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Abstract. Clustering operators, when restricted to fc-particle invariant sub-
spaces, are shown still to cluster.

1. Introduction. The Formulation of the Main Theorem and the Plan of its Proof

This work is the continuation of [1], where the theorem was announced that for the
clustering operator with sufficiently small values of the clustering parameter (see
below), a) there exist invariant "fc-particle" subspaces, and b) the restrictions of the
clustering operator upon these subspaces are unitarily equivalent to some clustering
operators. In [1] part a) of this theorem was proved. Here we prove part b)
constructing this unitary equivalence explicitly. For the reader's convenience this
work is almost self contained.

We consider the Hubert space /2(C2v) of functions/(Γ), ΓeC2v where CZv is the
family of all finite subsets (including the empty set) of Zv, v ̂  1. The operator A in
/2(CZv), defined as

(Af)(T)= Σ *τ.r/0") ΓGCZv (1.1)
Γ'eCZ

and commuting with unitary group {Ut,t€Zv} of translations in /2(CZv):

(Utf)(T)=f(T-t\ ΓeC2v, tεZ\ (1.2)

^^is called clustering if its matrix elements aTtT satisfy the cluster expansion

βr,r=Σ Σ ωfc(τι> > τ/<) (1-3)
*£1 {TL....T*}

Let Y0 = {Q}xZvcιZ.v+1 be a zero-time slice of Zv + 1 and FI = {!}
x ZvcZv + 1. Let π0: Z

v-> Y0 and 7^: Zv-> Yλ be identity maps. We define τf to
be a pair (T^Γ ) of subsets of Zv. We shall often identify τ( with the subset
πo(Ti) ̂ πι (T'i) of 70 u Y! . The summation in (1.3) is over all partitions (τί , . . . ,τfc)
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It is assumed that ωk are symmetric functions satisfying the following
conditions:

0) ωι(0,0) = 0 (1.4)

and if either Tt = 0 or T{ = 0 for some ί then

?...,τ f c) = 0, fc = l,2,.... (1.5)

1) For any τ x , . . . , τk and any ̂  , j2, . . . , skeZv

ωfc(τ1 + s1,...,τ f c+sk) = ωk(τ1,...,τ fc). (1.6)

where for τ = (3Γ,Γ')

If for some *',/, (τ4 H- jί)n(τj + j^Φ 0 then (1.6) is the unambiguous definition of ωfc

in such cases. So ωk(τ1 , . . . , τk) if defined for all τi , . . . , τfc

2) There exists β, 0 < β < 1 (clustering parameter), M > 0 and translation
invariant integer-valued metrics ρ on Zv + 1 such that for any k, τi9...9τk9

(1.7)

where dτ is the minimum length of the tree connecting points ofτc:Y0\jYί and the
lengths of edges of this tree are measured in the metrics ρ .

It was proved in [3] that the transfer-matrix of the Ising model for high-
temperatures β~l is the clustering operator if we take

We shall consider mainly the metrics (1.8) for the sake of simplicity.
Let us define subspaces : n = 0, 1 , 2, . . . ,

L = {/:/(!) = 0, |7ΊΦn}c/2(Cr)

Operators ^4 acting in LF will often be considered to be defined in all /2(CZv) in the
following way

Af=Q for feL^^v.

Let the selfadjoint clustering operator A be given; we define the selfadjoint
operator B with matrix elements
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(\ k\
and summation is over all permutations I . "' . such that ρ(/ s,/ί) = l f°r

Vi V
s=ί,...9k. Then J? is called the main part (main symbol) of A. The operator A is
called regular if there exist constants C > 0 and L > 0 such that

o, (1-10)

where BQ = B0(C,L) is diagonal and its matrix elements

bτ,τ = L(Cβ)Wδτ,Γ. (1.11)

Remark. In the metrics (1 .8) 5 itself is diagonal and its matrix elements are equal to

bτ.r = *r.r<x>k(({ti}, (fj), ... , ({/*}, {ίk})). (1.12)

So here regularity means that

"*(({*!}, {it}), . . . , (K), {/*})) > L(C/Q*. (1.13)

The main result of [1] is

Theorem 1.1. Let 91 = 9ί (M, β, ρ, L, C) ft^ ίΛ^ class of self adjoint regular clustering
operators satisfying (1.7) and (1.11). Then for any integer N^l there exists
βo — βo CM, M, L, ρ, C), such that for all β < β0 any operator A e 91 /m JV+ 2 mutually
orthogonal invariant subspaces 3F0 = L°9J#'l9..., Jί?N9 ^Nc: 12(CΓ). They are
invariant also with respect to translations {Ut, teZv). The spectrum σ(A\#>) of the
restriction of A onto 3Sfk satisfies the following conditions

σ(A\^N)^[-K1β
N+^ K^+i], (1.14)

where K^>K2> 0, ̂  = ̂ (7V,L?M,C?ρ) ί = 1,2 do not depend on β. Of course
σ(^|Jfβ) = {0}.

