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Abstract. We consider the boundary-value problem for the mean curvature
operator in Minkowski space, and give necessary and sufficient conditions for
the existence of smooth strictly spacelike solutions. Our main results hold for
non-constant mean curvature, and make no assumptions about the smooth-
ness of the boundary or boundary data.

Introduction

An important problem in classical Relativity is that of determining existence and
regularity properties of maximal and constant mean curvature hypersurfaces.
These are spacelike submanifolds of codimension one in the spacetime manifold,
with the property that the trace of the extrinsic curvature is respectively zero,
constant. Such surfaces are important because they provide Riemannian sub-
manifolds with properties which reflect those of the spacetime. For example, if the
weak energy condition is satisfied, then a maximal hypersurface has positive scalar
curvature. This fact was important in the initial proof of the positive mass
conjecture [SY]. Other applications can be found in [ES] and [MT].

However, the use of these surfaces is restricted presently because their
analytical properties are not well understood. By considering extrema of the
associated variational problem, natural conditions for the existence of weak
solutions can readily be established [Av]. These extrema are a priori only
Lipschitz-continuous and may be lightlike ("go null", in the terminology of [MT]).
Smoothness will follow from non-linear elliptic theory, provided we can show that
they do not go null.

We consider this problem in flat Minkowski space IL"+1, and give necessary
and sufficient conditions to ensure that extrema of the variational problem do not
go null. To be precise, we show (in Theorem 4.1) that for a given bounded domain
ΏClR" there is a smooth strictly spacelike solution of the Lorentz mean curvature
equation with specified boundary values on 3Ώ, provided only that the given
boundary data spans some spacelike hypersurface, and the mean curvature
function is smooth and bounded on Ω x R Since this result makes no assumptions
about the regularity of the boundary data or boundary, it can be applied to
problems over unbounded domains. We illustrate this in Sect. 4, using a barrier
construction due to Treibergs [T].

We mention that some results for the Dirichlet problem for zero mean
curvature were obtained in [B, F] however both these authors make very
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restrictive assumptions about the boundary data. Using different techniques to
those presented here, Cheng and Yau proved a Bernstein theorem for maximal
hypersurfaces, extending earlier work of Calabi [CE, CY].

The outline of the present paper is as follows: In Sect. 1 we gather some simple
results about the variational problem in flat space. In Sect. 2 we prove a "mean
value" inequality and the a priori estimate (2.22). This estimate plays a key role in
controlling the variational extremum. The Dirichlet problem for smooth domains
and data is solved in Sect. 3, using the cone-like barrier functions (3.2) and a
global a priori gradient estimate. The "anti-peeling" Theorem 3.2 is perhaps of
independent interest. It says roughly that if the extremal surface contains a piece of
light ray, then the surface cannot "peel away" from the extended light ray. Finally,
in Sect. 4 we collect these results to prove the interior regularity of the variational
extremal.

"Postscript: C. Gerhardt has independently obtained the gradient estimate of
Theorem 3.5, and has shown that it can be generalized to non-flat spacetimes."

1. The Variational Problem

We denote Minkowski space by 1L"+1 = {(x,ί):xeIRπ, feIR}, with the flat metric
n

£ dxf — dt2. Recall that C°Λ(Ω) is the class of locally Lipschitz functions on Ω.
ί= 1

For this and other notation, we refer to [GT].
Let M be an π-dimensional hypersurface in 1L"+1 which can be represented as

the graph of u<= C°' 1(Ω), where Ω is a bounded domain in R". We will say that M is

weakly spacelike if \Du ̂  1 a.e. in Ω,
spacelike if \u(x) — u(y)\<\x — y\ whenever x,yeΩ, xή=y

and the line segment xyCΩ, and
strictly spacelike if M is spacelike, UEC1(Ω) and \Du\ < 1 in Ω.

Similar terminology will be used to describe the function u. Note that M must
be strictly spacelike for the Lorentz mean curvature to be well defined, but weakly

spacelike is sufficient to define the area integral, J ]/l — \Du\2dx.
Ω

For physical reasons, a line of slope 1 is called a light ray. The light cone
C(ξ,ξn+ι) at (ζ>ζn+ι)E^n+1 is tne union of all light rays containing (ξ,ξn+1):

If Cξ,nM={ξ'} for all ξ'eM, then M (and u) is said to be acausal. This says exactly
that distinct points of M are spacelike separated. We observe that M spacelike is a
weaker condition than M acausal, although the two notions coincide when Ω is
convex. The main theorems here do not require convexity of Ω, and consider
spacelike surfaces, more generally than acausal surfaces.

Unless otherwise stated, no assumptions will be made about the regularity of
Ω. The possible pathology of dΩ leads to the following
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Definition. If φ: <3Ω->IR, and ip : £2-»IR is spacelike, then we agree that

ψ = φ on dΩ

means that, for every x0e dΩ, and every open straight line segment / contained in Ω
and with endpoint x0,

lim ψ(x) = φ(x0). (1.1)
xel

Throughout this work, boundary values will be taken in the sense of this
definition. Of course, if dΩ is Lipschitz, then this is the usual definition. It is not
difficult to construct examples with points x0edΩ at which ψ is not related to
φ(x0) by this definition [since there may not be any line segments / as in (1.1)], but
it is also not hard to show that the set of "regular" points (i.e. boundary points
with such line segments) is dense in dΩ. For later reference, we note that if ψ1 and
ψ2 are two spacelike functions on Ω, agreeing with φ in the sense of (1.1), then
Ψ1 — ιp2 extends to a Lipschitz function on ]R" which vanishes outside Ω.

