «, I', %, A, @, 6,), and the
inequality is strict for x = x,,.

Finally, (A7) taken together with (AS5) and the fact that |@(x)—@(y)l
<(1—0,)x—yl, yeI', xeQ, now implies

whx)—w (0)+(0)Z¢(x), VYxeoQ,

provided ¢ is sufficiently small, depending only on «, I, %, A, 2, and 6,. Then
w(x)—w*(0)+ ¢(0) is the required upper barrier function. []
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