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I. Introduction

We continue in this paper a program initiated in [1], henceforth referred to as
Paper I. One of the objectives set forth in that paper was a mathematically
complete construction of a super-renormalisable continuum gauge theory. This
paper contains results in this line of work.

The study of gauge theories on a lattice was originally suggested [2] as a
suitable starting point for learning more about gauge theories generally, because
lattice gauge theories provide a setting in which one can utilise methods of
statistical mechanics: -low and high temperature expansions and correlation
inequalities, etc. In addition these theories possess the two important properties of
Osterwalder-Schrader positivity and gauge invariance. No other method, yet
proposed, of regularizing continuum gauge theories so that they become ma-
thematically well-defined objects possesses all these attractive features. It is
therefore an important problem to verify that these theories converge in a suitable
sense to continuum theories when the lattice spacing is taken to zero. The limit
would then share these properties and in addition one would hope to verify that it
is Euclidean invariant (unlike the lattice theories). Various consequences of the
correlation inequalities which will be of interest to physicists as well as mathema-
ticians have been outlined in [3].

Unfortunately, it is unlikely that our method of proving convergence is
optimal. We have adopted a method of embedding lattice gauge theories in
continuum theories which is not natural in the context of geometry. It might be
rewarding to search for methods that treat the geometrical side with less than the
insensitivity that we have been able to muster. In the meantime we have in this
paper a number of functional analytic techniques that will extend to more singular
theories, abelian and non abelian and some of them will very likely be useful in
future improvements.
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We are here mostly concerned with two dimensional abelian gauge theories
interacting with Bose matter. An analogous program for fermion matter has been
started in [4]. Some of our results are valid for nonabelian gauge fields also. The
major simplification in the abelian case is that the measure describing a pure gauge
field is Gaussian in the continuum limit. We exploit this by noting that we may
obtain a Gaussian lattice gauge field by conditioning the continuum measure.
Thus given a continuum gauge field one may formally obtain a lattice gauge field,
which is a function from bonds of the lattice to group elements, by integrating the
gauge field along a given bond and applying the exponential map to the Lie
algebra element so obtained to get an element of the group. (If the group is
nonabelian, one should use an ordered exponential.)

One can then couple this lattice field to a matter field on the lattice and the
resulting lattice theory is gauge invariant. The procedure may be considered as
amounting to a special choice of lattice measure for the gauge field which differs
from Wilson's [2] and others so far proposed, but which is also gauge invariant
and has the correct continuum limit, at least formally.

This procedure is not possible in more than two dimensions because with
probability one the gauge field is a distribution with insufficient regularity to be
integrated along a bond. However, as pointed out in Paper I, it is possible to put in
an ultraviolet cutoff, i.e., change the Gaussian measure describing the continuum
gauge field to another one whose sample functions are more regular (almost
surely) and still retain a type of gauge invariance. Furthermore if the ultraviolet
cutoff is suitably designed (a cutoff in all but one direction in IR") we obtain a
lattice theory with Osterwalder-Schrader positivity in one direction. This is of
course not a new observation. Lastly, as discussed in Paper I, we have correlation
inequalities even in the presence of an ultraviolet cutoff. They are in fact valid for
any lattice Gaussian measure for the gauge field.

Even in our case of two dimensions we find it convenient to use an ultraviolet
cutoff on the gauge field. This is in order to separate off the complexities of
renormalisation from proving the convergence of a lattice approximation. In other
words, if we did not impose an ultraviolet cutoff, we would have to insert
counterterms and cancel quantities that diverge as the lattice spacing is taken to
zero. We prefer to put in a cutoff and its subsequent removal (after the lattice
spacing is taken to zero) will be discussed in Paper III. Finally, we also give the
gauge field a mass (an infrared cutoff). This does not affect the Ward identities
which express the gauge invariance of the coupling between matter and gauge
fields. Correlation inequalities allow then to take this mass to zero. Full gauge
invariance is impossible in the continuum limit and gauge fixing is always
necessary. We really prove "gauge covariance". The zero mass limit will also be
given in Paper III, and in fact we first take the infinite volume limit which is easier
whilst the gauge field has an infrared cutoff and then the zero mass limit.

We now give a rough formulation of our principal results. We will supply more
details and precise definitions later. It applies to a theory in a rectangle in IR2 with
a continuum gauge field with a mass and an ultraviolet cutoff interacting with a
Bose field on a lattice with spacing ε > 0. The Bose field is allowed self interactions.
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Theorem A. Given a sequence of simple cubic lattices whose spacίngs tend to zero,
the lattice measures which correspond to the theory described above converge in the
sense of characteristic functions.

The main results required for the proof of Theorem A can be found in Sects. Ill
and IV. Some of the more significant ones can be summarized as follows. Let
Cε

h (CA\ denote the lattice (continuum) Green's function for the covariant finite
difference (continuum) Laplacian, Aε

h (ΔA), in a lattice (continuum) gauge field, h (A).
The gauge field may be non abelian. We impose either free of periodic boundary
conditions at the boundary of a rectangle A.

Theorem B. Let (hε) be a sequence of lattice gauge fields converging to a locally
bounded measurable gauge field A as & tends to zero. Then the kernel of Cε

hε

converges locally in Lp, for all p with 1 ̂ p< oo, to CA.

Theorem C. Let (hε) be convergent to a Holder continuous gauge field A, then the
determinant, zε

hε, defined to be

with m2 > 0, converges to its formal continuum limit as ε tends to zero. The limit is
finite and strictly positive.

Our methods would also be useful in proving the appropriate analogues of
Theorems B and C in three space-time dimensions.

The limiting theory obtained in Theorem A is Euclidean covariant. It is not
invariant because of the boundary and also the cutoff on the gauge field. In two
dimensions it is possible to identify it with a theory constructed directly in the
continuum and then Euclidean covariance is obvious. However it is also possible
to obtain it directly from our theorems because they are valid when limits are
taken through lattices of varying orientation. We have slightly emphasized this
point because it may be a superior strategy in more singular theories. Obviously
Euclidean covariance is necessary if the final theory obtained by taking the infinite
volume limit and removing the ultraviolet cutoff is to be Euclidean invariant. Note
that Euclidean invariance and Osterwalder-Schrader positivity in one direction
combine to yield positivity in all directions.

Let us now briefly outline the steps in our proof. We begin in Sect. II by
collecting our notation and conventions and summarizing some useful facts about
trace class ideals («/p) of operators [5]. In Sect. Ill we prove Theorem B. One
reason why this part of our work is more difficult than the corresponding parts of
the lattice convergence proof in [6] for Bose fields without gauge fields is that we
can no longer use the Fourier transform to diagonalize all our Euclidean
propagators Cε

hε simultaneously. Instead we rely heavily on the theory of trace
class ideals and analyticity. We have prefaced Sect. Ill by a short verbal
description of these methods since they may find other applications.

In Sect. IV we prove convergence for lattice fields of bosons in an external
Yang Mills field as ε^O. The Yang Mills field can be non abelian. Although we do
not prove it in this paper, the limiting partition function is closely related to that
investigated by Schrader [7]. The differences are as follows: (1) we include the
factor %ε(A) (see IV and Theorem C) which Schrader et al. [7] refer to as the
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"renormalized determinant" (2) our normal ordering of the bose self interaction is
with respect to Cε

0 instead of Cε

A. Both these features are forced on us since we are
going to integrate over the gauge field (in the next section). The renormalized
determinant is a considerable nuisance because it contains contributions which
diverge as ε\0, and one must use gauge in variance in the form of a Ward identity
to prove that the divergent parts cancel each other up to a remainder which is
finite in the limit. (This type of phenomenon is well known to physicists.) The
change in normal ordering (2) is not a simplification either. The point of
Theorem 3.5 and its quite lengthy proof is to control this change of normal
ordering as ε\0.

Our proof of convergence owes much to [6]. We also proceed by embedding all
our lattice theories in one continuum theory (white noise instead of the free
Euclidean field used in [6]). We find that we need to prove that the square roots

]/Cψ converge in </4 and since we cannot use the Fourier transform we prove a
little lemma that provides a sufficient condition that the (non linear) map A ι-*f(A)
be continuous from Jp to J>q.

In Sect. V we complete the proof of Theorem A, in the form of Corollary 5.2 by
showing that the integral over the abelian gauge field, A, of the lattice external
gauge field partition functions of Sect. IV converges as ε \ 0. This then is merely a
matter of justifying the interchange of the ε\0 limit with the A integral so that we
can apply the results of IV. To do this we use dominated convergence, appealing to
the diamagnetic bound of Paper I, Corollary 2.4, and Theorem 4.1, to show a
uniform bound on the external gauge field partition functions. We also have to
show that the class of gauge fields allowed in Sects. Ill and IV are a set of measure
one. This is a slightly fine point since the ultraviolet cutoff on the A field does not
regularize the sample functions much because we wish to have Osterwalder-
Schrader positivity in one direction. We appeal to a beautiful paper [8] by Garsia
on the continuity properties of sample functions of Gaussian measures to settle
this point.

We also discuss Osterwalder-Schrader positivity in this section (Theorem 5.5).
We explain what types of cutoff on the covariance of the Gaussian measure
describing the gauge field yield a continuum limit with positivity in one direction.

In our final section, VI, we provide some technical preparations for our next
paper in which we will remove the ultraviolet cutoff. We discuss counterterms and
define renormalized partition functions and measures for abelian gauge theories.
We give the Feynman rules and in Theorem 6.1 prove an identity, the change of
covariance formula, inspired by similar formulas in [9]. This formula will be used
in Paper III to generate (by iteration) an expansion of the Glimm-Jaffe type [10]
which will prove that the partition function, when correctly renormalized, is
bounded above and below uniformly in the ultraviolet cutoff. This is the most
difficult step involved in removing the ultraviolet cutoff. The formula is of the
following type

<P\-<P>0=\<KP)tdt
0

in which P is a polynomial in the fields, <>ι> <>0, <>f are unnormalized (but
renormalized!) expectations. The subscripts 1,0 refer to different ultraviolet
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cutoffs t parametrises a family of cutoffs that interpolate between 0 and 1 K is a
partial differential operator in δ/δφ. The important point about K is that it
depends only on renormalized quantities and so does not diverge in the ultraviolet
limit. For this reason this formula can be made the basis of a method of removing
the ultraviolet cutoff.

In an appendix we briefly sketch how to extend our results to the case where
Dirichlet boundary conditions are imposed on the Bose field.

II. Preliminaries: Notation, Trace Ideals

In this section we fix notation, give some definitions and quote some theorems on
trace ideals.