The Dirichlet problem

Jίυ(x)=—=J^ Y
]/l-\Du\2 £,£i '

(1.2)
u = φ on dΩ,

where H:ΩxIR->]R and φ:δΩ->IR are given bounded functions, is the Euler-
Lagrange equation of the variational problem

{ «(*) ] Ί
γl-\Du\2- f H(x,t)dt\dx

o J i (1.3)
amongst UE<#(φ, Ω) = {we C° 1(Ω):w = φ on dΩ, and \Dw\ ̂  1 a.e. in Ω}. I

Since Ω is also bounded, /( ) is uniformly bounded on ^(φ, Ω). The equicontinuity
of ̂  then gives a uniformly convergent maximizing sequence uk^ue(^(φ, Ω). Since

the area integrand ]/l — \p\2 is concave, a semi-continuity theorem of Serrin ([M]
Theorem 1.8.1) shows that

lim sup J ]/l-\Duk\
2dx^ j }/l-\Du\2dx,

k^co Ω Q

and hence I(u) is maximal. Thus the variational problem (1.3) can be solved
provided only that ^(φ, Ω) is non-empty. This upper semicontinuity result is well
known also in the case of general spacetimes [Av].

Proposition 1.1. The variational problem can be solved iff ^(φ, Ω) is non-empty. The
solution is unique if H(x, t) is non-decreasing in t.

Proof. The first statement is clear from the above discussion.
Now suppose u, w are two solutions of (1.3), and set ut = u + t(w — u). Then by

the concavity of |/1 —|p|2,

dx^(l-ί)f }/l-\Du\2dx + t $ }/l-\Dw\2dx.
Ω Ω
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s

Now H non-decreasing implies that J H(x, t)dt is convex, and thus I(ut)^(ί — t)I(u)
o

+ tl(w). Since u and w both maximize /, equality must hold, and hence it follows
that

yi-\Dut\
2=(l-t)}/l-\Du\2 + t}/l-\Dw\2 a .e . inf l .

This implies that Du = Dw a.e. in Ω. Since w — w on dΩ, by a previous remark u — w
extends to a Lipschitz function on IR", vanishing outside Ω. Since D(w— w) = 0 a.e.
in Ω, we must have w = w, and the solution is unique. Π

The following two lemmas enable us to compare solutions of the Dirichlet
problem and of the variational problem. The first is a general comparison
principle.

Lemma 1.2. For z = l,2 suppose ut is the solution of (1.3) with bounded boundary
data φt and bounded mean curvature Ht. Suppose also that

H1(x)^H2(x) for a.e. xeΩ.

Then

x)+ sup(φ2-φ1),
6Ω

where sup(φ2 — φ1) is taken in the sense of (1.1).
dΩ

Proof. Let C = sup(φ2 — φx), choose ε>0 and define w 1 = w 1 - h C + ε and
dΩ

Ω+ = {xeΩ: u2(x)>ύ1(x)}. Assume Ω+ is non-empty.
The function (u2 — ύi) + vanishes on dΩ in the sense of (1.1) and hence

extends to a Lipschitz function vanishing outside Ω. Clearly u2 = ύl on <9Ω+, again
in the sense of (1.1). Define functionals / 1 ?/ 2 by

I{u) = J (γl-\Du\2-u^H^dx, i = 1,2.
Ω +

Then tί1 maximizes /x with respect to wJ^ + 5 and u2 maximizes I2 with the same
boundary values. Then by uniqueness of the solution of this variational problem,
I2(uί)<I2(u2), and hence

]/i-\Dύ1\
2dx< J

^ j (l/ΪHΛi/+(M1-«2)H1+(fi1-M2XH2-H1))ίix.
Ω +

Thus, since uί<u2 on Ω+ by construction, and //1 ^H2 on ί2, this becomes

l+(yi-\Dul\
2-uiHJdx< +

which contradicts the maximality oίl^ύ^). Hence Ω+ is empty and since ε>0 was
arbitrary, the result follows. Π

If H(x,t) is non-decreasing in t, then the concavity of j/1 — \p\2 and of

— J H(x, t)dt implies that any solution of the Dirichlet problem is also a solution
o
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of the variational problem (see [GT, Sect. 10.5] for a discussion). Thus the above
lemma allows us to compare solutions of the Dirichlet and variational problems.

The next result roughly says that the limit of solutions of the Dirichlet problem
is a solution of a variational problem.

Lemma 1.3. Suppose there is a sequence {uk}™ in C1(Ω)r^W2'2(Ω) of strictly
spacelike functions with (weak) mean curvatures <Muk — Hk, Hk measurable on Ω

and sup \Hk\^A, such that {uk}™ converges uniformly and {Hk}™ converges weakly,
Ω

wk=tw in C°(Ω),
(1.4)

Hk--H in L2(Ω).

Then u is weakly spacelike and, with respect to its own boundary values, solves the
variational problem with mean curvature H.

Proof. Since each uk is weakly spacelike in Ω and {uk} converges uniformly to u, it
easily follows that u is weakly spacelike. Suppose weC0>1(Ω) satisfies w = u on dΩ.
Then we must show that I(w) ^ I(u), where / is defined by

/( w) - J ( l/l-IDw 2 - w(x)H(x))dx .
Ω

Define

Ω+ = {xeΩ: w(x)>u(x)} and Ωk = {xeΩ : w(x)- 2/k>uk(x)} .

