
Communications in
Commun. math. Phys. 62, 247-278 (1978) Mathematical

Physics
© by Springer-Verlag 1978

Generic Instability of Rotating Relativistic Stars

John L. Friedman*

Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201, USA

Abstract. All rotating perfect fluid configurations having two-parameter
equations of state are shown to be dynamically unstable to nonaxisymmetric
perturbations in the framework of general relativity. Perturbations of an
equilibrium fluid are described by means of a Lagrangian displacement, and an
action for the linearized field equations is obtained, in terms of which the
symplectic product and canonical energy of the system can be expressed.
Previous criteria governing stability were based on the sign of the canonical
energy, but this functional fails to be invariant under the gauge freedom
associated with a class of trivial Lagrangian displacements, whose existence
was first pointed out by Schutz and Sorkin [12]. In order to regain a stability
criterion, one must eliminate the trίvials, and this is accomplished by restricting
consideration to a class of "canonical" displacements, orthogonal to the trivials
with respect to the symplectic product. There nevertheless remain per-
turbations having angular dependence eimφ (φ the azimuthal angle) which, for
sufficiently large m, make the canonical energy negative; consequently, even
slowly rotating stars are unstable to short wavelength perturbations. To show
strict instability, it is necessary to assume that time-dependent nonaxisym-
metric perturbations radiate energy to null infinity. As a byproduct of the
work, the relativistic generalization of ErteΓs theorem (conservation of vor-
ticity in constant entropy surfaces) is obtained and shown to be Noether-
related to the symmetry associated with the trivial displacements.

ί. Introduction

In the introduction to their 1970 paper on cosmological singularities, Hawking
and Penrose [1] noted that gravity is an "essentially unstable" force. For small
concentrations of mass, the instability is masked by enormously larger short range
forces. But when the density of matter is sufficiently large or its mass sufficiently
great, gravity becomes dominant and collapse inevitable. From this instability to
collapse arises the theoretical expectation of black holes; and the strongest
observational argument in their favor is provided by the associated upper limit on
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the mass of dense spherical stars. Rotation can delay the onset of instability to
radial pulsation and in this way raise the upper mass limit. Remarkably, however,
gravity seems to provide a conspiracy of instabilities: we will find that any
rotating, self-gravitating perfect fluid, is unstable to nonaxisymmetric pertur-
bations, which (presumably) radiate its angular momentum until it settles down to
a non-rotating star.

Dynamical instability of rotating Newtonian stars was first understood for the
Maclaurin sequence of uniformly rotating, uniform density ellipsoids (see [2]). For
sufficiently rapid rotation, the sequence becomes unstable to nonaxisymmetric
deformations, via a mode having angular dependence (in the linear theory) e2ίφ,
where φ is the angle about the symmetry axis. When viscosity is present, instability
sets in earlier - for smaller angular momentum, but again via an m — 2 mode [3,4].
A parallel situation in relativity was first considered by Chandrasekhar [5]. Using
a post-Newtonian treatment, he found that in the presence of radiation reaction,
an m = 2 mode again becomes unstable at precisely the same point along the
sequence that marks the onset of viscosity-induced instability. It has subsequently
been widely assumed that the Maclaurin sequence, and rotating fluids in general,
are stable in relativity for small values of the angular momentum as is the case in
the strictly Newtonian theory. Recently, however, Schutz and I [6] showed, in a
post-Newtonian framework, that the radiation reaction induced instability sets in
first via short wavelength oscillations and that even for slowly rotating con-
figurations, there are, for sufficiently large m, unstable modes having angular
dependence eimφ and Comins [7] has explicitly found the corresponding unstable
modes of the slowly rotating Maclaurin ellipsoids. The present paper extends these
post-Newtonian results to the exact theory, showing that all rotating axisymmetric
perfect fluid configurations are unstable to perturbations having angular de-
pendence of the form eimφ for all integers m greater than some MQ1. Strictly, we
establish the existence of at best marginally stable perturbations. A proof of
instability requires the additional assumption that time dependent, nonaxisym-
metric oscillations of an axisymmetric star radiate, at least when m is large -
presumably when m > 1 although the assumption may appear obvious, in that the
multipole moments must change at null infinity, there is as yet no formal proof.