First we present a list of symbols followed by an explanation of their meaning

/lCR2, a bounded open set,

LcR2, a simple cubic lattice, unit spacing,

3$ε is the set of bonds considered as closed subsets of R2 e , μ = 0, 1 are the unit
vectors which generate L, i.e.,

Let J*ε(/l) be the subset of bonds contained in A. We denote by dε the finite
difference gradient

associated with U\ dε is defined both on functions on L(ε) and on continuum
functions. The continuum gradient is denoted by d.

We now wish to introduce covariant derivatives. Let G be a compact Lie group
unitarily represented on a finite dimensional Hubert space V. Let Aμ be a gauge
field. For μ = 0, 1, Aμ is a map from IR2 into the Lie algebra Jδf(G) of G. The
covariant derivative is defined on ^valued functions on R2 by

DA,μΦ = dμφ-ieAμφ, (2.1)

e is a constant, the electric charge. The finite difference covariant derivative is
defined only on lattice functions with values in V,

-φ(x)-] , (2.2)

where hε, a lattice gauge field is a map from bonds <x, εeμy into G.
The covariant Laplacians are defined by

AuA, μ ,~ ~

ε

h,μ>

where we use the Einstein summation convention on μ = 0, 1.

Aε — —Δh=
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Let

be the space of two component measurable functions with values in linear
operators 5f(V) on V, given the norm

(2.4)

where the subscripts refer to the lattice directions and || \\#(V) is the operator norm
on V. We introduce this norm because it appears to be appropriate for the
discussion of convergence of gauge fields in Theorem B. The derivatives in the
definition of the covariant Laplacian are applied in the distribution sense. We take
the gauge field A to be in L^.

We now introduce some notation whose purpose is to make the lattice objects
resemble their continuum limits in order to facilitate the discussion of con-
vergence. Let B = Bε

μ be a two-component map from L(ε} into &(V). Set

^.-ίί-WΪ
ΛB — Γ)£* Γ)£ V >ΔB = — uBμυBμ.

These are operators on V valued functions on L(ε\
We will be particularly concerned with the following two choices for B,

where

A^(iβBΓl(hΛ

μ(x)-ί)

eίeε^(x) = hε

μ(x).

The second equation defines stfε in terms of hε, provided h is sufficiently close to the
identity that the exponential map may be inverted, j/ε belongs to «5?(G), the Lie
algebra. Aε does not. Note that if we choose Bε = A\

^,,=(^)"1^,,
Δ\ = Δ\.

The Q Identification. Let / be a function on R2. We can obtain a function on a
lattice L(ε\ Qεf, defined by averaging, i.e.,

Qεf(x) = ε~2 ί f(y)dy,
εdx

where Δx is a unit square centred at the lattice point x. Conversely, given a
function / defined on a lattice, we can obtain a continuum function Qf f which is
the piecewise constant (constant inside each lattice square) function which
coincides with / at lattice points. With the aid of g, β*, we can obtain continuum
operators from lattice operators, e.g.,
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The main reason why we like these operators is that dε and all functions of dε

commute with Qε*Qε. (Recall that dε can be considered to be an operator on
continuum functions.) Another way of stating the same thing is that if A is a
function of dε, we can consider it either as a lattice operator or a continuum
operator A. Then if / is a continuum function

Thus Q gives us an embedding of lattice into continuum. We will simplify our
formulas by omitting these Q operators. Therefore if the context requires it lattice
functions and operators are to be identified with their continuum counterparts
derived via Q.

Euclidean Propagators, Boundary Conditions. Let ^(Λ) = £2(Δ) be the space of
square summable F-valued functions on L(ε\Λ) with norm (first example of Q
identification)

where χΛ is the lattice characteristic function of A and || \\v is the norm on V. Aε

h is
an operator on /2(IR2). By a form method [11] we can extend ΔA to a selfadjoint
unbounded operator, also denoted ΔA, on L2(1R2). The inverses

where m 2>0 are bounded operators; their norm is less than or equal to m~2.
Their kernels, the covariant Green's functions are henceforth called "covariances"
in view of their later role as covariances of Gaussian measures.

If the gauge field vanishes outside A which by definition means that it is zero on
all bonds not contained in A, in the lattice case, we say that the co variance has free
boundary conditions. We introduce an operator C£, on /2(A) by

The covariant Laplacian with free boundary conditions, Δ%, is defined by

m2-AF

h=(CF

h)^. (2.9)

A Convention for the Internal Degrees of Freedom. In order to clean up our
language we are going to suppress V, £?(V) in some of our norms and spaces, e.g.,
our use of /2 for V- valued functions is an instance of this.

The Interaction. The operator on ^2 given by

will be referred to as the interaction with the gauge field. In the case where hε is
derived from j/ε (see 2.6), it may be written

= + fee-ί
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where Tε is the operator of translation by ε in the μ direction. The term 0(εe3) is of
order εe* in operator norm if AeL^.

The kernel of the Fourier transform of this operator is

e2

- -γ(e-ίεp» + eίε^}(^ε)2\p-q)-0(εe*). (2.12)

The Fourier transform is defined by

=!- Σ 82f(x)e-»*.
Zπ xeL(E)

π π 2

The variable p = ( p θ 9 p 1 ) lies in the square , — , because the dual space for
L ε £ J

the lattice is a torus.
Trace Norms [12]. We will have frequent occasions to use the following spaces of
operators. Let H be a Hubert space. A compact operator T:H^H belongs to the
class «/p? 1 ̂ p rg oo, iff

(2.13)
ΞΞ operator norrn^ | |T| |.

It can be shown that J>p is complete, and furthermore the Holder inequality

n n " 1 1

Π T < Π I I T i l Y — = - (214)λi = 1 1 M i l l p i ' Li n V^-1^
ί = l p ί=l i = l F i P

is valid. In this inequality we can drop the condition that 7] be compact if pf = oo.

Proposition, a) For l^p^ oo, finite rank operators are dense in «/p. b) ,/p is closed
with respect to taking adjoints.

Theorem (Grύmm [13]). Let An be a sequence of operators in J>'p, l^p<oo. //
An (A*) converges to A (A*) strongly and \\An\\p converges to \\A\\p, then Anconverges
to A in J^p.

Remark. Simon [14] shows that strong convergence can be replaced by weak
convergence in the hypothesis, if p>l.

III. Bounds, Analyticity, and Convergence
of Covariant Lattice Green's Functions

In this section we establish some properties of our covariant Green's functions
(covariances) which will be needed for the proof of convergence of the lattice
approximation.

In Definition 3.2 we define a notion of convergence for a sequence of gauge
fields h(En} associated to lattices L(8n) with arbitrary orientations, ε 1,ε 2 5... being a
sequence of lattice spacings tending to zero. Given that a sequence of lattice gauge
fields converges to a continuum gauge field in this sense, we show in Theorem 3.2
that the associated covariances, considered as operators on L2 via the Q
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identification of the last section, converge in a "local" Hubert Schmidt norm. We
also show that the functions obtained by restricting to the diagonal the kernels of
the differences between the covariant covariances and the free covariances
converge in U°c for 1 ̂ p < oo. This is done in Theorem 3.3. Actually all operators
we consider are finite matrices (for ε > 0), or finite rank operators after using the Q
identification to put them on L2, but it is useful to state results and think of them
in continuum language since we are taking a continuum limit.

To prove these results we use the diamagnetic bound [15], stated here as
Theorem 3.1, to obtain uniform bounds. The other main technical device is to first
prove convergence when the gauge field is small and then use analyticity, as
proven in Lemma 3.4, to extend the convergence to arbitrary gauge fields. We give
a proof of Lemma 3.4 for the sake of being self contained, but the result is a special
case of well known general theorems [16].

The notion of convergence in Definition 3.2 is sufficient for the results of this
section but has to be strengthened to prove convergence of the lattice partition
function in an external gauge field. The reader is referred to the next section for
this.

We begin by stating the results.

Theorem 3.1 [15] (the diamagnetic bound)

(CJj)a(x, y) denotes the kernel of the operator Cε

h raised to the power a in the operator
sense.

This is an easy generalisation of the Nelson-Simon inequality [15]. A simple
proof has been reproduced in Paper I.

Remark. The same inequality is valid for periodic, Dirichlet and Neumann
boundary conditions on both sides.

Before stating the next theorem, which is the main result of this section, we
need

Definition 3.2. A family of lattice gauge fields hε is convergent to a gauge field A as
ε-»0 iff Aε, defined by

converges to A in L^, i.e., ||,4ε-»;4||->0.

Theorem 3.3. If a family (hε) of lattice gauge fields converges to A as ε->0, then the
kernel Cε

h(E)(x, y) of Cε

h(ε) converges in Lp(A x Λ\ 1 ̂ p < oo.

Remark. The limit is CA(x, y).

The proof of this theorem will use Lemma 3.4 given below.

Lemma 3.4. Let B = Bε

μ, E = Eε

μ be bounded &(V) valued functions on L(ε). Then
Cε

B + λE(x,y) is a real analytic £2(AxA) valued function in λ, which extends to a
function analytic in the strip

2-Imλl lEII + f-
m \m
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The extension Cε

B + λE is bounded by

Remarks. 1) Cε

B + λE is real analytic but not analytic as defined in (2.5), (2.8) because
of the adjoints in (2.5).

2) The same lemma holds for the continuum covariance.
3) Periodic, Dirichlet, Neumann boundary conditions could be accomodated.
The final result of this section will be used to control Wick ordering terms.

Define the operator

The kernel will be denoted δCε

h(x9y).

Theorem 3.5. Let (hε) be a family of gauge fields converging as ε tends to zero to a
continuum gauge field A, then for l^

J |tr <5CJ.(x, x) - irδC^(x9 x)\p-*Q , ε, e'->0 ,
A

where the tr denotes a sum (trace) over internal indices.

Remark. The theorem asserts that δCε is a Cauchy sequence. In fact the limit is the
continuum expression

δCA(x9x) = (CA-C0)(x,x).

It can be shown that δC has a kernel which is continuous in x and y so that the
restriction to the diagonal is well defined.

Proof of Lemma 3.4. We will compress the notation by suppressing ε, μ. Let F9 G be
bounded JS?(F) valued function on L(ε). Then

Therefore

= AF-ie(G*DF-D*G)-e2G*G

Let χA be the characteristic function of A. We show that the Neumann series for
the resolvent

00

ucF+GιΛ=ιΛcy2 Σ (c^w^c^γcy^ (3.1)
n = 0

is convergent in Hubert-Schmidt norm ( = J>2 norm = norm of kernel considered as
a function in /2(R2xR2)) provided ||G|| is sufficiently small. By Holder's
inequality for J>p spaces

(3.2)
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The last bound is obtained by applying the easy bounds

m
! / 2 l li/ 2 | | ̂  ||CF

/2|| ||G|| (3.3)

The bound (3.2) shows that (3.1) is convergent if

(3.4)

By taking norms under the sum in (3.1)

i=ί I I ^ F l l 2 ! _ £ / •

To prove the lemma, take F = B + (Reλ)E, G = imλE. This completes the proof of
Lemma 3.4.