We can assume (relabelling if necessary) sup \u — uk\ ̂  1/fc, so that ΩkCΩ+. Clearly
Ω

we also have Ωk -+Ω as /c-»oo in the measure sense. By a previous remark, uk

maximizes Ik, so

J (}/l-\Dw\2-(w-2/k)Hk)dx^ j (]/l-\Duk\
2-ukHk)dx,

Ωk Ωh

since w = 2/k = uk on dΩk. Since Ωk and Hk are bounded, this becomes

J (γl-\Dw\2-wHk)dx^ J (]/l-\Duk\
2-ukHk)dx + εk,

Ωk Ωk

where εk->0 as fc-»oo. Thus, since Hk-^H and uk=$u, letting fc-»oo and using the
upper semicontinuity of the area integral, we have

J (}/1-\Dw\2-wH)dx^ \imsup J }/l-\Duk\
2dx- J uHdx

Ω+ fc^oo β+ β +

^ J (}/l-\Du\2-uH}dx.
Ω +

A similar argument applied to Ω~ ={xeΩ; w(x)<u(x)} shows that I(w)^I(u), as
required. Π

2. Main Estimate for iDul

Throughout this section, M will be a strictly spacelike, π-dimensional hyper-
surface, represented as the graph of a C3 function u(x). Unless otherwise stated,
the domain of u will be R", so we C3(IR"). Since M is C3 and spacelike, the induced
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metric is positive definite, giving M a Riemannian structure. This enables us to
generalize many well-known calculations from the theory of minimal surfaces in
IRn+1 to the present case (see for example [GT, MS]). Although formally the
calculations are very similar, the estimates are quite different. For example, the
projection of a vector onto the tangent space of M is longer than the original
vector.

We shall use the summation convention on repeated indices with the following
ranges l^ij, ... ^rc, l^α,/?, ... gra+1. For u only, we denote partial derivatives

du d2u
by subscripts, so UΊ = - — , M,,= - — - — and so on.J,

dxi

The flat metric on IL"+1 will be denoted <•,•> or ?/ = diag(l, 1, ... ,1, — 1), so
rlaLβ = (eveβ/> m terms of the natural basis {ea} of L"+1. The norm on spacelike

in X l / 2

vectors is \X\ = <X,Z>1/2, while |χ| = (Σxi) denotes length in R", and V is the

Levi-Civita connection of η.
Since M is a graph, M={(x,w(x)):xeIRn, ueC3(lRn)}, we have coordinates

(xl5 . . . , xn) on M with coordinate tangent vectors Xt = et + uien+ί9 i = 1, . . . , n. The
induced metric on M is then

and hence dQtgij=l — \Du\2. The quantity υ= }/l — \Du\2 will prove to be very
important. Let v be the upward normal to M, normalized by <v, v)= — 1,

v=-(Du,l) = viei + vn+1en+1,

ι (2.,,
vi=~ui> ι = l,.:,n9

 vn+i = --

The inverse gίj is then

(2.2)

We will use raised indices only for glj, and nowhere else.
The second fundamental form can be calculated directly,

(2.3)

and the mean curvature of M is thus

H=0%=VV (2.4)

Let ̂  C ILn+ 1 be an open neighbourhood of M, and let 7 be a C1 vectorfield on
^ and /e C2(<$0 be such that Dn+if = 0. Then the differential operators δ =gradM,



Lorentz Mean Curvature Equation 137

divM, and ΔM may be expressed

V=δJ e.,

By decomposing Y into components normal and tangential to M, Y = Y1 4- Yτ, we
obtain

divMy=divM7Γ-<tfv,y>. (2.6)

The induced volume form on M is a A = vdx, where d x is Lebesgue measure on Rn.
Now suppose GCM has C1 boundary dG with outer normal σ in M. Using (2.6)
and Stokes' theorem, we have

J divM YdA=-\ <Hv, Y>έL4 + f < 7, σ>dμ , (2.7)
G G dG

where dμ is surface measure on dG. Setting Y=fδg in (2.7), where /,0eC2(G),
yields

i(<<5/,^> + /^)^= Sf<δg,σydμ,
G SG (2.8)

l(9ΛMf-fΔMg)dA= j <gδf-fδg,σydμ,
G dG

where the second result is just Green's formula. Setting Y=fgea, /eC^M),
^eCx(M) gives

Sfδn+lgdA=-$gδn+lfdA- f -/^^,
M M M ϋ p 9)

ίfδtgdA=- IgδJdA- $vJgHdA, i=l,...,n.
M M M

The restriction of the Lorentz distance function to M is very important. By
abuse of notation, we treat x,yeIR" also as points of M, and define

l(x,y) = (\x-y\2-(u(x)-u(y))2)112.

The distance from a fixed centre point (ξ, u(ξ)) will be written ί(x) if there is no
chance of confusion. Direct calculation using (2.5) then gives

\\δi\\2=ί+r\v,x-ξy2,
(2.10)

where X — ξ is the vector (x — ξ, u(x) — «(<!;)) eLn+1, and l = l(x) is taken relative to
(ξ, u(ξ)). The Lorentz ball is then

LR = LR(ξ)={(x,u(x))eM; l(x,ξ)<R}CM, (2.11)
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and has projection KR into IR",

Since \Du\<l, (x-ξ) D(^l2)>\x-ξ\2-\u(x)-u(ξ)\-\x-ξ\, so / is increasing on
outward rays from ξ, and KR is starlike with respect to ξ. In case u is defined only
over a (nonconvex) domain Ω, so u is perhaps not acausal, we must modify this
definition to ensure that KR is still starlike. Thus in general we define KR by

KR(ξ) = {xεΩ; TξCΩ, l(x,ξ)<R}cΩ, (2.12)

where xξ is the line segment joining x and ξ. This agrees with the previous
definition when KRCCΩ.

We can now demonstrate monotonicity and mean-value formulae analogous
to those in [MS]. For convenience, take the fixed centre point (ξ, u(ξ)) = (0, 0), and
let X denote the position vector (x-ξ9u(x)-u(ξ))eJLn+ί. Let /eC2(M), and
substitute / and g = ̂ (ρ2 — /2), where ρ is a constant, into Green's formula (2.8),

\(L

2(Q2-l2}ΔMf + fΔM&2))dA = f ^(ρ2-l2)δf + fδ&2\σydμ. (2.13)
G dG

Now let G = LQ, and assume ρ>0is such that dLQr\dM = &, so σ= \\δl\\~1δl Using
(2.10), this becomes

ί {nf + ±(ρ2-l2)AMf + fH(X,vy}dA= J fl\\δl\\dμ.

