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Abstract. Let u = u(x,t) be a function of x and ί, and u^&u, @ = d/dx,
ί = 0,1,2,..., be its derivatives with respect to x. Denote by Wn the set
[f\f = f(u, uv . . ., un), (d/dun)f =(= 0}, where f(u9 . . ., un) are polynomials of ut with

oo

constant coefficients. To any /eW= (J Ww, we relate it with an operator
n=2

<%(f)= Σ (2lf)d/dut. In this paper we prove that: *(/) commutes with <%(g) if

they commute respectively with <%(h), provided /, g, fteW. Relating to this
commutativity theorem, we prove that, if an evolution equation ut = f(u, . . ., un)
possesses nontrivial symmetries (or conservation laws for a class of poly-
nomials /), then / = Cun +/1(w, . . ., ur), where C = const, and r < n. In the end of
this paper, we state a related open problem whose solution would be of much
value to the theory of soliton.

1. Introduction

The soliton [1], being a particle-like solution of the nonlinear wave equation, has
been now applied widely in various fields of physics. In the recent years, a number
of interesting mathematical problems have arisen in the study of soliton, one of
them is, among other things, the commutativity of differential operators [2,3]. Let
sΛ = α0^

n -f ... + an _ 1Q) + an, a0 Φ 0, 2> = d/dx be a differential operator, and C(jf)
be the set of all linear operators which commute with jtf. A pronounced results [4]
is the fact that C(efi/) is a commutative ring. In this paper we established a similar

result concerning the partial differential operators W(f)= £ (&f)d/dui9 where
i^O

/ = f(u,..., un) are polynomials of u{ = &u with constant coefficients, and u = u(x91)
is a sufficiently smooth function of x and t. We discuss further the application of
this result to the study of symmetries and conservation laws of nonlinear evolution
equations.
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2. Notation

Let u = ίφc, f) be a function of x and ί, and

u^&u, @ = d/dx

be its derivatives with respect to x. Throughout this paper, f,g,h will stand for
polynomials of ut with constant coefficients and without constant term [i.e., say,
/(O) = 0]. The small letters i, 7, fc, /, p, g, α, fc, c, d will stand for nonnegative integers,
and the capital letter C solely for constants. For convenience, the binomial
coefficient will be understood as

k}=kl/(il(k-i)l), (Jtei^O); (*)=0, (otherwise).

Let
(2.1)

and W= y Wn. For convenience, we agree that the constant CeW0. To any /eWfc,
n=2

we relate it with the following operators [5, 6] :

(2.2)
i i

and

here and always below, the summation in ]Γ is over all nonnegative integers i, and
/

3, = 0/011,, (i^O); 3^ = 0, (i<0).

It may be noted that i^0(f) = ir(f) and W(f)g = Ϋ"(0)f. We introduce furthermore
the operation

(2.4)
It is easy to see that

λn)= Σ
Hence an operator ^(/) commutes with ^(^f) iff [/,0]=0.

Consider an evolution equation

ut = f ( u , u l 9 . . . , U j ) , /eW Λ , (2.6)

if there exists an infinitesimal transformation u-*v = u + eg9 where g f e W j and ^ is an
infinitesimal parameter, such that

d/de(vt-f(v))\e=0 = 0

holds for solutions u(x, t) of Eq. (2.6), then g is called a symmetry of order / of (2.6).
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It is known [5] that

Proposition 1. In order that g is a symmetry of (2.6), it is necessary and sufficient that
[/,#] =0, or equivalently %(f) commutes with %(g).

Since it always holds that [/,w1] = [/,/]=0, for arbitrary/, thus we call the
symmetries g = Ciui + C2f as trivial.

Let

12 ' '
 Mlq

(Ί Ί\
(A ')

be two monomials of wf, we introduce lexicography order <^ among monomials,
that is, M^wf if fc1</1, or fe1 = /1 but aί<bi, or fe1=/1, aί=bί but k 2</ 2, and so
on. For convenience, we agree that 0 <^ w^. To a nonzero polynomial / = Σ CAKUχ,
we denote by M(f) the monomial which is of the highest order among CAKu& and
call it dominant, e.g., M(3uuί+2u:

2u4 + ul) = 2ulu4. It is obvious from the de-
finition that

f=g implies M(f) = M(g). (2.8)

The following commutative formula [7] will be used frequently in this paper :

3. A Necessary Condition for the Existence of Nontrivial Symmetries

Lemma 1

It is easy to see by (2.2) and (2.9) that

a similar equation for dk(i^(g)f) can be also derived, from which together with (2.4)
and (2.3), (3.1) follows.

