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Abstract. We show that every properly infinite, injective von Neumann algebra
acting on a separable Hubert space is isomorphic to the weak closure of some
translation covariant representation, obeying the spectrum condition for the
generators of the translation group, of the C*-algebra of quasilocal observables
of a free massless spinor field. We construct explicitly such representations in the
case of 11 ̂  and IIIλ factors, 0 < λ < 1.

1. Introduction

The von Neumann algebra generated by a representation π of the C* algebra $1 of
quasilocal observables of a local quantum theory [1] is known to be type / if π is
covariant for the space time translation group, the representation °lt of this group on
Jf π fulfills the spectrum condition

S p ( ^ ) c F + (1.1)

and there is a ̂ -invariant vector which is cyclic for π (the vacuum) [2]. Tn absence of
the vacuum, π(9I)" is also type I if the spectrum condition (1.1) is sharpened by
requiring the existence of a massive particle isolated from the rest of the spectrum
[3].

We show that in presence of massless particles all types of von Neumann
algebras can appear among the positive energy representations of 91. This answers a
question posed by D. Buchholz.

We study a simple model, the even part of the field algebra of a free massless
Majorana particle. Specifically, we consider the CAR algebra 'Ά(K) over K, when K
is the direct sum of the Hubert spaces of the irreducible unitary representations of
the covering of the Poincare group of zero mass, spin 1/2 and helicities +. The
destruction and creation operators a(f\ a(g)*, f,geK, fulfilling the CAR, are related
in the standard way to the negative and positive frequency parts of the free massless
Majorana field ψ} The local field algebras %(Θ) are the C*-subalgebras of

1 By considering K®K instead of K to allow distinction between particles and antiparticles, we could

similarly study a massless Dirac theory
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generated by ψ regularized with test functions with support in a given region Θ. The
gauge transformation to the angle π defines an automorphism γ of $Ϊ(K) such that

y ( α ( / ) ) = - α ( / ) ; y(ψ)=-ψ. (1.2)

The y-fixed point subalgebras 93(0) of %(Θ) provide a model of local quantum
theory fulfilling the axioms in [1], where the quasilocal observable algebra 93 =
2l(K)e is simple, separable, the action of the Poincare group is strongly continuous
[4], [5]; moreover 33 is isomorphic to the CAR algebra itself [6].

We will neglect specifying the spin indices since they will play no role here. Our
method is a generalization to the non type / case of the construction given in [7] of
positive energy irreducible representations of $l(K) without a vacuum.

This construction consists in choosing a special orthonormal set gu

g2. On- GK such that

(i) }

(ii) s u p p £ n n s u p p £ m = 0 if nψm, (1.3)

oo

(iii) X &n<co.
n= 1

Then ([7]) every discrete representation of the CAR algebra over K generated by a
state with infinitely many of the modes g1,g2 ...occupied and all the remaining
modes empty, is an irreducible positive energy representation. This method of
construction has been generalized in various ways (see e.g. [8, 9]).

Let Nλ denote the closed subspace of K generated by gί,g2 and iV2 = JVf.
The key point is that any representation of $l(K), which restricts to a multiple of the
Fock representation on (Ά(N2), is covariant with positive energy. This is to be
expected intuitively since, if we choose a reference state whose restriction to 2l(JV2) is
the Fock vacuum, the energy of this state should be bounded by ]ΓεM < oo.

Note that with evident modifications on conditions (1.3), specifying also the spin
variables, we could arrange that all our representations are rotation covariant.
However covariance under boosts is clearly impossible but for the Fock
representation.

In Sect. 2 we prove by abstract arguments that every injective properly infinite
von Neumann algebra on a separable Hubert space appears as the weak closure of a
positive energy representation of 33, which is Fock-like on 2I(N2)e. In Sect. 3 we
discuss some explicit examples; we choose states where each mode g{ is occupied
with a constant probability μ and each mode in N2 is empty. These states are a
simple variant of Powers states and for 0 < μ < 1/2, respectively μ = 1/2, they
generate factor representations of 93 of all types IIIλ9 0 < λ < 1, respectively of type
77^, which are covariant with positive energy. Note that each covariant repre-
sentation of $ί(K) with positive energy is locally normal [10, 11].