Using the following special case of Federer's coarea formula [F, Theorem 3.2.12],

DβttfdA}= J nδlΓ^dμ, (2.14)
dLe

and (2.10), we arrive at the monotonicity formula

fdA\ = J ρ-"-1(^ρ2-l2)Δ

(2.15)

Note that the integral in the final term tends to 0 as ρj,0, since M is C2 and strictly
spacelike, and thus (X, v> = 0(|x|2) as |x|-»0. Also, since / approximates geodesic
distance in M for \x — ξ\ small, i f / is continuous at ξ, we have

Q~n J fdA^ωnf(ξ) as ρj,0,

where ωn is the volume of the unit ball in IRΛ
We will apply (2.15) with f = vΛ, α>0 to obtain important estimates. By direct

calculation, using Djvί = v~1gikukj and (2.3)-(2.5),

= gijvkvluikujl,
(2.16)
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This formula can also be derived from the Jacobi field equation. Using (2.3), (2.5),
and (2.16) we now have

-2= -αι;α

where \viuίj\
2= ]Γ ί £ v^l . Using the inequalities ab^εa2+ — b2 for any ε>0,

j=l\i=ί

we can estimate

ΛM^-Cz;α-2(Σ4 + |̂ ^

where α < - and C are positive constants depending only on n.

Using this estimate in the monotonicity formula (2.15) yields

DQ\Q~n I v«dA\

i n n

Σ 4+ Σ I/—I IJ ί-J '

ίj=ί 7=1

+ j ρ-n-ίH<X,vyυΛdA-DQί$ <X9vy2Γn~2v*dA\. (2.17)
Le \Le J

If CeC1^), MCΦCIL1 1"*"1, and D Π + 1 C = 0, then

Since υδ l l + 1ζ = vίDίζ by (2.5), we thus have

\vδn+iζ\^\\δζ\\9 provided Dn+1ζ = Q. (2.18)

The 5Π+ ί(vΛ+ 1H) term in (2.17) may be estimated by integrating by parts (2.9) and
using (2. 10) and (2. 18):

- J (ρ2-l2)δn+1(v«+1H)dA= J (ρ2-l2)v«H2dA-2 J ϋβ + 1H/δn + 1

where R ̂  ρ will be determined later.
Now suppose sup|#|^yl<oo, and estimate H<X, v>^|/2/f2 + iΓ2<Z, v>2.

Defining
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the monotonicity formula now becomes

X, v> 2Γ n~ 2ΛL4\. (2.19)

For any /eC^IR), the coarea formula (2.14) shows that

f'(Q)$gdA = D ρtt(f(ρ)-f(l))gdA\,
LQ

and hence we can write the last two terms of (2.19) as — T'(ρ), where

τ(β)= ί
Lβ

n

Using the integrating factor

(2.19) becomes

(I(ρ)ψ(ρ))'^-CI(ρ)ρ-n-1 J

(2.20)

To help integrate this expression, define the step function λ(t) — 0, t <0 and A(ί) = 1,
t ̂  0. Then for any g integrable on M, we can write

$gdA= \λ(ρ-l)gdA.
Lρ M

Now integrating (2.20) from 0 to .R and using this device and Fubini's theorem
gives

-ωnιf(ξ)£-C J (Z«u + |v,WylV~ 2

LR

ί k~ "" ' to2 - i2Wi?Mfe - Odρ) ̂  - j I(ρ)r(ρ)dρ .
o / o

Integration by parts and the remarks after (2.15) that j (X, vy2Γn~2dA^Q as ρ|0
R Lβ

shows that J I(ρ)T(ρ)dρ^O and may be discarded, yielding

where

-

" J vfdA + CI(R) j SMΣ^i + ̂ i^'^A, (121)
i-R ί-R

U-— /2-»+ /2R-π_^_^ jR2-n5 π>3

I Φ-2) 2π 2(«-2)

i(l-/2/Λ2), n = 2,

so SΛ(/)>Ofor
One estimate which can be derived from (2.21) is
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Lemma 2.1. Let Ω be a domain in IR" and let WE C2(Ω) be strictly spacelike and have

bounded mean curvature, sup\^u\^Λ. Let ζeΩ and R>0 be such that
Ω

K2R(ξ)C CΩ, where KQ(ζ) is the connected Lorentz ball defined by (2.12). Then there

are positive constants α < - and C depending only on n, such that
n

^R-n J va+ίdx + R2~n J ^ufjdx. (2.22)
KR(ξ) KR(ξ)

Proof. Note that for l<R/29 SR(l)>C(n)R2~". By approximation, (2.21) holds for
uεC2(Ω) also. Then using the definition of I(R) and discarding parts of (2.21), we
arrive at (2.22). Π

3. Barrier Functions and Global Gradient Estimates

An important property of the Lorentz mean curvature operator Jl is that there
are spherically symmetric functions defined on IR"—{0} with constant mean
curvature. The geometry of these functions is such that they prove very useful as
barrier functions. Two important applications are the "contained light ray"
Theorem 3.2 (cf. [MT, p. 124]) and the boundary gradient estimate Corollary 3.4,
which leads to the solvability of the Dirichlet problem for sufficiently smooth
mean curvature, boundary and data.

Suppose w is spherically symmetric about ξeIR", so w = w(r), where r = \x—ξ\.
Let ' denote differentiation with respect to r, so

Thus the equation Jt(w) = A, constant, may be integrated giving

\x-ξ\ K+-Atn

J n ==dt, (3.1)

where K and w(£) are constants of integration. Two properties of w are immediate
from (3.1):

(i) |Dw| < 1 except at ξ, where w has a light-cone-like singularity (unless K = 0,
when w is a hyperboloid). Also, (1 — |Dw|) is 0(\x — ίl2""1), positive near ξ.

(ii) By taking K sufficiently large positive (negative), w can be made arbitrarily
close to the forward (backward) light cone from ξ over a bounded set.

