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Abstract. Ferromagnetic lattice spin systems can be expressed as gases of
random walks interacting via a soft core repulsion. By using a mixed spin-
random walk representation we present a unified approach to many recently
established correlation inequalities. As an application of these inequalities we
obtain a simple proof of the mass gap for the λ(φ4)2 quantum field model. We
also establish new upper bounds on critical temperatures.

0. Introduction

In [1] Symanzik introduced a representation which expressed the φ 4 quantum
field model as a classical gas of Brownian paths which interact only when they
cross. In [2, 3] and in this paper we have developed variants of this formalism
which provide a transparent way to establish many inequalities.

In the first two sections we reconsider Symanzik's formalism. We prove two
identities. The first identity expresses the spin system as a gas of random walks. In
Sect. 3 we use this representation to obtain new upper bounds on critical
temperatures. The second identity is a mixed spin-random walk representation.
We combine this identity with chessboard estimates [4] and Griffiths [5]
inequalities for N = 1 or 2 component spins to obtain many new and useful results:
In Sect. 4, we apply this formalism to show that for a class of classical spin models
whose single spin distribution is monotone decreasing, there is always exponential
decay of correlations. Hence there is no symmetry breaking. In Sect. 5 we give a
new proof of the Lebowitz inequalities [6] and some generalizations related to
Newman's Gaussian inequalities [7]. The following section rederives correlation
inequalities recently found by Simon, Lieb and Rivasseau [8-10]. The final section
of our paper is devoted to a new and elementary proof of the mass gap for the
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weakly coupled λ(φ4')2 model. The proof uses only inequalities of Lieb-Rivasseau
type and integration by parts.

We conclude this introduction by remarking that our results would extend to
N §: 3 component models once the Griffiths inequalities are established. Some of
our methods apply to lattice gauge theories. The first steps along these lines have
been made in [3]. For abelian gauge groups, the techniques of [3] can be
combined with the approach of the present paper to yield new correlation
inequalities for lattice gauge theories. This, however, will not be developed in the
present paper.

1. Random Walks and Matrix Inverses

The prototype for the expansions we are about to discuss is the following
representation for the inverse of the finite difference Laplacian:

where A denotes the finite difference Laplacian associated with functions on the
lattice Zv, (v = l,2,...); ω is a nearest neighbor random walk of arbitrary length,
|ω|, on Zv, starting at ieZ v, and ending at jeZv; m 2 > 0 .

The finite difference Laplacian, A, is defined on functions on Έ by

Ati=—2v if ί=j
J (1.2)

= 1 if ij are nearest neighbors in Έ

= 0 otherwise.

The formula (1.1) is a standard result in the theory of random walks, however,
in order to make this paper self-contained we will give the easy proof below.

The Laplacian is associated with nearest neighbor ferromagnetic interactions.
We will give a more general expansion than (1.1) in order to be able to discuss
systems with arbitrary ferromagnetic two-body interactions.

Let J be a matrix such that

Jtj-Jj^O if i+j

= 0 if i=j; (1.3)

ij are indices that run over a finite set, L, called the "lattice." Let A

ylΞίVyλΛΦOVi, (1.4)

be a diagonal matrix. The notation in the following lemma is described below it.
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Lemma 1.1.

\seω ) keL

If the right hand side converges absolutely, the matrix inverse exists and is given by
(1.5).

Notation, ω is a random walk on L. This means ω is an ordered set of ordered
pairs, called "steps" and denoted by s.

ω = {(ivi2l(i2j3), ...,(iN_ί,iN) :iv ...JNeL}, (1.6)

n(k, ω) is the number of times ω "hits" k. By definition, this is the number of
elements in {iv i2,..., iN} which are equal to k. The "length" of ω, |ω| is JV which is
also equal to

|ω |= ]Γn(fc,ω). (1.7)
k

By convention we shall consider a random walk of length one to be a single site
(which is hit once). Such a random walk has no steps and an empty product in (1.5)
is set equal to one. [These conventions allow (1.5) to be correct when i=j.~\

ω:i^joi{=i, iN=j. (1.8)

Remarks, (i) This lemma contains (1.1) as a special case, (ii) The expansion
converges absolutely if for some ζ>l

y (1-9)
j

Proof of Lemma ί.ί. Expand the left hand side of (1.5) in a Neumann series

The right hand side of (1.5) is a rewriting of this series. For example

i i , i 2 , i 3 ε L

iί = Ui3=J

— V/ΓT T \ ΓT }-n(k,ω)
- L[ίiJs)llλk

ω \seω ) keL

where ω is summed over all two step random walks of the form

ω = {(*Ί> hi (ii> h): h = l> h =h heL)

End of proof.
We shall also need a formula, related to Lemma 1.1, for the determinant of

A — J. Let A be the set of random walks that begin and end at the same (arbitrary)
point. We divide A into equivalence classes by letting ωvω2eA be equivalent
whenever ωv ω2 have the same steps and the order of the steps in ω2 is a cyclic
permutation of the order of the steps in ωv We call the equivalence classes
"random loops." Single points are not random loops.
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Given a random walk ω (or a random loop ω) define

jω=l\Js d io)
seω

Lemma 1.2.

Π Λ"" ( i > φ )}

ω is summed over all random loops. The sum converges absolutely if the entries of A
are sufficiently large in absolute value (see (1.9),).

