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Abstract. We give a proof of the existence of a %2, even solution of
Feigenbaum’s functional equation

g(x)=— g "glg(— 2x)), g(0)=1,

where g is a map of [ — 1, 1] into itself. It extends to a real analytic function
over R

1. Introduction

In this paper we give the details of the work described in [1] by the same authors
and Ruelle. While the latter is not responsible for possible mistakes in the present
paper, he is, of course, a coauthor of the rest. Our purpose is to prove the existence
of a %? solution of Feigenbaum’s functional equation.

1
g(x)=— Tg(g(—iOX)),
0

1

90)=1, .

where g is a map of the interval [ —1, 1] into itself. This equation and its solution
play an important role in the theory, initiated by Feigenbaum [7] concerning
universal properties of one-parameter families of maps of the interval. Excellent
introductions to this theory can be found in [7-9] and particularly in several
works of Collet, Eckmann, Koch, and Lanford [2-5], so that we shall give no
further details. It is important to note that, to each £>0, corresponds the problem
of finding a solution of (1) behaving, for small |x|, like 1—const|x|'**: for
sufficiently small ¢ the problem has been fully and satisfactorily solved by Collet et
al. [5], who show that there is an e-dependent solution g, = f,(|x|* *%), f, analytic.
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The problem e=1, (this is implied by requiring g to be ¥* and g”(0)<0), is of
particular importance. Lanford has given a solution (see [11]) making essential
use of computers. In view of the interest of the subject, it seems to be worthwhile to
present the alternative solution described in this paper.

2. The Problem to be Solved
We look for a %2, even solution of (1). From (1) it follows that

Fo=—g(1). @)
Let us define, for any %2 real function ¢ on [ —1, 1], and any real 4 with 0 <|A| <1,

m(¢, )=M"}odpodoM_,,

with
M_,x=-x,
ie.
1
(m(, ) ()= — = ($(~1x)). ©)
For any real ue[—1,1],
M, 'm(p, )M, =m(M; *$M , 2). 4)

If ¢ is even, so is m(¢p, A). Suppose that ¢ is an even, concave fixed point of m(-, 1)
with a maximum at 0, ¢(0)=pu, O<pu<1. Then M, '¢M, takes the value 1 at 0.
However the condition ¢(0)=1 is not preserved by the map m(-, 1). This can be
remedied by several methods, in particular by using the C.E.L. map [4],

J(@)=m(d, — (1)). (5)
We shall instead deal with w(¢, 1) defined by:

(0, 0=~ 36~ 20)+ AV 41, ©

(where 0 <A< 1). In fact we concentrate on values of 1 in a small interval I around
A=04, (as suggested by [7]) and find, for every A in I, a solution y, of the
equations

CO(X;,, )') =X X/I(O) =1. (7)

We shall prove that y, depends continuously on A, and that y,(1)+A takes
opposite signs at the ends of I, hence the existence of A,el such that y, =g
satisfies (1). Note that every solution of (1), (even or not) satisfies g(1)+1,=0 and
is thus a solution of (7) with A= 14,. It will be seen [Eq. (10)] that g”(0)=0 implies
g)=—25"

The fact that g should be sought among even functions is justified in the
previously quoted works. It can also be supported by the following arguments.
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Denote h(x)=g(x)— g(x) and suppose that, for some x, >0, h(x,)>0. Then
h(x )= 2g 1g(g(— Aox,)) — g(g(Aox )

1
S’l(;l'h(/loxl)l gd@ g'0g(—2ox,) +(1—0)g(Aox,))|-

Recall that g'(1)= — A5 *. For any ¢ >0 there is a 6 >0 such that x, <§ implies that
the last integral is, in modulus, <(1+¢)4; ! and therefore

Ih(Zox )z A5(1+e) " h(x )l
Ih(Agx )| 2 A5"(L + &)~ "h(x, ).

This leads to a contradiction if & is 47, since h(Afx,)~ &(2px,)*h"(0). In this case
there is § >0 such that h(x)=0 for all xe[ —d, d]. Then using repeatedly the above
inequality, it follows that h(x)=0 everywhere.

3. Method

For every A in I (a closed interval around 0.4, 0<I < 3, to be determined later), we
try to find a solution y, of (7) within the set &, of even, €2, concave functions ¢
with ¢(0)=1. In fact this subset will soon be considerably narrowed down so that
functions ¢ considered will satisfy: ¢'(0)=0, ¢"(0)<0, ¢(1)<0, ¢"(x)<0, ¢'(x)<0
for all xe[0,1]. Equation (7) implies

x(X)=— X&(Xz(iX)) 2a(Ax), t9)]
2500) = = A23(0,(Ax)) 15 (A%)? = A (2,(Ax)) 25(Ax) ©)

Since we require y;(0)<0, y, cannot be identically equal to 1 and, moreover,
setting x=0 in (9) gives

nH)=-2""1 (10)

The method we use consists in substituting the map ¢—w(¢p, 1) with a new

mapping ¢, —1,¢, =¢,, obtained by solving, for given ¢, the functional equation

1
B:09=— 26,0+ P2 11, (1)

Here ¢, is 42, concave, even, and ¢,(0)=1. Then any solution ¢, of (11) also
satisfies ¢,(0)=1. However (11) implies
$3(0)[1+4¢7(1)]1=0.

Hence a necessary condition for the Eq. (11) to have a solution with ¢5(0)%0 is
that

P ()=—-21"". (12)

On the other hand Eq.(11) is not determined since, for any solution ¢, and
0<0=1, ¢,(ox) is also a solution. Thus we define the map 7, on the set of ¢,
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satisfying ¢(1)=— A" ! by requiring ¢, also to satisfy
L1)=—4A"1. (13)

It is convenient to define the following new functions

FW)=106,0-9-¢,(), (0=x=1), (149
G(X)=%[¢z(1—X)—¢z(1)], (O0=x=1), (15)
P =1— (). (16)
Given F, satisfying F(0)=0, ¢, can be reobtained by
¢, (x)=A[F(1-x)—F(1)]+1 (17)
and, similarly
@,(x)=A[G(1—-x)—G(1)]+1. (18)
Equation (11) now translates to
w(O)=F(p(A*)), 0st=<1 (19)
whence
V() =2F )y (A%). (20)

Because of (16), 1 must satisfy
w(0)=0 21
and hence
¥ (0)=22F'(0)y'(0).

Noting that ¢%(0)= — 2y’(0), we recover the necessary condition (12) in the form

F'(0)=1"7 (22)
and the determining condition (13) takes the form
W= 23)
Y=o

The map 7, has now been transformed into a map T,, T,F =G, defined as
follows:

1
1) given F, a real %2 function on [0, 1] satisfying F(0)=0, F'(0)= FER find a

solution y of the equations:
{ w(t)=F(p(4*1))
w(0)=(i, w(0)+0, p(1)=24 ",
2) Glx)= - [w(1) —w((1~ x)*)]. (25)

(24)
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A fixed point of T, i.e. an F such that G=F defines a fixed point of 7, and,
consequently a fixed point y, of w(-, 4), and conversely.

In the following sections, we shall obtain subsets of function space where T is
well defined and which are mapped into themselves by T),. It will then be proved
that, restricted to certain such subsets, equipped with a suitable metric, T, defines a
contraction.

4. More Precise Statement of the Problem and First Estimates

In this section, 4 is fixed, with 0 <A< 1. F will be a €2, concave, increasing function
on [0, 1], satisfying:

1
F0)=0, F(0)= FER (26)
0=F(x), 0z=F'(x), (27)
hence
1 X
OéF'(x)éﬁ, 0§F(x)§/1—2. (28)

The function i must satisfy
p(t)=Fp(2*),  p0)=0, y'(0)+0, y1)=2H"".
We try to determine y in the form
p(t)="¥(at), (29)
where >0 and ¥ satisfies
Y(t) = F(Y(A%t
fro ~rerwo) 50
P0)=0, P'(0)=1.
Furthermore there must exist a number o>0, in the interval where ¥ exists,

such that ¥(x)=(2xA)~!. In this section we give sufficient conditions for the
existence and uniqueness of (30):

Lemma 1. Let F be a real €* function on [0,a], (a>0), satisfying there

F(x)20, F'(x)<0, F(0)=0, F(0)=4"2
and hence
0SF(x)<4i™%, O0=ZF(x)<i 2x.

Then
(i) There exists a unique €* function ¥ on [0,al”*] such that

0<¥Y(@)<t, P(0)=0, WP(0)=1,
Y(t)=F(Y()*t) for all te[0,aA?],
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and this function satisfies
0=vYm=1, PY@1=0.

(ii) If F is N times continuously differentiable on [0,a], N >2, then so is ¥ on
[0,a2™2].
(i) ¥ depends continuously on F in the €* topology.

Proof. Let #, be the convex set consisting of all > functions @ on [0, %a]
verifying @(0)=0, #'(0)=1, 0= &(t)<¢ for all t. The mapping

(tp®) (1) = F(2(221))
is well defined on 4] and maps .#] into itself. For ¢, ®,e .4 denote
d0(<151,d52)=0 sup 2t‘zldil(t)—d)Z(t)[.

st<ai~
Then
do(tp @1, 1pP,) S A%d (P, D).

This demonstrates that 7, has at most one fixed point in A47. Let
N ={Peb*[0,aA"2]): 0 P'()=<1,2"(t)<0 for all t,P(0)=0,d'(0)=1},
and for @,,P,e N
d(®,,D,)= sup P, (t)—Dy(0)|.

