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and Topological Charges
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Abstract. The existence and the properties of the limit at spatial infinity are
studied for the finite-energy scalar fields with respect to the topological charge
introduction. The limit is shown to be constant in time and in almost all spatial
directions. The proof of the existence of the limit given by Parenti, Strocchi and
Velo is extended to two-dimensional space. A generalized definition of the
topological charge is suggested for a σ-model as an example.

1. Introduction and Conclusions

The possibility of introducing conserved topological charges [1] widely used in the
soliton and instanton physics depends substantially on the asymptotic behaviour
of the fields at spatial infinity. In the present paper, the existence and the properties
of the limit at spatial infinity for a system of classical scalar fields with a finite
energy are discussed from this point of view.

We consider a system of real scalar fields φ :1RS xR->1R",

<jφc,t)=

with continuous first derivatives1. The Lagrangian of the system is assumed to be
of the form

leading to the field equations

Πφfic, ί) + ~ = 0

1 The second derivatives of the fields and the first derivatives of the potential U appear in the field
equations but most of the following statements are valid for the field configurations of finite energy
regardless of field equations
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and the energy

The map U :W->1R. is assumed to be continuous1. We shall call it the potential.
Let us denote M the set of zero-points of the potential.

The topological charges can be defined as numbers characterising the ho-
motopy class of the function ψt: §

s ~ X->M if there exists the limit

ψt(ξ)= lim φ(rξ,t)eM (1.1)
r-* + oo

and if it is a continuous function of a unit vector ξ e S 5 " 1 and of time
Under very general assumptions, Parenti et al. [2] showed that for arbitrary

ί e R

at almost all ξeSs~1, if the limit (1.1) exists at an initial time ί0. Therefore, not only
the homotopy class of ψt but even the limit (1.1) itself is conserved [if necessary,
limit (1.1) is redefined on a set of zero measure at each time]. In [2], the limit xpt

was defined as a dynamical charge of the field. The limit (1.1) was shown to exist in
two cases: for the fields with

Vφ(x,t)eL2(lRs), (1.2)

Uiφix^eL'iW) (1.3)

if S = H = 1, and for Vφ(x,i)eL2(Rs) if s^3. For 5 = 1 and n>l, the weaker
statement that the lim \φ(rξ,t)\ exists for almost all ξeSs~λ can be proved. We

r—* + oo

extend these results from the one-dimensional space (s= 1) to the two-dimensional
one (s = 2) in Propositions 1 and 2 of Sect. 2. The original method of proofs for
s = 1 can be used for s — 2 without substantial modifications.

The integrability conditions (1.2) and (1.3) are evidently valid for the fields with
finite conserved energy if the potential U(z)^0 for zeW. In Sect. 2, we give a
simple proof that the dynamical charge is conserved for such fields (Proposition 3).
Under certain conditions on the potential, the energy conservation was proved for
the solutions of the field equations in the completed space of smooth functions
with compact support [2, 3]. It is a nontrivial assumption in general.

The definition of the topological charge as a homotopy class of the limit (1.1) is
applicable to the finite-energy scalar fields in one-dimensional space because the
limit (1.1) exists for both directions ξ= ±1 there. In the spaces of higher dimensions
s = 2, the finiteness of energy if insufficient for the existence of a continuous limit
(1.1) for all the directions ξeS8"1. If the limit (1.1) differs from a continuous
function on a set of zero measure in S 5 " 1 , we could still speak about the
topological charge. We shall show (Proposition 4 of Sect. 2) that for PφeL2(IRs) the
limit ψt(ξ) (1.1) has the same value for almost all ξ e S 5 " 1 if 5^3, and for all ξ at
which it exists if s = 2. The topological charge is then zero. The proof of this fact,
formerly accepted by heuristic arguments [1] only, is our main result.
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The fact that a large class of finite-energy (finite-action in the Euclidean case)
fields has the limit at infinity which is constant in time and in all directions allows
for another definition of the topological charges based on the compactification of
the space by adding a "point at infinity" [4]. The Euclidean space R5 becomes
topologically equivalent to the sphere § s after the compactification. The field φ
can be continuously extended on the compactified space if the limit ψt(ζ) (1.1)
exists uniformly with respect to the time ί in every bounded interval and all
ξe§s~ \ and if it is constant in ξ. Let us assume now that the values of the field are
constrained to some subspace TcIR" with a nontrivial homotopy group πs(T).
Then the extended field defines a map Ss-+T and the topological charge can be
defined as a number characterising the homotopy class of this map.