Remark. In the proof of Theorem 3.5 we will use the fact that the argument above
is trivially adapted to show that χΛC

ε

B + λEdε* is J 4̂ real analytic and bounded in a
strip.

Proof of Theorem 3.3. We begin by assembling some simple lemmas which will be
used in the proof.

Lemma 3.6. Let An be a sequence of operators in J ,̂ 1 ̂ p < oo, which converge in «/p

to A. Let Bn be a sequence of operators which are uniformly bounded in operator
norm and Bn-*B, B*-+B* as n-+ oo in the strong operator topology. Then AnBn->AB
in Jp as n-^co.

Remark. A related result was an important ingredient in the lattice convergence
proof of [6].

Proof

\\AB-AnBn\\p^\\(A-An)B\\p+\\An(B-Bn)\\p^\\A-An\\p \\B\\ + \\A(B-Bn)\\p

The first and final terms tend to zero. Let Cn = Bn — B. We are reduced to showing
ACn tends to zero in Jp. Approximate A by a finite rank operator A so that

for a given δ >0. It is enough to show that ACn tends to zero in Jp. Equivalently,
one can show that C*^4* tends to zero, i.e.,

Since this is a finite rank operator, it is sufficient that Cn, C* tend to zero strongly
because the uniform operator norm bound then implies CnC* tends to zero
strongly.
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Lemma 3.7. Let C£ = C^ x, yeL(ε).

Cε(x, y)=^- f d2kC(ε\k)eίk(x'y} ,

Proof. Easy consequence of definitions and Fourier series (see [6]).

Lemma 3.8. Let t/cR2 be bounded and measurable.

uniformly in ε, hε- 1 ̂ p < oo.

Proof. Theorem 3.1 reduces these statements to the special case hε = t for which
they are well known. A simple proof can be based on Lemma 3.7 and the
Hausdorff- Young inequality.

Lemma 3.9. Let £/ClR2 be bounded and measurable, then

2)

in strong operator topology.

3)

Proof. 1) To begin with it is sufficient to take U to be a rectangle in 1R2. To see this
let Dε(x,y) be the kernel of

((C(ε))α-Cα)2

then

1/C7

so that the norm is increasing in U. Next, by Griimm's theorem (Sect. II), it is
enough to prove that

a) II^CTlU-ll^ciU.
b) (Cε)α->Cα in strong operator topology.

For a), by Lemma 3.7

ιι&,(crιiί=ΣfdM^
where the range of integration is — - — for fe and fe;. The dominated convergence

I 8 £\
theorem completes Part a).

Part b), 2) and 3) are all similar. We discuss 2). An easy argument with Qε shows
that it is enough to show that the Fourier transform

- _ με^° |/2π

in strong operator topology as an operator on L2(1R2). This is easy.
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The proof of Theorem 3.3 is a series of reductions.
1) We claim that it is enough to show convergence in L2(A x A). We know that

Cε

heLp(ΛxA) uniformly in ε by Lemma 3.8. Combining this with Holder's
inequality and L2 convergence proves Lp convergence by an easy argument.

2) It is enough to prove L2-convergence in the special case that

Proof. If ε' is sufficiently small, the definition of convergence of hε implies hε is in a
small neighborhood of 1, uniformly in the bonds in J*ε and εrgε'. Therefore we
may define j/ε, a Lie algebra valued function on bonds (with two components) by

and then, given AeR, set

hε(λ)Ξ=eieλj*e.

It is then easy to verify that hε(λ) converges in the sense of Definition 3.2 to λA.
Furthermore, by Lemma 3.1 the co variance Cε

h(λ) is real analytic in λ. It extends to
a function which is analytic in a strip of width independent of εrgε'. Lemma 3.4
combined with Theorem 3.1 shows the extensions Cε

h(λ} are bounded uniformly in
ε ̂ ε', AelR. Therefore a form of Vitali's theorem (see the remark below) tells us that
convergence for all λ is guaranteed by convergence for λ in a neighbourhood of
zero. This completes the proof of Part 2) because we may replace A by λA with
|A|«1.

3) We will now assume \\A\\, ε' are sufficiently small so that the resolvent
expansion

JuCUi=JuC'1/2 Σ (c ^wc ^yc 1/2^
n = 0

is convergent in L2(IR2 x IR2) uniformly in ε rgε'. To see this we refer to the proof of
Lemma 3.4. Recall

W(ε} = - ie(Aε*dε - dε*Aε) - e2Aε*Aε .

By virtue of the uniformity, we can prove χΛC
ε

hεχΛ is convergent as ε tends to zero
by proving

is convergent in L2(IR2 x IR2) as ε tends to zero. The operator in brackets raised to
the power of n is strongly convergent by virtue of Lemma 3.9, Parts 2) and 3) and
the fact that (Cε)dε* and its adjoint are bounded uniformly in operator norm. The
factors χΛC

εlj2 are convergent in </4 by Lemma 3.9, Part 1). The proof is completed
by Lemma 3.6 with p = 4, together with: An~^A, Bn-+B in <#4=>AnBn-+AB in ,/2,
which is a simple consequence of Holder's inequality.

A Remark on Vitalfs Theorem. Vitali's theorem [17] does not in its usual
formulation hold for operator valued normal families. However if a normal family
2F of operator valued functions, analytic in a region Ω, is known to contain a
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subsequence convergent in some open set U in Ω, then that subsequence converges
throughout Ω. A simple proof may be constructed by exhausting Ω by a set of
overlapping open discs. The power series expansions associated with each disc are
convergent uniformly in $> ', so it is enough to prove termwise convergence, i.e.,
convergence of all derivatives at the centre points of the open discs. This is already
given for any disc whose centre is in U. Any point in Ω may be reached by passing
along a suitable chain of discs.

Remark 3.10. In the proof of Theorem 3.5 we will use the fact that the argument
given above can easily be adapted to show that χΛC

ε

hεd
ε* is Cauchy in ,/4.

Proof of Theorem 3.5. We begin by proving a lemma based on Corollary 4.8 of
[14].

Define the following norm on functions on 1R2,

Lemma 3.11. For p, δ, α satisfying

<5>0, α>l/2 + <5,
1 +2o

uniformly in ε, h.

Proof. Define ze[0,l] by

p = 0+ 1/2(1 -z)]-1.

Define y, β>l/2by

and let Kz be the operator with kernel

κz(x9y)=(ctf+**f(y)(i+y2rz7.
The lemma is equivalent to proving

By interpolation, [18], it is sufficient to prove this for z — 0, z= 1. When z = 0,
z = l, p = l. By the diamagnetic bound, Theorem 3.1,

We have omitted internal indices which are to be summed over. By the Fourier
transform Lemma 3.7, the right hand side is bounded by a constant times \\f\\l
which completes the z = 0 case. For the z = 1 case we write

and choose A, B to have kernels
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We have omitted and will omit ε's to simplify the formulas.
The techniques used in the z = 0 case can be applied to show that \\A\\ ,2 is

bounded by a constant depending on γ, β, because (1 +y2}~y belongs to L2. The «/2

norm of B is equal to

ll\f(x)(l+x2Γy\2\Cl(x-y)2(l+y2)27dxdy.

We show this is less than a constant times ||/||2 by using

together with

which follows from the analyticity of the Fourier transform of C\.
We now return to the proof of Theorem 3.5. We wish to show that δCε

hB is
Cauchy in Lp when restricted to the diagonal. We first show that δCε

hε(x, x) is in Lp

uniformly in ε. Thus

tτvδCε

he(x,xγdx\llp^ sup\trv(f(x)δCε

hε(x,x))dx, (3.5)
/ A

where / is a function whose values are scalar multiples of the identity in
Internal indices have been omitted, they are summed to form the trace (trF) on V.
The supremum is taken over / such that

The right hand side of the inequality (3.5) can be written as a trace, i.e.

suptr(5CJ/). (3.6)
/

We are omitting ε's to simplify the notation. Define h(λ) as in the proof of Theorem
3.3,

(3.6) can be written

sup ^dλ — t ΐ ( δ C λ f ) , (3.7)

where δCλ — δCh(λγ Expand using

— δCλ = — Cλ\ — W\Cλ,

W=ield*Aλ-A*d]-e2A*Aλ,

Aλ = (iesΓl(h(λ)-ί).

We are as usual suppressing μ's. Therefore

- ie tr(CλA*'dCλf) - e2 ti(Cλ(A*A)'CJ) . (3.8)
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The prime indicates differentiation with respect to λ. The integral over λ of this is
less than the supremum over ΛE[O, 1]. We now will show how to bound the first
term in (3.8) by a constant times the Lp, norm, ||/||p/, of / which is one. Similar
steps yield the same bound for the second term and the third term is easier so we
will not dicuss these further. Thus this bound will show that the Lp norm oίδCε

hE is
bounded uniformly in ε. From this point we will drop the trF. A sum over internal
indices is to be understood.

We bound the first term in (3.8) using Holder's inequality,

\tr(Cd*A'Cf)\ ^ || C"d*A'C* \\ 2 \\ CβfCβ \\ 2 , (3.9)

where α + /? = 1. We are now suppressing λ also. The cyclicity of the trace was used
to move a factor Cβ. The second «/2 norm equals

( ί ί /(*) ic2(!,(χ, y)\2 f(y)dχdyV'2 . (3.10)
\AΛ /

By Holder's inequality and Theorem 3.1, the diamagnetic bound, this is less than a
constant times

/ ( [ \\C2P(\ λi\\\2p V/2P II f I I Π 1 "hJ J llci (x>y)\\&(v)} \\J\\p" P 11;
\ΛΛ /

The first factor is bounded uniformly in ε provided

2p(l-2β)<l (3.12)

because homogeneity considerations applied to the Fourier transform of C2β show
that

|C2^(x,);)|^φ-.yΓ2(1-2/?) (3.13)

uniformly in ε. Our choice of β is constrained by (3.12). Our proof that δC is
uniformly in Lp will be complete if we can show that α = 1 — β can be picked
consistent with (3.12) so that the first J 2̂ norm in (3.9) is bounded uniformly in ε.
We have

\\C*d*A'Ca\\2^\\C"d*\\ \\A'C*\\2. (3.14)

The second norm is bounded uniformly in ε if α > 1/2 by an argument like that
used to bound (3.10). One has to use the fact that A'λ is bounded in L^ norm
uniformly in λ, ε. We claim that if α > 1/2, the first norm is also bounded uniformly
in ε. Thus by the triangle inequality and the definition of Dh(λ),

\\Ctd*\\^\\ClD%λ)\\+e\\C*A*\\. (3.15)

The second norm is bounded uniformly in ε because \\Aλ\\ is bounded and ||Cα|| is
less than (m2)~α. We bound the first norm by

/ 1 \ α - l / 2 / ι \ α - l / 2
I I ^α- 1/2 I I x

as was used in the proof of Lemma 3.4. We have now proved that the Lp norm of
δC is bounded uniformly in ε.
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We now combine this result with Lemma 3.11 to complete the proof of
Theorem 3.5. By Holder's inequality, it is enough to prove δC is Z^-Cauchy. If
A(x,y) is the kernel of an operator

f
Λ f

where the supremum is over / with ||/|| ̂  = 1 and χv is the characteristic function
of A To make then the left hand side unambiguous one should of course think of
A being factorized into two Hubert-Schmidt operators. By this inequality it
follows that we may prove our theorem by showing that δC is convergent in j^.