We note that the analogous computation for the Euclidean mean curvature
yields solutions defined only in the complement of a ball of strictly positive radius.
Although such solutions can be useful, in this case the solutions (3.1) provide much
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stronger information. For K>Q and ΛelR. we have candidate barrier functions

Ix-«l K--Λt"

w±(x) = w±(ξ)+ J " dt, (3.2)° FĤ R
with mean curvatures +A Then by noting that D2w is arbitrarily large in
transverse radial directions near ξ, and then choosing K sufficiently large and
£eIRπ appropriately, we see geometrically that the functions w1 do indeed yield
barrier functions. This observation is important enough to formulate precisely (the
detailed proof is given in the appendix).

Proposition 3.1. Suppose dΩn% is C2, % open, ΓCdΩc^W is compact, and suppose
the boundary data φ: 5£2->IR has an extension φ satisfying

\φ(x)-φ(y)\^(l-Θ0)\x-y\, xeΩ, yeΓ,

for some constants Θ0 >0, K. Let A ^0 be given, and x0eΓ. Then there is K>0, and
base points (ξ±,w±(ξ±)) such that the functions w± defined by (3.2) satisfy

w+(x)>φ(x)\
_, , , ,h xedΩ\{x0},

w (x)«p(x)

Further, there is a strictly positive constant θ = θ(κ, 00, A, Ω, Γ, °U] independent of x0

such that
(3.3)

The final estimate (3.3) shows that for ueC2(Ω\ such that \Jtu\^A, u = φ on
dΩ, we have the boundary gradient estimate \Du(x)\^l — θ, xeΓ, provided Du(x)
exists. Note also that this assumes that φ is (strictly) acausal - this requirement will
later be weakened to φ strictly spacelike.

The next result shows if graph u contains a segment of light ray, then it
contains the whole of the ray extended to dΩ x R

Theorem 3.2. Let ueC0>1(Ω) be a solution to the variational problem (1.3) with
bounded H. Suppose there is a line segment x0x1 C C Ω such that

u(xt) = U(XQ) + ί|x0 - x,\ , V ie [0, 1] , (3.4)

where xt = x0 + t(x1—x0). Then this equation holds for all ίeR such that xteΩ and
x0xtCΩ.

Proof. Suppose (3.4) does not hold for ί<0 [a completely analogous argument
holds if (3.4) fails for ί>l]. This means

— x1\9 for some £<0. (3.5)
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By choosing a new x0 and x1 (on the line containing the original segment), we can
assume (3.4) Vίe[-^,l], (3.5) with t=-%, and that the Euclidean ball

^ι^^2|xo-χ1|(
χι)ccα Let *o = *i|*0-*ι|(*oλ and let cι and C2 denote the

backward light cones with apexes at (x19 iφO) and (x0, M(XO)) respectively. Then for
f X ίei -O]}, we have

We can now use the strict inequality (3.5) for u(xt)9 t= — \. Thus

φ)>C2(x),

and we can find K sufficiently large such that the spherically symmetric function
w~(x) with mean curvature Λ = supH and base point (x0, tφc0)) satisfies

w(x)>w~(x)>C2(x), Vxed£ 0 .

But w~ is strictly spacelike away from x0, so w~(xt)>u(xt\ ίe[ — ,̂ 0), and this
contradicts the comparison Lemma 1.2 applied with Ω = B0~{x0}. Π

The following lemma will be used to prove an a priori boundary gradient bound
for strictly spacelike data, generalizing Proposition 3.1.

Lemma 3.3. Let ΩcIR" be a bounded domain and Abe a given constant. Define the
function classes :

@C{ψeC0(dΩ):\ψ(x) — ψ(y)\<\x — y\ whenever xή^y and xyCΩ}

and & is compact with respect to the uniform norm on C°(dΩ),

& = {uεC2(Ω):\Du(x)\<ί9 VxeΩ, \Jίu\^A and u = ιp on dΩ for some ψe@}.

Let r >0 be given, and let xl9 x2eΩ be any two points satisfying \x1 — x2| = r, and the
open line segment x1x2CΩ. Then there is a strictly positive constant
θ = θ(n,A,Ω,r,@) such that, for any UG^, \u(x1)-u(x2)\^(ί-θ)r.

Proof. Suppose there is no such θ. Then we can find a sequence {uk} C 3F , and
weakly spacelike ύ on £2, HeL2(Ω) such that supΩ\uk — w|->0, Jί(uk) = Hk-^H in
L2(Ω) and there are points xl9x2eΩ satisfying x^2CΩ and |M(XI) — u(x2)\
= \x1 — x2\ = r. But Lemma 1.3 shows that ύ is a solution of the variational
problem with mean curvature H with respect to its boundary values. Theorem 3.2
now shows that the segment of light ray over x1x2 in graph u extends to a segment
of light ray between points of dΩ x IR, contradicting the fact that ύ\δΩe@. Π

Note that this does not give an interior gradient bound.

Corollary 3.4. Let ΩCIR" be a bounded, C2 domain, and suppose the boundary data φ
has an extension φeC2(Ω) such that sup^\Dφ\^l — 00<1, sup^|^2^|^κ: for some
constants #0>0 and K. Let ueC2(Ω)nC1(Ω) be strictly spacelike and satisfy
supΩ \Jtu\ ^ A, and u = φ on dΩ. Then there is a positive constant θ = Θ(Θ0, A, K, Ω, n)
such that supdΩ \Du\^ί — θ<ί.