Corollary. /eW fc, 0eWj, fc,/^l imp/j; [/,gf]eWΓ, r<fe + /,

Proof. From (3.1), iί is easily seen that

dk+lU,9l= Σ

Lemma 2. //[/,^]=0/or/eWk,

(3ίff)* = C(5/)1, CΦO. (3.3)

Proo/ From (3.1) we have
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hence

(3.3) then follows upon integrating.

Corrollary. Suppose that /eWk, 0eW,, fc,/^2 <wd [/,0]=0, then f=C1uk+fl,

Proo/ It is a immediate consequence of (3.3).

Lemma 3. /// #eW fc, fc^2, and [/0]=05 ίΛen there exists a nonzero constant C
such thatf-CgeWk,, kf <k.

Proof. By Lemma 2, a constant C can be chosen such that dk(f—Cg) = 0, thus

Corollary. If an evolution equation (2.6) possesses a nontrivial symmetry ge Wfe,
ίί possesses also a nontrivial symmetry /zeW fe,, k' <k.

Proof. Let C be the constant as stated in Lemma 3, and take h = f—Cg, then it
holds obviously that [/z, /] = 0, and the fact that g is nontrivial implies that h is
also nontrivial.

Lemma 4. ///eWΛ,

, _ l f lf) +

k. J) + (3z^
2(δfc/) . (3.4)

Proof. From (3.1)

from which (3.4) follows.

Lemma 5. Let

f = uί+fι, Λ«"ί; 0 = w? + 0ι, ^ i^wf, (3.5)

w^ and uf are defined as (2.7), and &1? / x ^2, ίferc [/,̂ ] =0 ί'm/7/y

Proof. From (3.3) and (2.8) we have

from which (3.6) follows.
Now we proceed to prove the following

Theorem A. A necessary condition for an evolution equation (2.6) to possess a
nontrivial symmetry isf=Cuk+fί9 where f^^uk, i.e., fί=fί(u,uί9 ...,%), k <k.
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By virtue of Proposition 1, the Theorem A can be stated equivalently as

Theorem A*. Suppose that /eWfc, #eWz, fc^2, /^l, ^φC1/+C2w1? then ίfte
necessary conditions for %(f) being commuted with tfί(g) are f=Cίuk+f1, and
g = C2u1+g1, where f^uk and gl<ul.

The idea of the proof of this theorem is straightforward, but the whole
discussion is tedious, since we must verify carefully all the possible cases. To reduce
the length we shall, in some minor cases, pass over a series of simple argument and
purely quote the conclusions.

Proof. Let /eW f c l, #eWZ l, since C1C2[/,#] = [C1/, C2#], we may assume that/
and g take the form of (3.5). Now by hypothesis that [/, g] = 0 and the Corollary of
Lemma 3 we need only to discuss the cases (I). fel5 1^2, k1 Φ / j and (II). k1 ^2,
/! ̂  1. (By symmetry, the discussion of the case /ct ̂  1, / t ^2 is similar.)

Case I. ki9 1^2, k^lv

(la) a^b^2
In this case, the (3.6) implies fc1 = /1, which contradicts with the hypothesis

/c1 Φ/ 1 5 and hence is impossible.
(Ib) α1 = l,b1^2. (By symmetry, the discussion of the case b1 = 1, αx ̂  2 is similar.)