Since

δC = ChWhCt = ieChd*ACt - ieChA*dCt + e2ChA*ACt

(where subscripts μ, ε have been suppressed) it is enough to show that
a) %ΛChS* Cauchy in J 4̂,
b) ACh%Λ Cauchy in ,/4/3,

e.g. the first term in the expansion for χΛδCχA is J^ Cauchy because we may take
h=l in b) and combine a) and b) by Holder's inequality. A similar argument
involving the adjoints of the operators in a) and b) (which converge because taking
the adjoint is a continuous map from J>p to ^p) suffices for the second term. The
third term is Cauchy in J^ because b) implies χAChA* and AC^A are each Cauchy

As has already been remarked, the proof of a) can be accomplished along the
same lines as the proof of Theorem 3.2. To prove b) observe that by Lemma 3.11 it
follows that Cε

hχA is in J>p for 2^p>l uniformly in ε. By Theorem 3.3 it is
convergent in J>2. Holder's inequality implies b). The proof of Theorem 3.5 is
complete.

IV. Convergence of the Lattice Approximation
in an External Yang Mills Field

In this section we prove that the partition function and its associated finite volume
expectation, for the case in which the Yang Mills field is external, converge as the
lattice spacing tends to zero. We allow the orientation of the lattice to vary as the
limit is taken, in order to be able to conclude Euclidean covariance of the limit.
For simplicity we consider a lattice theory with just one boson field. Extra boson
fields would not be a serious complication.

We begin by some changes in notation and normalisation of the partition
function described in Sect. 2.3 in Paper I. These are necessary for a convenient
description of the continuum limit. We factor the partition function into a
renormalised determinant zA(hε) and a partition function ZA(hε) of the type
considered by Schrader [7], but on a lattice; it differs also in that the boson self
interaction VA is normal ordered with respect to (m2~ΔE)~l. We show con-
vergence for these two factors separately in Theorems 4.2 and 4.1 respectively. The
convergence proof for ZA(hε) is based in spirit if not in body on [6]. One difference
which appears to help in this case is that we embed our lattice Gaussian processes
in white noise. The diamagnetic bound, Corollary 2.4 of Paper I, is an important
ingredient.
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The convergence proof for χε

A(hε) involves a study of some divergent (as ε JO)
contributions to the vacuum polarisation, Πε

μv, which cancel up to a finite
transverse part by a Ward identity, or gauge invariance. This work is rather
grubby and is postponed to Appendix A.

In Paper I we defined partition functions for matter in external Yang Mills
fields (see for example Sect. 2.3 in Paper I). We now specialise to Bose matter in IR2

with free boundary conditions. We will also be making some normalisation
changes to obtain partition functions which will converge as ε->0.

Let φ be a function from L(ε) to V represented in components by (φx f), xeL(ε),
ϊ = l, ...,dim K Define

The tilde on the Z is there because we wish to reserve Z for another partition
function. Sums and products over x run over L(ε](A). A™ is the matter action, hence
the M superscript. VΛ is the Bose self interaction. :P :ε is a monomial normal
ordered with respect to Q.^eC^IR2). We assume that V is bounded below as a
polynomial in φ when the' normal ordering is dropped. At this stage V does not
have to be gauge invariant.

Since Zε

Λ(K) diverges as ε decreases to zero, we renormalise by dividing by C^(i)
where

(4.2)

Thus let

Zε

Λ(h) ζε

Λ(h)

(4.3)

where dvε

h(φ) is the normalised Gaussian measure with mean zero and covariance
Cε

h. (The F on the covariance can be dropped because V depends on fields
supported inside A.) ζε

Λ(h) is different from zero by explicit Gaussian integration

(4.4)

We can now state our first theorem for this section.

Theorem 4.1. If (hε) is a family of lattice gauge fields converging in the sense of

Definition 3.2 to a continuum field A and /LclR2 is bounded, then

is convergent to a non zero limit dependent only on A for all λ^.0.
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Remark. In particular the limit does not depend on the orientations of the lattices
L(ε).

The convergence of *ε

Λ(h) requires a stronger topology. We will now define a
norm which seems to be as convenient as any. Given α > 0, set [cf. (2.4)]

+ J dxdy
(A(X)-A(y))(A(x)-A(y)f\ 1/2

\χ-y\2+« IIW ' (45)

This norm is chosen so that Πε

μv, the second order vacuum polarisation graphs,
converges as ε tends to zero (see Theorem 4.3 and the Appendix).

Definition. 4.2. A family (hε) of lattice gauge fields is convergent to A in the (oo, α)
sense if

converges to Aμ in the sense \\Aε — A\\^ α->0 as ε->0.

For our next theorems we assume A is a bounded rectangle. We also require
that our gauge fields h be supported inside A.

Theorem 4.3. // a family (hε) of gauge fields is convergent to a continuum gauge
field A in the (oo, a) sense, then ^Λ(hε) is convergent to a non zero limit.

Define the unnormalised measure

dωe

h = *e

Λ(h)dvε

he-v*. (4.6)

In Paper I we showed that Zε

Λ(h) is non zero. Therefore we can divide through and
thus define the corresponding normalised measure dω%.

We now wish to examine the limit as ε tends to zero of these measures. The
limiting continuum measures will be defined on 5 '̂(R2), the Schwartz distribution
space.

Corollary 4.4. Let (hε) be convergent as in Theorem 4.2. dωε

hε converges as ε tends to
zero to a limit dco'A. The convergence is in the sense of convergence of characteristic
functions. All moments converge also, i.e.,

ί=ί

'A \φ(fi),

where f9feC%(Λ).

We now begin the proof of Theorem 4.1. We will need the following lemma.

Lemma 4.5. Let /:IR+->IR be a continuous function on the positive real line. Let
Jίp denote the cone of positive self adjoint operators in J>p. We assume that f
satisfies

\\f(A)\\p^F(\\A\\q) VAeSj,

where F(t) is a positive continuous function on 1R+ decreasing to zero as f \0. Then
the map A^f(A) is continuous from J^ to J>* .
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Proof of Lemma 4.5. We will use the following standard facts : if An is a sequence
of positive compact operators converging in operator norm to an operator A so
that the spectra are discrete and of finite multiplicity, then the eigenvalues of An

converge, the spectral projections P(£]b}9 a<b^ oo, a, bφσ(A) converge in operator
norm (see for example [5], Vol. I, Theorem VIII. 23).

From this we conclude that f(P(^]OQ)An) converges in Jp for all p provided α>0
is not an eigenvalue of A. Choose a so small that for a given ε>0,

(4.7)

By the triangle inequality

\\f(Aβ)-f(A)\\pZ \\f(Pfla,a}An)\\p+ \\f(P{-a,a]A}\\p

The third term converges to zero by the remarks above. The second term is less
than ε/2 by (4.7). To bound the first term note that

n ^
m ^ q

because An-^A in J>q and the projections converge in operator norm.
Thus

lim sup \\f(P[nla,a]An)\\p^ lim sup F(\\P["la,a]An\\q)
n->oo n->co

= F(\\Pl-a,a]A\\q)<ε/2.

Proof of Theorem 4.1 (assuming Theorem 4.3). It suffices to consider λ = l. To
begin with, we embed all the lattice path spaces in the space for white noise. Let
dw(ψ) be the white noise measure, i.e., the Gaussian process of mean zero and
covariance equal to the identity operator. Define

Eε is an operator on L2. Then

Therefore as in [6], (11.24), we can show convergence by

I J dwe-v*-l dwe~VE'\ ^ J dw\Vε- Vε'\

The second inequality is simply Cauchy-Schwarz together with
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The integrals in curly brackets may be bounded uniformly in ε,ε' by the
diamagnetic bound, Theorem 4.1 of Paper I,

By Theorem 4.3 the first term converges as ε tends to zero to a finite number. The
second factor is bounded uniformly in ε by Nelson's boundedness below proof for
P(φ2) (see [19]).

To complete the proof it now remains to show that

Fε'|2^0 as ε,ε'->0. (4.8)

We may without losing any generality assume that for some positive integer N

because in general V is a sum of such monomials. By virtue of the change of
normal ordering formula [29], p. 11 (internal indices suppressed)

[JV/2]

:φN'c = Σ dj(δCtix,x)y:φN-2*(x):Cf ,
j=o

where d 1 ?... are universal constants and [N/2] is the largest integer less than or
equal to N/2, we may without loss take

A

With Vε of this form we prove (4.8) by showing that

f dw7β(7ε-Fβ/)->0 ε,ε'->0.

By the standard methods [20] for evaluating Gaussian integrals, this is equivalent
to

f j δCJ(x9x)(δCN-2J(y, y)C\x9 y}-δC\y, y) (EE^'^(x9 y))->0 (4.9)

as ε,ε'->0. We have suppressed hε,ε,ε' in favour of primes. EE' is the operator
product i.e.,

$ E ( x 9 z ) E ' ( z 9 y ) d z .

We know by Theorem 3.5 that δC converges in Lp for all 1 rgp:g oo. Theorem 3.3

and Lemma 4.5 [with /(x)= j/x] imply that E2 converges in J 4̂, therefore E*E&

converges in ̂ 2 which is the same as convergence in L2(A x A). Recall that Cε

hε is in
Lp(A x A) uniformly in ε for 1 ̂ p < oo by the diamagnetic inequality, Theorem 3.1.
A judicious assortment of triangle inequalities and Holder inequalities yields (4.9).
This proves that

is a Cauchy sequence.
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The proof of Theorem 4.1 is complete once we show the limit is not zero.
Therefore, by Jensen's inequality

The integral in the exponent is not infinite in the limit ε tends to zero. If one does
the integral by explicit Gaussian integration, the result is a sum of Lp norms of δC
which by Theorem 3.5 converge as ε tends to zero.