0=t<air~2

Then, using (t;®) (t)=A2F(®(A*t))@'(A*1t), one finds

d (15, 15 P,) S A%a|F'|| ,do(D,, D,)+ 22d (D, D,).
Denote
Pot)=t,¥,(t)=F(A*1),..., P ()=F(¥,_,(A*t))=F<Fo...cF(A*"t).  (31)
Then, for n>1

V() =22F(P,_,(A0))¥,_,(A%), (32)
PIt)=A*F'(P,_ QPO (202 + 24F(P,_ (2)P!_ (%), (33)

It follows by induction that ¥,e /" for all n. Moreover, for n=2,
do(¥,, P, ) S A2 V(P 1, W),
d,(?,, ¥, ) S22 (n—1)a| F"| ,do( ¥, Po)
+ 42004 (P, P,).
Therefore the two sequences {¥,}, {¥,} uniformly converge to ¥ and ¥,

. . d . . .
respectively, with ¥'(t) = ¥ ¥(t). Moreover it follows from (33), by induction, that

for all ¢,
POl =(1=22)" 4 F"|,.



Feigenbaum’s Fixed Point 267

More generally, suppose that Fe4~([0,a]), N =2. Then, for 2<r<N, n>1,
PO(0)= 22 FOY, (20 ¥, (220 + A2 F(P,_ (G20) P9 (%)
+226, _((FO(P,_(2%0), P2 1 (2%1)),

where &,_, is a polynomial in the quantities indicated, with 1<g<r—1,
1Zs=r—1. It follows from this, by induction on r and n, that there is, for each
r=1,...,N, a number M, (depending only on F) such that, for all n, and all ¢,

PO <M,.

Suppose now that it has been proved, for all p<r—1, (1<r<N), that P
converges uniformly to a limit (denoted ¥)) as n— oo (then this limit is the p™®
derivative of ¥). Fix £>0. By the uniform continuity of F®, (0<s<r), and the
induction hypothesis, there exists v(¢) such that, for m=n=v(e)

EFOWP, _ ((A20) W, (G2) + A28, (FO(P,_ (A20), P9, (2t)
—IFFOW, QRO (A2 — AFE,_ (P, (720), P9 (A1) <e
and, as a consequence,
[P0 =P Se+ A7 F" | 1P ey = Py o M,
FA2D P )y

For mznzv,(e), the second term is ¢ and then
P9 -, <2+ 220D P — PO ||

2¢
=170

F2)20 7 D@

By choosing m=nzv,(¢) this can be made smaller than 3e(1— 42"~ )~ 1, This
proves parts (i) and (ii) of Lemma 1. We do not give explicitly the proof of (iii)
which uses the same methods.

Corollary 2. With the same hypotheses as in Lemma 1, assume that, for some k>0,
and all xe[0,a],

F//(x)
0 — F(x) <k
Then, for te[0,aA™ 2],
Tll(t) _ S 2nygyr( 9 2n F/((T(lznt))
v~ 5 R o

where the series on the v.h.s. (which has negative terms) is uniformly convergent.

Proof. The hypotheses imply that F(x)=A"2¢ ™ for all xe[0,a] and
P(t) = e P (A*"t) for all te [0, aA™ %], all n= 1 hence, by choosing n large enough,
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Y'(t)>x' >0 for all te[0,al™2]. In the expression (valid for all N >1)

P(t)

F'(P(2) ., P'(320)
T(E) +4

F(PG2) " Wi
FI(PO2") 0 (02N
F(P(2") (AN

=229 (22

(35)

N
— Z /12"';[”(/12"0
n=1

the last term tends uniformly to 0 as N— co.

5. Definition of the Mapping T, and Invariant Subsets

Given F satisfying the condition of Lemma 1, suppose that there exists « such that
O<a<A™? and a¥'(x)=(24)"!. Then T,F =G is given by

G(X)=%[Y’(O<)— Pl-x)%)], 0=<x=1 (36)
and satisfies
G09)="2 (1P el - ), ()
20 402
G'(x)=— - V(a1 —x)?)— o (1—=x)2P"((1 —x)?). (38)
If, furthermore 0 < — I;,l((j:)) <k for 0=x=a, we have (using Corollary 2)
G'x) 1 V(o1 x)%)
G " 1ox i) >

We shall now determine subsets of €%([0, 1]) where the above conditions are
satisfied and which are mapped into themselves by 7T,. Denote

M (bl ey, A) = {Fe%([0,1]):F(0) =0,
F(0)=1"%0S F(x)S A2 F'(x) <0,

F"(x) 1
—(l =)< — <
- (1—-x)= Fl) ST-x forall xe[0,1], and
F"(x) 1
I —X)— —x)P<— < — —X)— —x)3
= L1 —x)—4(1—x)° < Flo S1—x c;(1—x)—c3(1—x)
for 0<x=A4}, (40)

where 0<A4<1,0=/,0=c; (j=1,3),/, +/3=1, ¢; +c; = 1.
Let F belong to this set. From A2F'(0)=1 and

0 FW 1
- F(x) T1—x

—c(1=x)—c3(1—x)°, 0=x=<A, (41)
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it follows that, for 0<x< A4

J2F(x)=(1—x)exp

(c;+c)x—3(c, +3c3)x* +cy (x3 — %4)} = H(x)

—(1—x)exp %[1«(1—x)2]+§43[1—(1—x)4]}. (42)

Since the r.h.s. of (41) is =0, the function H(x) is decreasing. On the other hand we
have

V()= ﬁ AEF'(P(2*")) (43)

n=1

(Proof.
V()= 12F(P(A2)P' (M%) = ﬁ (A2F(P(A*"))| P/ (A*Ny).

Since ¥'(A2Vt)—1 as N—oo, the result follows: note that |A2F/(¥(1*"t))— 1|
<22t~ D|F”| . so the infinite product is convergent.) Hence, since H is decreasing,

Y(t)= ﬁ H(Y(A*"t)= ﬁ H(*"t) for te[0,4472]. (44)

n=1 n=1

Note that, for all ¢, the same holds with ¢, =¢, =0, ie.

0 N—1 1
Y'(t)= ]_[ 1=2*"t)= [ 11 (1—)f"t)}(l—i”’t)l—/12
n=1 n=1
N /’{ZN
> 2n _
=[[="[ 1—2 t)}(l __l—lzt>' (45)
In particular,
N L 46
= 1=1% (46)
and therefore
At
>
‘P(t):t< T /12)) 47
Returning to (44), we find, for 0<t< 44" 2,
Pt = H (1—=2%"t)|ex Gl ¢ +ey—(cy+3¢ ) G
LL Pl SZ|1T6 3 21 -l-/lz)
1 A%t
14 2 _ = .
et (1 F LN LTI W R +/14)) (8, 4) “8)

Because H is decreasing, @(t, 4) is a decreasing function of ¢ for fixed A.
From (48) it follows that

A (AN A (4



270 M. Campanino and H. Epstein

. 1 . . . .
If the r.h.s. is > o then, since t¥'(t)=0 at t=0 and is continuous, there is at least

1
one value of ¢ in J0, A4~ [ for which t¥'(t)= — : we denote « the smallest such

value. (In fact under the conditions we shall use, 1t will be shown later that this
value is unique.) A sufficient condition for T to be defined on .#,(4,, 4, ¢,,c5, A) is
that:

Criterion 1

24 (A
We shall concentrate on a small interval I of variation for 4, given by
I={4:0.152<4*<0.166} . (50)
Making ¢, =c;=0, Criterion 1 becomes
24
7(1—A)(l—/12A)...(1—12”A)...gl. (1)
For this it is sufficient that, e.g.
24 ) AtA
- — — >
7 (1—A)(1—-4%4) (1 1_22>=1. (52)

The Lh.s. of (51) [as well as of (52)] is clearly a decreasing function of A for fixed A.
The inequality (52) is satisfied for 4=0.32 and 4*=0.166 hence for all AcI: thus
we need only consider values of 4 <0.32, hence aA? <0.32. Under these conditions
it follows from (39) and Lemma 1 that

G”(x) 1
TG 1 X
For future purposes we need smaller values for A (this will later be essential to
show that DT, is a contraction) and then it is rather delicate to obtain values for
41,43, ¢q, ¢4, and (sufficiently small) 4 such that .#,(4,4,c,, c5, A) is mapped into
itself by T,. For this, in view of (39), we need upper and lower bounds on — %/((Tt))
Upper Bound. Let c;,c;, A and A be fixed with 0=c¢;, 0=c;, ¢;+¢; <1, 0541
and assume F satisfies the hypotheses of Lemma 1 and (41). The r.h.s. of (41) being
an increasing function of x, using (34) and: V'(t)<1, P(¢)<t, we find, for 0 <¢
<AL™2

for 0=<x<l. (53)

RAP
e 17 { —

Note that for n=1, A>"t< A<1, and hence (1 —A2"#)%>1—34"t so that

Y A 2 an
~y = Z [1 T =A™y +c5)+ A% t(cy 4+ 3c5)|.