Proof.

det(Λ-J)~ 1 = de t/Γ x det" x(l - ΛΓ ι J)

= det/l" x exp {- tr log(l - A~1 J)}

= detΛΓ 1 exp| X itr(yl~x

U=i ^

;iΣ Σ f )
U = 1 ^ i ε L ω:i-+i \seco J jeL

|ω|=fc

We have just used the idea in the proof of Lemma 1.1. We continue with:

[ ω \seω / jeL

When the determinant of A is written out explicitly we obtain Lemma 1.2.

2. Symanzik's Polymer Representation and Integration
by Parts with Random Walk

The hamiltonian for our lattice spin system is

ίί=4Σ Σ sί%sf; (2 D
ί,jeL a=l,...-,N

oί labels the components of our vector-valued spins Sf = (Sjα)). J is ferromagnetic.
We impose the conditions:

J^Jjt^O if ί+Λ =0 if i=j. (2.2)

The unnormalίzed expectation corresponding to our hamiltonian is given by

gβf)e-HF, (2.3)

where F (the "observable") is a function of the spins. The normalized expectation is

(2.4)

where Z = [ l ] is the "partition function." The single spin distributions which are
described by the smooth functions gt are assumed to fall off faster than
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exponentially, i.e.

gJίt)ect-+O as ί-»oo,

127

(2.5)

for all c and all i. We make this strong assumption solely to avoid uninteresting
technical problems. Once we have achieved our estimates we shall relax it by
taking suitable limits in those estimates.

The Polymer Representation. Following Symanzik, [1], we shall show that our
lattice spin systems can be rewritten in terms of a gas of "random loops" or
polymers. Our integration by parts formula is presented second because it is a
mixture of this representation and the spin representation. However most of our
results rely on the integration by parts formula so this section can be skipped if the
reader wishes.

We substitute into the partition function, Z, according to

(2.6)

Γ is the contour I m α = - λ, where λ is chosen sufficiently large, positive, that
Lemmas 1.1, 1.2 will be applicable to λl — J. g(a) is the analytic continuation of the
Fourier transform of g. It exists by virtue of our assumption (2.5).

We obtain

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Z = J
r

The S integrals are gaussian and can be evaluated:

z = ί
where 2ίa — J is the matrix

2iakδkl — Jkl; kJeL.

We use Lemma 1.2 to represent the determinant:

Z = j Π^/^)(2i^)"N/2exp y Σ ^
Γ j <£

We expand the exponential and write the result as

00 1 ίN\n

= Σ - τ y Σ

where

exp[-I7(ςp l s...,<»„)]=

n(i, ωv...,ωn) =

i Γ

N
i, ωn) + —. (2.12)
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(2.11) displays the partition function for our lattice spin system as a partition
function for a system of interacting random loops or "polymers." We show, below,
that exp — U is real and positive.

We can repeat this derivation for [P], an unnormalized expectation of a
polynomial in the spins. The step analogous to the gaussian integration in going
from (2.7) to (2.8) uses

(2.13)

where M = 2ίa~J. The exponential of the differential operator is defined by its
power series which is truncated when acting on a polynomial. We shall not prove
this fairly well-known formula for the moments of a gaussian integral. By
expanding M~ι using Lemma 1.1 and continuing as before for Z we obtain a
polymer representation for [P] and then, by dividing through by Z, for <P>. To
express the result we introduce:

ZK,ω2,...,cop)Ξ £ ! ( £ ) Σ (
n = θni\ZJ coί,..,,ωn\m=

e x p [ - l / ( ω l 5 . . . , ω π , ω l 5 . . . s ω p ) ] (2.14)

for p — 1,2, — [It is useful to note that Z(ωv ..., ωp)/Z is a correlation function for
the polymer gas.]

Theorem 2.1 (Symanzik).

p = l,2, ω1,...,ωp are summed over all random walks that begin and end at
lattice sites in {z1; ...,i2 p} in such a way that {i l9 ...,z2p} is partitioned into disjoint
pairs, one for each of ω l 5 . . . , ω p .

Remark, exp— U is real and positive because in (2.14) we can substitute

y ) ] 1 e - { 2 i a ) t d t , (2.15)
(n-iy.i

and find that

ldag{a){2ia)-»=l- r-.g{2t)dt (2.16)
r o \n— ί)

(ft can be fractional).

Integration by Parts. We are going to elaborate on the following well-known
formula:

(217)
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(Until we reach the end of our discussion we will treat scalar spins for simplicity.)
The real part of M is positive definite. To obtain an analogue of this formula for
our spin systems (which are nongaussian) we proceed as before by substituting
into [5 fF] the representation (2.6). If the a integrals are deferred, the S integrals
become gaussian and (2.17) can be applied with M chosen to be the matrix

M = 2ia~J = {2iajδjk - Jjk). (2.18)

We obtain

r j j

dF
• exp/ - i Σ ajSf\ Σ (2ia - J)rk * — . (2.19)

We expand (2ίa — J ) " 1 using Lemma 1.1 and interchange the sum over ω with the
a, S integrals:

= Σ Σ JjTί
k ω:ί-^k Γ j

. - ' uS~' ( 1 2 0 )

Now we do the a integrals using

oo +n- 1

g(S2 + 2ήdt, (2.21)[
o yn— i)i

which can easily be obtained with the help of (2.15), (2.16). We obtain

Theorem 2.2. Define measures dvn on [0, oo) by

dvn(t) = δ(t)dt if n = 0

= X dt if n = l , 2 , . . . . (2.22)