Proof of Corollary 4.4. Since %*A and Zε

Λ converge (we are assuming Theorems 4.1
and 4.3) as ε tends to zero, it suffices to prove that

f dvε

hεF(Qεφ)e-vε = $ dwe-yεF(Qψ)

converges. F is a polynomial or exponential. This follows from L2 convergence of
e~v (see the proof of Theorem 4.1) and of F [see (4.8)]. These are standard
arguments (see [6]).

Before beginning the proof of Theorem 4.3, we rewrite &A in a more convenient
form, namely

zε

Λ(hε)=deΓ1/2(l-CεWε) , (4.10)

where as usual

Wε = - ieAε* dε + ίedε*Aε

hε - e2Aε*Aε

hε . (4. 1 1)

To simplify notation subscripts μ have been omitted. We will also suppress ε in the
equations below. To obtain (4.10), first explicitly integrate the Gaussian integrals
in *^

*A(h) = der 1/2(m2 - Aft det 1/2(m2 - AF)

This coincides with (4.10) once we argue that the F denoting free boundary
conditions can be dropped. Since CF and C coincide when their kernels are
restricted to A x A we need to show that

This in turn follows from the following facts

(1) Δh-Δ=χA(Δh-Δ)χA.

This is easily verified using the definitions. Recall that h is supported inside A.
(2) The kernels of Aε

h

F and A\ coincide when restricted to A x A except at the lattice
points on the boundary. At these points the difference is independent of h. This
second fact may easily be proved by going through the proof of Theorem IV. 7 in
[6] with A replaced by Ah.

We now introduce the following standard notation [21]. Given Ke*#19 define
renormalised determinants, n = 2, 3, . . .

detπ(l+K)-det(l+K)exp Σ
7=1
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Then

Γ 3 11 1
der1/2(l-CWε) = det-1/2(l-CWε) exp £ --tτ(CεWε)j\. (4.12)

b=ι7 2 J

Proof of Theorem 4.3 (using Appendix A). We see by (4.12) that it is enough to
show that

1) det4(l+Kε) is convergent as ε\0.
2) tr(Kε)3 is convergent as ε\0.
3) - ^tr (Kε) + 4-tr (Kε)2 is convergent as ε \0.

4) 14(̂ 1,

where

Kε=-CεWε. (4.13)

First note that 4) is the diamagnetic bound of R. Schrader, R. Seiler. A proof is
also given in Paper I, Sect. 3.3.

Proof of i). We suppress ε's. Set

H=_cι/2WCιi2

and note that since W is finite rank,

det4(l+X)=det4(l+H).

We now appeal to the well known fact [2la, e, f] that det^ is Lipschitz continuous
on e/n. Then 1) follows if we show that H is Cauchy in J^4. To prove this, expand W
using (4.11) and factor each term in the sum into products of

Cll2d,Ah,χAC
112 (4.14)

and their adjoints. The factor χΛ can be skipped by using the condition on the
support of h. The first operator converges strongly, the second in operator norm,
the third in </4 by Lemmas 3.7 and 3.11. Each term in the sum contains at least one
of the third kind, thus using Lemma 3.6 one obtains 1).

Proof of 2). This is essentially the same as 1). Expand K3. Write each term as a
product of operators as in (4.14) and their adjoints. Each term contains at least two
factors converging in «/4. This is sufficient to prove 2).

The proof of 3) is more subtle and is the only place where we need the stronger
notion of (oo,α) convergence. The problem is that the individual traces in 3)
diverge as ε tends to zero. There is a cancellation between them due to a Ward
identity (gauge invariance). For the proof of 3), see Appendix A. Π

Remark. We conclude this section by sketching some constructive, uniform upper
and lower bounds for z\h\ valid for all Aε with |Im^ε|g const, uniformly in ε.
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Suppose that Aε^A, as ε->0, in the (oo,α) sense [see (4.5) and Sect. V]. We
require that

L4 ,
(4.15)

ι , . < « > , M 2II «..<«,
where AltA2 are real and ξ will be chosen below. The norm || \\x a is defined in
(4.5).

Choose a positive integer N so that

Λ^MilUα^ (4.16)

Recall the definition of j/ε given in Eq. (2.6). We decompose j/ε into its real and
imaginary parts :

(4.17)

For each ε we define a sequence of gauge fields by
.m

/4 = e'» f (4.18)

Our bounds are based on the trivial identity

*L ,4,9,

We have suppressed ε's. The idea is to obtain a uniform (in ε, ε small) upper and
lower bound on each factor using direct methods, in particular the loop expansion.

Let Wm be defined by

Am = Am-ι + Wm, (4.20)

where Am = Ahm. Set h = hN+l and Cm = Chm. Then

*(fy*) -det" 1 / 2fl4-C 1 / 2 J/^Γ1 / 2 ϊ/ T . , — UCl ^1 - fO m _ 1 YVm^m-ί)

^\nm-l)

= det4~ ̂ 2(1 + C^_ , WmC^ ,)gm . (4.21)

(This defines gm.) Since Aε converges to A and j/ε, [̂ε only differ by terms of order
ε, it is easy to show that j/ε converges to A in the (oo, α) norm. We in fact show this
in the next section. Next, by choosing ξ small we show that the loop expansion for
det4 in (4.21) converges absolutely and uniformly in m and ε, for ε^ε0 for some
ε0>0. This is done by using the diamagnetic bound, Theorem 3.1, and J?2

estimates of the type established in the proof of Lemma 3.4 [see (3.1)-(3.4)] and is
not difficult. From this we obtain

Cl < |det4- ̂ (1 + C^_ , WmCl£ I)\<c2 (4.22)

for some constants c l 5 c 2 independent of ε and m.
The factor gm is the exponential of all terms of order 1, 2, and 3 in Wm arising in

the loop expansion of det~1/2(l + C^/2

1P1ζ1C^/2

1). These more singular terms are
estimated by expanding Cm_ 1 in a partial Neumann series. The leading terms give
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the contribution 77μv analysed in Appendix A. The remainders are estimated by
methods resembling those in the proof of Theorem 3.5. The details are tedious but
straightforward and are omitted.

The conclusion is

c\<\9n\<c'2, (4.23)

where c'1? c'2 are constants depending only on ξ and MIL^. We collect (4.19),
(4.22), and (4.23) to obtain

(c1ci)JV+1^μe(A)|^(c24)w+1. (4.24)

Note that if A is real valued along with j/ε for all ε, then #ε is real and positive
because by (4.4) it is the ratio of two positive integrals, therefore (4.24) is
strengthened to

(c^f^/O^l, (4.25)

where the right hand bound is the diamagnetic bound, Theorems 2.3, 4.1, and Sect.
3, Paper I. N is determined by

V. Convergence of the Partition Function for Yang Mills and Matter Fields
(Yang Mills Fields with a Cutoff)

V. i. In this section we specialise to abelian Yang-Mills fields. This is implicit in
our use of a Gaussian measure for the pure Yang-Mills field, which is incompatible
with gauge in variance if the gauge group is not abelian.

Given a real measurable abelian gauge field A and a lattice Δε\ let Aμ be the
components of A relative to the unit vectors generating L(ε). Given a bond b in the
μth direction let

hε(b) = eίeίAμ(x)dx if be A
(5.1)

= 0 if bφA.

This defines a lattice gauge field hε on L(ε\A). Throughout this section, all lattice
gauge fields will be derived from a continuum gauge field in this way. We will
therefore regard the partition function Zε

Λ(hε) of the last section as a function Zε

Λ(A)
of A. The φ field is complex.

The full Yang Mills and matter partition function, denoted Zε

Λ has the form

Z'Λ=$dμD(A)Z°A(A)9 (5.2)

where dμD(A) is a Gaussian measure, mean zero, covariance D = Dμv(x,y).
In this section, we will assume that the covariance D is such that with

probability one, the sample functions Aμ(x) are essentially uniformly Holder
continuous with modulus α<f, (E.U.H.C.), which means that there exists a
constant CA, finite for almost all A, such that

\Aμ(x)-Aμ(y)\£cA\x-y\*, x,yeA~EA, μ = 09l, (5.3)

where EA is a set of Lebesgue measure zero, dependent on A. A sufficient condition
on the covariance D for (5.3) to hold for almost all sample functions A is given in
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Sect. 5.2. The condition (5.3) excludes the covariances we are ultimately interested
in and this is why we refer to such co variances as "cutoff. The cutoff has to be
removed by taking a limit outside the A integral. This limit is more difficult
because it involves renormalisation. It will be discussed in Paper III.

Theorem 5.1. If A is a bounded rectangle and L(ε) is a family of lattices, ε>0, then

lim Zε

Λ exists, is non zero and is unique.

Define

where FeLp(dμD x dvA) for 1 ̂ p < oo.

Corollary 5.2. The measures < YΛ converge as e->0 in the sense of convergence of
generating functions. All moments converge.

Proof. Essentially identical to the proof of Corollary 4.4.

Define

. (5.5)

Proof of Theorem 5.1. We begin by showing that if Aμ satisfies (5.3), then hε as
defined by (5.1) converges as ε->0 in the (oo, α') sense for α' <α. By (5.3) Aε

μ(x) is in
L^. By expanding the exponential in Aε

μ(x).

where the essential supremum is taken over all ξeA within distance ε/2 of a given
bond b, and then over all bonds b in A. The first term tends to zero by (5.3). Next
define

(5.6)

The proof of (oo, α') convergence is complete once we show that the seminorm

IB i^O ,5.7,
\χ~y\

for μ = 0, 1.
The following easy inequality, valid for 0<y ̂  1,

(5.8)

follows from Holder's inequality. Choose y so that -- 2 = α"<α. Since we

have just shown that ||B*|| tends to zero, it is enough to obtain a uniform bound on
||B* ||α». This is easy to obtain by expanding the exponential in Bε and applying
(5.3). This completes the proof of (oo,α') convergence.
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Now we will establish that the limit, assuming it exists, is not zero. By its
definition as the ratio of two positive integrals and the diamagnetic bound of
Schrader and Seiler [7]5 also see Paper I, Sect. 3.3,

Furthermore by the convergence of hε just proven and Theorem 4.3 the limit of
%ε(A) exists and is non zero almost surely in A see (4.25). Denote the limit by z(A).
Jensen's inequality implies

Zε

A ^ J dμD(A)*°A(A) [exp - f dvε

A Vβ .

The exponent is a real valued polynomial in δCε

A which we know by convergence
of hε and Theorem 3.5 is convergent as ε\0. Let P(δCA) denote the limit. Fatou's
lemma implies

End of proof that ZΛ φ 0.
By Theorems 4.1 and 4.3 and the (oo,α') convergence just established, we now

have obtained convergence of ZA(A) almost surely, as ε tends to zero. The proof of
Theorem 5.1 is completed by combining this with the Lebesgue dominated
convergence theorem and the diamagnetic bound, Theorem 4.1, Paper I:

The right-hand side is bounded uniformly in ε by Nelson's boundedness below
proof [19].