¢ (1= A2m)—cy(1— ,12%)3}. (54)
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Since
1 A2t A%t
i T = e
T”(t) B
_ < <t< 2
g SPothit, 0stsAl (55)
with
22
ﬁo=ﬁ(1—01—03), (56)
+ 3C N—-1 /14n l4N
— 412 : 57
by T L it A 7
(In practice we choose N =3.)
Equation (39) now shows that, for 0Sx =<1,
GI/
(( )) 1-4,(1—x)—/4(1—x)3, (58)
where
24 24
/’1=f’1(c1,c3,A,/12)=)—250=1—_75(1—cl—ca), (59)
L, 242
/3:/3(01"73’1‘1,/12)— ﬁ1
N-1 l‘tn )'4N
942 . 60
=247\ (e +3¢) 77 /14 + 2 (1 ;LZ"A) a—aa—m

The functions /] and 7} are both increasing in A? for fixed 4, ¢,, ¢;. (In practice we
choose: N=3))

Lower Bound. Assume Fe /#,(4,,4,,c,,c5, A). Then, for 0Sx=<A4,

F”(X)
_ - 2003 21— x)—/ (] — x)3 =
Fx) Z1l+x+x*+x°—4(1—x)—/,(1—x)° =P(x). (61)
: A%t I
Using P'(t)= ®(t,2) and P(t)=t I—W , we have, for t<AA™ 2 since
P(x) is increasing in X,
VO S angygan
V) = Z A" D(A2"t, A)P(x,), (62)

where

A2u
= 1——0 =A% .
* un( 2(1—&2)>’ . <A
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Using (1—y)>=1—3y for 0<y<1, we get

22u?
>(1— —
Pix)z(1—-¢, /3)+(u,, i 22)>(1+/ +34,)
Au 2Pu?
2 _ n n
+un (1 1__}'2 +4(1_/12)2)(1 /3)

3124

2
=(1—¢,—¢)+u(1+¢,+34)+u? (

A
=17
2 (34 APu 322 A Au,
1_1—/12(7“ Hi= 12))+/[ 1—/12(1 274 ,12))”

The coefficient of the term in u? is positive and this term may be dropped. Thus

(1+4, +3/3)+1—3/;,)

+u’

2
P(xn)g(1_/1_/3)+u,,(1 M 12))(1+/+3/)
(1— )22
2 PR —_——
+u,,[1 oo 14+ 36)| (63)
We choose
022 PE 1—3¢
— 2 max{0 - 3 4
=50 max{’zu—ﬁ) 1+Z’1+3f3} (64

so that the last term in (63) is positive and can be dropped:
Pix,)z(1—4—4)+u,(1—-ZA) 1+ +34).

Note that, according to (64)
)'2

243451

+1]<1.

We now get, for t<AA72,

Pt
~ ((t)) = Z 2D, AL~ 4, — )+ (L +4, + 34)(1 — ZA)A*"t]
and, taking into account the fact that &(¢, A) is decreasing in ¢,
T”(Z)

=0 — > 220002, )L — £ — £) + (1 +£, +34)(1 — ZA)A2(]

+ (4, 2) ’1412(1 4 —1)+ 1814(1+/+(/)(1 ZA)

>U+vt, (65)
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where
2
U=2(1-¢—14) [@(A, A)+ P D(22 A4, A)}, (66)
14
V=11—ZA)1+7, +34) [(D(A, A+ = D(A2A4, /1)}. (67)
Integrating (65) yields
A
P < exp—(Ut—l—;tz), 0§t</1—2. (68)

Hence o, for which a=(2A¥'(«))~ !, must satisfy:

1 Vv
a_ﬁexpa(UﬂxE)

or, denoting {=24a, u=Q24)" U, v=(84?)"!
{ = exp(ul +vi?). (69)

Since, in the cases we consider, /| Zc,, /3 =c;, so that .#,(4,4;, ¢, c5, A) is non-
empty, and Criterion 1 is verified so that « exists with & < A4~ 2, the graphs of the
functions ¢—¢ and &—exp(ué+vé?) must intersect at two fixed points of the
second function. The lower one (denoted {_) is stable and is a lower bound for {,
verifying {_ >1. For any £, <{_ the sequence {£,} given by

én = exp (u‘fn -1 + Uéf— 1) (70)

is increasing and tends to {_, so that £, is a lower bound for {_. In practice, for
any &, such that 0<¢,<(,, if

& =expuéy,+vEd)>¢&,,

then ¢, <&, <(_, and &, is a lower bound for {_. Alternatively, one may choose
¢, =1, and stop the sequence (70) at some arbitrary N. In this way one obtains a
lower bound denoted {_. for {_ and hence for {, so that

min

1
pin = 7 Cmm <o,
(71)
Linin = mln(fl’/3’cl’c3"4 }')
Hence, for 05x<1,
G'(x) 1
. S ’ _ A _ 3 2
G ST — =9 =1 =, (72)
where
¢ =c\(£1,0,¢0,5, A, ) =200, U=2( . u, (73)

=4l by 0qy a0 A, A) =202, V=402, v (74)

mm
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In practice, to obtain, for some fixed value of A, a set .#,(¢,,4,,c,,c;) which is
mapped into itself by T, one proceeds as follows:

Procedure 0. 1) Select ¢, ¢, and A4 such that (for the value of A under consideration)
Criterion 1 is satisfied.

2) Compute ¢; and £, and fix ¢, =/], /,=4;, with 0</ +4, <1 (if this is
impossible, the trial fails).

3) Compute U, V, a,;,, ¢}, ¢5. The trial is successful if

iz, C3=cy.
Interval Calculations (Procedure 1). It will be necessary to be able to obtain sets
M(¢1,4, ¢4, ¢35, A) wWhich are mapped into themselves by 7, for all A in a given
interval J, say p<A?<b. This can be done using the above calculations as follows:

1) Fix ¢, ¢3, and 4 such that Criterion 1 is verified for all AeJ: for this it is
sufficient that Criterion 1 be satisfied for A*=b.

2) Then for all F satisfying the conditions of Lemma 1 at some A€ J and (41) the
upper bound (58) holds. Since /; and /; are increasing functions of % we fix

fl gfi(cp c3> A9 b)
by 2l5(cy,c5, A, D).

3) Let Fed,(4,,t3,¢15¢5,A), F(0)=2"2 with p<A*<b. Then the bounds
(65-69) hold. We now note that:

a) for fixed A4, ¢,, ¢5, AD(4, 1) and AP(A*A, A) are increasing functions of A: to
see this note first that the exponential appearing in ®(4, 1) [formula (48)] has been
obtained as

exp i Sl = (=221 + 21— (- A74)*]
and is therefore an increasing function of 1%, Consider now
/A2 ﬁ (1-2%"4).
n=1
Its logarithmic derivative in A% is:

LA L g
227 2 (1=2A) =202 & 1-4%4
Tz > >0 forA2<0.166.
242 (1_,1214)(1_12)2—2/12 (1_)’2)3> or A <0.166

The same argument works for A®(12A4, A).

b) A(1—ZA)is an increasing function of A: The derivative of Z with respect to
2

A% is (for fixed 4, 4;) equal to 0 if Z=0, or to 2(1f/12) <1+ T

), hence always

inferior or equal to this last quantity.
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Hence

d i 124 Al 22
- — >__ —_— —
a2z ZA)=2,1<1 T A) 2(1—12)(”1—12)‘

This has the sign of

4
{jzg(l—A)(l—iz)—%Aiz>0 for 42<0.25,4<03.

(1= A1 = A= 3224

¢) From this it follows that

e —olemns 2 sura 75
u=5 (=, =) [ OA D)+ 1 ,)}. 75)
v =§(1 —ZAYL+4,+34)A [d)(A, N+ _‘;4 (124, A)], (76)

are (for fixed c,,c;,4,,4, A) increasing functions of A, hence so is the lowest
solution {_ of {_ = exp(u{ +v{?) [the graph of é—exp (ué+vé?) rises as u and v
increase]. The result of this is that if AeJ, u, v and {_,, can be computed with A2
replaced by p, and therefore also ¢| and c¢;. However note that «, must be
estimated as

¢ .
o= —n (77)

21/b
Improvement of Constants at Fixed Points (Procedure 3). Let 1,¢,,¢4,¢,,¢5, A be
fixed such that Criterion 1 is satisfied and T, maps .#,(4,4;,c;,c5, A) into itself.
Assume F ;e M (4, 43, ¢y, C3, A), o, 18 the corresponding value of o, and T)F ,=F .
Then the bounds on F , can be made more precise as follows. Pick A%, <A, <A.
Ifo,>A4,A"2 then o, in the expressions for ¢} and ¢} can be replaced by 1724,
leading respectively to ¢{" and ¢V and the bound

B _ 1

< — D — ) — (1 — x)3
F/f(x)—l_x Cl( x) (,’3( x)

since F,=T,F . Then a new 4, <A can be found such that ¢{", ¢{" and 4, satisfy
Criterion 1, So that A%a, < A,. This, in turn can be used for a new evaluation of /{*,
/4%, and (again using 4,4~ % instead of a,;,), ¢, ¢ etc. .... One thus constructs a
sequence 41", /3", ¢, ¢, A, If for a certain n one reaches an A, <A,, there is a
contradiction so that we must have o, < A,A™ % If A,> A, then either o, > A,A™>
and then o, < 4,4~ % and the bounds

_1_. —/(1"’(1 —X) _/(3‘”)(1 —x)P— ﬂ’fl < _1-

— (1 = x)— (1 — x)3
—x s F’f(x)=1—x '(1—=x)—c3(1—x)

hold, or «,<A,A"? so in any case: a,<A,4"°. This procedure can be used to
obtain a better upper bound for o ;. Note also that this better bound can be used to
improve the bounds on F,: from (55), (58) and the fact that/] <4,/; <4 it follows

that
B Fi(x) - 1

F'f(x)zl——x—/

1,f(1_x)—/3,f(1_x)3’ (78)
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where
A, A?
4,f= A 4, /3,f=A2 35 Af=An' (79)

This remark will be used later.