It is natural to ask whether results similar to ours apply to a general interacting
theory, provided there are massless particles and each vector state in the vacuum
sector below some energy threshold can be approximated by asymptotic states of
finitely many massless particles [12]. We do not discuss this question here. It can
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however be expected that representations like those constructed here are not
generated by scattering states unless one considers very artificial incoming states for
the massless particles.

2. Abundance of Positive Energy Representations

We consider only CAR algebras over separable Hubert spaces. We denote as above
by 9I(M) the CAR algebra over a Hubert space M, by 3l(M)e - {AeM(M)/y{A) = A}
its even part; we will say that a representation π of 2ί(M) is even if it is quasi-
invariant under y, i.e. πoγ « π. In this case y will denote the automorphism of π(2I)"
such that y(π(A)) = π^γ(A), Ae^X(M). The Fock representation will be denoted by
π f , acting on j f F.

If M = Nt © Λ/"2 and yi, y2 denote the automorphism of $ί(M) generated by the
unitaries ( — /)©/,/ ©( — /) respectively, on JVj © JV2, the subalgebra of y 1? y2 -fixed
points in $l(M) is generated by <$l(Nι)eκjtyί(N2)e, and is isomorphic to the (unique)
C* tensor product ^(N^ ®M{N2)e. The map η = (1/4)(1 + yi + y2 + ?) provides a
conditional expectation of 9ί(M) onto the y l5 y2-fixed points.

2.1. Lemma. Lei π 6e an ei en representation of 9I(X), K = Nxφ N2, wiί/i iV2 infinite
dimensional. If

^ π F , (2.1)

. (2.2)

Proof. Since π is even and by (2.1), y, y2 and y1 = yy2 are normal in the representation
π. Let 0t, 0tb 0t& 01 ie denote the weak closures of π(9I(K)), π^iV;)) and of their even
parts respectively. The normal extensions of yt , η to ^ £ and 0t respectively will be
denoted by y ' ή, so that Mie = M\ι and fy(^) = ^ l e V ^ 2 e .

By (2.1) there is a self-adjoint unitary £ / 0 e ^ 2 such that

U0AU^=y2(Λ\Ae^2. (2.3)

Let Uo = Eo— Fo be the spectral resolution of Uo by (2.1)^2 is a type / factor,
and since ^ l e c ^ 2 , we have

N2)), (2-4)

denoting by ̂ e

F(N2) the even subspace of the Fock space over ]V2. Since N2 is
infinite dimensional, £0? ^o a r e infinite projections in the type 1^ factor ^ 2 ; hence
there is W0e£%2 such that

W0Wξ = E09WξW0 = I. (2.5)

Since ^ l e c ^ 2 by (2.5) we have that &ίe Eo and Mle are unitarily equivalent. By
(2.4), the Lemma will be proved if we show that E0&eE0 and &e are unitarily
equivalent. This is the case if Eo — / mod ^ e , i.e. there is an isometry We&e fulfilling
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(2.5). We construct such a Why twisting Wo as follows. Note that

y(W0) = UoWoUoX = W0(E0 - Fo). (2.6)

Let/ eNl91|/||=15 Uf = a{f) + a(ff π( Uf) commutes with 012e hence with Eo, Fo,
the operator Eo + Foπ{Uf) is self-adjoint and unitary, and by multiplying W with a
unitary on the right we still fulfill (2.5); by setting

we have y(W) = y(W0) (Eo + Foy(π(Uf)))

= W0(E0 - F0)(E0 - Foπ{Uf)) = W;

hence W fulfills (2.5) and belongs to 3te. D.