We propose a generalized definition of the topological charge applicable to a
class of fields which cannot be continuously extended on the compactified space.
The fields of this class can be approximated by a sequence of auxiliary fields with
well defined topological charges. The (generalized) topological charge of the
original field can be defined as a limit of the sequence of the topological charges for
auxiliary fields, if this limit exists and if it is independent of the choice of auxiliary
fields. We shall discuss the generalized definition of the topological charges for a
σ-model in Sect. 3, but the general approach can be used for other models as well.

2. Limits at Spatial Infinity for Fields of Finite Energy

We prove several propositions on the existence and properties of the limits of the
fields at spatial infinity in this section. The following two propositions are the
generalizations of Theorems C.I and C.2 of [2] to the case s> 1. Stronger results
are known for s ^ 3 (Lemma 6 of [2]) and for all s if U{z) — z2 (Lemma 5 of [2]).

Proposition 1. Let M be the set of zero-points of continuous function U : R-̂ IR, and

20 +00

f \U{z)\mdz = J \U{z)\112dz =+oo (2.1)
— OO 20

for some z o e R If M is a discrete nonempty set and φ :IRS->]R is a function with
continuous first derivatives such that

j [f (Vψ{x))2 +1 U{φ(x))\] dsx<+<x>, (2.2)

then there exists

lim φ(rξ)eM
r-+ + oo

for almost all unit vectors ξe § s ~ 1 (for ξ= ±1 if s = l). If M = 0, then no function
φ :IR5—>1R with continuous first derivatives satisfying (2.2) exists.

Proof Let M be at most a discrete set and φ be a function satisfying (2.2). Then

dr< + oo
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for almost all ξeS3'1, and we can repeat the proof of Theorem C.I from [2]
keeping ξ fixed.

Proposition 2. Let U :IR"->IR be a continuous function, let

\ l / 2

for ρ^O, where \z\ = I £ zj\ , let M be the set of zero-points of the function F,

and let

+ 00

1 F{ρ)dρ=+co. (2.3)

// M is a discrete nonempty set and φ:IRs—>IR" is a map with continuous first
derivatives satisfying the relation (2.2), then there exists

lim \φ{rξ)\eM
r—• + oo

for almost all ξeSs~ι (for ξ=± 1 if s=l). If M = 0, ίfeen no map φ'.W-^W with
continuous first derivatives satisfying (2.2) exists.

The proof is similar to the proof of Proposition 1.
The next proposition is fundamental for the introduction of dynamical and

topological charges of scalar fields since it gives sufficient conditions for their
conservation. The proposition states that the field with finite conserved energy [if
l/(z)§:0] remains in one Hubert space sector in the sense of [2]. We offer a simple
proof of this fact for those who take the energy conservation as a physical
requirement.

Proposition 3. Let φ : W x 1R->IR" be a map with continuous first derivatives and

(dφ(x,t)V
ί + (Vψ{x,t))2\dsx<C (2.4)

δt

for a finite constant C and all ίelR. Then for all ί , ί o eR

j O(x, t) - φ(x, t 0 ) ] 2 ίftc < + oo (2.5)

and

lim [φ(rξ,t)-φ(rξ,ί o)] = O (2.6)
!•-»• + 00

for almost all ξeS8'1 (for ξ= ±lif s = l). Especially if the limit lim φ(rξ, tQ) or

lim \φ(rξ,tQ)\ exists at some ίoelR for almost all ξ e S 5 " 1 , then at all ίelR
r-> + oo

lim φ(rξ,t)= lim φ(rξ9t0)
r—• + oo r—* + oo
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or

lim \
r-* + 00

/or α/mosί α// ξ e S 5 " 1 .

Proof. By Schwarz inequality

ί-

Now, according to (2.4),

J lΦ,t)-

lim \φ(rξ9t0}
r-» + 00

1/2

iί-g

and (2.5) is proved. Equation (2.6) then follows, e.g., from Proposition 2 applied to
the map φ(x, t) - φ(x, t0) and the function U{z) = z2.

Remark. In Proposition 3, we gave the condition (2.4) evidently valid for the fields
of finite conserved energy if the potential is non-negative. Weaker assumptions

ϊoϊ
< +00

and

ί , t) - Fφ(x9 to)¥ dsx < + a)

were used in the proof.
We gave the sufficient conditions for the existence of the limit of the field for

almost all directions at spatial infinity. Now we show that this limit has the same
value at almost all directions for

Proposition4. Let φ'.W-^W (s^2) be a map with continuous first derivatives,
VφeL2{W). If s75:3, then there exists a constant aeW such that

lim φ(rξ) = a
r-* + oo

for almost all ξe§s 1. If s = 2, then the limit (2.7) (or lim |
1 r~> + oo

(finite or infinite) value at all ξeS1 for which it exists.