Proof. Let x0edΩ. Since Ω is C2, \Dφ\g>ί-θ0 and ueCQΛ(Ω), it follows from
Lemma 3.3 that there is r = r(f2,00)>0 and θί=θί(θθ9Λ,Ω,r9n)>Q such that
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Proposition 3.1 applied to u restricted to Br(x0) yields barrier functions w* at x0

with |Dw±(x0)| ̂  1 - θ < 1, where Θ = Θ(Θ19A9 κ9 Ω, r, n) > 0. This holds uniformly for
x0edΩ, so the result follows. Π

Using the Jacobi equation (2.16),

AMVn+ι = vn+ΛA\\2 + δn+ιH, (3.6)

we see that when H is constant, v n + 1 satisfies a maximum principle, and hence
Corollary 3.4 yields a global a priori estimate for \Du\ and thus the ellipticity of

u. However, we can do better:

Theorem 3.5. Let ΩClR" be a bounded domain, and suppose weC2(Ω)nC1(Ω) is
strictly spacelike and supΩ\J^u\^Λ. Further suppose φ = u\dΩ is bounded, and that
there is a boundary gradient estimate for \Du\ of the form

where v M , «
2'\-\Du\

Then \Du\ satisfies the global estimate: supΩvπ + 1 ^cK((LΛ)n+2 + 1), where c = c(n)
and L = di

Proof. Note that c will be used to denote any constant depending only on n. We
may assume K^2. From (2.9), if ζeC^M), then

Sδn+1ζdA=-Svn+1HζdA. (3.7)

Substituting ζ=u(vn + l-K)q

+9q^2 and noting that dn + 1u = v*+1-l^(l-
when vn+1 ^K, we have

M

M M

Using the inequality (2.18) and K^2, this becomes

i
— f (v — K)q v2 dA

M

M M

We estimate the | |<Svn + 1 | |
2 integral by noting that (2.8), (2.9), and the Jacobi

equation (3.6) give

M M

Setting C = (vn+1-X)Γ1 Yields

M — M
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and hence, since g^2,

l(vn+1-K)"-2\\dvn+1\\2dA^A2l(vn+1-K)"+-2v2

+1dA. (3.9)
M M

Using this to simplify (3.8), we have

$(vn+ί-K)\v2

n+1dA^13q2L2A2$(vn+1-K)«-2v2

n+1dA. (3.10)
M M

Setting β = , the Sobolev inequality in IR" implies

+1-K)f^W^c^K+1-K)VΊ^+1Mx, c = c(n).
I Ω

Since |Dvn + 1 |^ ||^vn+1 | |, and dx = vn+ίdA, this becomes

Setting ε = Lq and using (3.9) and (3.10), we have finally

^cq2LA2^(vn+1-K)\-2vn+ίdx. (3.11)
\Ω / Ω

Using the inequality (a + b)ilβ^allβ + bllβ, α,b^0 and (3.11) yields

(K«βLn + f (vπ+ ! - K)q

+

βdx\/β ^Ln-lK« + cq2LA2 $(vn+l- K)V 2vπ + ̂ x. (3.12)
\ Ω ] Ω

By considering the sets where vn+1^2K and vn+ 1 <2K separately, the right side
may be estimated by

Defining / by
Iq

and setting q = 2βm~1, m a positive integer, we can write (3.12) as

I2βm^(C(LΛ2 + L-1)^rmβm>i-mI2βm-ί,

and this holds whenever m^l. Iterating yields

β^-μI2, (3.13)

m

where the sums are taken as ]Γ . Using (3.10), I2 can be estimated by
μ = l

$(vn+1-K)2

+dx^cL2A2 J v t t + 1Jx, where Ω+ =

Then by noting that vn+1 ^ε + ̂ ε~1(K2 + (vn+1 — K)2

+), and setting ε = cL2A2, we
have
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00 OO

and hence I2^cLn/2K(L2Λ2 + l). Since £/Γm = rc-l and ^mβ~m = n2-n, (3.13)
i i

implies

We obtain the required estimate by letting w-*oo and noting that

Q

This a priori global gradient bound leads to the following existence theorem for
the Dirichlet problem.

Theorem 3.6. Let ΏCJR" be a bounded, C2'a domain for some α>0, and suppose the
boundary data φ is bounded and has an extension φe C2'α(Ω) satisfying \Dφ\ ^1 — Θ0

in Ω, for some Θ0 >0. Let HeC°'*(Ω x R) be bounded, with supβ x R |Jff | ^ A Then the
Dirichlet problem ^u(x) = H(x,u(x)) in Ω, u = φ on dΩ has a strictly spacelike
solution weC2'α(Ω). Further, there is a positive constant θ — θ(Λ,Ω,θ0,φ)>Q such

inΩ.

Proof. The conditions on Ω and φ ensure that Corollary 3.4 and then Theorem 3.5
can be applied, giving a global gradient estimate which guarantees that Jί is a
priori uniformly elliptic. [GT, Theorem 12.7] now gives an a priori estimate for
IMIcι 0(Ω> f°r some β>0> and then [GT, Theorem 10.4] gives the required
result. Π

As previously noted, if H(x,t) is non-decreasing in t, then the solution is
unique. If ΉeC fe'α(ΩxIR), fc>0, then by [GT, Theorem 6.17], uεCk+2>«(Ω) and if
HeC00, then u is C°° also.

4. Main Results for Dirichlet Problem

The results of the previous sections combine to prove three theorems about the
Dirichlet and variational problems. The main result, Theorem 4.1, gives a
necessary and sufficient condition for the regularity of the variational solution,
and hence for the Dirichlet problem to be solvable. Corollary 4.2 makes explicit
the relationship between the Dirichlet and variational problems, while Theorem
4.3 gives an alternative necessary and sufficient condition for the solvability of
Dirichlet problem. As an application of these results, we describe and prove a
slight generalization of the existence part of Treibergs' recent classification of
constant mean curvature hypersurfaces in IL"+1 [T].

We emphasize that Ω is only assumed bounded. Thus, if dΩ has pathology, the
boundary values will always be taken in the sense of definition (1.1).

The main point of the proof of Theorem 4.1 is showing that the surface cannot
"go null" [MT]. We do this by using the estimate (2.22), applied to C00

approximating hypersurfaces, to show that going null at a point implies going null
in an open neighbourhood, and then Theorem 3.2 applies.