In the sequel we shall say that .#,(4,4,c;,c5, A) is stable if ¢} =c,, ¢, =c;,
4 £4, 03 <4, these new numbers being calculated according to the procedures
described above (the Criterion 1 being always assumed to be satisfied). Clearly
under these conditions, .#,(4,, 4, ¢,, ¢35, A) is mapped into itself by T,.

6. Further inequalities

In this section F is supposed to belong to some stable ./#,(4, 4, ¢,, ¢, A) with
A<0.3, and to be three times continuously differentiable : then so is G and we have
the formulae

Y(t)=ASF"(P(A21)P'(A21)> + 3ASF (W (A20) P (A2 )P'(A%1)

+ASF (P (A1) P (A%1), (80)
G"(x)= 12;2 (1—x)P"((1—x)*)+ ? (1—x)*P" (o1 —x)%). (81)

H .
ence q//,/(t) g F///( qj(/’LZt))

Y@ " F(P(2P)
F'(P(2%)
F'(P(A%t)
G"(x) 6u Y (o1 —x)?)
G(x) 7 Pdl—x))
From these, it is useful to form the following combinations (this is the Schwarzian
derivative):

P()2e)?

v(320)
(%)
(1 - x)*)
V(1 —x)7)

+31* YA )+ A4

(82)

+4o2(1 — x)? (83)

P L (P _ 21w 1202
Z0) "E(W) =(SP)0)= A*LSF)PA0)]P' (220> + S P)A%t),  (84)

F'(x) (F”(x)

where (SF)(x)= m -3

2
W) . Defining similarly SG, we have:

SG)(x)=— m%;c? +40*(1 = x)*(SP) o1 — x)?). (85)

Similarly

¥(t) P (t) 2 , N F"'(Y’(lzt)) F”(‘P().Zt)) 2
Zo (W) =A@ [F/(wzt» ‘(F/(wzt))) }
F(P(2)

F#GD)

4 lI/'"(/lzt) Y’“(ﬂ.zt) 2
t [T’(ﬂr}‘(wwt)” (8e)

Pr(1%)
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and

G"(x) [G"(x) 2_ 1 Loy P(t)

Gx) \Gx)) | (1-x7° (1)

'.‘Pm(t) ('I///(t))l}}

q//(t) 'I’l(t) t=a(l —x)2 . (87)
We note that formulae (80), (82), (84), (86) continue to hold if ¥ is replaced by ¥, in
the Lh.s. and by ¥,_, in the r.h.s. (n=1). Therefore if we assume that SF <0 on
[0, 1], it follows by induction on n that S¥,<0 and, letting n— o0, S¥ =0 so, by
(85), SG=0. Thus: the subset of .#,(4,, /5, c;, ¢3, A) formed by functions F with

SF <0, (SF =Schwarzian derivative of F), is mapped into itself by T,. If F belongs
to this subset, then

+40%(1—x)?

gﬂ”(t) s 'I[//(t) 2
<3
70 = w0 9
and
G///(x) ?ﬂ/(t) q///(t)
— >
Gl = “W@P”W@’ *)
for t=a(1—x)% But, for t<a< 4172,
vt A%t YA A 224
<-— < <
=ty ST T a o S1oa T 2= Y
[see (54)]. For A=<0.3, A><0.166, this is <% so that G”(x)<0 and:
G///(x) T”(t) 2
— > _ — _
G 2 gy L= 1)

Hence (for such values of the constants) the subset of functions in .#, with
negative Schwarzian derivative is mapped into the smaller subset of those with
negative third derivative. Assume now that F” <0. Then we have

_Pn (PN
o(t) = Wi~ (lp—(t)) <0. (92)

Indeed, from (86) and F” <0, it follows that

F'(P(A2
a(t) S A*a(A2) + 24P (A%t) %
[_F@CER) g ny P07
|~ P O ) .
We claim the last term in (93) is <0:
F'(P(2) P(A2t)
U GRAR T
_F(POR) s F/(P(32n+2p)
=_ —F/(T(lzt)) P(A%t)— ,,;1 A2mp(j2nt2p) [— —_F’( Ve Zt))}
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F'(x) .

since — ZE) is an increasing function, this is bounded below by
F'(PA*) [, a A
~Fway) | E T
and
A A 24%
1124) >1_ 2 >1___
Y'(A%t) 1_/12=1 1_/12(1 t+1)=1 2 >0.

Thus, for all te[0,1™2]

o(t) < A*a (A1)
hence
sup a(t)SA*supo(t), (1—i*supa(t)<0. Q.E.D.
t t t
" 7\ 2
We also need, in the sequel, bounds on o(t), on S (F) and on ¥ (t): these are

obtained as follows. Suppose that F" <0, Fe./#,(¢,, {5, ¢, c3, A), stable, and that,
furthermore,

sup =L. (94)

0<x=A4
Then, by (86), for all te[0,A724]
—a(t) S A*L— A*a(A%t)

F"(x) (F"(x)
TFw " (F'(x))

SO
(1=2% sup (—o()=A*L
0<t<Ai-2
i.e. /14
sup _Jo(0)| S 7% L )
0=<t<AA"2

Hence, by (87)
G"(x) [G"(x)\? Y1 —x)?)
N +(@) =2 i — )
1 40204 L
+(1_x) +Ta (1—x)? (96)

and, for 0=x =< A4, the r.h:s. of (96) is bounded by
1 4a2/14L
1— 2
o T 1o 49
where we have used (55). Since a < A4~ 2, this is bounded by
4A2L) 1

208, + 20 B, (1 —x)? +

o+ o
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where (1— A)*<y=(1—x)?<1. This is a convex function of y whose maximum is
therefore reached at one of the ends of the interval [(1 — A4)?, 1]. Let y, be the value
where the maximum is reached. Then the r.h.s. of (96) is bounded by (97) with
y=y, and, therefore, a sufficient condition for G to verify the same bound (94) as F
is

44°L 1
Lg/l + (é%—m)yl +—
or
442 -1 _
Lz[l—mﬂl} (£ + 243y, +y1 '] (98)

and, in particular, [denoting (1 —A4)*=y,],

2 -1

1- [/1“'/3)"")/_1] 99)

L= max
y=1oryo

4
1=+

In all the cases which we need in the sequel the maximum is obtained for y=y,,.
This means that the subset of the functions Fe.Z,(/,,/5,c,,c5, A) obeying F” <0
and (94), with L given by (98) or (99), is mapped into itself by T} ; note also that (95)
holds for such F.

In the same spirit, denote ¥/ (t)=sup {0, + ¥"(t)}. Then, for t<AA™?

P (t) Y (2%t)
< 4 »4
Y'(t) 1Kt Y'(A%t)
B Flll(x)
1 F(x)

and, denoting

¥ (t) G"(x)
M= su —~ K.= sup — ,
og:gflﬂ Y'(t) ¢ OSxIs)l G'(x)

we find:

5 4204
Hence
442
Kg=3(4,+75)+ —1_—24KF. (101)
By the same calculation, (94) implies :

KGS3(4,+£5)+4AL(1— %71, (102)
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The inequality K; <K will be satisfied if

442

-1
Kpg(1__1_—/14-) 3, +05).

As a consequence the subset in .#,(7,, /5, ¢;, ¢5, A) such that
[F"(X)/F'(x)| S3(¢, +¢5)(1—44%/(1= %)~

is preserved by T,. Moreover, at a fixed point, since K; =K, and a <1724, (see
Sect. 5), with 7, , and 7, , as in (79), we find

K (tixea poing S 31,y 3,1 (1= 4471 =25~

103
Migs poms S39%01 405 ) (1= 24— 4421 (103)

Finally, we have

(1=2% sup U]

F//(x)
<324
osesar-2 V(1) [ B

osxsa  F(X)

[ sup I‘P”(t)l}
0<t<Ar-?
1 -
<34 [1—_7 —c,(1—A)—cy(1— A)3} (Bo+AATB)).
(104)
/12 2
where we have used (55) and |¥'(t)| < 1. Since f,+A4A17 %, = 3 (£ +75)= 31
(£, +¢5), (104) also yields
< P (t) - 34° [ 1
ocionis W) " 2A(1—1% |(1=A)
The same bound holds for ¥ (t), since P'(t)<1.
We now adopt the following notation: %,(¢,, /5, ¢,, ¢, A) denotes the set of ¢
functions on [0, 1] verifying the conditions:
DOSF(x)SA72, 0<F(x)<A™ 2% for all xe[0, 1], F(0)=0, F/(0)=A"2
2) For all xe[0, 1]

A—x)"'—¢,(1—x)—£4(1—x)P< — 1;—((3 <(1—x)!

—c,(1=x)—c5(1—x).

¢,(1—A)—cy(1 —A)3J (¢, +5). (105)

The constants 7, ..., ¢, are always supposed to satisfy 0=c, =7/,, 0=5cy;=/,,
i+ <l
3) For all xe[0, 1], F”(x)<0. Moreover for 0Sx< A
F/// 17 2
_ (X)Jr F(X)) <
Fi(x)  \F(x)

with L given by (99).
We say, for short, that & (7, ¢, ¢, c5, A) is stable if
1) c,, c3, A satisfy Criterion 1. .
2) 4=l (cy a0 A, A2, 03 2050y 055 A, AP).
3) (£, 45 €1 C30 A, A=y, (L, £as €1y €35 Ay M) 25
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The content of Sects. 4-7 can be summarized by : if %,(/,, 5, ¢,, ¢, A) is stable,
then it is mapped into itself by T,.