(2.7)

has the same

Proof. It is sufficient to give the proof for n = 1 and then to apply the result to each

component of φ separately /the proof for lim \φ(rξ)\ in the case 5 = 2 is also

similarV Let us start with the simpler case s = 2. If there exist

lim φ{rξx)< lim φ(rξ2)
r~+ + oo r-> + oo
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for some ξv ξ2eS1 with polar angles ωtφω2, then there exist r0 ̂ 0 and numbers
such that

for all r>r0. Integrating over polar angle ω, we have now for all r>r0

1 (c~b)2

r2\ω2-ωί\

because of Schwarz inequality

|l/2 *»
1/2

The contradiction with the assumption \(Vφ)2rdrdω< + oo is thus obtained.
The same arguments are used for s ̂  3, but they are applicable only after some

preliminary considerations. Let us first realize that the finite limit in the left-hand
side of Eq. (2.7) exists for almost all ξe Ss~1 according to Lemma 6 of [2] and that
it is a measurable function of ξ as a limit of measurable functions. It can be seen
now that either the statement (2.7) is valid or there exist numbers b<c such that
the sets

N=ίξeSs~1

L=ίξeSs~1

lim φ(rξ)<b\,
•-• + oo

lim φ(rξ)>c

have positive measures in § s 1. Let us assume that the last possibility takes place.
The set N can be rotated to the position MN where it has an intersection of
nonzero measure with the set L:

where μ is Lebesgue measure on S 8 " 1 and ̂ eSO(s) is a suitable rotation. The
existence of 01 is proved in Appendix. We can choose such an orthogonal system of
coordinates that the matrix 01 has a canonical form [5]

/cosα1 — sinα1

cosαfc — smαfc

sinαk

' 1

where ^ π for Z=l, ...,fc.
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Let us introduce in W a system of coordinates similar to the cylindrical and
spherical ones by the equations:

= Qi s i n ω 1 ,

2k 1 =

ρ 1 =rsin9 1 ...sinds_fe_2 sini9s_fc_1,

valid for k > 1 only

= rsinθ1...sinθ s_2 k cosS s _ 2 k + 1 J

x2k+1 = rsinθj...sinθs_2k_ 1 cosθs_2k,

where r^O, 0^9-^π (i = l, ...,s-2fe), O ^ θ ^ f (j = s-2k+l,...,s-k-l)9

0 ̂  ω ^ 2π (/ = 1,..., fe). For fe = 1 (this is certainly the case for s = 3) we obtain the
usual spherical coordinates. In the following, all real values of ωz are allowed (or
the formulas should be understood as valid by mod2π). The rotation by matrix 0i
is the transformation

(2.8)

Let us denote

1/2

> 0

(if at least one QX > 0). There exists an orthogonal matrix Θ (dependent on angles S)
of dimension k x k such that

We shall use the variables ω\ defined by the equation

1 ω\ \ Qi^Λ

ωh \

instead of ωz. The transformation (2.8) becomes a translation in one variable

ω\ \ + δ.

Let us denote
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Now

A^CiV, MN^L, μ(JV1)>0.

There exist ω 1 0 , ...,ω f e 0 such that μ(N2)>0, where N 2 is the part of iV\ contained
in the region described by the inequalities

There exists ω'1 0 such that

where

K-ωz o|<f (ί=l, ...,fc).

2)= ί

#, ω') is the unit vector described by the variables #, ω'] and

σ(θ) = s in 5 " k - 2

Using our coordinates, we have

foo ΓωΊo + <5 / fiω \2

\{Vψ)2dsx^\ U J ^
Rs iVl lo L ωΊo \ ϋ ω \ l

It can be shown that the last integral is infinite similarly as in the case s — 2.
Proposition 4 is completely proved now.

3. Generalized Topological Charges for a σ-Model

We introduce generalized definition of the topological charges for a σ-model with
simple homotopy properties. Let us consider a field of unit vectors with n = s + 1
components on the s-dimensional space. The field satisfies the constraint

The Lagrangian of the model is

and the corresponding Hamiltonian is

The smooth field with constant uniform limit

ψt(ξ)= lim φ(rξ,t) (3.2)
r-> + oo

can be extended on the space R s compactified by adding a "point at infinity"
(topologically equivalent to the sphere §s) and defines a smooth map §S->SS. The
topological charge defined as the degree of mapping is then expressed by the
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formula
1

ix ίί d e t ( φ ) d*x, (3.3)

where μ(Ss) is the Lebesgue measure (surface) of the unit sphere § s and we denote

det(<p) =

dφ1

dxι '

dΨs+l

'• dx1

dxs dxs

The fίniteness of energy implies the existence of the constant limit (3.2) for
almost all directions in the space of dimension s ̂  3 according to the results of
Sect. 2 and the form of the Hamiltonian (3.1). It is therefore desirable to generalize
the definition of the topological charge to some fields without constant uniform
limit (3.2) at all directions. We study this possibility for the fields which can be
approximated by a sequence of auxiliary fields having the necessary limit (3.2).

