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A Yang—Mills—Higgs Monopole of Charge 2
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Abstract. A new static, purely magnetic Yang—Mills—Higgs monopole
solution is presented. It is axisymmetric and has a topological charge of 2;
the charge is located at a single point.

1. Introduction

This paper is concerned with Yang—Mills—Higgs monopoles which are static
and purely magnetic, in the Prasad—Sommerfield limit [1]. This means that we
have a Higgs field ¢ and a gauge potential 4; (j= 1,2, 3) on Euclidean 3-space
R3, satisfying the following five requirements.

(i) ¢ & A; take values in the Lie algebra of SU(2). In other words, ¢ and A4 ; have
the form ¢ = ¢%0% A = Ajo“, where ¢* are the Pauli matrices, and where ¢, A5
are scalar functions on R® which in some gauge are real-valued. (We shall be
allowing SL(2, C)-valued gauge transformations, so ¢* & Af will not be real-

valued in every gauge.)
(ii) Insome gauge, ¢ & A4, are smooth (say C*) on R>.
(iii) The Bogomolny equations

G;k = T &y 4"75
are satisfied, where
G’? = 0.A“ -0, A‘? + Ks“bCAb.A" ,
Djp*=0,¢"+ Ks“bCA”qSC

K being some real number (the coupling constant).
(iv) The norm || ¢ || = (¢°¢)*/? of the Higgs field has the asymptotic behaviour

[¢|=1~m/r+0(r"2)asr— o,

where r is the Euclidean distance from the origin in R3, and m is some real number.
(v) The energy

E=[G|G[*+z[ D¢ |*)d*x
is finite. Here || G |* = G4,GY, and | D¢ | = (D,;¢°)(D¢°).
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Remarks

(@) |¢|.| G| and | D¢|| are invariant under SL(2, C) gauge transformations.
(b) Requirements (i)—(iv) in fact imply requirement (v). To see this, first note that
the Bogomolny equation enables one to rewrite E as

E=[|D¢|*d.

From the Bogomolny equation and the Bianchi identities D;G,, =0 (square
brackets denote skew-symmetrization) we get D;D,¢ =0, and from this it follows
that | D¢ ||> =30,0,| 4> Now letting B denote the three-dimensional closed
ball with radius R in R3, we can write

E= lim ] 123,| 6]

J
R—- w0 By

= lim | 30,[ ¢ ]|?d*s’ (Stokes’ theorem)
R-© 0BR
=4nmm

from requirement (iv). (The author is indebted to L. O’Raifeartaigh for supplying
this argument.)
(c) The topological charge n is defined by [2]

1 .
n= lim — j dezS’,

R0 8T 0B

where ;= ¢,,8,,,0°0,$°0,6° and ¢°= | ¢||~'¢*. The number n is necessarily
an integer [2]. Its value is unchanged if we replace ¢; by — e, F,,, where F,,
is the t Hooft magnetic tensor (see [2] Eq. (1), but beware the sign error contained
therein). Now using the standard expression for F, ([2], Eq. (1)), the bound
| Do | = O(r~2) which follows from finiteness of energy, the Bogomolny equations,
and the asymptotic form of | ¢ |, one easily deduces that

n=mk.

The magnetic charge is defined to be n/k, and is therefore equal to m.

Up to now only one monopole solution was known: the spherically-symmetric
Bogomolny—Prasad—Sommerficld (BPS) monopole, which has n=1 [1]. One
line of attack on the problem of finding further solutions was provided by the
realization that the Bogomolny equations are equivalent to the self-dual Yang—
Mills equations in Euclidean 4-space with the added condition that everything
be independent of imaginary time; [3]. Indeed, the equations

%smﬂGg,, =Gy,,0,4;,=0
are equivalent to
Go = —&,,D,A%, 0,A4%=0;
and these are exactly the Bogomolny equations in 3-space, if we interpret A4,

as the Higgs field ¢. Manton [3] recognized that the BPS solution can be obtained
out of the well-known “’t Hooft ansatz”, which expresses 4, as functional of a
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scalar superpotential satisfying a linear equation. But he discovered that the
ansatz does not produce any other monopole solutions.

Now the ’t Hooft ansatz is the first in a sequence of analogous ansitze .« ,
& ,, ... [4], which arose out of the “twistor” approach to the self-dual Yang—Mills
equations [5]. Corrigan et al. [6] pointed out the existence of Bécklund trans-
formations relating these ansétze to one another, and Lohe [7] tried to construct
a monopole with n=3 by applying two successive Bicklund transformations
to the BPS solution. But this approach was unsuccessful [7, 8].