We note, furthermore, that formulae (99), (102) are, for fixed /,, /5, and A,
increasing functions of 1. Let J = {1:p<A?<b}. We define (¢, /5, ¢,, ¢;) by the
conditions

1) 0=F(x), 0= F'(x), F(0)=0, b~ ' <F'(0)=p~ ",

2) same as for &,

3) same as for %, but with 4? replaced, in formulae (99), (102), by b.

Sy, {4, ¢4, C3) 1s then said to be stable if

1) c,, c,, A satisfy Criterion 1,

2) £,20(cy, ¢35, A, b), 320y, c5, 4, b),

3) ¢\t ¢35, cq5 €3 A, I/Z))gcl,
Ci’i(/p /3) cly C3> Aa ]/E)gc:;'
In this case, for each AeJ, the set ;N {F:F'(0)=A"2} is mapped into itself by T,
for every AeJ.

7. Analyticity

For fixed 4, let F belong to a stable %,(/,, Z3, ¢;, c5, A). We note that, by formula
(38) the corresponding G verifies

2 24
05— G'(x)< 7"‘ < =5 for all xe[0, 1]. (106)
We now make the assumption that, for all xe[0, 1] and all n>1,
1 /d\" 1
| — < n_ — pn-1
| (dx) F(x)|<CB lzB , (107)

where B is some positive constant, and CB=1"2.
Then, for all n, ¥, (defined in the proof of Lemma 1) is ¥ and we propose to
find an estimate of the form Vm, Vr>1,

1 (dyY

— |—] Pt
r! (dt) wll)
where M >0 is independent of m, AM = 1. We use the method of majorizing power

series. Note that (108) holds for ¥,(¢t)=t and suppose it holds for all ¥, with
m<N—1. Then, given t,e[0, 17]

SAM =M""1,0<t<A72, (108)

Wlto+5)— Pylto) = F(Py_ (A2t)+2)— F(Wy_ (2= Y a,z",

m=1

1
a, = m—!D’"F(EPN_ (A%t)),

2=Wy_ (W2to+2%)— Py (APt = Y I¥s,
=1

r

1
6= — D"y (A%).
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Hence o

Palto+s)— Pulte)= Y. v,A>"s",
n=1
U= 2,4, Y GGy (109)
p=1 Fiyeeus rpz1

rit...+rp=n
Taking into account the preceding bounds shows that:

[v SV, nz1,

where
2. Vs =o(U(s)),
n=1
&(z)= i CB"z"= L —-C
= "~ 1-Bz
& s
U(s)= AM"s" = —A=
) ,,; ST Ms 1—Ms’
CB 1
H(U(s) = —1
VD=5 [1—(B+M)s }
so that,
V,=CB(B+M)""".
Hence P, also satisfies (108) if, for all n =1,
CBI*(B+My ‘<M1,
i.e. taking into account A2’CB=1,
JAB+M)EM,
ie.
12
M>=—5B. 110
2 LB (110)

Thus, if this condition is satisfied, for all »=1, and all m, (108) holds. By Vitali’s
theorem, it follows that {¥,} converges to ¥ in the sense of analytic functions so
that ¥ is € on [0, 1~ 2] and also satisfies

Irl—‘D’EP(t) <AM'=M""1 for all te[0, A" %] and all r=1. (111)

We now ask under which conditions the function G also satisfies the bounds
(107). First note that |G(x)|< 172, |G'(x)|£172, |G"(x)| 24473, 2%|G"(x)| £ [r.hs.
of (102)]. Hence if we suppose

B=A4"', B*>L[rhs. of (102)], (112)

there remains to determine whether, for all xe[0, 1]

1
iD"G(x)'éCB":—zB”‘1 for n=4? (113)
n! A



Feigenbaum’s Fixed Point 283

We apply once more the principle of majorizing power series: given x,e[0, 1],

(o1 —xo—2)%) — P(ol1 —x,)%) = i ¢, aw)",

n=1
w=—2(1—x,)z+2*
1
=7 D"¥(o1—x,)?).
The power series expressing w in terms of z is majorized by 2z+z% Hence if

1
{,= n—!D"G(xO), we have

IGI=Z,,
& 1
Y Z,z"= 7 U2z +z%))
n=1
iy 1 :
A 1=MaQz+z2%)

We denote

1—2Moz— Maz?=(1+0z)(1 —gz), where ¢ >0 and:

0—0o=2Mau, oo =Ma, (¢ +0)* =4M?*a*+4Mo.

Then
& A 0 o A
Z "= - —
,,; n? Mo+0) 1—QZ+1+GZ A’
. A n+1 n+1
i LA CL A

Since 0<o<g, 0"(0+0)— 0" ' +(—a)" " =0(g"—(—0)") 20, s0 Z,< AL g",
with

o=Muo

1/2
1+<1+L) ],M=B)L2(1-—Az)‘1=/1“. (114)
Ma

A sufficient condition for (113) to be satisfied is therefore % (%) <1 for all

n=4.

This will be satisfied if and only if (¢/B)<1 and BAM ~!(¢/B)*<1. With
M =)?(1—2?)"!B, the conditions to be satisfied [apart from (112)], are

ol 1\
(i )

Il

< 115
1= Mo re=l, (115)

A 1/4
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For 4<0.5, the r.h.s. of (116) is inferior to 1, so (116) implies (115). A necessary
condition for (116) to be possible is clearly

2042 A\
< f—_—
1—-1%2= (1-&2) ’
which holds if

(QA)* < A(1—-22)3.

(This is always verified if e.g. 4<0.32, 0.152<4?<0.25.) Then (110) is equivalent
to

1 11/4(1 _ /12)3/4 2
mé—w—‘l} —1 (117)
or
1—22) [[A14(1 — p2)3/4 2 -1
B;( MZ)[ (W ) —1} -1 (118)

It is easy to verify that this is, for fixed «4?, a decreasing function of A and, for fixed
/4, an increasing function of «A? (in the range of values we consider). Thus a list of
sufficient conditions for (113) are

1 _ /12 /11/4(1 _ /12)3/4 2 -1
> — —
B= 1 H Y 1} 1] . (119)
B=AL1, (120)
B =Ll +45)+ 24201 -4, (121)

[For these conditions to hold for all A in the interval p < A? <b, A must be replaced
by ]/Z) in (119) and (120) and by ]/E in (121).] If B, is the smallest number
verifying these consitions, we see that, for all B= B,,, the subset of functions F in
S, 1,15 €y, €5, A), which obey (107) is mapped into itself by T,. In fact it is easy to
verify, by the same calculations, that if B satisfies

1 _12 (1 _12)3/4(.[3&)1/4 2 -1

-1 —1
e

tB=A\71

2B?=[r.hs. of (121)],

with 0<t<1 and (1—1%)3731—(24)* >0, then

B

v

%—D”G(x)§/1‘2(rB)”"1 forall n>1.

The numerical results, to be described in Sect.10, give B,<1.8 and a
. 1 . .
corresponding Va >1.79 for all cases of interest. For a given B, let <7, denote the
0

set of € functions on (0, 1], which satisfy the bounds (107). This is a convex set in
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%*([0,1]) and any Fe .o/, is analytic in
{zeTC:d(z,[0,1])<B~1}. (122)
In particular, if #,(4, 4, ¢4, ¢5, A) is stable, and B> B, (as determined above) the set
Ay Sl Ly 1, a0 A), (123)

is mapped into itself by T;. This set is non-empty by Sect. 8, and compact in the ¢
topology : indeed it is relatively compact by Ascoli’s theorem, and closed because,
by Vitali’s theorem any Cauchy sequence in this set in the ¥ topology converges
toananalytic function satisfying the bounds (107). Similarly o/gNFUL |, 3, ¢4, C3, A)
is stable.

8. Non Triviality of ¥,n.</;

To verify that, for a suitable choice of the constants, %,(4,%4,c,,c5, ) is non
empty, we consider the function F defined by

F0)=0, F(0)=1"2,

Fiix) 1 (124)
TFr) T 1ox alm¥me=x)?,
and consequently,
A2F(x)=(1=x) eXP{% [1-(1—x)>]+ % [1-(1 —x)4]}, (125)
F'(x) [F'(x)\? i
F((;C))‘(F((z))) = el (126)

This last expression, (the derivative of F”/F’) is negative and for 0<x=<A4,
bounded in modulus by
1
— e +3¢3y0  Yo=(1—A4)%. (127)
Yo
For all cases of interest here (see Tables 1 and 2), this expression is inferior to L as
given by (99). From (124) and (126) we get:
F//I(x)
o~ 3¢y —5cy(1—=x)* +(1—x)*[c, + ¢5(1—x)*]2.