Let us consider a field φ :IRS χ]R-*§ s for which the following assumptions are
valid. There is a system of open intervals in IR covering R For every interval /
from this system there exists a sequence of fields φm : W x 7-»§>s (m= 1,2,...) with
continuous first derivatives and the following properties:

(i) the constant lim φm(rξ, ή = a exists uniformly with respect to ξe §s~i and
!•->• + 00

t e I for every m = 1,2,...
(ii) at all tel

lim φm(x, t) = φ(x, t), lim Vφjx, t) = Vφ(x, t)
m-+ oo m—*• oo

for almost all ;
(iii) at all tel there exists a function #feLs(IRs) such that

\Vφm(x,t)\^gt(x)

for almost all xeW and all m = 1,2,....
Then there exists

l imdeg(φj = deg(φ),
fW—• 00

where deg(φ) is given by Eq. (3.3). It is a conserved integer number as a limit of
such numbers2, independent of the choice of the sequence {φm}^= 1 of the
properties (i)-(iii). The number deg(φ) can therefore be defined as a generalized
topological charge of the field φ although it may not always have a simple
interpretation as the degree of a mapping.

It should be stressed that the existence of the sequence {φm}^= 1 is our
assumption and we did not study the conditions warranting it. The sequence can

2 deg(φm) are conserved in time intervals /, deg(φ) is conserved for ίeIR consequently
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be easily constructed if s ^ 2 and if the field φ has the following properties: φ has
continuous first derivatives; F<peZ/(IRs); there exists a constant beSs and for any
bounded interval JclR there exist positive numbers AD zι such that \φ(x,t) — b\>8j
for |x|>^4j and tel. The maps φm are obtained from φ by modification of its
behaviour (redefinition) at large |χ| to obtain a map constant outside a compact
subset (ball specifically) of W. More details of this construction are given in [7].

The assumptions (i)-(iii) can be somewhat varied, e.g. the uniformity of the
limit at r-* + co with respect to t can be replaced by the independence of the
majorant gt on t or directly by continuity of deg(φ) expressed by Eq. (3.3) in t. The
fields φm do not need to satisfy the field equations. They even do not need to be
continuous in time, supposing deg(φ) is continuous. However, the generalized
solutions of the field equations φ defined by a sequence of smooth solutions φm

might be of interest.

Appendix

We show the existence of the rotation 31 used in the proof of Proposition 4.

Lemma 1. Let G be a locally compact Lie group of differentiable transformations
transitive on the finite dimensional differentiable manifold S, μ be a measure on S
invariant with respect to the transformations of G, 0<μ(S)< + oo, v be the right
invariant measure on the group G. Then for every function f integrable on S and
every point ξeS

s

Proof By the substitution η' = &tη, St' = St we obtain

J J f(»η) dμfyi) dv{») = v(G) J fin') dμ{η')

/expressing integrals as ones over the parameters of S and G, the same Jacobian

appears as in the equation

valid by the assumption theorems on homogeneous spaces can also be used here

[6]). Since G is transitive on 5, to all ξ,ηeS, there exists a transformation &ξηeG

such that η = &ξηξ. Using the fact that v is the right invariant measure on G, we
obtain

ί J f{βn) dμirj) dv{M) = f J f(ΛΛξηξ) dv(Λ) dμ(η)
SxG S G

By comparison of the two expressions for the double integral, the statement of
Lemma 1 follows.
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Lemma 2. Let the assumptions of Lemma 1 be valid, v(G)>0, LCS, NcS, μ(L)>0,
μ(N)>0. Then there exists a transformation MeG such that

Proof Let us denote by f,g,χ$- the characteristic functions of the sets ]V, L,
^N for every J e G . Then

for ξeS and

ί ί χ
S*G

by Lemma 1. Therefore there exists J e G such that

and it is sufficient to put ffl = &'~1.
In the proof of Proposition 4 we use Lemma 2 for 5 = S 5 " 1 and G = SO(s).
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