V.2. Continuity of Gaussian Processes

Theorem 5.3 (A. M. Garsia). Let Φ(x) be a Gaussian process on a bounded region A.
A sufficient condition for Φ to satisfy (5.3), (E.U.H.C.) with modulus α, is that atu = Q

p(u) = sup [£((Φ(x) - ΦGO)2)]1/2 (5-9)

be Holder continuous with modulus βxx.

For a proof of this theorem, see the beautiful article by Garsia [8]. The
condition in Theorem 5.3 follows from the condition in his Theorem 2 by
integration by parts. To help the reader we indicate the basic idea in [8], The
assumption (5.9) on p(u) implies that the expectation

E exp < c
Φ(x)-ΦGO'

\χ-y\β

is bounded uniformly in x, ye A for a suitable c>0. This implies

with probability one. This condition is evidently tantamount to some form of
continuity for Φ. Garsia has proved a very clever real variable lemma (Lemma 1 of
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[8]), which shows that this condition implies Φ(x) is E.U.H.C. with index α for all

In the case at hand, we infer from Theorem 5.3 that Aμ is (E.U.H.C.) for μ = 0,1
if at u = 0

pμ(u) = sup (Dμμ(x, x) + Dμμ(y, y) - 2Dμμ(x, y))1/2 (5.10)

is β Holder continuous, β > α. If we specialise to the case of Aμ real and translation
invariant then (5.10) is implied by: for some constant c,

We can transform this into a simple condition on the Fourier transform of
Dμμ(x — y), denoted Dμμ(k), by noting that the supremum norm of

\x\-2β(Dμμ(V)-Dμμ(x))

is less than the Ll norm of its Fourier transform. The Fourier transform of \x\~2β

is, for /?<!, cβ\k\~2 + 2β by homogeneity, therefore the L1 norm of the Fourier
transform is less than a constant times

idk.dk,
which is finite provided β < 1/2 and

J </*£„„( W< oo. (5.12)

Therefore we have proved.

Corollary 5.4. A Gaussian process Aμ(x) with covariance Dμv(x — y) has sample
functions which are (E.U.H.C.) with modulus α provided condition (5.12) holds for
some β>a.

V.3. Osterwalder-Schrader Positivίty

We assume that A is symmetric with respect to reflection about some hyperplane
π.

Let A + ,A_ denote the open subsets of A on either side of π. We now define
ΣG

+,ΣG, which intuitively are the algebras of gauge invariant functions of fields
supported in A+,A_ respectively. ΣG

+ is the algebra of functions measurable with
respect to the σ field generated by all functions of the form

:φφ(f) : = J :φφ(x):f(x)dx9

In the last expression A is integrated along a contour inside A+Σ_ is defined by
replacing A+ by A_. Reflection about π induces a map Θ

in an obvious way (see Sect. 2.1 of Paper I).
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In this section we wish to show that if the boson self interaction V is gauge
invariant, i.e.,

V(φ) = V(\φ\)

ana the covariance D is suitably chosen, then we have Osterwalder-Schrader
positivity in one direction, i.e.,

0 (0.5)

for all F in L1nZ+.
We choose covariances D of the following type

where k2 = kμkμ, /c = (fe0,/c1),

and g is positive, continuous with

for some /?>0. Note that Corollary 5.4 implies that the Gaussian process with
covariance D has (E.U.H.C.) sample functions.

Theorem 5.5. The expectation < yΛ is Osterwalder-Schrader positive for π parallel to
the 1-direction if V is gauge invariant and D is of the form (5.13).

Proof. Approximate F in (O.S) by a polynomial in the gauge invariant fields

B(f)9 :

By Corollary 4.4 the expectation <>Λ of such a polynomial converges as ε\0.
Therefore it is enough to prove (O.S) for < >^ replaced by < γA. We now put the A
field on a lattice also : consider the lattice Gaussian process with covariance Dε

μv

given by the kernel of the operator

where dε is the finite difference gradient and dε'*dε' = dε

μ*d*. Choose ε' = ε/N where
N is an integer and arrange the ε' lattice so that it is a "refinement" of the ε lattice.
By diagonalising the covariances Dε using the Fourier transform it is easy to show
that as ε'\0 the Gaussian measures converge, i.e.,

dμDR,-+dμD (5.15)

in the sense of convergence of moments and characteristic functions. We claim that
this implies that the expectations <>^ε associated with this double lattice
approximation converge to <>Λ as ε' \0 in the sense of convergence of moments.
This is so because the partition function Zε

A(A) for bosons in an external gauge
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field can be expanded in a convergent Fourier series in exponentials of the finite
number of Gaussian variables

Aμdxμ:be£°(Λ)
b

where b is a bond in the ε lattice and the contour integral along b is really a
"contour sum" on the bonds of the ε' lattice. Approximate Zε

Λ(A) by truncating the
Fourier series and use (5.15). Thus it suffices to prove (O.S) for <>Λ replaced by
<Xd ε / This is a lattice theory and we may prove (O.S) for it in complete analogy
with Theorem 5.3 and Corollary 5.4 in Paper I. The presence of two lattices, one
for the A field and another for φ causes no additional problems.

VI. Feynman Rules, Counterterms, and the Change of A Covariance Formula

VI. 1

This section is a technical preparation for the ultraviolet limit, i.e., the removal of
the condition (5.12) on the A co variance. This will be done by taking a limit outside
the integrals over A and φ. To control this limit we will need a formula which we
call the change of co variance formula in honour of (22). This identity expresses the
difference between two partition functions with different A covariances in a form
which is amenable to estimates.

The ultraviolet limit will only exist (conventional wisdom based on per-
turbation theory) and be non trivial if one alters the interaction V by adding in
some terms known as counterterms which will be infinite in the limit. Since one of
the most convenient ways of discussing the rather complex formulas which arise is
the Feynman graph notation we will also spend some time explaining this. We
have introduced some graphical notations which are not standard.

In this section we continue to assume that lattice gauge fields are abelian and
derived from continuum gauge fields as in (5.1). We also assume that the photon
propagators are translation invariant and satisfy (5.12). The φ field is complex.

We begin with some notation including the Feynman graph formalism. We
present formulas first and explanations afterwards.

(6.1)

where p, x are in R2. The Fourier transform of dε is

/ρ«(p) = β-i(e^M_i). (6>2)

The lattice photon propagator is defined in terms of the continuum propagator by

^v(*-3θ= SdμD(A)j*μ(x)s/*μ(y)9 (6.3)

where x, yeL(ε} and

^ε

μ(x)=- j Aμ(x)dxμ if 'bμ(x)CΛ9 = 0 otherwise (6.4)
8 bμ(X)

with bμ(x) denoting the bond at x pointing in the direction e .
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The quantities j^ are Gaussian random variables, but Aε

μ, Aε* are not.
Formally

(6.5)

Feynman Rules (Momentum Space)

(la)->-2C(p), 2Cε(p).

(Ib) -̂  (j/^C1'2^), (1/2) Cεl/2(p).

(3)

(4)

V
PI

Pi

(5) A A

Pi P2

(6) A

~ P2
2μ) + 0(8)

Pi P2

(7)

Pi Pi P2

A A A A
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Feynman Rules (Configuration space)

(la) 2C(x-y), 2Cε(x-y).

(Ib) (2C)ί/2(x-y), (2Cε)ί/2(x-y).

(2a) Dμv(x-y), Dε

μv(x-y).

(2b) (}/D)μv(x-y), (]/D~\v(x-y).

(5) - l/2e2A2(x}χA(x) , - l/2e\A^μ) (x) .

(6) - l/2ίe(AμχAdμ + dμχΛAμ) (x) , -

(7) /(x).

(8)

Associated with each graphical symbol is a continuum kernel, written first, and a
lattice kernel written second. By the Fourier transform, the kernels listed under the
heading configuration space are unitarily equivalent (as operators) to the kernels
listed opposite the same numbers under momentum space. The various factors of
χA occur because we are using free boundary conditions. Similar formulas hold for
periodic boundary conditions. Note that a factor χΛ is included in the definition of
A(ε} associated with (5.1).

Since we are now specialising to the case of φ complex

(2π)

To each graph that can be constructed by joining the vertices (3)-(7) by lines
(1) and (2) is associated a polynomial in φ and A obtained by integrating over all
the p's and /c's. This is a standard notation in field theory so we will not explain it
in detail but simply give an example which has been cropping up continuously in
this paper. Let AAμ = χAAμ,

• C(x ~ y) (ΛAμdμ + dμAA) (y) C(y - x ) , (6.6)

Pl

A =e2^dp1dp2AAμ(pί-p2)(plμ+p2μ)

P2 C(p2)AAv(p2 - pj (p2v+plv) C(PI) .

Both these integrals happen to diverge. If they were interpreted according to the
lattice kernels they would not diverge and they would be equal by the Plancherel
identity.
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VJ.2. Counter terms, Renormalised Partition Functions, Measures

Let

k k

OδmD =-
p 2 = 0 Pι = 0 p2 p 3 = 0

ED = lim ED = lim (- (—-) - ( ) ) (e) (6.7)
e^O e->0

where I7μv is the limit of the quantity Πε

μv defined in Eq. (A.I), Appendix A. bm2

D is
a continuum quantity. We will have occasion to use the corresponding lattice
quantity (δmε

D) 2. The existence of the limit in the definition of ED is established in
Appendix A. It requires that Dμv satisfy (5.12). Both δm^ and ED are infinite if (5.12)
does not hold, i.e., these counterterms are inserted to cancel divergences in the
ultraviolet limit.

We now define the counterterms

UAtD = l/2δm2

D$dx :φ2(x):+ED, (6.8)
Λ

where the normal ordering is with respect to C. Define Uε

ΛD by substituting the
corresponding lattice definitions.

The renormalised partition functions are, by definition,

cf. (4.3) and (5.2). We are dropping the A subscripts everywhere from this section
because A will be fixed. Instead we make D dependences explicit because the
dependence on D will be of interest.

Since for a fixed ultraviolet cutoff on the gauge field the renormalisation
constants (δmε

D)2, Eε

D converge as ε tends to zero, our previous convergence proof
for Theorem 4.1 is easily adapted to prove that the limit as ε tends to zero oϊZε

D(A)
exists almost everywhere. We denote the continuum limits ZD(A) and ZD. We can
take the limit past the dμD(A] integral because Lebesgue dominated convergence
can still be justified by the diamagnetic bound, cf. the proof of Theorem 5.1.