The last term is positive but bounded in modulus by 1 and therefore by
¢;+ci(l—x)* so that the total expression is negative. (In particular
|F"(x)|<(3¢; +5¢;)A~%). Hence — F” takes its maximum at x= 1, with the value

—F'(1)=2"2exp (%Jr‘;i) (128)

In order to estimate the successive derivatives of F, we denote z=1—x and

A2F(x)=h(z)=zexp

€y C3
7(1 —22)+—4—(1 —24)}. (129)



Table 1

22 A ¢y ¢ > cs cy> 4y /< 4 < Norm < (min
0.152 0.243 0.22 0.22004 0.224 0.2241 0.3187 0.318651 0.2668 0.266741 0.814 1.1806
0.154 0.2453 0.215 0.2157 0.228 0.2288 0.3231 0.323008 0.2734 0.273314 0.834 1.1795
0.156 0.248 0.208 0.2099 0.232 0.2331 0.3291 0.3290996 0.2808 0.280737 0.858 1.1773
0.158 0.2505 0.204 0.205 0.237 0.2377 0.3327 0.332612 0.2886 0.288562 0.88 1.1759
0.16 0.253 0.2 0.2003 0.242 0.2422 0.3362 0.336129 0.2966 0.296538 0.903 1.1743
0.162 0.2555 0.194 0.1946 0.246 0.2466 0.3415 0.34148 0.304 0.303996 0.928 1.1723
0.164 0.2585 0.187 0.18703 0.25 0.2509 0.3482 0.348172 0.3128 0.312776 0.958 1.1691
0.165 0.2595 0.185 0.18505 0.2532 0.25324 0.3492 0.349191 0.3166 0.316592 0.969 1.1686
Table 2

J A €1 ¢y > C3 3> 4y 6Hh< s l3< Norm = (a2
0.152<42<0.161 0.26 0.16 0.1624 0.224 0.22454 0.3818 0.381788 0.302 0.301934 0.981 1.1472
0.161<12<0.164 0.261 0.172 0.1727 0.243 0.2438 0.3653 0.365276 0.3145 0.314438 0.987 1.1587
0.164<7%2<0.165 0.261 0.176 0.1769 0.248 0.25 0.3601 0.360087 0.3172 0.317192 0.987 1.1631

98¢

uroysdy "y pue ouruedwe) ‘W
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We wish to verify that, for some B, for all n=1 and 0<z<1.
|D"h(z)|=|D" "1 A2F(1 —x)|<(n+1)!B". (130)
The Cauchy inequalities give, for all ze[0,1], R>1, n=0,
ID"h(Z)|=n![h|g(R—1)7",  |hlg= sup [h(w)] .

wel
[wl=R

It suffices to verify that:

c c
_ze:xp(2 +4 ,

B*2%(3¢, +5¢;),
and, for all n=3, some R>1,

(n+1)B"Z || g(R—1)"".

This last condition is equivalent to

1 L (hlg\"?
Bgmax{R_l,R_1< 4> } (131)

Noting that

[hg=Rexp

C C
—21—(1+R2)+—41(1+R4)}, (132)

we find that, choosing e.g. ¢; £0.25, ¢; 0.3, R=2, all these conditions are satisfied
for B>1.5. This covers all the cases we need.

We have now verified that, for all the values of the constants relevant to our
purposes, the function F satisfies the conditions for being in (4, /5,
¢y, C3, ANl

9. Map Derivative

We now introduce a new set of functions

H(l1, 05 ¢055,A)
. F//(x)
= PO AV :s0=T 5 Fe il oy A (133)
This subset of € ([0, A]) is in one-to-one correspondence with (4,45, ¢, ¢35, A)
[0, A] through the map k:

F(x)

(FY= 505

(134)

X

(k=1s)(x)= [ dyAi~*exp jyﬂ s(z)dz.
0 0
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A, consists just of those functions s satisfying

1 1
A=A —x S s S e (1—x) eyl x),

0= —[s'(x)+s(x)],
—s'(x)<L.

We consider J#, as a subset of the space %([0, A]) of continuous functions on
[0, A] equipped with the norm

Isll="sup |(1—x)""s(x)l. (135)

_x_

We define a map T,:#,— #, as
T =kT,k !

<1n other words, T, maps - —onto e with the preceding notations). Since the map
F—V¥ is continuous in the %? topology, and since «, defined by 20A¥'(x)=1,
continuously depends on ¥, the map T, is continuous in the %> topology in a
neighborhood of (4,4, ¢,, c5, A), so that T, is continuous in some neighborhood
U of #, in €([0, A]). We propose to estimate the Fréchet derivative of this map at
points of ;.

Recall that the Fréchet derivative DE(s) of a map s—E(s) is (when it
exists) a linear operator [on €*([0, A]) in our case] such that, for any u

lim [u| ™ *[E(s+u)— E(s)— DE(s)u]=0.
[lul[—0

To make the formulae more transparent, we denote the vector u occurring in this

formula by 5<F ) Similarly

"
F'(y)

SF(x)=F( )§5( )dy=F'(x)Iu(y)dy, (136)

SF(x)= f SF'(y)dy. (137)
0

We also denote

. . _ F//(x)
5F1; =l = sup (1= o) (138)
Note that
F/
|10 1 (1= shay = Q(loF
(139)

Q(x)5x<1—§).
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Defining SF/(x)
— -1
I6F = sup 005 (140)
we have |0F|; =||0F|, and
|6F(x)| <A™ *|6F|, g Q(y)dy=2"2||0F||,P(x),
(141)

2

P(x)s%(1—§),

Setting [|6F||,= sup A*P(x)”'|6F(x)| yields:
0=sx=4

[6F o= 0F |l = |I6F],.
We shall start by defining the linear operator A, by (A,0F)(t)=0Y(t) as the
solution of the equation
SP(t)=0F(VP(A*1)) + F'(P(A*1))0P(A%1). (142)
Note that the map v—w defined by
w(t) =6 F(P(A%1) + F'(P(A*0)v(A2t)
is a contraction in the distance defined by the norm |||v]||,= sup ¢~ ?[v(t)| since
0<x<AL-2
2wy () = w4728 2o (20 — v, (POI S Aoy — 0,4l

so that the solution of (142) is unique and given by

o0

SW(t)= Z[ [T FOP0)oF(#(). (143)

We now look for a better estimate of 6¥(z): from (142) it follows that
[t720P(0) =vo(t) St 247 2P(P(A20))||0F ||  + A2vo(4%1)

<wolt) + 20,0220,
A2 At
wo(t)= 7(1 - T) [0F|q,

[where we have used W(4*t)< A%t and the fact that P(x) is increasing when 0 <x
<1]. Iterating this yields [as would also (143)].

© /‘LZ /14
v = ;0 22"wo(A2"t) = [2(1_12) ~ & _24)} [6F -

Thus, for all te[0, A1~ %],

PO =SoIoF ], (144)

/12 2 12
S,(f)= 2(Tt/1“)[1 L Tt} (145)
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.. 340 .
Similarly let w0 denote the solution of
SV SF(P(R) | F'(¥(2) SP(321)
v = P TG T E T e (146)

This equation is obtained by differentiating (142) and using ¥'(¢)

=2F'(W(A*t)) W'(A%t). It is clear that the series obtained by formally interating this
equation and suitably substituting (143) coincides with the series obtained by
differentiating term by term (143). Hence the uniform convergence of the iteration
of (146) will prove [together with the absolute convergence of (143)] that its
solution is the derivative of d P(¢) divided by ¥'(t). The proof of this fact will follow
the same line as above: denote v,(t)=[¢¥'(t)]~ '|6¥'(¢)| then (146) implies

v () St IQ(A)]|OF

+t—1so(/12t)[ e, (1=220) —cy(1 — 2203 ||5F |

1-22
+ 220, (A%), (147)
where we have used (139), (144), and the bound (40) on 1;,—, Hence
v, ()< A? 1—/1—2t |OF] +—ﬁ~f(t)|5F| + A%, (A%1) (148)
1 = 2 1 2(1_)'4) I I 1 Ul
with
2 /141. 21 2 243
fO=1+21 ~ 3 [A—A%)" ' —c,(1 = 2%t)—cy(1—2%0)°].
We have

ft)=-— /13—4[(1 — 2207 = (1= 2% —c;(1—2%1)*]

4
+ 1+)b2—ﬂ [A2(1—A%t)" 24 ¢, A2+ 3c5 A% (1 — 22107
3 1 3

2 22(1-2%1)"2(1+22%)>0.

Thus f is increasing so f(A%"t)< f(t) and the iteration of (148) gives
© /14ni /12/14nt
< VZn_ AR
0= 3 =Tt s o,

_ 22 YA N 25t

T1=22 2(1—2% T 2(1=1%
Hence [majorizing f(t) by f(41~2)],

. f(t)] 15F, .

ay
T =snsr,,
A%t A%t 1A
S0=1"03 [1 T (1 _,12-,12N<1 - —3(1—+17)))} (149)
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with
=(1—A)"'—c,(1—A)—cy(1—A)>. (150)

From this and the equation

1+«

‘P”(oc)]_ 1oYW (o)
do=—a

¥'() V() ’

it follows that

I8F || Moo <al1—Boor—pB10*] 'S, (@)

A A A2\ 1 _ A
s (1-h-p %) S sTh,
4
h _(1_5—5) S,(4472). (151)

We now investigate in the same manner

(P s F"(‘I’(/lzt))
"(W'(t))“ V) Fwm)

F22P(2)6 (F "(X))

)
Flf(x) !

P(A?
F(x ))L=‘P(AZI)5 @)

P12
5( P(2*t))

x=W¥(A%1)

+ 22W'(A%t) [(

gives, for all te [0, 447 2],

Denoting v,(t)= ’ (lpﬂ(( )))

0()SA2S (A2 — 2%0) "1 — ¢, (1 — A%1)— c5(1 — A%0)*] || 6F ||,
F 2221 = P(A20)|5F
+A2LS(A%1)||0F ||
+220,(A%1).

In the first and third terms we have used the preceding estimates, ¥'(4%¢)<1, and

the bound (F )

[|6F]|,; note moreover that, by the concavity of ¥, ¥'(A%t)<(A%) ™! ¥(A%t) so the
second term is majorized by

220721 = P(A20)|OF | .