To each random walk, ω, on L assign the product measure

ieL

Then for any ieL, a = 1, 2, ..., JV

Σ ω̂
(2.24)

i

and F is any polynomial in the spins.
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3. Estimates on the Critical Temperature

We consider classical N component rotators in the "infinite volume limit." Thus,
we assume the lattice L is a finite subset of an infinite translation invariant lattice,
L^, of points in Rv. The simple cubic lattice Έ is an example but other geometries
are acceptable. We suppose the coupling matrix J is translation invariant, i.e.,

J = (J..) = (J,._. |) (3.1)

besides enjoying its usual properties, see (2.2). We set

i,jsL a— 1

De-'Ή ), (3.2)
ieL,a

and we define the (or : an) infinite volume limit by

(3.3)

where F is an observable depending on finitely many spins. In (3.3) it may be
necessary to pass to a subsequence to obtain existence of a limit. We shall shortly
be presenting estimates which are uniform in L which guarantee such
compactness.

Define the coupling strength J by

J= Σ Jij (3 4 )

[By translation in variance J is independent of L] By definition the critical coupling
Jc is the supremum over values of J for which the two point function (S^Sf*}
tends to zero, as \i— j|->oo.

The following theorem is an improvement of a mean field theory bound due to
Simon and Aizenman and Simon [8, 11].

Theorem 3.1. (i) For an N-component classical rotator

(3.5)

(ii) // the lattice is simple cubic in v dimensions and J^^β^O if i and j are
nearest neighbors, zero otherwise, we can improve (3.5) to

The first part of this theorem is due to Aizenman and Simon [8, 11]. It says that
the mean field theory prediction is a lower bound. We will present a proof of this
theorem using Symanzik's representation. It should be pointed out that
Symanzik's polymer representation is really just a good way of organizing the
conventional expansion in terms of graphs and so we are really not doing anything
very different from the graphical methods used by Simon and Aizenman, although
our method potentially gives a somewhat stronger result see (3.8), (3.9), and (3.12).
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Proof of Theorem 3.1. We shall show that if

J=ΣJij<N, ( 3 7 )
j

then

O g < S < β ) S f > L g i ( l - N - 1 J ) y 1 , (3.8)

uniformly in iJeL and L, and the right side of (3.8) tends to 0, as \i—j\-+oo. More
precisely, if (3.7) holds and

j

for some m = 0,1,2,..., then

X| i- j | 2 m <^ α ) 5f> L ^const<oo, (3.9)
j

uniformly in L.

For, by (3.8) and the Fourier transformation

ϊ ••• ί Jw-'χi-N

where

Since J^O,

Thus, by (3.7),

is a bounded, continuous function of k. This proves that

tends to 0, as \ί—j\-^oo. If

then J(fe) is 2m times continuously differentiable. The same is true for
( l - A r 1 ^ ) ) - 1 , provided (3.7) holds. Therefore (3.9) follows. Part (i) clearly
follows from (3.8).

By Theorem 2.1 and a simple approximation argument,

<S}»>Sf> L = Σ Λ o Z " 1 Σ ~ ( y ) " Σ ( n /
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Note that the right side of (3.10) is manifestly positive, since U(ωv ...,ωn,ω) is real
a n d J ω ^ 0 .

We calculate e x p [ - £/] using (2.12), (2.16) and find

exp[-C7(ω l 5 . . . ,ω f I 5 ω)]=Π2" ' l ί / '~ l ϊ > S ) ' l )"' l ( i 'ω )

ieL

•[(n(i,cp1I...,ωII) + n ( i , ω ) - l ) ! ] - 1 . (3.11)

By comparing this with the corresponding evaluation of exp[ — U(φv . , ω j ] -
which is the same as (3.11) except that n(i,ω) is omitted - we find

1

- U(ωv . . . ,#„)] . (3.12)

When this bound is substituted into the expression (2.14) for the two point function,

the factor of Z can be cancelled out [see (2.11)] yielding

-Λ — n(k,co)

Each factor is less than N""lk'ω) so (3.12) is less than

^^ ω Σ j s Π(^4 (3.14)
See (1.10).

If in (3.14) one drops the restriction that ω lie within L (as opposed to L^) one
can resum the series over ω and obtains

< — (1 —iV~1J)^1. (3.15)
JY /ιJ '

This completes the proof of (3.8) and of part (i).
To obtain part (ii) we return to (3.12) and substitute in our special form for / :

~ Σ mr Σ Π
^ m^.\i~ j\ ω : j | ω j | = m keω

N/N \ IN
(3.16)

where | |ω|| is the number of steps of ω. As in part (i) we enlarged the sum over
random walks to all ω starting at i of length greater than or equal to \i—j\. In
addition ω is understood to be a nearest neighbor random walk. At each step ω
has 2v choices of nearest neighbors to hop to. For each of these possibilities the
weight in the sum in (3.16) is less than or equal to βN~ ι. We can do better than this
by noting that if ω steps back to the site it just left, then according to (3.16) the
weight is less than or equal to (β/2)(N/2+ I)'1 because then the site is visited twice
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and this is the factor associated by (3.16) to the second visit. Thus if

1 = α < l , (3.17)

we can dominate (3.16) by a geometric series and conclude exponential decay
for the two point function. This means that the critical temperature βc obeys

Zl, (3.18)

and this is the same as (3.6). End of proof of theorem.