2.2. Lemma. Lei ?̂ be any properly infinite injective von Neumann algebra on a
separable Hilbert space, and K — N1® N2 with Nl9 N2 infinite dimensional There is a
state ω on <H{K)e such that

(i) πω($l(K)e)" is isomorphic to 9t,

Proof By a theorem of O. Marechal [13] there is a representation π of ')H(N1)e such
that πi^ίiN^J' = 0ί\ then π has a cyclic vector and there is a state φ over ^i{N1)e

such that π ^ πφ. With ω F the Fock state on ^ί(AΓ

2)e define

F)°^; (2.7)

then the restriction of ώ to ^(^2) is the Fock state and πώ\(Ά(N2)« πF

By Lemma 2.1

(2.8)

with J^ a separable Hilbert space.
Since ώ extends φ by (2.7), πφ is a subrepresentation of πώ\<Ά(N1)e and by (2.8)

there is a projection Peπώ(2l(K)e)' such that the induced subalgebra πώ(tyί(K)eyP
is isomorphic to ?̂ <g)33pf), and hence to ^?, since ^ is properly infinite. With ξ the
GNS vector of ώ in the representation πώ, the desired state ω is induced on πώ \ ^&{K)e

by the unit vector (ξ, Pξ)~ι/2Pξ. For, condition (i) is fulfilled by construction and
ω\SΆ(N2)e is dominated by ωF, hence coincides with it by purity of ωF. Π

2.3. Lemma. Let K be, as in the Introduction, the one particle space for the free
Major ana field, and K = N1®N2 with Nί generated by an infinite orthonormal set
fulfilling the conditions (1.3). For any even state ω on 2l(K) such thai ω|9l(iV2) is the
Fock state, πω is a covariant representation fulfilling the spectrum condition (1.1).

Proof. Since ω = ωoy and ω | s3I(iV2)e = ωF, with φ = ω|^X(AΓ1)e, it is easily seen that

ω = (φ®ωF)°n. (2.9)

By a theorem of Glimm ([14]; see also [15, 11-2-1]) there is a sequence of finite
particle unit vectors xt from ffle

F(N^ such that φi = ωx.oπF converge to φ in the
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weak-* topology of ̂ (JV^* as i-+ oo. Then the sequence of states on $l(K) given by

o^ (2.10)

converges to ω, given by (2.9) in the weak-* topology of 5Ϊ(K)* as i-> oo.
Let xf denote the image of xf under the canonical immersion of j^e

F(N\) into
J f F(X); then ωf is the vector state of 9I(X) induced by xf in the Fock representation.
The vectors xi are obtained from the vacuum creating finitely many particles in the
modes gl7g2,... by the exclusion principle and by conditions (1.3) each xf has

OO

energy spectrum in [0, ε], ε = ]Γ εn, hence belongs to the spectral subspace for the
n= 1

energy momentum operators relative to the compact set {/ίeU*/0 ̂  £o ^ ε, |k| ^ ε}.
By a result of Borchers [16], the weak* limit ω of ω X i oπ f = ωf generates a

covariant representation obeying the spectrum condition (1.1). •

2.4. Theorem. Let $ be a properly infinite ίnjective von Newmann algebra on a
separable Hubert space; there is a representation π of the C* algebra 93 ofquasilocal
obserυables for the free massless Major ana field, which fulfills

(i) π is a locally normal, translation covariant representation obeying the spectrum
condition (1.1);

(ii) π(93)" is isomorphic to $.

Proof. With ω the state of 93 = $l(K)e provided by Lemma 2.2. the even extension
ώ = ω°(l/2)(l + y) of ω to $ί(K) fulfills the conditions of Lemma 2.3; hence πώ is
covariant and fulfills the spectrum condition (1.1) (i.e. is a "positive" representation).
Since ώ extends ω, π = πω is a subrepresentation of the restriction π a |95. Since 93 is
globally stable under translations and subrepresentations of positive repre-
sentations are positive by [17], π is also a positive representation. Then local
normality follows from [10], [11]. •

3. Explicit examples

We will need the following variant of a result in [4]. Notations are those of the
beginning of Sect. 2 and Lemma 2.1.