Theorem 4.1. Let ΩcIR" be a bounded domain, and let H be a given bounded
function, measurable on Ω x l R and continuous in the ^-component, with
supΩ x I R |ί/Ί^A Suppose also that φ:<9Ω->IR is bounded.
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Then there is a strictly spacelike uEC1(Ω)r\W2>2(Ω) satisfying

Jίu(x) = H(x,u(x)) in Ω,

u = φ on dΩ (in the sense of (l.l)J

if and only if there is a spacelike function ψ : Ω-+1R with ψ = φondΩ (in the sense of
(LI)).

Remark. By standard regularity theory for quasilinear uniformly elliptic equations,
we know that u will automatically be of class Ck+ 1 (Cω) in Ω if H is of class Ck (Cω)
in Ω.

Proof. By mollification we can construct C°° approximants Ωfc, ψk which satisfy

Ω kcΩ, dist(Ωk,3Ω)^l/fc,

supβk \Dψk\ ̂ l — Θk<l for some θk > 0 ,

We also mollify H to get HfceC°°(ΩxIR), and such that H-Hk^Q in
L 2(Ωx[ — a, a]) for every α>0. Theorem 3.6 now gives a strictly spacelike, C°°
solution u(k} to the Dirichlet problem on Ωk with Hk and tpk|βΩk.

By passing to a subsequence, we can find a weakly spacelike weC0 > 1(Ω) such
that w(/c)=£w and supβfc|M

(k) — w|^l/fc. Since (by construction)
Hk(x9u

(k\x))-*H(x9u(x)) in L2(Ω), Lemma 1.3 shows that w is the solution of the
variational problem with mean curvature H*(x) = H(x, u(x)) and with boundary
data φ.

We now consider the limit function u. Let l(x, y) be the Lorentz distance
function with respect to u,

l(x,y)= V\x-y\2-(u(x)

and let KR(x) be the projected Lorentz ball defined by (2.12). The corresponding
objects with respect to u(k) will be denoted by a superscript, e.g. l(k\ K(£\

Let x0eΩ. If there is yedΩ such that l(xQ9y) = 0 and x0j;CΩ, then Theorem 3.2
shows that this segment extends to a light ray between points of δΩxIR,
contradicting the condition that ψ is spacelike. Thus there is R>0 such that
K4R(x0)C CΩ. Simple estimates of the functions /, /(fe) show that there is ^R>r>0
and kί such that for \x — x0 |<r and fe>fel5 K^R(XQ)CKΪ}

R(X)CKR(XO), and also
K(k

R(x)C CΩ. Now applying the estimate (2.22) to u(k\ using these inclusions and
noting that Br(x0)CKr(x0)9 we obtain

Br(x0), (4.1)

J Σ^x^c(π,Λ^), (4.2)

\\v(k)\\L2(Br} ^ \\v(k)\\L2(KiR(Xo» ^ Φ, A RW\Xyr , VxeB r . (4.3)

The estimate (4.2) shows that {u(k}} is bounded in the Sobolev space W2'2(Br),
so by Rellich's theorem and the weak compactness of bounded sets in FF2'2, there
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is a subsequence converging strongly in Wίt2(Br) and weakly in W2'2(Br). By
passing to this subsequence, we see that u has weak second derivatives and

u(k}-^u in Wlt2(Br)9 (4.4)

u(k}^u in W2>2(Br). (4.5)

Then (4.4) implies that \\v(k)\\L2(Br)^> \\v\\ L2(Br). Now if \\v\\ L2(Br) = 09 (4.1) and (4.5)
show that

|| tty || L2(Br} ^ lim inf || M<*> || L2(JW g c lim inf (infBr (ι/*>)β) = 0 .
fc-»oo fc-»oo

Then Dt/ is constant in Br, and since |Dw| = 1 a.e. in Br, u\Br is linear with slope 1. In
particular, graph u contains a piece of light ray which is impossible, as before. Thus
||ι>||L2(Br)>0, and then (4.3) shows that v(k\x)^c>0 for all xeBr and fc^/q. Hence

\Du(x)\2^l-c2<l, VxeBr(x0). (4.6)

Thus LipBru^ I/I — c2 < 1, so [GT, Sect. 10.5] shows that u is a weak solution of
the Dirichlet problem. Then [GT, Theorem 8.24], applied to Du as in Theorem 2.1,
shows that for H measurable Du is Holder continuous in a neighbourhood of x0,
so ueCίtβ(Ω)^W2t2(Ω) for some β>0. Π

Remarks, (i) The local estimate (4.6) guarantees that u is strictly spacelike in Ω. It is
easy however to construct examples where this does not extend to Ω.

(ii) If #eC°'α(ΩxIR), then [GT, Theorem 6.13] shows that ueC2>«(Ω\ and if
H is Ck'α, C00 then u will be Ck + 2 α, C°° respectively.

(iii) As observed previously, u will be unique if H(x9 1) is non-decreasing in ί.
If the boundary data <p only satisfies a weakly spacelike condition, then the

arguments of Theorem 4.1 show that u is regular except along contained light rays.
This clarifies the relationship between the Dirichlet and variational problems :

Corollary 4.2. Let Ω, H, and φ be as in Theorem 4.1, except that the extension ψ of φ
need only be weakly spacelike. Define the singular set

K = {xy:x,yedΩ, xφy, xyCΩ and \φ(x)-φ(y)\ = \x-y\}.

Then any solution u of the variational problem is strictly spacelike and satisfies
i — H on Ω\K. Furthermore,

u(tx + (1 - t)y) - tφ(x) + (1 - t)φ(y), 0 < ί < 1,

where x,yεdΩ are such that \φ(x) — φ(y)\ = \x — y\, and xyCΩ.