Here we prove the following.

Theorem 1.2. Assuming conditions of Theorem LI, let A(k\ U™ be restrictions of A
and Ut onto Jίfk9k = l9...9N. Then there exist unitaries:

Vk:^L\ k = l,...9N, (1.15)

such that

YkU™V^ = Ut\L>, (1.16)

and moreover VkA
(k)V^1 in Lk is clustering.

Let us recall the construction of invariant subspaces Jί?k. For this, first the
increasing sequence of invariant subspaces

ιJίf2C...cιJS^c/2(CzO (1.17)
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is constructed and then we put

_

t 2 — °£ 2 ̂ s ̂ 1 5

(1.18)

To construct (1.17) we put, for k > 0

L^ = L[<U] and

Then

/2(C2v) =

and A has a block structure

where y4f{ =PL^APL^ and so on. Here Pρ is the orthogonal projection onto
βc= /2(CZv). We shall look for j£?k> ! | ̂  fe ̂  TV as a graph

j^k = {φ+5w, 6L^ fe} (1.20)

of some mapping 5(fc)

(We recall that we consider S(Λ) defined on /2(CZv), and we define it to be 0 on
L^k.) Invariance of £?k with respect to A is equivalent then to the following equation
with respect to

S^Λί^})-1^^ (1.21)

It was proved in [1 ] that for small β (1 .21) has the unique solution 5(fc) with || S(fc) ||
sufficiently small. In Sect. 3 we prove

Lemma 1.3. For sufficiently small β, i.e. for β<β0 = β0(N,L,M,ρ,C\ all S(k\
k = 1, . . . , N, are the clustering operators with clustering parameter βλ, λ>0.

Let us sketch the proof of the main theorem. One can find details in the next
sections. We must find in ^fk, k = l,29...,N, the orthonormal basis

such that for each teZv and Γ,

£/?>#> = Aβ,, (1.22)

and matrix elements of A(k} in this basis

admit the cluster expansion with some clustering parameter
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Whe shall look for {*£>} as

(1.23)

where eτ(T') = δτ<τ and operator V(k> is such that:

1) Ker Vm = 12 (Cv) Q Lk, Im V(k) = Jfk,

2) V(k):Lk-*tfk is unitary,

3) Vw = PL> + Γm, (1.24)

where Γ(k) is clustering with its norm sufficiently small. It follows from (1.23) and
(1.24) that

3®r = ((V(k)YAV*\τ, = aτ,r + ((Γ<*>)*Λ)r,r + (AΓ»\Γ + ((Γ™)* AΓ«\Γ .
(1.25)

Here (B)TtΓ are the matrix elements of B in the basis {eΓ,ΓeC2v}. We prove in
the following sections that the product of clustering operators is the clustering
operator again, and so (Γ(k))*A,AΓ(k\(Γ(k))*AΓ(k) are clustering.

From this and from (1.25) it follows that matrix elements a(k}r obey the cluster
expansion. The equality (1.16) follows from (1.22). So we must construct V(k) with
all these properties. First we construct V(k) with all these properties except unitarity.

Lemma 1.4. The operator

V™ = (E- P^J (E+ S(k))P^> (1.2)

has the properties 1) and 3) of V(k\

See the proof in Sect. 3.
Let us consider the system

This system is complete in 3?k and its fundamental matrix is equal to

C?^ = (̂ >,̂  = ((^>)*^>)Γir, \T\ = \Γ\ = k. (1.27)
Let us note that

£)(fc) _ (^(fch* y(k)

is selfadjoint positive and KerD(k) = /2(C2v)0£k. Im/)(k) = ZΛ

Lemma 1.5. The operator (Z)(k))"1/2 is defined in Lk and

(D(k)Γίl2=PLk+A(k\ (1.28)

where Δ(k) is selfadjoint clustering operator in Lk [i.e. Imz1(k) = Lk, KerJ(k)

= /2(CZv)θ£k] See the proof in Sect. 3.