In this case, (3.6) reads

Uk2

hence it must hold that

(3.7)

(Iba) Mi ^3
(i) k2<kί — ί, I2<l1 — ί. In this case we have, by Lemma4 and (2.8), that

M ((^) (3tl/)®2(3/lff)j =M ̂  j (δ,^)®2^/)), (3.8)

from which it is easy to deduce that J bί(b1 — l)= I M61α2? by means of (3.7)

that (b1 — I)k1=a2ll9 we get fc.,^ =/ 1 ? which contradicts also with the hypothesis,
(ii) k2<kί — 1, I2 = li — 1. In this case, (3.4) reads

1

[^ \ / H \

V /2^ fc l \ 2 / h^ Λ l

But it is easy to see M(^2(dhg))^M(^(dl2g)) and by virtue of uk2 + 2 = ull + 2,

hence the Eq. (3.8) holds again, the case is therefore impossible by the same reason.
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(iii) k2 = kί — 1. By the similar argument we get, in this case, that

aq+ι + bq

2 ~

- I ! I + ( 1 I L a u Ubί+a2~2b2 + a3 ubp-ι+ap /α Q\

~ \ 1 / \ 2 / 1+ k2 3 " p '

from which we get 1 J ( f o 1 - l ) = ί l «2, this together with (3.7) imply

kί — 1 = ̂  + 1 or/c 1 = /1 + 2 = /c2 + 2, which contradicts again with hypothesis that
rv2 — »v -j x

Since fc1? /^2 and k1>/c2 = /1 in the case (Ib), it remains to discuss the
following subcases :
(Ibb) k^3, /1 = 2
By Lemma 1 we have then

dklu,gl=l8M + Σ ^//)(\_,<7)- Σ ^jtoX^-jΛ- (3.ιo)
J = feι-2 7=1

By setting

/*=^/=^-<;+/2, Λ«^-^>
(3.10) can be reduced to

_ J) = 0 . (3. 1 1)

(i) k2 = kί — l. Since k2 = /2 = 2, so fc1 = k2 + 1 = 3. Applying the operator δ^ to
both sides of (3.11), and making use of (2.9), we can deduce, as easily verified, that

The comparison of the coefficients of the dominant terms in both sides yields that

2) = i1Λ2(Λ2-l), (3.12)

which together with (3.7) imply that α2-l-3fl2=0, hence α2 = 0 and bi = l, which
contradicts with the hypothesis that bί >2.

(ii) k2<k1 — 1. In this case, by the similar argument it can be concluded from
(3.11) that al = (k1 — 2)α2, since α2=t=0 as showed above, so a2 — kί — 2, and from
(3.7), (b1-l)kί=2(kί-2) or 4 = (3-&1)fc1, but 6^2, so fc1=2, hence ^=4,
α2 = 2. Applying the operator 53 to both sides of (3.11), and then comparing the
coefficients of w2, we get 36ί?2— 0, hence b2=a2=Q. Comparing further the
coefficients of u^ we get fc3=α3=0. In other words it must hold that f=u4+flo

and g = ul + gί9 which contradict with the corollary of Lemma 2, and thus are
impossible.
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(Ic) ^=^ = 1

This hypothesis together with p = q = l are just the desired conclusion, so we
assume that p + q^3 and proceed to show it is impossible. When ai=bί== 1, (3.6)
reads

ukllί 'ulp

p

l1 = Cuhkl - - M\t" > (3 13)

from which we get p = q, accorgingly /?, q ̂  2, and

(lea) ki9l^3

This case can be further divided into two subcases : (i) k2 <kί — 1, 12 < l^ — 1 and
(ii) k2<ki — 1, /2 = /1 — 1. By symmetry, the subcase that k2 = kί — l, / 2 </ 1 — 1 is
similar to (ii), and since k2 = l2, the another subcase that k2 = /c1 — 1, /2 = /1 — 1 is
excluded by the hypothesis / i φ / q . The discussion of the subcase (i) and (ii) are
similar to that of case (Iba), so we omit the detail.

Case II. fc^2, 1^1.

In this case, it is easy to deduce, from Lemma 1, that

δklU,βΊ = LSkιf,g^ + (dkιf)[.(80g) + k^d1g^. (3.14)

Noting that dki(d0g) = dki@dίg = Q when /c >2, we deduce in general that

% - W ff] = K; - -

/ = l / \ j = l

when kr> 1. Hence, if we set

"^"kί --"?^!1"!2^3'
fc1? ...,fc r>2, α l 5 ...,αr^l, d^d^d^O

and denote that C1=α1 + ... + αr, C2 = α1/c1 + ... + arkr and

ft = 3J . . . :̂//(a, ! . . .ar !) = ̂ u- V3 + /2 , /2 « u^<2^3 ,

then we have

[ft,ff]+ft(C1(δo f lf) + C2^a ιfif) = 0. (3.16)