A side issue in the work involves the clarification of an oversight that plagued
nearly all recent studies involving the stability of rotating stars (see [6] and [8]),
and which arises in the following way. In phrasing a stability criterion, one
introduces a canonical energy [9-11], obtained from the action that governs the
linear perturbation equations2. The existence of an action is predicated on a
description of fluid perturbations in terms of a Lagrangian displacement, a vector
field connecting fluid elements in the perturbed and unperturbed flows (equiva-
lently, one must single out a "comoving frame"). But such a description is not
unique: Schutz and Sorkin [12] have pointed out the existence of a class of trivial
displacements that leave invariant all physical quantities, so that a given physical

1 The work here is restricted to fluids having two parameter equations of state. The generic
instability for strictly isentropic fluids differs somewhat in its physical features and its mathematical
details
2 In references [9] and [10], the stability functionals are equivalent to the canonical energy of time-
independent initial data, although they are not so identified
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perturbation can be described by more than one Lagrangian displacement.
Unfortunately, the canonical energy is not invariant under this additional "gauge"
freedom, and a way to eliminate the spurious displacements is needed.

It turns out to be possible to remove the freedom in a natural way - that is, in a
way provided by the mathematical structure of the theory. One introduces the
symplectic product of the perturbation equations and singles out as a preferred
class the set of displacements orthogonal to all' trivials with respect to that
product. By restricting consideration to the preferred displacements, one obtains a
unique value for the canonical energy of each physical perturbation and thereby
regains a criterion governing stability.

The generic instability found here substantially alters the previous picture of
the region of stable perfect fluid configurations. Its physical implications, however,
are less dramatic. For slowly rotating stars, only the shortest wavelength modes
will be unstable, and their growth times will be inordinately long: only for stars
which are unstable to low m modes can one expect a timescale short compared to
that of stellar evolution. In addition, work by Lindblom and Detweiler [13]
suggests that in imperfect fluids, where dissipation due to viscosity is comparable
to the loss of energy to gravitational radiation, viscosity can damp out the
radiation induced instability; and if that were the case, only rapidly rotating
configurations would be unstable in any realistic model.

The plan of the paper is as follows. Section II reviews the treatment of perfect
fluid perturbations in terms of a Lagrangian displacement. The class of trivial
displacements is defined and an explicit form for the generic trivial is obtained. In
§111, a conserved symplectic product associated with the perturbation equations is
introduced and is first used to obtain an expression for the canonical energy Ec.
Then a dynamically preserved class of "canonical" displacements is defined as the
subspace orthogonal to the trivials with respect to the symplectic product.
Canonical displacements turn out to preserve a generalized vorticity in surfaces of
constant entropy as an associated result, we obtain the relativistic generalization
of ErtePs theorem (the conservation of vorticity in uniform entropy surfaces) and
use the symplectic product to show that this conservation law is Noether-related
to the symmetry associated with the trivial displacements.

In §IV, the formalism developed in §§Π and III is used to phrase a criterion
governing the stability of self-gravitating fluids to nonaxisymmetric perturbations:
we show that if the energy functional Ec is negative for some canonical initial data
on a hypersurface S, then the corresponding physical perturbation cannot settle
down to a time independent state. If one assumes that time dependent, non-
axisymmetric perturbations of an axisymmetric equilibrium necessarily radiate, it
then follows that Ec will decrease without bound, and that the system is unstable.
Finally, by means of the criterion thus obtained we show that any rotating, self-
gravitating perfect fluid is unstable to perturbations having angular dependence

eιmφ for ajj mtegers m greater than some m0.

II. Lagrangian Perturbation Theory of Relativistic Fluids

This section develops a formalism for perturbations of a stationary self-gravitating
perfect fluid in terms of a Lagrangian displacement. The preliminary formulae
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have been derived previously in Friedman and Schutz [11] (see also [14, 15] and
[10]), but the treatment of trivial displacements is new and extends to relativistic
fluids the description obtained by Friedman and Schutz [6] in the Newtonian
theory. The framework for our discussion will be an asymptotically flat (topologi-
cally Euclidean) spacetime M with metric gab whose only source is a perfect fluid
characterized by the energy momentum tensor

(1)

Here the vector field ua is the fluid's velocity,

« X = - 1 , (2)

while the tensor qab is the projection operator orthogonal to ua'

qab = gab + uaub (3)

the scalars ε and p are the energy density and pressure, and are assumed to satisfy a
two parameter equation of state, which (without loss of generality) has the form

ε — ε(n, s)

\ ( 4 )

with n and s the baryon density and the entropy per baryon, respectively. In terms
of the scalars n and s, the second law takes the form

n, (5)

and conservation of baryons is expressed by

Va(nua) = 0. (6)

Strictly speaking, by introducing the scalar n one adds nothing new the three fluid
variables ε, p, and s together with an equation of state ε = ε(p, s) and Condition (11)
below describe the same physics. But the formalism is simpler when written in
terms of n and s.