A more recent approach [9,10] was that of using the AHDM instanton
construction [11], which also arose out of twistor theory. Again, the BPS solution
can be obtained via this procedure, but no new solutions have so far been produced.
It should be remarked that a recent existence theorem due to Taubes [12] has
shown that there are many multimonopole solutions waiting to be found.

The approach employed in this paper is to use the ansitze .o/, referred to
above. In particular, we shall see that ./, produces a new solution which has
n =2 and is axisymmetric. It is algebraically rather complicated and is presented
here in a complex gauge ([3]: &/, produces the BPS monopole in a complex
gauge). The point is that we can be certain, by arranging things appropriately,
that there exists a gauge in which ¢“ and A{ are real-valued, even if we do not
know explicitly how to transform into that gauge. Of course, all gauge-invariant
objects like | ¢ |, [ D¢ |, F, etc. will be real, if and when we compute them.

It is worth emphasizing the following point. The ansitze .7, are often described
in terms of the Bécklund transformations referred to above. This approach leads
to difficulties with reality conditions and singularities. However, if one does
not use the approach of Bicklund transformations, then these difficulties are
avoided. This paper illustrates that point.

2. The Construction

We shall follow the notation and use the results of Corrigan et al. [6]. The essential
point of the twistor construction is that self-dual Yang—Mills fields correspond
to certain holomorphic (i.e. complex-analytic) vector bundles over twistor space
[5,6, Sect. 2]. Such a vector bundle is specified by a transition matrix g(w, n)
([6], Eq.(2.10)). Here g is a 2-by-2 matrix of functions of the four complex variables
(w,,w,,m,,7,); g is required to be holomorphic away from 7, =0 and =, =0,
and homogeneous of degree zero. A gauge potential A4, can be extracted from
g([5,6], Egs. (2.11)—(2.14)), and this A, automatically satisfies the self-dual Yang-—
Mills equations. Furthermore, every self-dual Yang—Mills field can be obtained
in this way. In general, there is no known procedure for explicitly obtaining 4,
from g (the “extraction” referred to above is somewhat implicit). However, if g is
equivalent to a matrix of the form

2
i-|4 g )

where { =, /m, and  is some positive integer, then we have an explicit formula
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for A in terms of an integral of the function p. This formula is exactly the ansatz
<, [4,6]. The word “equivalent” used above means the following: there exist
matrices A and Z, both taking values in SL(2, C), with A holomorphic away from
7, =0 and Z holomorphic away from =, =0, such that

g = Ag&E.

Our problem here is that we want to find a Yang—Mills—Higgs field satisfying
the five requirements listed in Sect. 1. Condition (iii) is easily taken care of: since
the self-dual Yang—Mills equations are automatically satisfied in our construction,
we only need the additional condition 0,4, = 0, and this is achieved by requiring
that g depend on w, and w, only through the combination

Y= —io /1, +iw,/n,. )

(It is easy, from the details given in [6], to see that this is sufficient.)
Thus, using the fact that g is homogeneous, we may write g = g(y, {), where
{ =m,/n,. Therequirement (i) is achieved by imposing the conditions

det(g)=1, €)
90, OT* = g(y, = 71, )

where * denotes conjugate transpose. That these conditions are sufficient is proved
in the appendix. It is worth pointing out that one should think of y as ranging
over the complex line C, and { as ranging over the extended complex line, i.e.
the Riemann sphere; recall that — {~ ! and { are antipodal points on the Riemann
sphere.

Requirement (ii) (smoothness) essentially amounts to the condition that the
function p appearing in the matrix § should be “nowhere-vanishing”, in a certain
sense which will be explained later. The boundary conditions (iv) and (v) amount
to some condition on g, but it is unclear exactly what this condition is, so at
present we just have to proceed by trial and error.