We will use the subscript D to indicate that Fis replaced by 7+ UD in previous
definitions. For example the renormalised Bose matter action is

A%* = - 1/2(0, [m2 - zlf] φ) + Vε + U°D

cf. (5.4). We apologise for the confusing use of A for both the Yang-Mills field and
the action.
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VLB. Change of A-Coυariance Formula

Let DQ.D^ be two covariances for the gauge field. The associated independent
Gaussian processes are denoted A0,A1. For £e[0, 1], set

Note that At is a Gaussian process with covariance Dt. Let P be a polynomial in
φ, φ = φ of the form

P=$dxί...dxqg(xl9...9xq)φ(x1)...φ(xq)9 (6.12)

where geC^. We are interested in studying

(6.13)

The subscripts 1,0 and later t replace the subscripts D l 5D0,D f in order to simplify
our formulas.

We study (6.13) by using the fundamental theorem of calculus to write it as the
integral of a ί derivative. The t derivative and the dμ(A) integrals can be
interchanged because the second derivative of the integrand may be controlled by
the methods we are about to apply to the first derivative. Thus (6.13) becomes

ίdt^dμ^A^dμ^A^^dω^P). (6.14)o ai

The measure dωt is given by

dωt(φ) = limzε(At)dvε

Ate-vε-uϊ

The limit is as usual in the sense of characteristic functions, or convergence of
moments. Existence follows from the results of Sect. IV. We now show that

A™\Kε

tP), (6.16)

where Kε

t is a linear operator defined on the space of polynomials in φ. It will be
defined below. By dividing through by ζε(i) and taking the limit ε \ 0 we will obtain
an identity for the t derivative in (6.14). By doing the t derivative:

A™ε)fe-A™εP. (6.17)

We use primes here and hereafter to denote t derivatives. The factor φ(x) in
( — A™ε)' is integrated by parts. This simply amounts to replacing it in (6.17) by

2 J dyCε(x - y) (δ/δφ(y) - (δ/δφGJ) , (6.18)

where the integral is really £ε2 an<^
y

^ψ). (6.19)
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These formulas are easy to derive since we are working on a finite lattice. The
easiest way to manipulate integration by parts is via the graphical representation

0 (x) —- δx

— <
(δ/δ0 --

At (6.20)

At At

The conclusion obtained from integration by parts applied to (6.17) is of the
form (6.16) with Kε

t equal to

K e =t — (δ/δ0 --=- (δ/δ0 - = ~

At At At

0 + 0 (6.21)

At A t At At A t At A t At

*Ef'+R'
\t At At At

We now exhibit a cancellation between the third term and the last in (6.21), by
writing

'^~^
At

At

so that Kε can be put in the form

(δ/δ0 - 4 (δ/δ0 - - - )
00

At At At

+ :<2 P +Φ ) + φ φ (6.22)

A, At At A t At A t At A t

0 + /: Atμllμj Atί; : dk

At At At At



194ι D. C. Brydges, J. Frδhlich, and E. Seller

The Ef in (6.21) cancelled when the last term in (6.22) was normal ordered. Πε was
defined in (6.7). We define K as in (6.22) but with diagrams interpreted by
continuum Feynman rules and Πε replaced by Π.

The true merits of (6.22) will be more readily appreciated in the context of the
stability expansion in Paper III. The main point is that the diagrams in K remain
finite in the ultraviolet limit provided A is in a gauge which is approximately
transverse.

Having identified the operator K\ appearing in (6.16), we divide both sides by
ζε(i) and take the limit ε goes to zero. The result, after some work which is
discussed below, will be

~$dωt(φ)P = ldω,(φ)(KtP). (6.23)

The Limit e\0. The main difficulty is to show that the right hand side of (6.16)
converges as e\0. There is no difficulty in interchanging the limit and the t
derivative because the left hand side can easily be shown to be bounded uniformly
in ε by the diamagnetic bound of Paper I and the Cauchy-Schwarz inequality. Our
previous results, Theorems 4.1 and 4.3 imply that the quantity under the ί
derivative on the left hand side converges as ε^O.

We use the notation introduced in the proof of Theorem 4.1. We will only
sketch a proof that the right hand side of (6.16) converges because the method is
similar to techniques we have already explained in proving Theorems 4.1 and 4.3.
Recall that we are still working with a cutoff gauge field, A, that is (E.U.H.C.) with
modulus α<l/2.

By an argument as in the proof of Theorem 4.1, it is enough to show that

J dw \(K\P) (φε) - (Kε

t'P) (φε')\2 -»0 (6.24)

point wise in ί as ε, ε'->0. We first show this in the case that Kv K't are replaced by
Kv K'τ which are obtained from Kt, K't by replacing all factors χΛAt occuring in
their definition except those in the last term in (6.22) by a C°° gauge field At

compactly supported in A. We then gain the freedom to move all the derivatives
occuring on external lines in

A t

type vertices past the At by Leibniz rule onto the internal lines. It is now not
difficult to prove (6.24) in this case using the methods of the proof of Theorems 4.3
and 3.3. It is now necessary to show that for any δ >0 we can approximate χAA by
A so that

uniformly in ε. This follows easily from the fact that Aμ can be chosen so that
Aε

μC
εl/2 and its adjoint approximate AμC

1/2 and its adjoint arbitrarity closely in
</4 uniformly in ε. This concludes our discussion of ε \ 0.



Quantised Gauge Fields. II 195

We now combine (6.23) and (6.14) to obtain

Theorem 6.1. If P is of the form (6.12), Z>0 and Dί are two covariances for the gauge
field

Kt was defined below (6.22).

Appendix A

In this appendix we study the vacuum polarisation

l/2trCWε+l/4tr(CWε)2 (A.I)

which was encountered in the proof of Theorem 4.2 and also in Sect. 6. We will
specialise to the case in which φ is a complex scalar field and A is real. The
calculations given below are not significantly changed if one combs them through
with A nonabelian.

We begin by rewriting (A.I) in the form

j d2k^ε (k)Πε

μv(k)J^(k) + 0(e*ε log2 ε) ,

where by a calculation using (2.12)

) = i J (m2 + ρ2_Γ 1 (m2 + Q\ )~ 1

. (e-
i"'--eίllp+)ll(iεΓ1(e~i*s'+-elει'-)v(iεΓ1d2p

λ

A subscript μ (or v) on a bracket indicates that all p's, ρ's inside are pμ\ ρμ's.

Subscripts +, — indicate that p is to be replaced by p + ,p_ in the appropriate
definitions.

stands for'ρμρμ. All integrals are over , — .
ε ε j

By using the Feynman rules in Sect. 6 it may be verified that

P+ p

(A.2)

There are no D propagators on the external lines. This observation will become
relevant when we prove that Eε

D converges as promised in Sect. 6.
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Transversalίty

We first show that Πε is transverse, which by definition means

ί7'v(fc)ρv(fc) = 0. (A.3)

We set ε = l and omit ε superscripts throughout the proof of transversality.
Transversality can be shown directly by shifting the variable of integration in the
left hand side of (A.3) as is done in physics text books. See [23] to get the general
idea. However it is really a consequence of gauge invariance. Let

By gauge invariance, see for example Paper I, Theorem 2.6, χΛ(hΛ), defined in
Sect. 4, is independent of α. Therefore

is independent of α. Differentiation with respect to α and setting α = 0 yields
(A.3). Π

Since Π is transverse it must satisfy

Πμv = Πλλtδμv-ρμρv/ρ2-] (A.4)

because the quantity in brackets is the projection onto the transverse component
of a gauge field as can be checked by verifying that it vanishes on longtitudinal
functions ρv/(fc) The projection is rank one. (A.4) follows by taking traces.

The (Pointwise) Limit as s\Q of Πε

μv

We will now show that the limit ε \ 0 of Πε

μμ exists pointwise in k and give an
expression for it. We have

είV (A 5)
μ

Substitute in (A. 5) using the identity

\ -ip_ ίp\2

+ (\e-ίp-eίp\2-2\eίp--l\2

μ-2\eίp+-l\2

μ-4m2}

and note that the numerator in the second term may be written in the form:

P / /c \
— 16 sin4 -̂  +8cosp cos-^ — 1 —4m 2 .

2 μ\ 2 }
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All μ's are to be summed over. We have set ε = 1 to simplify the formulas. The
result after shifting integration variables p + — »p and p_-»p is

^ (A.6)

As usual all μ's are to be summed over. The range of integration is - , — for
L ε ε J

each component of p.
We prove that the limit of the first two integrals exists and evaluate it by

scaling εp-+p. The result is

(A.7)

where ρμ =
Since

(A.8)

is bounded both above and below uniformly in p and ε for pel -- , — , we may
L ε ε \

take the limit ε \ 0 under the integral sign in the final integral in (A. 6) by the
dominated convergence theorem. The result is

m2+p2

+)-1(m2 + p2_)-1(-/c2-4m2)^. (A.9)

Let us call this integral J(/c), then we have shown that pointwise in k

Π£

μv(k) — ̂ -+ ( - J0 + J(k)) (δμv - kμkv/k2) . (A. 10)

Furthermore we can show that J0 = J(0) by the following argument: Πε

μv(k) is
analytic in k near fc = 0, the transverse projection is not, therefore /7*v(0) = 0.
Pointwise convergence then implies that J0 = J(0).

Remark. J(0) is independent of m by a scaling argument. Thus setting m = 1 gives

2π



198 D. C. Brydges, J. Frδhlich, and E. Seller

Pauli-Villars regularisation of the continuum expressions gives the same result as
(A. 10).

By combining the upper and lower bounds on (A. 8) with the arguments given
above it is not difficult to prove first that for all α > 0

and then obtain :

Lemma A.I. For all α>0

(i+/c2r*π<v(fc)

converges in L^(d2k) as ε\0.

Proof of Statement 3) in the Proof of Theorem 4.3. j/*(k) is the Fourier transform
of a function on a lattice [see below Eq. (2.12)]. Let

. k, . k2sine — sine— -

fiτβτ
By an easy computation Hεj/μ = stfμ is the Fourier transform of £/*(x) considered
as a piecewise constant function on IR2 via the Q identification. Therefore, omitting
ε's

π/ε -

-trK+l/2tτK2= j j/μΠμvH-2s/vd
2k. (A.12)

-π/ε

H is bounded both above and below on the range of integration. As ε \ 0 it
converges uniformly on compact subsets of IR2. Hence by Lemma A.I

converges in L^IR2, d2k) as ε\ 0 for all α>0. Therefore it is sufficient to show that
the L2(IR2, d2k] norm

|| kal2^ || 2 - j rf(x) (k«)~(x - y) sέ(y] d2xd2y (A. 1 3)

converges as ε \ 0. The right hand side of this equality comes from the Plancherel

identity, fc= |//c2 + /c2.