3.1. Lemma. Let π be an even factorial representation of$l(K) with weak closure $.
We have the following alternative: either

(i) ^ e is a factor and y is outer
or

(ii) M'er\Me= C/ + CU, with U a unitary implementing y on $. In this case £% is
infinite and

(3.1)

Proof. If Ue& is a unitary implementing y, y(U) = U and ΌeMen0l'e. So if Me is a
factor, y is outer.

Let ΰ e ^ Ξ ^ n f and /, geK, \\f\\ = \\g\\ = 1. We have π(UfUg)e0te and
π(UfUg)B = Bπ(UfUg), hence

π(Uf)Bπ(Uf) = π(Ug)Bπ(Ug) = yo(B). (3.2)
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Since γo(B) does not depend upon / by (3.2), we see that yo(B)e0t'e and y0 is a
period 2 automorphism of M'en$. The yo-fixed points are in 0%'CΛM by (3.2) hence
are multiples of /. If BQe0t'en0t is not a multiple of /, B = Bo — yo(Bo) φ 0 and

yo(B)=~B; (3.3)

then B*B, BB* are y0 invariant hence multiples of /, and B = zU, zeC, with U a
unitary inducing y on 01 by (3.2), (3.3) we can choose the coefficient z so that U2 = /.

With i e f ^ n ^ w e have

A = UΛ + yo(A)) + i(A - 7o(^)) - λl + μ U.

Hence either we have (i) and Mc

e = C/, or 01% = @f

en@e = CI+ CU.
If ^ is finite we are in case (i). For π is quasiequivalent to πφo, with φ0 the trace of
). With σ = Ad K ^any odd unitary in 2ί(K), we have

φ (3.4)

With p a * isomorphism of 9I(X) onto 9I(X)e, ([6]), we have by (3.4)

By the uniqueness of the trace, φo°P = <PoOCΓoP = Φô  hence πφoop « πφ o and

which is the hyperfinite II1 factor, isomorphic to 9t, That is if M is finite, 0ίe is a factor.
If we are in case (ii), / is an infinite projection; with U = E — F the spectral

resolution of U, by (3.3) we have

π(Uf)Eπ{Uf) = F;

hence E and F are equivalent mod 01 since E + F = I,E and F are infinite and ME =
^ , .^F ^ ^ then (3.1) follows from Me = &E + ^ F . Π

With /I a positive contraction on K, let ωA denote the gauge invariant quasifree
state of 9I(X) defined by A setting (see e.g. [18]):

ωA(a(fn)*...a(fira(g1)...a(gm))

= δmmάεi{U\,Agk)}i = l 2 n ;fi9gkeK. (3.5)
k= 1,2 .. .m

Taking A = λl, 0 < λ ^ 1/2 one gets the Powers states; the von Neumann algebra
&{λ) generated by ωλI is the injective factor of type IHλ/il-λ) for 0 < λ < 1/2 and
the hyperfinite II1 factor for λ = 1/2. (The injective factors of type IIx and ///λ,
0 ^ 2 ^ 1 are unique by the work of Alain Connes; see [19].)

The modular automorphisms σt oϊ0t{λ) determined by the GNS vector ξλ of ω λI

are induced by the one parameter unitary group

f, teU, (3.6)

as is easily checked with the help of (3.5) by verifying the KMS condition [22], [23],
[24],
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In particular

y = σ toif ^ A y ° = - 1 . (3.7)

3.2. Proposition. The von Neumann algebra 0tψ generated by the even subalgebra
in the Powers representation is the injective factor of type IHwu-χ^for 0 < λ < 1/2
and the hyperfinite II1 factor for λ = 1/2.