4. Mass Generation in Spin Systems with Monotone Decreasing
Single Spin Distributions

In this section we combine the random walk expansion (Theorem 2.2) with
reflection (or Osterwalder-Schrader) positivity, in the form of chessboard estimates
and a spectral representation of the two spin correlation, in order to exhibit a mass
gap in a class of spin systems with decreasing single spin distributions. The
requirement of reflection positivity places strong restrictions on the two spin
couplings, J, and the boundary conditions (b.c.) imposed on the system see e.g.
[4], In order to avoid technicalities which would obscure the basic simplicity of
our arguments, we only consider periodic b.c. and nearest neighbor couplings,
although our results hold under rather more general hypotheses. (For an analysis
of general two spin couplings, J, compatible with reflection positivity, see [4].)
Thus, the lattice, L, is a simple cubic lattice wrapped on a torus,

L = Z 2 i V l . . . Z 2 i V v , (4.1)

where Nl9 ...,iVv are finite integers, and

U if |i-;1 = l

10, otherwise.

We only study the behavior of the two spin correlation, <S|α)S^α)>, α = l , ...,iV,
where JV = 1,2,3,... is the number of components of a classical spin, S, but our
methods have an obvious extension to higher spin correlations.

The Hamilton function of the spin systems considered in this section is given

by

α — 1, ...,N
i,jeL

= -i(S,(4 t-e)S), (4.3)

where

Δij = Jij-2vδij9 and ε>0. (4.4)

Clearly, A =AL is the finite difference Laplacian with periodic b.c, and the term
proportional to s serves as an infrared (long distance) regulator which is to be
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removed at the end of our subsequent estimates, (i.e. ε->0). The unnormalized
expectation of our system in finite volume is defined by

JΠ (4-5)
ίeL

where dSt is the Lebesgue measure on RN, and g is a monotone decreasing function
on [0, oo). The equilibrium expectation at inverse temperature β for the system
confined to L is given by

<->iβ) = [-]iβ)/ZiB), (4.6)

where Z(l} is the partition function, and

< - > = l i m lim <-><ε) (4.7)

is the equilibrium expectation in the thermodynamic limit, and with the infrared
regulator removed. The quantities [ — ] ^ f , < — >^ί5 and Z([\ are defined in the same
way, but with g(Sf) replaced by gf(S? + 2ίf), 0^ίΓ<oo, for~all i.

For couplings, J, as in (4.2), periodic b.c. at the boundary of L, see (4.1), and
H{ε) given by (4.3), reflection positivity holds, and consequently one obtains the
following chessboard estimate (see [12]):

l t U ^ J (4.8)
meL

with |L|Ξ(2ΛΓ1)...(2iVv). We define

zΐXή^tZ^JZΐψM. (4.9)

Then (4.8) yields

Lemma 4.1.
7(ε) / 7 ( £ ) < ΓΓ >λzXi \
^Lj^L = 11 ZL \lm)

meL

We will now pause to outline the idea underlying this section. It is to combine
Lemma 4.1 with

Π
keL

which comes from Theorem 2.2. We bound the ratio of partition functions on the
right hand side using Lemma 4.1, whereupon the t integrals become independent.
[See the definition of dvjt) in Theorem 2.2.] Each t integral has the form either:

I- — e - ( 2 v + e ) i tz«(i)A, with nS l ,

or:
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depending on whether the random walk hits the site n ^ l times or no (n = 0)
times.

If the single spin distribution g(Sf) is monotone decreasing, then

and by a straightforward calculation each t integral is less than or equal to ί/(2vβ).
If we impose a slightly stronger condition than monotonicity on g(S2\ then we can
improve this to

lim lim zί ε )(ί)<l,

and then each t integral with rcφO is less than or equal to ξ/(2vβ) with ξ<l. By
combining the representation for the two point function with Lemma 4.1 and this
estimate we obtain

<sr>s?>*& Σ π ^
\P ω:i-+j keL \ Z V

using the fact that in getting from ί to j the random walk ω must hit at least \i—j\
sites giving at least \i—j\ factors of ξ. The quantity in round brackets is, by (1.1), the
matrix inverse of — A, times β~x.

This bound is actually divergent if the lattice is 2 or less dimensional because
the inverse of — A does not exist. If the lattice is more than 2-dimensional it
exhibits exponential decay of the two point function.

We will now go through this argument in more detail. Our main result is
Theorem 4.4. We will show by means of a spectral representation of the two point
function that the difficulty in two or less dimensions, alluded to above, can be
circumvented. This is the purpose of Lemmas 4.2, 4.3, given below.

We now turn to the spectral representation of the two-spin correlation: We
single out one axis of the lattice L, e.g. the v-axis. Vectors in a plane perpendicular
to that axis are denoted by j , k, etc. Let < — ) ( ε ) be a thermodynamic limit of the
states < — >^ε). Clearly < — >(ε) is translation invariant. We may thus define the
partial Fourier transform

Lemma 4.2 [4]. // (S\a)Sf >(ε) tends to 0, as \i-j\->ao then

<5(α)(k, 0)S(α)(k, ί)> ( ε ) = J dρ{λ, k ) λ ^ ~1, (4.10)
(λ)

where dρ(-,k) is a positive measure, for all k, — π ^ / c μ g π , μ = l , . . . , v— 1, and

suppdρ( , k ) g [ - l , l ] . (4.11)