<L [see (99)]. In the second term we have used the definition of
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Since y—y(1—y) is increasing for 0<y <3, P(12t) <12t < A <0.5, this is majorized
by A%(1—A2t)||6F||,. Thus

N/16t i4t izA
vz(t)§{1_zz [1_ 20— (1_12_“] <1—mm

8.2 4
+ 22 =22+ AL (1+12—L)}||5F1|2

20—7%
A20,(321). (152)

Iterating this again yields a convergent series, and, finally,

N t 2412
< _
“5F“2 Uz(t)= _12{ /14 2(1_/14)(1_/16)
A%A
. 1_/12_22 a4
( N<1 3(1+12)))}
/12 5 ) AsLtz 1_1_)“2 24t
0 s e
Thus:
(t) 12
) <! 2 2
. (‘P(t))'—{ hat (14474 t)}iléFHz, (153)
with
1‘12]\]},2 AZA
h,= 1=16)= 22 9292 __AAa

MPARL APA(1— /16)]

+m[ L T L (154)

To summarize : we have defined a linear operator 6 F —d ¥ which is continuous
in the %? topology. We now intend to verify that this operator is the Fréchet
derivative of the map F— ¥ considered as a map of (a subset of) € ([0, A]) to
@*([0, AL~ 2]). Let

= {Fe%3([0, A]):F(0)=0, F/(0)=/4"2 F"(x)<0}

/12
and define H: W, x W,— W, by
H(F, ¥)(t1)=F(¥(2*1)).

Wz={‘1’e‘62<[ AD Y(0)=0,%'(0)=1, T”(x)<0}
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Then the map F— ¥ is defined by the equation
WY =H(F,¥).

Since the implicit function theorem applies to maps of Banach spaces (see e.g.
[6]), it is sufficient to examine the Fréchet differentiability of H. We shall only
indicate the principle of this verification and replace the map (F, ¥)— H by the

F// q///) H//

— 1
map ( 7o)~ g - hemely

LH FRGR) P
S = P TE0 i

A2t " A2t F//
Here ¥'(4%t) is interpreted as exp j ((y )) dy, P(A*t)= [ ¥'(y)dy. Calling (3(?)
0

" "

and 5( ) the increments of 7 and 7 respectively, one sets

Y///(s)

¥'(s)
We now have to prove that

bl s Pl ool ]+ o)

l-(—(?’+5?’)—1;—l,/(‘1’) <F”)/5¥’)'I”

SP(H)=¥(0) | 5( )ds, 5W(t)=§w(s)ds

i

[F”(T—l-é?’)—F—”(Y’)} 5P+ [(F">(srf+5'p) 5<F/)(qf)} |=

This is straightforward ; the last term is the only one which requires some attention

since one has to use the %' nature of 5(7:7), ie. this term is bounded by

FN
H5<F) 16| 4o
%1
From the Fréchet differentiability of the map F— ¥ it follows that also the map

T,:#;' > #,° is Fréchet differentiable. The superscripts mean that we think of T,
as a map from # embedded in the Banach space #*([0, 4]) into #, embedded in

the Banach space %([0, A]).
We are now in a position to estimate the derivative of the map F—G or,

equivalently, DT,. We use the formulae

1 G"(x)\ _ Y’(t) B
i 5(G’(x)) = {50([—2 70 —2a(1 —x)%a(2)

P(1)
- 20(5( T'(t)>}t al-x? (139
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TII( )

<t< 2
where 0<t<AA™* and o(t)= (T )
for |P"(t)/¥'(t)| and |a(t)|, and the preceding estimates for o and (P (t)/V'(t)) we

obtain
1 [G"(x)
(e =t
oA? 2012

+——h 1 /14(1+/12—12t)}|[5F|{2

) Using the estimates (55) and (95) found

At 2tANL
2/3012”[3112 1—14]

. A 2 . L
Denoting t=P—@’ so that @=—f—(1 —x)?, we thus obtain (taking into account

that o < A4™?) the upper bound:

2 24
{h3[fl+@</3+ff—f4)}+h + 14(1+12 A@)}H(SF||2 (156)

This is a linear function of @ which is increasing if
h[(1 =A%, +24% L] -24% 20. (157)

In this case (the only one we shall actually encounter) the maximum of this linear
2

S A -
function is its value at @ = % =<1 so that the norm of DT, is bounded by

242 2
L +h,+ 114(1+/12—A). (158)

<
[DT,||<h [/ —I,-/+1 7

In case the expression (157) is negative, an upper bound for ||DT,]| is obtained by
. L A A
inserting in (156) the value © = a’“j‘{%(l — A)? or (worse) ﬂ(l —A4)>.

Interval Calculations. Let J be an interval {A:p<A*<b}. We denote
H(ly, b, ¢y, 5, A) the subset of ([0, A]) defined by

{se %[0, A]):5'(x)+s(x)*<0, —s'(x) S L,

1
1—
Here L, is obtained by substituting b for 2% in (99). The set (159) is identical to
k=1 (4, sy ¢4, ¢35, A). An examination of the bounds just obtained for the norm of
DT,(s) at se #; shows that these estimates are increasing functions of A2. Hence for
AeJ, for se #)(£,,45,¢,, 5, A), a bound of | DT(s)| is obtained by replacing A% with
b in these estimates.

—(1—x)—4,(1=x)P < —s(x)< % —c,(1=x)—c5(1— x)3}. (159)

10. Numerical Results.

This section contains the numerical results obtained by applying the various
estimates of the preceding sections. Table I provides, for certain values of A2,
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values of ¢;, 5, 4}, /3 and A such that ¥,(4,,4;, ¢, c5, A) is stable [ie. Criterion 1 is
satisfied and /j(c,,c;, 4, /12)<Z;-, =13, (4,45, ¢4,¢5, 4, 4)>c; j=1,3]. Only the
first and last rows in this table are indispensable for our proof, the others being
supplied for completeness. The eleventh column contains an upper bound for the
norm of DT, evaluated with the formulae of the preceding section.

Furthermore by applying procedure 3 (with 4 iterations), to the last case
(42=0.165) one finds that at any fixed point corresponding to those values,

a<o,=15334, A,= izocf =0.253011
and consequently such a fixed point verifies (for 0=x=A4,) [see(103)]

(1) 3/14A

M,= sup <A ) (1=t =440

o=t=dn-2 V(1)
§0.07398. (160)

Table 2 presents the same data for a selection of intervals.

Existence of Fixed Points. Table 2 shows that, restricted to the corresponding 7,
the map T, has a derivative DT, such that its ¥°—%° norm in the sense of (135) is
Sk<1 (ie. ||0G|,=Zk|[0F|,). Let sy, s,eH# (4], 4, ¢y, c5, A) for one of the sets of
constants appearing in Table 2. Then, for AeJ,

_ _ 1 d -
T)(sy)—Ty(s,)= (f)dya; T (ys, +(1—=y)s,y).

Since J#; is a convex set, Ty(ys, +(1— y)s;) is a continuously differentiable vector
valued function of y and

d - _
@ T (ys, +(1=y)s)=DT(ys, +(1—y)s;) (s, —5;)

so that
I T(s1)— Ti(s )| Sxclisy —s4 | (161)

[The norm being as defined by (135)]. Since it has already been seen that T, is
continuous in the ¥° topology (because T, is continuous in the 2 topology) the
inequality (161) immediately extends to the closure #)(4,, 4, ¢,, 4, A) of #} in the
norm | || (this space consists of L1psch1t21an continuous functions). Thus, for every
AeJ, T, has an unique fixed point in #. Moreover since the intersection of #}

F//
with { Fed/, } is non empty, closed, and stable under 7}, the fixed point is

contained in this set. Finally T, depends continuously on 4 in the €° topology, so
that the fixed point is a continious function of A in this topology. Note that if
reJ nJ, (asis the case e.g. for A2=0.161, 1> =0.164) and if (this is the case for the
values of the above table, as demonstrated by the example in Sect.8)
Hy NH;, +90, this set, being stable under T), contains the unique fixed point
corresponding to both J, and J,, i.e. the fixed point is a continuous function of
inJ,ulJ,.
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Conclusion

Theorem 3. For all A in the interval 0.152 < A* <0.165, T, has a unique fixed point s,
such that s,e # when el J,, J,, J, being the lntervals described by Table 2 and
Jf’ being defi ned with the constants given there. This fixed point continuously
depends on A and k™ sleszf for all B=1.8.

Let F, denote k™ 's,, ie.

Fi(x)=24"%exp|s;(y)dy, 0=x=4
(0]

Fix)= f Fi(y)dy.

Then G,=T,F, coincides with F, for 0=<x=< A, and we define F,(x)=G,(x) for
0=x=1. Note that G,e o/ since F,|[0, A]e o, according to the estimates of
Sect. 7.

We also denote x, the function defined on [—1,1] by

LE)=A[F,1—=x)—F,(1)]+1 for 0=x=1, px)=x(—x). (162)

It also satisfies

LX) =1=1p,(x*)=1-¥,(ax?), (163)

with obvious notations.

11. Existence of Feigenbaum’s Fixed Point

We shall now complete the proof of this fact by proving that the continuous
function of 4 defined by y,(1)+ 1 takes values of opposite signs at 4>=0.152 and
J*=0.165.
We have
1)+ A= 14+2—V (0),

Y (o) = j W (1)dt .

We know that ¥(t) decreases from 1 to ¥/(«)=(24x)~ ! as ¢ increases from 0 to .
Thus

qf;(t)=1—r( A0,

- (oc))
where f,(0)= f(«)=0, f;(t)=¥7(t), and:

o . 1
V(o) = (f) Sde+ 5457
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Moreover

JA0)= (J; (t=y)fi(ydy +xt,

where « is determined by f(«)=0, ie.

fi= I(t—y) (y)dy——f (=) [ (»dy,
(164)

t

10== 1~ omy - fa-nsion.
0
Here 0= y<t=<u so that %—ggo, a—y=0. As a consequence,

éi (———) L)+ ja -y .