Proof. Proceed exactly as in Theorem 4.1. If x0e£2, then either l(x0,dΩ) = Q and
hence x0eK, or the estimates of Sect. 2 apply. Π

We can express the conditions of the preceding theorems neatly by defining the
distance function

dΩ(x,y)= inf length τ,
τe^>

where & — {piecewise linear paths in Ω joining x and y}, and dΩ(x, y) = + oo if & is
empty.
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Then it is easy to see that the variational problem (1.3) is solvable iff the
boundary data φ satisfies

\φ(x)-φ(y)\^dΩ(x9y), V

since then the function

φ(x) = m f ( d Ω ( x , y ) + φ(y))9 xeΩ,
yedΩ

is a weakly spacelike extension of φ. If strict inequality holds,

\φ(x)-φ(y)\<dΩ(x,y), Vx,yedΩ, x φ y ,

then the singular set of Corollary 4.2 is empty and thus we have shown :

Corollary 4.3. Let Ω, H, and φ be as in Theorem 4.1. Then the following conditions
are equivalent:

(i) There is a strictly spacelike ueC1(Ω)r^W2>2(Ω} satisfying the Dirichlet
problem.

(ii) The boundary data satisfies

I φ(x) ~ 9(y}\ <dΩ(x,y), Vx,yedΩ, x^y.

The arguments of Theorem 4.1 show that the problem of constructing surfaces
over IR" with prescribed asymptotics and mean curvature reduces to that of
constructing suitable barriers at infinity. Many such barriers are given in [T] - we
use one of them to illustrate this remark. Treibergs defines the class =2 of positively
homogeneous of degree one convex functions on IR" whose gradient has length one
wherever defined. He proves the following theorem :

Theorem. Suppose u is an entire, spacelike hypersurface with constant mean
curvature H>0. Then the blowdown Vu of u is in class J2,

Vu(x)= lim -u(Rx), xeIR".
jR->oo R

Conversely, given any function Fe J, and constant H>Q, then there is a spacelike
hypersurface with mean curvature H such that VU=V.

We show that the converse generalizes to non-constant H:

Theorem 4.4. Let the "protective data" V<=£ be given. Let ΉeC°'α(IR") be strictly
positive, H(x)^δ>Q. Then there is a C2'α hypersurface u with dίu(x) = H(x\ such
that VU=V (i.e. u has projective data V).

Proof. Let Bk = BRk(0) be an exhaustion of IR" by balls. Construct the function

z(x)= inf

[This construction is due to Treibergs. Note that the term (n2δ~2 + \x — y|2)1/2

k)corresponds to a hyperboloid centred at y with mean curvature <:>.] Let ukεC2(B
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be the solution of the Dirichlet problem over Bk with boundary data φk(x] = V(x)
1, xedBk. Then the comparison principle shows that uk(x)<z(x)^ V(x)

l and of course uk(x)>V(x), so we can find a subsequence uk converging
uniformly on compact sets. The arguments of Theorem 4.1 then show that the limit
function u is C2>α and satisfies Jtu(x) = H(x). That u has blowdown F, follows from
the construction. Π

We remark that since the asymptotic data is null, the Dirichlet problem over Bk

has degenerating ellipticity as fc-> oo. Thus regularity of the limit surface cannot be
inferred from the usual Schauder estimates [GT].

Appendix. Proof of Proposition 3.1

Let D' denote the tangential gradient operator of dΩ at x0eΓ. Assume x0 = 0 and
that en = (0, ...,0,1) is the inward pointing unit normal to dΩ at 0; thus
D' = (Dl9...9Dn_l9Q) at 0. We can also assume that D'φ(0) = aeί9 β1=(l,0,... ,0),

Let b = foεeIR be such that

L==a (Al)
}/ε2n + (l-(Λεn+1/n))2 I/I

whenever β>0 is small enough to ensure that such a b exists, and let w+ = wε

+ be as

in (3.2) with ξ = ξε = ε(-b,Q, ...,0, - l)/j/l + b2, with K = ε~l and with w+(£) = 0.
The condition (Al) then says precisely that

D'w+(0) = ae1 = D'φ(ϋ). (A2)

Now let η be any unit vector in R", and let Dη denote directional differentiation
in the direction of η. Then

(A3)η \ / i v i ^ i/ I ίri

where, for ίelR,

l-(εΛt"/n)
y(t) =

and

v /= |χ-{|

as ε->0 (uniformly for xeΩ).
Next, let ^^{xelR": |x|^ε1/2} and note that
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as ε->Ό. Thus by (A3) we have

Mxe^B± Dw+(x)^l-0(ε112) (A5)

as ε-»0.
Since dQr\W is C2, we have from (Al) that

— ξ x

\χ-ξ\ M

and hence [by (A4)]

for |x|^ε^ε(Γ,*,Ω), xedΩ,

for M^ ε > xedΩnB. (A6)

Next consider xe dΩr^B with |x| > ε. For such points we have (x — ξ) - x ̂  0, and
hence (A3), (A4) imply [for ε ̂  ε(Γ, ̂ , Ω, Θ0, A)] that

- Dw + (x) ̂  1 - (00/8) or e/se ( A6) holds for x . ( A6')

Since |D2φ(x)|^κ; and |D>(x)| ̂  1 - 00 for xeδΩn^, and since (A2) holds, it
now follows directly from (A6) and (A6'),

w+(x)-w+(0) + φ(0)^φ(x), VxeBndΩ, (A7)

provided ε>0 is sufficiently small (depending on K, Γ, ,̂ /I, Ω, Θ0), and the
inequality is strict for xΦx 0 .

Finally, (A 7) taken together with (A5) and the fact that \φ(x) — φ(y)\
, xeΩ, now implies

^<p(x), VxeδΩ,

provided ε is sufficiently small, depending only on K, Γ, ,̂ Λ, Ω, and Θ0. Then
w + (x) — w + (0) + (̂ (0) is the required upper barrier function. Π
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