It is evident that F(k) = γ(k\D(kYl\2 maps unitarily Lk onto J^k. Moreover

F(k) = (PL, + Γ (k))(PLk + Aw) = PL* + f(k)PLk + PL*A(k) + f (k)zl(k) = PL, + Γ(k) , (1.29)

where
r(k) = r(k)p£fc+ pL,zi(k>+ f(k)zi(k).

Now the following Lemma 1.6 completes the proof of the Theorem 1.2.
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Lemma 1.6. The operator Γ(k) is clustering.

See the proof in Sect. 3.

2. the Algebra of Clustering Operators

Let A0, . . . j^ fc- i be clustering operators and let their cluster functions
ojfί(τ1 , . . . , τs), / = 0, . . . , k — 1 satisfy the following bounds

[βd^ (2.1)
7=1

Let us put

and πt is the identity map πt : TΓ -> Yt .

Theorem2.1. Let (2.1) hold. Then the operator B = Ak-ί...A1A0 is clustering and
its cluster functions

f;,τ,. = (7},fy) (2.2)

w/zere C w some absolute constant (not depending ons,β,k,AQ.>...Ak^i, but depending
on v).

Proof. Let y = {yj} be any finite (unordered) system of finite subsets of

r=(Jy.cZv + 1 such that

a)y jcF £ ur i + 1 , yjnF^0, y jπF ί + 1 φ0, forany z = 0,l, . .,*-!, (2.3)

(2.4)

c) yjπy} = 0 for any yΦy and any z, (2.5)

d) y is connected (see [3, p. 9]). (2.6)

Let us call a bond any such system y and put

We shall consider also finite (unordered) systems Γ = {y (1), . . . , y (m)} of bonds.
Let us call such system Γ regular if

ϊ(y(0)nJ(yϋ)) = , iφ;

and completely regular if

(2-8)
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Let us denote for any Γ
m

Γ=\Jγ(ί).
i=ί

So Γ is the system of subsets (yj(fc)}, Γ is called connected if Γ is connected ([2,3]).
Let Γ be given and let τ'(Γ) be the system of all yj(fc) for all possible j and k.

Let s{ be their number and τ x , . . . , τs. c 70 \j YI be their translations by the vector
(-/,0,...,0). Then we put

ω(Γ) = ω£« (τ°(Γ)) ω£ (τ1 (Γ)) . . . <- (τfc- 1 (Γ)).

If Z?Γo Γ* are matrix elements of B then

*r ,τ* = Σ aτ« r aP Ί* ' ' aτ^ 7* ' (2 10)
τ\τ2,...,τk-1

One can see from (2.9) and (2.10) that

VΓ* = Σω(Γ) (2.11)
r

where the summation is over all completely regular Γ = {y (1), . . . , y(ni)} such that

m m

Γ°(Γ) s U Γ°(7U)) = ^°? ^(O Ξ U Γ°(K/)) = ̂  (2.12)
j=ι j=ι

Definition.

(Γ1uΓ2u...uΓ^ (2.13)

where the summation is over all regular Γ15...,ΓS such that the system fj,
/ = 1 , . . . , s is connected and

= fl I=l9...9s. (2.14)

To define D(Γ) for any Γ = {y (1), . . . , y (m)}, let us consider graph G = GΓ with ver-
tices 1, ... , m. There is the (inique) line between vertices ΐ and j iff <y(0^yO')=t= 0
Then we put

^(<D,1L) (2.15)

(see [2,3]), i.e. D(Γ) is the Mόbius function for the lattice 21G (see [2, 3])

Lemma 2.2 If ω* are defined by (2.13) then

where the summation is over all s, Tt , Tί such that

T=vTh f=uf; r,n7} = 0,

To prove this lemma it is sufficient to consider the sum
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over all Γx , . . . , Γs such that Γ± \jΓ2 u . . . uΓs = Γ for some fixed Γ and to prove
that this sum is equal to 1 for completely regular Γ and zero otherwise. But this
easily follows from the definition of the Mobius function and formula (1.14),
Chapter II of [3] (see also [2]).

Lemma 2.3. ωf are translation invariant, i.e. (1.6) holds for them.

This is evident from the definition (2.13) as the summation in (2.13) is over
independent Γ\ , . . . ,ΓS.