Moreover

ί</ρ(A,k)^g4/jS. (4.12)
w λ
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Remarks. 1. Representation (4.10) is a fairly straightforward consequence of
reflection positivity and the spectral theorem; see [4]. For the couplings J defined
in (4.2),

suppdρ( , k ) ς [ 0 , l ] , (4.13)

which follows from the positivity of the transfer matrix of these spin systems. By
Fourier transformation in t we obtain from (4.10)

< | S < W > ( ε ) = ίdρ(λ,k)—-T^ r^, (4.14)
Λ(1 + Λ — 2/cos/cv)

with /c = (k,/cv). The infrared bound proven in [13] guarantees that

(2-2cos/cv)<|S(α)(/c)|2>(ε)gj5-1. (4.15)

The upper bound (4.12) then follows from (4.14), (4.15), and (4.13) by noticing that

max ( 2 -

2. We define the inverse correlation length (mass gap) m(β, ε) by

= lim - -In f f d ρ & k U 1 ' 1 " 1 . (4.16)
^ t (k) (A)

Suppose now that for some m(β)

m(β,ε)^m(β)>0 (4.17)

for all ε > 0. Then we claim that

for almost all k. This follows directly from (4.10) and (4.13). Thus, using (4.12),

f λ-'dρiλ^^/βil-e-^)
(λ)

and, by Lemma 4.2,

/C(α) c(α) \(ε)</c(α) c(α) \(ε)
\°(J,0)°(m,i)/ =\°(0,0)°(0,ί)/

S4e~miβ)t/β(l-e~miβ)) (4.18)

uniformly in ε. By a suitable choice of the v-axis, |ί|Ξ> -—dist((j,0),(m, ή).

Therefore we obtain from (4.18) by taking ε->0
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Lemma 4.3. // for all ε > 0 and for constants K(ε) < GO and z < 1, z independent of ε,

f z | ί - 'Ί, (4.20)

provided Nv . . .,NV are sufficiently large (depending on ij, and ε) then inequalities
(4.18) and (4.19) Λo/d.

Proof. Under the hypotheses of Lemma 4.3, in particular (4.20), we find

m{β9ε)= lim - i l n < 5 [ α

0

)

s 0 ) ^ ί ) > ( ^ l n ( l / z ) > 0 ?

uniformly in ε. This being (4.17), we are done. •

We are now prepared for the first main result of this section.
Theorem 4.4. // for ε > 0 sufficiently small and L large enough, z{[\t) (defined in
{4.9)) is monotone decreasing in te[0, GO), and

for all t §: ί0, for some finite t0, then

(SfSfy^e-^-fi, (4.21)

in particular there is no long range order and no symmetry breaking in the two spin
correlation.

Remarks. 1. When JV=1, (4.21) implies that all connected correlations fall off
exponentially, with decay rate ^ c 2 . This follows by using FKG inequalities, [14].

2. Let

^ ( α 1 ? . . . , o O ? X = (/i,...Jn), and SA

X= f[ SfcK
m=ί

Let X + a = (j1 + a9... Jn + a). Suppose now that there exists some αe{l, ...,JV}
which occurs an odd number of times in A and B. Then, under the hypotheses of
Theorem 4.1,

)e-c*a. (4.22)

The proof of (4.22) is a straightforward extension of our proof of (4.21) which is
given below.

3. We shall show that the hypotheses of Theorem 4.1 are true if, for example,

(a) g{)
} y 10,

For N= 1, this result is already contained in [15].
(b) g(S2) is strictly monotone decreasing, and

for some η>0; e.g. g(S2) = (l + |S|2)~α, with α>iV, (when v ^ 3 , strict monotonicity
suffices).
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(c) v ̂  3 g monotone decreasing, with

= lim g(S2)
|S|-oo

These results are essentially best possible, because if g were positive and constant
the model is a massless Gaussian whose spin-spin correlation does not have
exponential decay.

Proof of Theorem 4.4. If we combine the random walk expansion (Theorem 2.2)
with the chessboard estimate (Lemma 4.1) we obtain the following upper bound
on the two spin correlation

ω)z{?{n{Kω)), (4.23)
ω .i-^-j keL

where

[n

The factor exp[ — (2v + ε)βt~] has appeared, because the diagonal part of the
Hamiltonian H(ε\ see (4.3), must be treated as one factor of the single spin
distribution in Theorem 2.2. We now claim that

^β )(«) = pg)(n) (4.24a)

is monotone decreasing in n, and

p{l\ί)^z<ί9 (4.24b)

if ε is so small and L so large that the hypotheses of Theorem 4.4 hold. In this case

Σ
P ω:i-*j keL

1 I (4.25)

We have used the fact that each ω starting at z and ending at j must visit at least
\i—j\ different lattice sites at least once which by (4.24a) and (4.24b) yields the
factor {p{l\l)f~λ. By Lemma 1

* ^ - ^ 1 , (4.26)

where ΔL is the finite difference Laplacian with periodic b.c. at the boundary of L.
Thus, using (4.24a) and (4.24b)

with K(E)ΞΞ sup-(ε-z l L )J 1 , and z<ί. By Lemma 4.3,

-(m(β)!Vv)\ί-j\
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with m(/?) = ln(l/z)>0. This reduces the proof of Theorem 4.1 to the

Proof of (4.24). By rescaling the t variable we see that

with z{t) = z{l\t/β{2v + ε)). The measure

dPn(t) = — e "* dt

is a probability measure. By hypothesis, z^(ί) is monotone decreasing, and
z^(0) = l. Thus z(t) is monotone decreasing and bounded above by 1. We now
extend the definition oΐdPn(ή to arbitrary real values of n ̂  1. In order to prove the
first part of (4.24a) and (4.24b) it then suffices to show that