Our task, therefore, is to search for matrices g which satisfy the above require-
ments, and which are equivalent to matrices § of the form (1). The obvious starting-
point is to find the matrix g, Which generates the BPS solution. What one gets
is the following. Let gy, be defined by

. C y—l(eZu__eZv)
gBPS: 0 c—l 5

where u=iw,/n, and v=iw,/m, (so y=p—v). Now multiply gy,s on the left

and on the right by
e™’ 0 0 — et
[0 e”:| and [e“‘ Cye"‘}

respectively (notice that the left-hand matrix is holomorphic away from 7, =0,
and the right-hand one way from 7, = 0, as required). This gives

_[rie—e —te
9Bps {=te? A
and this matrix depends only on y & { and satisfies (3), (4). One may now apply
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the results of ([6], Sect. 3) to verify that this choice of matrix does indeed cor-
respond to the BPS solution (albeit in an unusual gauge: [3]). The value of the
coupling constant used in [6] is k¥ = 2, so for example one finds that

1
|¢| = coth(2r) — 7

as expected (ie. m=%,k=2,n=1, E=2n).

Now how is one to find new solutions? Manton [3] showed that matrices
of the form (1) with £ =1 give nothing new, so clearly the thing to do is to take
¢ =2, and to search for a function p such that

- [
g= 0 C-z

is equivalent to a matrix g satisfying our requirements. One choice of p that
might work is p = H™ '(e?* + "), where H = y? + 4c?, ¢ being some real, nonzero
constant. For then multiplying § on the left and on the right by

e’ 0 and 0 — et
0 e e * (PHe *

H e +e?) (P77
C— 26 -y He™ b
which satisfies the reality condition (4).
If we take this function p and compute the Yang—Mills—Higgs field that it

gives rise to, using the formulae in [6], we obtain the following.
Define a function 4 on R* by

— 214 = cosh(2R) + cosh(2R), 5)

where R? =r? —c? + 2icz,r? = x? + y*> 4+ z? and (x,,z) are the standard co-
ordinates on R3. Note that there is no ambiguity as a result of taking the square-
root of R?, since cosh is an even function. From now on let ¢ denote the constant
/4. The functions 4_, 4, & A, of [6] are given by

respectively, yields

g, 0= [

A_ =124 A4)e, (6a)
Ay =214, (6b)
A, =& 124+ A)e*", (6¢)

where &= x +iy,t=x° and the subscripts denote partial differentiation. (Note
that the 4, depend on x° : this dependence will disappear at the last step, when
one computes 4; & ¢;[3].)

Next define three scalar functions E, F and G by

E = (det)”'e*4,,
F = — (det)"e?4,,
G =(det) " te?4 _

12
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where det=4,4_, —(4,)*. Finally, ¢,4,,A4 =A,+ A; and A, =id,—id;
are given by
¢=_1~ F, —2E,
2F| —2G; —F,
i| F —E
- ¢
A, F[GE —F:l
A =:_E F, 0
$T2F| G,+26 -F,

A_=L[FE E, — 2E]‘
® 2FL0  ~F;

This, then, is our candidate for a new solution, and we must now make sure
that it satisfies the five requirements listed in Sect. 1. Conditions (i) and (iii) auto-
matically hold, by construction. General theory says that condition (ii) will be
satisfied provided that 4, 4, & 4 _, are smooth and that det is nowhere-vanishing
(this was what was meant by the earlier statement that p should be “nowhere-
vanishing”). In our case, we do not even need this theorem, since one can check
directly (without too much trouble) that ¢ & A ; as defined above are smooth
(in fact real-analytic). As for condition (iv), we shall see in the next section that
[¢]=1—1/r+0@3) as r— oo, so (iv) is satisfied with m = 1. Condition (v)
of course follows from the others.

Our construction has therefore yielded a monopole solution with topological
charge n = mx = 2.

3. Discussion

When one tries to write out the fields ¢“ and A¢ in terms of the coordinates x, y, z,
one discovers that the expressions for them are rather complicated (and complex-
valued). We know that there is a gauge in which the fields are real-valued, but
at present this gauge is not known explicitly. It might be that there exists a gauge
in which the fields are relatively simple functions, but this remains to be seen.
Let us content ourselves here with a few remarks about the structure of the Higgs
field ¢.
The matrix ¢ has the form

U Ve ¥
¢ =[We2i"‘ -U ] 7

where U, V & W are real-valued functions of r and z, and where & = |€|ei"’. Thus
¢ is axisymmetric (about the z-axis) [13]. The appearance of the integer 2 in (7)
supports the earlier assertion that the topological charge is 2 [2].