Remark 2.1. Obtaining translation invariance was the main reason for the
definition of ωf . One can begin with the sum over all completely regular Γ19...,Γ8

with D(Γt) = ί and then compensate nonregularity of Γ 1uΓ 2u...uΓ s by
induction. We note also that if B is clustering then its clustering function ωf are
uniquely defined.

To end the proof of Theorem 2.1 we shall prove (2.2). We use Lemma II. 1.2
and Theorem 11.2.2 of [3] (see also [2]) to eliminate D(Γ). More exactly if
Γ = {7(1),..., γ(m)}, then

IZ>CT) i ̂  π &*» £ Π £"*» (2 17)
*=1 U.k

and C — C(v) is an absolute constant.
So

K(τι,...,,τs)|^ΠM,, Σ Π (C/Q«l<w>, (2.18)

where

Γι = {γ(k,l)}9 1=1,.. .,s τt = (Ti9Tύ ι = ί,...9s.

Let us note that for any Γl9...9Γs

(2.19)

To prove (2.2) let us consider arbitrary sequences (δ1,...9δN) of subsets of
k

Y=(jYt containing point OeZv + 1, |^| = 2. It is clear that
o

Σ Σ 3N(CβY^^ "+^N £ (C,βY (2.20)
N dδι + +dδN^d

for some absolute constant Cl .
Now we shall describe the mapping of the set of such sequences (δί9...,δN) onto

the set of {Γ1 , . . . ,ΓS}. As the first step we choose the first (in lexicographic order)
point ί0 of TQ and translate δ1 to thos point. As the kth step we must decide whether

f*" 1-}
to translate δk to the next point (in lexicographic order) of the set T° u< (J ίΛ, St is

the translation of δt constructed in earlier steps, or to translate δk to the point of
(k—i) step, or to return to T° and begin construction from the very beginning, thus
constructing new γ(k,l). It is evident that any {Γl9...,Γ8} can be constructed in this
way. As we have 3 possibilities on each step, Theorem 2.1 follows from (2.20).
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Remark 2.2. If Fis transfer-matrix then the cluster property of Fk for any k follows
also from the results of [3] if instead of Y0\jY1 one considers Y0\jYk.

Corollary 2.4.

\ω*(τl9...9τj| ^ Π Mt(Cβ)W Π (C/D«* (2.21)

This follows from

for any

3. The End of Proof of Theorem 1.2

Lemma3.1. For β sufficiently small, β < βQ(N), the operator (A(k\)~l = Gk in L^k is
clustering and its cluster functions satisfy the following estimate

s
\OJ^k(τ X Ή < C (β~ l^N(7-fλ) T~T (βλ\dτi ί^ ^\

1

1
for any λ,0<λ< ——- and CN is the absolute constant.

Proof. One has

(3.2)

where B(k\ is the main symbol of A^\, A(kl=A(fl-B(R, B(k\ is diagonal if the
metrics is (1.8). We consider this matrics for simplicity. Then (B(£l)~l is also
diagonal and its matrix elements satisfy the bound

(3.3)

We have

(AflΓ1=(BT1Γ
ll2(E+(BΪlΓll2Af1(Bf1Γ

ί/2)'l(β(Ά-ll2 (3.4)

Let us put

Then V(k} is clustering and its cluster functions

. (3.6)

The main symbol of V(k} is zero. So ωf"'^ , . . . , τs) do not equal 0 only for those
τί , . . . , τs where dτ_ ^ 2 for at least one /. So
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Then for any λ', 0 < λ' < 1

(3.7)

Using

i

"1one can find for any λ' < (N+ I)"1 that

*. (3.8)
i

As the norm of F(fc) does not exceed 1 for β sufficiently small, we have

(3.9)
m = 2

Using Theorem 2.1 and Corollary 2.4 we get that the operator (F(k))m is clustering
and its cluster functions satisfy the following estimates (m > i)

* . (3.10)

It follows that the operator £(F(k))m( —l)m is also clustering and its cluster
functions are bounded by 2

Dβλ'sY[(CβλΎτ>. (3.10 a)

Let us note that E is also clustering with cluster functions

(3.11)
i

where

ωf (τ) =
) 0 otherwise

Moreover as d(W>W) = 1

|ωf(τ1,...,τβ)|<(/ί-A)1? l τ lΠG8A)*' V-W
i

for any λ. Ifλ<λr we get Lemma 3.1 from (3.3), (3.4), (3.8)-(3.10), (3.12).