— $dPn(t)z(ή= \dPn(t)\ogtz{t)- \dPn{t)\ogt\dPn{t)z{t)

The left side can be rewritten as

j dPn{t) dPn{f) [log t - log ί'] [z(ί) - 2(0]

which is negative, since logί is monotone increasing, and z(i) is monotone
decreasing. Finally, the inequality

follows immediately from the definition of z(t) and the hypotheses of Theorem 4.1,
provided ε is small enough and L large enough. This completes our proof of (4.24a)
and (4.24b) and of Theorem 4.1. •

Remarks. If g is a monotone decreasing function on [0, oo) then

with

is clearly monotone decreasing in t. In order to find examples of single spin
distributions, g, for which the hypotheses of Theorem 4.1 are true, it therefore
suffices to choose g to be monotone decreasing and then show that, for ε small and
L large

z(ε)(t)<z <1 t>t (d?K)

for some to< oo.

Examples, (a)

10, otherwise.
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jeL

Thus

AW* K~ΔL (4-29)
I L

where <->^(ί) is the expectation <->^ε), with β replaced by β(l-2t/@l). By the
infrared bound [13]

/ 1 \ ( ε > N

Since suppg = {S : |S |g^},

and

Thus

— (S,

hence, using (4.29),

( 4 3 0 )

Thus, for all 0 < ε ^ 1, ̂ < oo, there exists some tγ <&/2 such that

<4 3 1 )

for t>t1, with upper bounds on — \ogz(l](t) which are uniform in βe(0,1] and in L.

From this (4.28) follows.
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(b) g{S2) is strictly monotone decreasing, and

$g(S2)\S\ηdS<oo, for some η>0. (4.32)

In this example the verification of (4.28), and hence of the hypotheses of

Theorem 4.1, proceeds again by estimating — log z^ε)(ί). For ε > 0 and L bounded, it

is immediate to verify that

d (£)

dt L

with gf(x)=-Γg(χl
dx

Thus it suffices to show that

lim lim <0/(Sg + 2ί)>£)

t<O, (4.33)

for some interval of values of t of positive measure. Since g'(x) <0, for all xe [0, oo),
(4.33) can fail only if |S 0 | = oo, almost surely, in the limit L^Έ, ε \ 0 . This
possibility can be excluded if

lim lim <|S 0 | '>i ' )

t ^C t , (4.34)

for some η>0 and some constant Ct which is finite for all ί<oo. Using the
chessboard estimate [12] we find

j + 2ί) | S /

By definition of H{ε\ see (4.3) and (4.4),

0 <H{ε)S 1/2(4 d + /

Thus

. (4.35)

By (4.32), the right side of (4.35) is finite for all t < oo, with a bound which is uniform
in L and ε. This yields (4.28).

Remark. In dimension v ^ 3 condition (4.32) is superfluous, i.e. (4.28) holds for
every strictly monotone decreasing g. For, by (4.24a) and (4.24b) through (4.26)

hence

lim l imdSol^f^iί-zOoo 1 (4.36)

which implies (4.34) with η = 2 and Ct^C< oo independent of ί, provided v ^ 3 .
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(c) v §; 3 g a monotone decreasing function, with

= lim g(S2)<g(0) = g0<^. (4.37)
|S|->oo

As in examples (a) and (b) we must verify (4.28): Given ί, let

gτ(S2) = (l-τ)g(S2) + τg(S2 + 2ή,
and (4.38)

z«(T)SJe-^<e)n

Then

(4.39)

where < — >£}(τ) is the finite volume expectation defined in (4.6) with g replaced by
gτ. By (4.37) we have, for ί > 0 ,

g(S2 + 2t)-g(S2)<-δ, (4.40)

if Mγ ̂  |S 0 | ^ ^ 2 , for some positive constants δ and 0ίγ < 012, (depending on t). We
define

l, «^|S0|^
χ ( S ) =j

10, otherwise.
Then

<£(S2 + It) - g(S2

0)y?(τ) g - <KX(S0)>Lε)(τ) (4.41)

Therefore the proof of (4.28), as L^Έ and e^O, is complete if we can prove that

<X(So)>i ε )(τ)^C>0, (4.42)

for L large, ε small and t large enough. We now claim that if conversely

then ^ (4.43)

< Z ( S a ) > i ε ) ( ) 0 J

for all ae RN, for all ε Ξ>0, L Q Έ. Consequently, S o = GO, almost surely. However, in
v ^ 3 dimensions,

lim lim (SlYlXτ) g i ( - J)^ 1 < oo,

i.e. S o is finite, almost surely, when ε > 0 and L is large enough. Therefore

lim Ji
o f

for some aelR^ and, by (4.43),

lim lim <X(Sπ))(/)(τ)>0.
L
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From this we conclude that

lim lim z{[\t) < 1,
ε^ 0 L^Z V

for ί > 0 . By (4.25) and (4.26)

lim lim (S^S^y^ ^ — ( — zl)ί~
1z'ί~ '',

with
00

^ J έ Γ ' ϊ ϊ m Πrnz^(ί/iff(2v + fi))dί<l.
0 ε\0 L soo

Thus, we are left with proving (4.43). We start by noticing that the measures

are quasi-invariant under the substitution

with a Radon-Nikodym derivative, ρa(S), given by

ρa(S) = e ^ ( 2 v + ε ) a%-^-)expί^ Σ (S f e-S0)-f- ( ( S; + a ) 2 ) . (4.44)