- ()
B ‘P’( )

In particular we know that f; (y)=¥7-(y) =
in (160). Hence

=M, where M s is evaluated

fa(t)< Lt(o—1)
and
a M 3 M 063
Mg Moy
[ fndi= =5 ==
For A*=0.165 we find

1 M,
Xl(1)+zg1+,1—°‘2—f—4—l— 12f >0.0018.

On the other hand, taking 4> =0.152 and using again (164), we have

t 1 1 o
10z = [ = -0y = L T sy

—ﬁgj—, —supf“(t)—sup'I/ L+t )_sup II;E,}()).

v

This has been estimated in formula (126). Using the figures in Table 1, we find, for
A=0.152,

m<001374
1 moc3
it r L
) +A=1+2 2 Lt
moZ, 1
<1 mln — min o
A= (1 6 ) i)

= —0.0444.
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This proves:

Theorem 4. There is (at least one) value A, of A in the interval 0.152<2*<0.165
such that y, (1)+ 4,=0, and hence

1
Xlo(x) = N (Xio(lox)) 5

Xi,0)=1.
This function is denoted g in the sequel. It has the following properties :

1) g is even, €° on [—1,1] and satisfies, for all xe[0,1]: g"(x)=0, g"(x) <0,
gd(x)=0, g(1)=— 14y, g(1)=— 145 %, g"(0)= —2a (since g(x)=1—¥(ox?)).

2) g is holomorphic in a complex neighborhood of [—1,1]. For all n=1,
xe[—1,1]

1 /dY 1
(a;)g(x)'éi—B'a‘l, B,=138, (165)
0

n!
and g(x)=1—¥(ax?), P(0)=0, Y'(0)=1, and for 0<t=<15 2,

1 (d)"
'H (E) ‘I’(t)!§M'[)_1, My=A3(1—-22)"1B,.

The numbers 1, and o verify

0.152£45<0.165, 1429<a<1.615.

Moreover (Myx)™*>1.79 so that g is, in particular, holomorphic in the disk
|x2| < 1.79.

Additional Remarks

1. Further Elementary Properties of g. It has been seen that g is analytic in a
certain neighborhood of [ —1,1] in C. If any subset Q= — Q of this neighborhood
1

Q by using (1), and is
Ao

has the property that g(2) CQ then g can be extended to

analytic in a neighborhood of this new set ; moreover g ()i Q) Cc— Il—g(Q) C i Qso
‘0 0 (0]

that the process can be iterated indefinitely. In particular taking Q=[—1,1]
shows that g is defined and analytic on the whole real axis. Since ¥(¢) is analytic
and positive for 0< —r<k?, taking Q=IRui[ —k, k] shows g is analytic and
real on the whole imaginary axis.

Note that (Sg)(x)=g"(x)g'(x) "' — 2(g"(x)/g'(x))*<0 on [—1,1]. Since for any
two functions f and h, S(foh)(x)=h'(x)* S f(h(x))+ Sh(x), S(f)=S(— f), we see that
(Sg)(x)<0 for all xelR.

2. The Case ¢ 1. The method of this paper can at least be formulated for =1 (see
Introduction). One then wishes to find a fixed point of the mapping ¢, —¢,
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defined by Eq.(11) in the case when

¢,(x)=1—p(x|'"), ¥/(0)=0, (166)

(1) being 2 in [0, 1]. Defining F and G by (14) and (15) we see that the following
equations must be fulfilled :

F(0)=0,
wO)=F(p(2'**t),  p(0)=0, (167)
G(X)=%[w(1)—w(I1—XI”C)]- (168)

We require F to be ¢* for 0<x < 1. Differentiating (167) gives
¥'(0)=21"*y'(0)F'(0) (169)

and the condition 1'(0)40 imposes F'(0)=A~""9, For this to be verified also by
G, yp must satisfy

y()=[1+e)27".

We may again look for y in the form y(t) = ¥(xt), ¥’(0)=1, « being determined by :
oW (a)=[(14+¢)A*]"1. The functional equation WY(1)=F(P(A'*%)), ¥P(0)=0,
?'(0)=1 is solved as in Lemma 1.

There seems to be no reason for the rest of the method not to work, at least for
¢ close to 1, and possibly also for 0<e=1.
3. We note also that the method can be reformulated to attack directly the
mapping J [see Eq.(5)]. However estimates are more difficult and have not, so far,
been carried out to the end. This method would have the advantage of leading to
uniqueness (at least locally) of 1, and g. Note that this has not been demonstrated
here but that, for every solution 4, of the equation y,(1)+ A=0, the corresponding
g =1, is locally unique, since it is given by a contraction.
4. Martin has studied conditions under which a solution (¢=1) could exist with a
very different shape from the concave one obtained here: it turns out that this
would require some rather violent oscillations (private communication).

12. Some Properties of the Linearized Map at the Fixed Point

Feigenbaum’s theory relies on the spectral properties of the derivative of the map
J at the fixed point (see [2,3]). For this purpose it is equivalent to consider the
derivative of the map m(-, ) with the A corresponding to the fixed point, since the
two operators are very simply related. We state without proof some results which
follow straightforwardly from the proven properties of the fixed point g.

We consider the derivative of m(-, 1):

Aulx)= — % [u(g(2x)) +¢'(g(Ax)u(— Ax)] .



300 M. Campanino and H. Epstein

Given a real R>0, we denote by 4, the domain:
Ag={reClr=x+u,withxe[—1,1]and Ju|<R}.

We consider the Banach space H(4y) of the analytic functions u in A, such that
u(x) is real for real x and '(0)=0, with the norm of the sup. We define also the
Banach space of the even functions in H(4g):

H* (4) = {ue H(A)lu(r) =u(—r)¥re 4,)
and the closed cones:
K7 ={ue H(4)lVxe[0,1],u(x) 2 0,u/(x) <0},
Kp={ueH(4R)|Vxe[—1,1], u(x)=0=xu'(x);
for all integer n=0,
min [u(A" 1), u(—2"" )] 2 max [u(2"g(2), u(— 2"g(2)]} .

We have K =KnH"*(4). We denote K% (respectively K °) the interior of Ky
(respectively Ky ) in H(4y) [respectively H*(4,)]. If R, >R, >0, there is a natural
compact embedding of H(4g,) into H(4y,). The following propositions hold:

Proposition 1. There exist R, >0 and R, >0 such that A is a bounded linear operator
Sfrom H(Ag ) into H(4y,). As an operator from H(Ay ) into itself, A is compact.

Propeosition 2. The following inclusions are verified

(i) A(Kg,\{0})CKg,,

(i) AKg,\{0})CKR,-

Using Propositions 1 and 2 and Theorem 6.3 of Krein and Rutman [10], we
obtain

Theorem. (i) A has one and only one eigenvector v in Ky . This vector belongs to K 1'{10.
(ii) The corresponding eigenvalue @ verifies =12 — A" 1,
(iti) The adjoint operator A* has, in Ky *, one and only one eigenvector v :this is
a strictly positive functional verifying A*p=yp.
We note that the inequality for g follows from the fact that, for ue K3 , we have
Au(0)= — 27 [u())+g'(Du0)] =4 2u(0)— A~ u(1) = (472 = A~ Hu(0).

Sketch of P~roof of Proposition2 (i). Denote b=g(l)=1—P(A*e)=1—-A> A, and
h(x)= —g'(g(Ax)): this is a positive, even function on [ —1,1] and decreasing on
[0, 1]. Since h(x)=AF'(¥(al?x?))= H(t) for t=ax?,

- %H(t) = — BF(PA2) P (321 = — A3 F"(0)P'()20) .

Hence, for n=0
(A" Y — h(A"b) = aA?",
a=—al3F"(0O)¥'(A2a)[b%—22]>0.



Feigenbaum’s Fixed Point 301
Moreover h(x)=20b¥'(b?)>bi~ ! =(1— A)A~'>1. Now let ue K. Then

AAu(x) = h(x)u( — Ax) — u(g(Ax))
>bA " tu(—Asgnx)—u(b)= (b~ — u(—Asgnx)>0.
The last expression cannot vanish unless u# vanishes on an interval and hence

everywhere. It is easy to check that xAu/(x) <0 and (by analyticity) x~* Au'(x) <O.
Moreover, for n20, ¢, ,= =1,

AAu(e, A" ) — L Au(e,A"b)
=h(A"" Yu(—e, A" 2)— h(A"b)u( — e, A" " b)
+u(g(A" " b)) —u(g(2" %)

= [h(2"" 1) — h(2"b)] min (w(A?), u( — 2%))

= a*"min(u(A2), u(— 22)).
This cannot vanish unless u=0. Assume now that ve H(4;) belongs to a
neighborhood U of Au such that

sup  |(Au)"(x) —v"(x)| <n.

—1=x=1
Then using v'(0)=(4u)'(0)=0,
v(e AT ) —v(e,A"0) = Au(e A" ) — Aule,A"b)

&2AND d
+ [ dx——T[v(x)— Au(x)]
gl ant1 dx

> 2 % min (u(22), u( — 22))— 2b%n] .

This is >0 for sufficiently small #, and it is easy to verify that, for sufficiently small

n, v(x)=0 and xv'(x)<0 for all xe[—1,1].
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