Proof of Lemma 1.3'. The operators

s, q ̂  0, are integers, and act from L=k to L>k. We shall look for S(k) as a series

(3.14)
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where the summation is over all sequences of pairs (oq , . . . , αr) r ̂  1 , αf = (st , qt), st

^> 0, qί ^ 0, / = 1, . . . , r, and #αι,...,α2 are real numbers to be found. Inserting (3.14)
into the equation (1.21) one can get recurrent equations for xβ l > β a i... f f l^ For r = 1

<.,*) = *c.-ι.,-i), for s>0, q>09

0, 0) = 1 5 *(0,9) = *M) = 0» S, # > 0 .

F o r r > l

^αt, ...,«,. = Λ:ά1,α2,...,άr ~~ 2-f *«ι,. , «p '•*«,+ !, •••£' (3.16)
/; = !

where for α = (,?,#) we denote £ = (s — l,q),a = (s, q—i). From (3.15) one can get
immediately that

where δs >q is the Kronecker symbol.
For any sequence (α1?...,α r)? r>l, α—^,^-) we introduce the sequence

(Si,Qi),i=ί,...9rofpairsSi = (sl+s2+ ... + si)9Qi = (q1 + q2+ ... + ̂ ). Letus
put

We call the sequence (oc^ , . . . , αr) regular if

If αx , . . . ? αr is not regular then (άx , α2 , . . . , αr) is not regular also and for any P one of
the sequences (αx , . . . , αp) or (αp+ x , . . . , αr) is not regular. Then (3.16) will be satisfied
for nonregular sequences if we put

*αι,..,«, = 0 (3.18)

for any nonregular sequence (αt , . . . , αr).
Then xαij...>αr for regular sequences are uniquely defined from (3.16-3.18). We

shall consider further the solutions of (3.15), (3.16) just defined. Let us consider
recurrent relations

z-l

y*l,...t*r=y*ί,...,sr+ Σ ĵ ,...,*,̂  ..... *,> (3 19)
p=l

and consider solutions of these relations which are not equal to 0 for regular
sequences. We have

Λ,....^0, (3.20)

Let us define

ys.r=Σy*ι.....*f> (3 21)
where the summation is over all (regular) sequences with Sr = S (and so
Qr = S - r - 1). It follows from (3.19) that

ys,r = ys-ί,r+ Σ ys^ysts-p, (3.22)
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where

J-ι,, = 0, r£l , ySΛ = \. (3.23)

Then yStZ are uniquely defined by (3.22). (3.23). Let us consider the function
w = w(z,ρ) of two complex variables z, ζ. Let w satisfy the following equation

w = £+zw+w 2 , w(0,0) = l. (3.24)

Then w is analytic for z and ζ sufficiently small and can be expanded in a power
series

w(z,C) = Σ^X£r> (3-25)
S,r

which is convergent for small z,ζ.
It follows from (3.24) that wj>r satisfy (3.22), (3.23) and so

and the series

Σ Σ K ..... jmcr (3.26)
r£7 (α l 5...,α r)

is convergent for z, ζ suffϊcently small. We turn now to the investigation of the
operators

(3.27)

for regular

Lemma 3.2. If(cf,1 , . . . , αr) is regular then B^ ^ is clustering and its cluster functions
satisfy the following bounds

I ωs(τι , . . . , τs) I < (Ljβ)2(5'+ 2r^ Π (β*)**' (3-28)

where L is an absolute constant.

s s

Proof. As Σ 4, ̂  Σ \τt \ - s, we get
i=l 1

1 1

where 0 ̂  I ̂  1 and so the cluster functions of the operators A$> , δ = (12), (21), (22)
have the following estimates

\ωf(τ, , . . . , τs) I < M^-^+1> Π (βΎτι - (3-29)
i = l

Using Corollary 2.4 and (3.1) one can get that cluster functions of BΛι ΛΓ satisfy the
following bounds for small β

i=ί

(3.30)
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Using the fact that Qr = Sr + r - 1 for regular sequences and λ < (N+ 1)~ *, we can
get (3.28) from (3.30). From (3.28) and (3.26) we get convergence of the series (3.14)
for small β. The sum of (3.14) is the clustering operator and

\ωΓ(τ1,...,τs)\<Kβ*f[(Cβ^ (3.31)
i = l

for some constant K> 0.
Using (3.31) one can check (see [1]) that the sum of the series (3.14) has a

sufficiently small norm and coincides with the unique solution of (1.21) having a
small norm. Lemma 1.3 is proved.