We now show that for all p < oo

p (4.45)

for some finite constant Cp independent of ε and L. First, we note that

(gτ((S0 + a)2)/^τ(Sg))3^ g (go/gj3p < oo,

for all p < oo and all τ and ί. Second,

/exp\3pβ Σ (S f c -S 0 ) a]\ ( ε )(τ)^exp(9p^a2/2),

by Gaussian domination [13]. Finally, using the chessboard estimate [12]

(e-3pβ*s°'Λ)yi\τ)£e9p2pe^^ (4.46)

where Z^ε)(τ, a) is given by (4.38), but with gτ(Sj) replaced by gτ{{Sj + 3pa)2), for all j .
[To prove (4.46) one first applies the chessboard estimate and then changes
variables, Sj-^Sj + 3psi,jeLi using the invariance of (S, ALS) under that change of
variables.] It is easy to see that the second factor on the right side of (4.46) is
bounded by go/gm. This completes our proof of (4.45). In order to prove (4.43), we
note that

<Z(S0 - a)>jf>(τ)

with l/p+ l/q = 1, and we have used (4.45).

This completes the proof of (4.28) for example (c).
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5. Gaussian Inequalities

The Lebowitz inequality [6], originally proven for Ising models in zero magnetic
field, says

<s isJ.sks ί>g<s isJ.χs f cs/>
+ <SA> < W + <sisιy <SjSk). (5.1)

In [7], Newman generalized these inequalities to

where F is a polynomial with positive coefficients. [(5.1) follows from (5.2) by
taking F to be a product of three spins.] He gave (5.2) the name "Gaussian
Domination" because the inequality would be saturated if < > were gaussian.

The inequality, (5.1), has been extended, [16], to models of the form (2.3) with
N = 1 components and

9i(Sf) = e-v^, (5.3)

where V is even and V'"^0 on the positive real axis. Results for N = 2,3,4
components also exist [17].

We shall rederive and extend these results for JV= 1,2. Our class of models has
single spin distributions of the form

gtff) = e~'^ (5.4)

with / " ( ί )^0 for ίe[0, oo). This class of single spin distributions overlaps with but
is not identical to the Ellis, Monroe, Newman class (5.3). Many well-known
models such as Ising models and φ4 field theories are in both. Some good features
of our proof are that we obtain the stronger version of gaussian domination (5.2),
and our method is simple and suggests many variations on the same theme. We
will explore one of these in the next section.

We shall demonstrate that these inequalities are really a consequence of
Griffiths II inequalities. For N = 2 components, the analogue of these are the
Ginibre inequalities, [18], and so our method will also produce gaussian
domination results for N = 2. The analogous Griffiths-Ginibre type inequalities are
expected but not known to hold for N > 2, so this is the obstacle to extending our
results to N>2.

Let F be a polynomial in S with positive coefficients. By Theorem 2.2

j ω-.ί^j

(the Z normalizes [ — ] to < — ». Furthermore

<SiF}=Σ Σ JjdvJβlSlz (5.5)

1 dF] ZjdF

Z \dSj/t
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(Recall that Z f = [ l ] r ) By the Griffiths II inequality as stated in [5, p. 120]

d F \ Λ

-— ) is decreasing m t
dS

as can be seen by differentiating with respect to ί feί. Therefore

1 dF] ZjdF\ ZjdF

j[~ z\ds)ί=0

and so
_Γ 71 /flF\

(5.6)

By taking F = Sj in (5.5) we see that the quantity in curly brackets is (Sfij) and so
(5.6) becomes (5.2). In this way we obtain the following gaussian domination
result:

Theorem 5.1. // <(•)) is ferromagnetic (J^^O) and has single spin distributions
satisfying (2.5) and

with / " ( ί ) ^ 0 on [0, oo), then

W^Σ<Vj)(f). (5-7)

where F can be any function of S of the form

ί

with each Ft being either odd or even and F (t\ FJ(ί)^O on [0, oo).

We can allow F to have this more general form because the Griffiths II
inequalities hold for this class of functions.

Remark. For N = 2 the same methods show that for α = 1,2

provided F is a polynomial in S(0ί) with positive coefficients and / is a polynomial
with positive coefficients for terms of degree greater than 1.

6. Application to the Lieb-Rivasseau Improvement of Simon's Inequality

We consider the same class of models as in the last section:

ieL
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and we require that exp( —/.) obey (2.5) and

if ί^O (N = l)

for 1-component models, and for two-component models f{ must be a polynomial
whose coefficients for degree greater than 1 are positive. Furthermore, as in the last
section, the limitation ]V=1,2 comes from not knowing the Griffiths II -
respectively Ginibre - inequalities if N > 2.

The inequality we are about to state and prove was, aside from a generalization
we have made, obtained by Simon [8] and improved by Lieb [9] and Rivasseau
[10]. The proof Simon gave was based on the Lebowitz inequality (see Sect. 5). We
have simply noted that the gaussian domination result we have stated in the last
section is sufficiently powerful to quickly reproduce the improved inequality for
JV = 1 and 2 by a proof closely resembling Simon's proof.

Define, for Ω any subset of L,

tfβ=-ϊΣSί%Sf. (6.1)
i,jeΩ

a

Corresponding to < —> we have < — }Ω which is obtained by replacing L by Ω
throughout all definitions.