Lemma A.2. Let f be in Schwartz space. The Fourier transform of kaf(k) is a
constant, Cα, times

f wω -/(*)) i* -.yr2~β.
For a detailed proof see [24]. It is not difficult and proceeds by exploiting the
homogeneity of fe. An easy argument shows that we can also use this form if /is stf.
Thus the right hand side of (A. 13) may be written as



Quantised Gauge Fields. II 199

Since jtf vanishes outside A9 a bounded rectangle, (oo, α) convergence of stfμ implies
convergence of (A.14). This in turn is implied by (oo,α) convergence of Aε

μ by
expanding the exponent and making some simple estimates relying on the fact that
jtfμ and Aμ are piecewise constant. Aμ is (oo,α) convergent by hypothesis. Π

Proof of Convergence of Counterterms (VI.2). The propagator defined in (6.3),
Dε

μv(x) is a function on the lattice L(ε) and

μv μv 2π'

As above D = DH is the Fourier transform of D considered as a piecewise constant
function on R2 via the Q identification. Since

π/ε

Fε —2 f Πε Dε d2k^D ^ J ίlμvuμvu *
-π/ε

we may argue as above that convergence of Eε

D is implied by convergence of

J ^ ^μv" k = ca J (D μv(x) — D μv(0)) \x\ a x
— OO

for some α>0. The right hand side is derived by noting that the integral on the left
is equal to the Fourier transform of the integrand evaluated at zero and using
Lemma A.2. Dε

μv(x) is now to be understood as a piecewise constant function on
R2. Convergence of the right hand side may be easily shown using the Holder
continuity (5.11) of Dμv and arguments analogous to those in the proof of
Theorem 5.1. This concludes the proof of convergence of Eε

D.
A very similar argument which we omit proves the convergence of δm^.

Appendix B

Convergence of the Lattice Approximation for Periodic
and (Half-) Dirichlet Boundary Conditions

We want to sketch how the proofs for convergence of the lattice approximation
given in this paper can be adapted to periodic, P and Dirichlet, D (or Half-
Dirichlet, HD) boundary conditions, for a rectangle A. In the case of D or HD
boundary conditions, the orientation of A with respect to the lattice may be
arbitrary. This will be needed in Paper III for proving Euclidean invariance. Half-
Dirichlet means here that we use Wick ordering with respect to the free covariance
in the selfinteraction of the matter field we use Dirichlet boundary conditions for
the co variance of the matter field and free boundary conditions for the gauge field.

In the main body of this paper we reduced existence of the continuum limit for
X boundary conditions to the following three convergence statements:

A) XACX^XACX in Λ, for α> 1.
B) dε(Cε

x)
1/2-*dCχ/2, in the strong operator topology, and likewise for the

adjoints.
C) (Aμ9Π

ε

μ'*Aε

v)-+(Aμ9ΠμvAv)9 whenever Aμ converges to Aμ in the (oo,α) sense
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Although we only considered free boundary conditions, X — F, our arguments
show that A)-C) suffice for more general boundary conditions, in particular
X=P,Ό.

--> \y\<~~\ witn a>b multiples of ε, the periodicAl /L — i \-'* > r / v— -"-••- \ ""\ -> ^. ι i Y i -̂ ^

covaπance is

oo

M, m = — oo

This representation shows that statements A)-C) remain true if Cε, C are replaced
by Cε, Cp, since the series in (B.I) converges absolutely and uniformly, because of
the exponential decay of Cε, C.

So we only have to prove A)-C) for Dirichlet boundary conditions, X = D. We
will make use of the work of Guerra et al. [6].

Let pε be the projection, orthogonal with respect to the scalar product ( , Cε ),
onto functions on L(ε) supported in L(ε)(~/L); similarly p, for the continuum.
Define

P = C1/2pC~1/2. (B.3)

Using the imbedding QεV2(L(ε)HL2(IR2) (see Sect. II), we obtain the orthogonal
projections in L2(IR2)

Pε = Qε*PεQ
ε. (B.4)

The crucial fact is

Lemma B. 1. s-lim Pε = P.

Remark. This is very similar to Lemma (VIII.9) in [26] and Lemma IV. 11 in [6]. It
is not identical, however, because these references use a different imbedding of
/2(£(ε)) into L2(IR2). This necessitates some modification in the proof.

Proof. I) We claim that for

0eRanPnRanC 1 / 2,

Proof. By BesseΓs inequality we have inf \\PEh — g\\ = \\Pεg — g\\. Thus

by statement A), for X = F (free); we used the fact that QεC~1/2g is supported
outside Λ.
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II) If geRanP we still have \\Pεg — 0||-»0 because RanPnRanC1/2 is dense in
RanP (i.e., A is "regular" in the terminology of [6]).

Ill) Let #eL2(IR2),/a weak limit point of the bounded set {Pε#|0<ε< 1}. We
claim :

f=Pg. (B.5)

a) Let C1/2heC™(Λ):

β^Q^1/2)^^^)-1/^^ (B.6)

(the second term is zero because of support properties). (B.6) converges to 0,
(see note added in proof), which shows that /e Ran P.

b) Let

by Part II) of the proof; this establishes (B.5).
IV) (B.5) shows that Pεg converges weakly to Pg; because Pε are projections

this implies strong convergence. (End of proof of Lemma B.I.)
As discussed in [6], we can define the Dirichlet co variances by

C*D = Cε(l - pe) = (Cε)1/2 (1 - Pε) (Cε)1/2 , (B.7)

(B.8)

Statements A) and B) with Cε, C replaced by CD, CD are now consequences of (B.7)
and (B.8), using Lemmas 3.6, 4.5 and B.I (see note added in proof).

Statement C) is a little more subtle.
Obviously it suffices to consider the difference

* - d^} (C<D - C')} {(% -

σ)(x,x)dx. (B.9)

(We assume A to be transverse non-transverse components drop out.)
Because of the Holder continuity of Aμ we can bound \Aε

μ — £/μ\ uniformly in A,
and using the Q-imbedding also \jtfμ — Aμ\; therefore we only have to show
L1 -convergence of (d *(Cε

D — Cε)) (d*(Cε

D + Cε)), and convergence of the second term
in (B.9).

Here δ* is either dμ or d*. What we need is contained in

Lemma B.2.

1) dy(σ _ Cy ̂ ^ 3 *(c _ CD) in L2(Λ χ Λl

2) (dε

μ*(σ-σD))(di*σ)^(d*(c-cD))(d*Q in L\AXA\
3) (Ce-CΪ,)(x,x) ^(C-CD)(x,x)

Proof. The proof proceeds by the dominated convergence theorem. For the
uniform upper bound we need
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Proposition B.3. For x, ye A

|Cε(x-};)|^const log \χ-y\

3) |(Cε — Cy (x, y)\ :g const

4) \dμJCε-Cε

D)(x,y)\^-

---
\χ y\
log

s^ ^ ^.dist (x, cM) + dist (y, dA)

Proof. 1) follows from 2) by integration.
2) Follows by some work with the explicit Fourier representation of Cε :

-I/ iεkμ 1 \ ifcx
δεCε(x):= ί _ _ d2kμ

 ε f c l

j,<π 2ε~2(2-cosε/c1-cosε/c2) + m2

ε / c 2 | l π

We cut the integration into a part where \k\^A and a rest. The "inner" part is

o - l / ' * μ _ l i ^ ε " 1

f
2(2 —

which is bounded by

ε^lsinίV^I
I - -- : - - — —d2k^ const.

- -

con st
The outer part is bounded by — — — as can be seen by doing an integration by parts

|X|

with respect to the variable |x|.
3) Can be seen as follows :

where σε(x) has support on dAε which is the set of points in L(ε) which are
endpoints of a lattice bond that intersects dA or are in dA themselves. It is not hard
to see that

(B.ll)

(B.ll) follows from the fact that Q>^0 and Cε

D = 0 if one of its arguments is outside
A i (B.12) follows by Gauss's theorem for the lattice:

0 = Σ ε2(AxC
ε

D) (x, y) = - 1 + m2 Σ β2C^(x, y} + Σ e V,(x) .
X X X

From (B.10) it can be seen that

(Cε-Cε

D)(x,y)= Σ82Cε(x-x')σy(x'). (B.13)
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Using 2) and (B.ll), (B.12), it follows that

, Λ o x^o ^ . x x , const

Since the left side of this equation is symmetric in x and y, (4) follows. 3) is
similar. Π

Returning to the proof of Lemma B.2 we notice that

L2 convergence of this then follows from statement B), Lemma 3.6 and J2

convergence of Pε(Cε)1/2 which we now prove. By the Grϋmm-Simon theorem (see
Sect. II), we only need to show convergence of the J2 norms of Pε(Cε)1/2, which
means we have to show that

Tr(Ce)1/2Pe(C')1/2= Σ e2(Cε-Q))(x,x) (B.14)
xeΛ

converges. Since Proposition B.3, 3) gives an Lp upper bound, we are reduced to
showing pointwise convergence of (Cε — Cε

D) (x, x) to establish Lemma B.2, 1).
From Proposition B.3 we also get the following bound on the expression

appearing in Lemma B.2, 2) :

£|^ const x r—\'\x — y\

This bound is in L\A x A) as can be seen by cutting up the region of integration
into a suitable sequence of bonds parallel to the boundary.

So all that remains to be shown to complete the proof of Lemma B.2 is

Proposition B.4. (Cε — Cε

D) (x, y) and 3ε (Cε — Cε

D) (x, y) converge pointwise in A x A.

Proof. Since Cε — Cε

D converges in L2,

f

β. *(*> y) = ̂ ϊ ί x*(χ - Ό&O' - y'} (cε - cy (*', ywdy

converges pointwise as ε-»0, where χδ is the characteristic function of a ball of
radius δ. On the other hand we can for each (x,y)eΛxΛ choose δ so small that
\Fε δ(x,y) — (Cε — Cy(x,3;)|<^ (uniformly in ε) because we have a uniform bound
on the "derivatives" of Cε — Cε

D. By a 2η argument pointwise convergence of
Cε-Cε

D follows.
For dε

μ(Cε — CB

D) we use the same trick: We just established ZΛconvergence a
uniform (in ε) bound on the second "derivatives" in a neighborhood of any point in
the interior of A can easily be obtained from (B.I 3) and we just have to repeat the
argument given before.

This completes the proof of Lemma B.2 and this appendix.
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Note Added in Proof

To obtain B) note that dεQ>1/2 is bounded uniformly in ε in operator norm so that it suffices to prove
that

dεCε

D

1/2 = tdεCεί/2]Cεί/2Cκ

D

1/2Cε

D-1

converges strongly on the dense set C™(Λ).
To obtain (B.6) we prove that

gε*Cε- l/2ρβCl/2 = (Q**Q*) (Cε~ 1/2C1/2)

(see Sect. II) converges strongly because both factors on the left hand side do.