Proof of Lemma 1.4. We have

We shall prove ImF(k) = JPk.

We shall show first that

£-P^-i, = [£-(S(*-1))^[£/:>*-t) + S<fc"1HS(k"1))*]

•[̂ -υ-^-^P^-υ], (3.32)

where

[£L>*-t, + 5(*-1)(Sr(*-1))*]-1 acts in L>(k~ί\

In fact for any/e/2(CZv)

E-P#>-»)f=ψ+(S-)*ψ9 ψεL>(k-l\

As

S(k-

one has that

It follows that

^ + S(*-i)(5(*-i))*Vί = PL>βk.lϊ/-5(*-i)pLββ.1)/, (3.34)

and

^ = [£L>».« + S<*-1>(S<*-1>)*]-1(PL>ί.t,~S<*-1^^

Finally, (3.32) follows from (3.33).
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Lemma3.3. The operator EL>*-» + s^-1\S(k~1))* is invertible in L>(k~1) and its
inverse is equal to

[EL>«-l) + S(k-ι\S(k-VγΓl=EL>«-»+G(k-l\

where G(fc-1) is the clustering operator with clustering parameter βλ. Moreover the
norm HC?^" 1*!! is sufficiently small for β sufficiently small.

The proof follows from the expansion

[̂ -υ + S**-1^*-1*]-1^

by Corollary 2.4 and (3.31). The estimate of the norm can be obtained by
calculations similar to those in [1]. Let us note that it follows from (3.32) that for
/6£><*-i) (E-Pχv-»)f= [E-(S(k~ί))*](f+ G(k~l)f}, and so

F(k)/=/+ f <*>/,
where

f <*> = - S*-1)* - S<fc-1>

Again using Lemma 3.3, Corollary 2.4 and the estimate (3.31), one can find that f (k)

is clustering with clustering parameter β* and sufficiently small norm. So we proved
that property 3) of V(k\

We shall prove property 1) of V(k) . If V(k}Lk φ Jί^, then there exists Φ e Jfk which
is orthogonal to all vectors f+ S(k)fe£f(k\ where /elΛ Without restricting the
generality one can assume that

1. (3.35a)

As Φe^(k\ one can write

φ = φ + S(l*φ =/+ φ1 + *S(fe)(/+ φj, (3.36)

where

φ = ψl +feL^k, φ, εL^k~ l\ fεLk.

We have

and then

| |φ| |<l. (3.36a)

Moreover from the equality

one can find that

I M I έ l l φ l l . (3.36b)

We have also

0 = (/+ S<»/,Φ) = (ψl + SMφι , f+ S<»f) + ||/+ S*>/||2 . (3.37)
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As

|(Φ1 + S^φ, , /+ S<k>/)| = \(SMφl9 S«*f)\£ \\SW\\2 \\φι |

and

one can find from (3.37), (3.36b) that

Acting on both sides of (3.36) with the operator E — P&t-v, one can get

Φ = (E - P**-»)(q>i + S(k)<?ι) +

Let us note that

(E - P^

From here and from (3.36a), (3.36b) it follows that

(3.39)

where K^ is the absolute constant, εl(β) ^0 if /?->0.
From (3.38) one can find that

\\f™f\\£K282(β), (3.40)

where Λ:2 is the absolute constant, ε2 (β) -> 0 if jS -> 0. Estimates (3.39) and (3.40) for
/? sufficiently small, contradict (3.35a).

So we proved that

As F(fc)/=/+ f (k)/for/eLk, where f (fc) has small norm, F(fc)/φO for all/eLfc,/φ 0.
Then KerF(fc) = /2 θ-^fc Lemma 1.4 is proved.

Lemma 1.5 follows from the fact that Dk = (F(fe))* F(k) is the positive operator
lmDk = Lk, KerZ)fc = /2 θ Lk, and moreover

> = (PL> + (f <">)* L

pL*+ (f «* *> »> l ;

where
f »):£,*-»£,*

is a selfadjoint clustering operator with small norm. It follows that

[(p«)* κ<A)] - 1/2 = PL, + X αs(f ('")s, (3.42)
iSl

where αs are the coefficients of the expansion
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After applying Lemma 1.21 to each term of (3.42), the proof of Lemma 1.5 is
completed. Proof, of Lemma 1.6 is quite evident.
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Note added in proof. I. Kashapov and the first author proved recently for the similar class of clustering
operators that zero is not an eigenvalue of clustering operator.