By way of illustration, here are the functions U,V & W on the z-axis and
on the z = 0 plane. On the axis,

U =z(z*> + ¢?)~! — tanh(2z2), (8a)
V=W =0; (8b)
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while on the plane,
U=0, %a)

_ ¢’ cosh(2a)[sinh(2a) — 2a cosh(2a)]

r=w ala* — ¢* sinh?(2a) ]

1, (9b)

where a = (r* — c?)1/2,

In the previous section we needed an asymptotic expression for | #|, up to
and including terms of order ™. It is not difficult to obtain this by direct calcu-
lation. The author has used the computing system REDUCE 2 to calculate

| ¢ | up to terms which fall off exponentially as r — oo . The result is
@] =1-a/(a®+b?)+ 0@ *),

where a and b are defined by (a + ib)* = R? = r*> — ¢? + 2icz,a > 0. So certainly
¢ =1—r"1+0(3),as claimed earlier.

By definition, the monopole is located at the point(s) where ¢ vanishes. We
see from (8), (9) that ¢ vanishes at the origin » = 0, and has no other zeros on the
z-axis or z = 0 plane. So if ¢ has any other zeros, they must (because of the symme-
try of ¢) consist of rings surrounding the z-axis. The author has checked, by
numerical computation, that this does not happen: our monopole is therefore
located at a single point.

In the previous section, the constant ¢ was assumed to have the specific value
n/4. It turns out that no other value of ¢ gives a non-singular monopole; there
are gauge-invariant singularities whenever ¢ # n/4. So our monopole solution
depends on exactly five parameters, corresponding to the position of the monopole
and the direction of its axis of symmetry.

It appears very likely that the techniques described in this paper can be used
to obtain yet more monopole solutions, of arbitrarily high charge. This possibility
is now being investigated.

Appendix
It has to be shown that if the matrix g satisfies the conditions
det(g)=1, (10)
L9 OT* =g(r, = TN, (11)

then the gauge potential A#(xj) obtained from g takes values in the Lie algebra
of SU(2). The procedure by which 4, is obtained is as follows. First, substitute
y=y(x’,{) =& — 2z — E{" ' into g and “split” g into two matrices 4 and k:

g(y(x, 0), §) = hix, Ok(x, )~ 1, (12)
where 4 is analytic away from { = 0 and k away from { = oo. Then define 4 (x) by

Apy — CApz —ih(x, £)~ IDP(C)h(X, 0
— ik(x, {) ™ 'Dp(Dk(x, 0), (13)
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where Dp({) is the differential operator

0 0
DO =5t = 5p

6xP2

and the four coordinates x"4(P, Q = 1,2) are defined by

xtt xt? x0—iz  —if
x21 x22 —i& x°+iz |

See [6] for more details.

If det(g) = 1, then /4 and k may be chosen to have unit determinant as well,
and it follows from (13) that trace (4,) = 0. It remains to be proved that in some
gauge, 4, is Hermitian: A% =4, .

Observe that p(x, — {™1) = y(x, {), so that Egs. (11) and (12) imply

k(x7 C)*- 1h(x9 C)* = h(x9 - E_ l)k(x, - ’C_ 1)— !
and so
hx, O*k(x, — T = k(x, O*h(x, — {71). (14)

Now the left-hand side of (14) is antiholomorphic away from { = 0, and the right-
hand side away from { = oo. Thus by Liouville’s theorem, both sides are constant
in {, i.e. both sides of (14) are equal to a matrix-valued function A(x).

The splitting (12) does not determine 4 and k uniquely: there is the freedom

hx, O) b hx, H)A(x), (15a)
k(x, ) b k(x, H)A(x), (15b)

where A(x) is an SL(2, C) matrix. This freedom corresponds exactly to the gauge
freedom in the gauge field. Under the transformation (15) the matrix A(x) trans-

forms as
A A*)A. (16)

From the fact that A(x) equals both sides of (14), with { an arbitrary parameter,
one easily sees that 4 = A* It follows that we can choose A such that after the
transformation (16) we have

A=+1, 17

I being the identity 2-by-2 matrix. From now on we shall suppose that such a
gauge transformation has been made.
In terms of the coordinates x", the Hermiticity condition A¥ = 4, is

f J— % —
All_AZZ’AZI_ A12’

which is equivalent to
[Au - CA12]* = E[Au — (= Z—1)1422]'
This in turn in equivalent to

(O™ D, OO T* = = {[a(= T )7 ID,(= T (=T h] (18)
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because of (13). Now expand the left-hand side of (18), making use of the identities
D) ={D,(- T,
KO* =+ h(—-C"1)7
one then obtains the right-hand side of (18), as required.
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