Proof The case λ = 1/2 follows from the proof of Lemma 2.1. Let 0 < λ < 1/2.
By Eq. (3.7) $[λ) is stable under σt9 hence the modular automorphisms of &{

e

λ)

determined by the faithful normal state induced by ξλ are the restrictions of σt, teU,
to &{

e

λ) [20], [23]. Hence the modular operator Ae oϊ(&{

e

λ\ ξλ) is the restriction of the
modular operator A of (β{λ), ξλ) to the even subspace of πω/l and by (3.6)

u{0}

(3.8)

u{0}.

Since ωλI is invariant under permutation of factors in the tensor product
description of 2I(X) and γ commutes with such permutations, by [21, th.l] we have

u{o}.

where S(M) is the Connes invariant given by the intersection of the spectra of all
modular operator determined by faithful normal states of 01 (see [23]).

Since by [23]σf is outer unless it is the identity, by (3.7) y is outer and by (3.8') and
Lemma 3.1 Mf] is a III(λ/(l — λ))2 factor. Note that this conclusion follows also
directly from (3.8') and Lemma 3.1, (ii), Eq. (3.1). D

The first equations in (3.8), (3.8') are by now classical [23]; it is likely that
proposition 3.2 is also known; we gave details to make our examples explicitly
analyzed.

3.3. Corollary. Let K = N1® N2, with N1,N2 infinite dimensional, and let E denote
the orthogonal projection of K onto Nx. The von Neumann algebra πωΛ£($t(K)e)"
generated by the even subalgebra in the quasifree representation determined by λE, is
isomorphίc to the injective factor of type III{λKι_λ))2 for 0 < λ < l / 2 , and to the
injective factor of type II ^ for λ= 1/2.

Proof Immediate from Lemma 2.1 and Proposition 3.2. •
We now specialize K = JVΊ Θ N2 as in Lemma 2.3, so that 9ϊ(K)e = 33 is the C*

algebra of quasilocal observables for the free massless Majorana field, and N1 is
generated by an orthonormal set fulfilling (1.2). Let E be the orthogonal projection
on N1.
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3.4. Proposition. The representations of 23 =$l(K)e induced by the states ωλE\Ά(K)e

are covariant with positive energy.

Proof. Although this follows from the general statement 2.3, we give an explicit
proof. Consider the theory SH(K ® K) with the action ax of the translation group
induced by the one particle group representation αe U4 -» °U{x) ® <%(x)9 where $ί(x) is
the translation operator for the Majorana particle on K.

Define a self-adjoint projection on K®K by

pj λE ' σ ' ) * l ( 3 1 0 )
λ \λίl2(l-λ)ίl2E (l-λ)E J { }

The quasifree state on 3I(K©K) defined by Pλ in Eq. (3.5) is a pure state ([18])
whose restriction to $1(K © 0) = 'Ά(K) is ωλE. Moreover the range of Pλ is spanned by
the orthonormal set

which fulfills conditions (1.3). Therefore, by [7] πωpχ is covariant with positive
energy and so is πωn |9ϊ(K®0).

Then also πωp |9I(X0O)e is covariant and obeys the spectrum condition. By
indentifying 33 with M(K®0)e it is easily seen that πω p j93 and the GNS
representation of ωλE\9β are quasiequivalent. Since they both have infinite
multiplicity, they are also unitarily equivalent and the assertion follows. •

One could similarly construct explicitly type IHγ representations of 23 obeying
the spectrum condition, by considering quasifree states ωA, with A — λ1l ®λ2l © 0
acting on K = N1 ®N2 ®N3, where Nx and N2 are generated each by an infinite
orthonormal set fulfilling the conditions 1.3, and λ1 λ2ε(0, 1/2) are chosen so that
( V ( l - ^i))2 ((1 - λ2)lλ2)

2 is not rational.
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