Theorem 6.1. Let ί be a site in L and let Ω CL contain i. Suppose F is a polynomial in
the αth component of the spins S7 which is independent of the spins in Ω, then

jeΩ
kφΩ

Proof. We define a new Hamiltonian H6Ω by setting to zero all Jtj coefficients for
which ieΩ,jφΩ, i.e.

and we define a corresponding expectation < — }dΩ. In terms of this we can write
the standard expectation as follows

(6.2)

By the gaussian domination result, Theorem 3.1, with F replaced by FΦ, we obtain
(leaving off α superscripts)

dΩ
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Now use

JeΩ
kφΩ

and note in the result that by (6.2)

(FSkΦ}δΩKΦ)δQ = (FSky j ^ Ω

Theorem 6.1 is proved.

Theorem 5.1 applies in the above proof because Φ can be approximated by a
polynomial with positive coefficients.

7. The Mass Gap for (φ4)2

The proof of the mass gap for weakly coupled λP(φ)2 models was first established
by a cluster expansion [19]. In this section we shall establish the mass gap for
λ(φA')2 using integration by parts (2.17) and Theorem 6.1. The proof is simple,
moreover one can establish reasonably good values of λ for which the mass gap
occurs. On the other hand our method does not apply to higher degree
polynomials, nor does it yield analyticity in the coupling.

We first consider the λφ4 model on a lattice δZ2 ClR2. The lattice spacing δ will
later be sent to zero. For notational purposes we set JV=1. Let A be a large
rectangle containing (0,0). We define

\i-j\=δ

and

Thus Jtj = 1 if |z —j\ = δ and ijε A and Jtj = 0 otherwise. The Wick order for : φ* :δ is
defined with respect to Gδ(x — y\ the Green's function of — A + 1 on the lattice. The
Fourier transform of Gδ is given by

In the continuum limit <5^0, G(p) = (p2 + 1)~1 which is the Euclidean free field
propagator. The normalized correlations are defined by

In the continuum limit this expectation is

j<KO)Φ(x)e-λnφ Λ)dμΛ(φ)
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Here dμΛ is the Gaussian measure of mean 0 and covariance (— ΔΛ-\rl)~1 and

V(φ,Λ)= J :φ\x):dx. The subscript A on A means that 0 Dirichlet boundary
A

conditions are imposed at dΛ. We now state the main theorem of this section.

Theorem 7.1. Let <( )yl((5,λ) be defined as above. There are constants λ0 >0, m>0,
C independent of A such that

whenever O^A^

lim < # ) ) φ(x)>Λ (δ, λ) S Ce~m^ (7.2)
o I U

Remarks. Our proof also applies to the two-component (φ 4 ) 2 model. The exponen-
tial clustering of the n point correlations follows from (7.2) and the gaussian
inequalities. Hence we have established a mass gap.

Proof. Let ΩcA be a square centered at the origin with sides of length /. By
Theorem 6.1

(φ(0)φ(x)}Λ ((5, λ)g Σ <ΦΦ)<Kz)>Ω V> X) <Φ(zf)Φ(x)>Λ (δ, X) > (7-3)

where the sum ranges over zeΩ, z'φΩ and \z — z\ = δ. We shall show that for
Og/ί^/l0 and some />1,

Σ <Φ(O)φ(z)ya(δ9λUy<ί9 (7.4)
zedΩ

where λ0, I, and γ are independent of δ. As in [8] successive iterations of (7.3) and
(7.4) imply exponential decay of the two point function.

In order to prove (7.4) let zedΩ, then the integration by parts formula shows
that

-4λδ2 Σ <#)) :φ\y):δ}δ-'G^z). (7.5)
ysΩ

Now it suffices to show that (7.5) is less than [4/]" 1 for any zedΩ. Suppose that

z = - ,z 2 . Let Gι(x,y) be the Green's function with zero Dirichlet boundary

conditions on the line xx = —\-δ. By the random path expansion, Theorem 1.1,

and the reflection principle we know that

0 ύ Gδ

Ω{y, z) ̂  G>(y, z) = G\y - z) - G\y - z),

where z = (- + 2δ, zΛ is the image of z. Hence

sinp^'
Gδ(p)dPldp2.
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It is not difficult to show that δ~ιGδ(y, z) approaches - — G(x, z) as <5-*0. Moreover
dzί

A if \y-zfel

if \y— z | ^ l ,

where K is independent of δ and /. These bounds may be checked by explicitly
calculating the dpx integral using a contour integral.

The above inequalities show that the first term on the right side of (7.5) is
bounded by (e~ι/2). To estimate the second term we again integrate by parts and
obtain

where

0,y)δ-1Gδ

Ω(y,z)-l6λ\F1F2}Ω(δ,λ), (7.7)
yeΩ

y'eΩ

yeΩ

The first term on the right side of (7.7) is small as Λ->0 since {'φ2(y)'}δ(δ,λ) is
uniformly bounded as δ[0. To bound the second term we apply the Schwarz
inequality with respect to the Gaussian measure. Thus

<F 1 F 2 > f l (<5, λ) ̂  <(F t F 2 ) 2 >^ 2 (δ, λ = 0). (e-
2λV^ΩVΩ

12 (δ, 0) Z~1.

The right side is bounded, using standard estimates, by constexp[Aconst/2] for
O^Argl. The partition function Z is bounded from below using Jensen's
inequality. Hence we can fix / large and λo(ϊ) small so that γ in (7.4) is less than 1.
End of proof of Theorem 7.1.
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