(Ha) ^+^ + £^3=0

In this case, ft = const, hence (3.16) implies

O. (3.17)

Applying the operator 32 to both sides of (3.17), we get δ^ = 0, consequently
g = uίg1+g2, gi9g2eVf0. Applying the operator flx again to (3.17), we get
(Ci + C2)(d0gi) = Q. Since it is obvious that C1 + C2>0, hence 5 0gf 1=0 and
g± = const, g = Cuί +g2, which contradicts with the hypothesis that q^2.
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(lib) dί+d2 + d3>0

The comparison of the coefficients of ud

2

ί + l in both sides of (3.16) then implies
δι# = 0, after a little more careful but similar discussion, we can arrive at the same
conclution that g = Cuί+g2, which is thus also contradictory. The proof of the
Theorem A is now completed.

4. The Commutativity Theorem

We have in [5] established the relationship between symmetries and conservation
laws of the following nonlinear evolution equation

ut = f(u9ul9...9u2l+1)9 (4.1)

where/ = @$/h, heWί,
(& = Σ(- ̂ )^/ [8, 9]. Basing on this relation we can easily

ί
show that in order (4.1) possesses four or more conservation laws it is necessary
and sufficient that this equation possesses nontrivial symmetries. Therefore from
Theorem A we deduce the following

Theorem B. In order that (4.1) possesses four or more conservation laws, it is
necessary that

We now prove the main theorem of this paper.

Theorem C. Suppose thatf, g, fteW, then <%(f) commutes with <*U(g) if they commute
respectively with ^(h\ In other words if we denote by [ j/, @f\ — s$£β — $stf, the
commutator of operators jtf and <%9 then

=0 imply W(f),W(gJ]=0. (4.2)

Proof. By (2.5), it is equivalent to show

= 0 imply [/,0]=0. (4.3)

Now by Theorem A and the supposition that [/, h] = 0, it can be concluded that
either (i) h = Cif + C2ul9 C x φ O ; or (ii) f = C1uk + fl9 ft = C3u, + ftl5 ΛeW^,
ft^W,,, kf<k, r'<r. In the case (i), 0 = [^,/z] = C1[^/] + C2[^,w1]-C][[^/], so
[gf,/]=0. In the case (ii), by collorary of Lemma 2 and the supposition that
[#, h] = 0, we see g = C2ut + gl,glε WΓ, /' < /. Since [uk9 u J = 0, for arbitrary fc and /,
hence if [/, g] is nonzero, any monomial of [/, g~] is of degree bigger than one, in
particular

, + Λ2, h2<u (4 4)

But, however, by the Jacobi identity that [Λ, [/, g~]~] + [/, \_g, ft]] + [_g9 [ft, /]] = 0, we
have [ft, [/,#]] =0 whenever [g, ft] = [/, ft] = 0, hence by Theorem A and the fact
that ft = C3wr + ftl5 we must have \_f,g~] = Cup + h2, h2<ζup, which contradicts with
(3.4), therefore [/,g]=0 as desired.
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5. An Open Problem

Let stf = Σ aβ^ ^=Σ ^β{ and ̂  = Σ cβ^ where ai9 bt, ci are in general functions
i i i

of x. One of the most pronounced results in the theory of linear ordinary
differential operators is [4] that

[X <?] = [«, «*]=() imply [X#]=0 (5.1)

The similarity between (5.1) and (4.2) leads us naturely to the problem: can the
Theorem C be extended further? For example, can we unite the two statements
(5.1) and (4.2) into a general theorem?

In the theory of linear ordinary differential operators one obtained [5], besides
(5.1), a sufficient and necessary condition for the existence of nontrivial differential
operators which commute with a given operator j/. But, as regards operator ^(/),
the Theorem A givess only a necessary condition, hence it remains an open
problem that

What is the necessary and sufficient condition for the existence of nontrivial
operators %(g) which commutes with a given %(f)?

The solution of this problem would be of much value to the theory of soliton,
because the commutativity of ̂ (/)'s is closely related, as mentioned above, to the
existence of nontrivial symmetries, especially to the existence of an infinite number
of conservation laws, which is in turn closely related to the soliton solution of an
evolution equation.
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