Finally, we have the field equations,

a b o b , (7)

and the implied equation of motion

PbT
fl5 = 0. (8)

By projecting Eq. (8) orthogonal to the velocity ua, one obtains

and the projection along u" gives

. (10)
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From Eq. (10), together with the second law (5) and baryon conservation (6), it
follows that the entropy of each fluid element is conserved:

uaVas = 0. (11)

By an equilibrium configuration we mean a stationary solution {gab, n, s, ua} to
the field Eq. (7) together with the equation of state (4) and the conservation laws (6)
and (11). That is, there is to be an asymptotically timelike Killing vector ta,

£tgab=Kh+Kta=o, (12)

which also Lie derives the equilibrium fluid variables

£tn = £ts = £tu
a = 0. (13)

In discussing stability, one is interested in the time evolution of nearby
configurations having the same baryon number and the same total entropy,
configurations that can be viewed as deformations of the original equilibrium.
Formally, we introduce a family of (time dependent) solutions

Q(λ) = {gjλ\ua(λ\n(λls(λ)} (14)

to Eqs. (4), (6), (7), and (11), indexed by a parameter λ, and compare, to first order
in λ, the perturbed variables Q{λ) with their equilibrium values, β(0). We further
suppose that the family of solutions Q(λ) is such that each member can be reached
by an adiabatic deformation of the equilibrium β(0). That is, there is to be a family
of diffeomorphisms χλ from the support of the equilibrium fluid in the solution
β(0) to its support in the solution Q(λ) which has the following properties:

i) χλ takes fluid trajectories to fluid trajectories
ii) the entropy of each fluid element is preserved,

iii) the baryon number of each fluid element is preserved. Condition iii) may be
written in terms of the volume element

orthogonal to ua in the manner

cabc(0)n(0), (16)

where χλ acts by the differential map.
First order departures from equilibrium can be described in two ways. The

Eulerian perturbations in the quantities Q(λ) are defined by

£λ o (17)

and compare values of Q at the same point of the spacetime.
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In the region occupied by the original fluid, one can also introduce the
Lagrangian perturbations

ξQ, (18)

where ξa is the generator of the family of diffeomorphisms χλ [that is, the curve
λ^χλ(P) has tangent ξa(P) at the point P] . The field ξa is termed a Lagrangian
displacement and may be regarded as the connecting vector from fluid elements in
the unperturbed configuration to the corresponding elements in the perturbed
spacetime.

The first order changes in the variables Q can be expressed in terms of the
displacement ξa and the Eulerian change in the metric

hab = δgab (19)

by means of the linearized version of conditions i)—iii) above ([11, 14, 15]).
Requiring that world lines of the unperturbed configuration are mapped by χλ to
world lines of the perturbed fluid implies

; (20)

that the deformation be adiabatic means

As = 0; (21)

and that it locally conserve baryons implies

A(εabcn) = 0. (22)

Now

ΔQab = δGab + £ξ9ab

= KΛUh + vhL (23)

and

4 w e / (24)

Then by (20) and (24), we have

^abc = ̂ ΛcieίΔgef, (25)

and baryon conservation (22) takes the form

^ = - ± 4 * Δ β β b . (26)
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Equations (20), (21), (23), and (26) express AQ in terms of ξa and hab. The dependent
variables Ap and Aε may be similarly expressed by

^ = y - (27)
p n

and [by Eq. (5)]

As An
(28)

y = - w~v^s) = ^-pfe s ) - 2 9 )
p dn p dε

ε + p n

where the adiabatίc index, y, is defined by

Relation (28), written in the form

Aε Λ ,
(30)

ε + p ΔX uaυ'

is a first integral of the Lagrangian variation of Eq. (10),

' ] = 0 (31)

(and could be obtained in this way had the baryon density n not been introduced).
Finally, from Eqs. (20) and (26)-(28), the Lagrangian change in the energy
momentum tensor takes the form

(-g)ll2A[_(-g)ll2T^ = WabcdAgcd, (32)

where

Wabcd = i ( ε + p)u

aubucud + \ p{gabgcd - gacgbd - gadgbc) - \ ypqabqcd. (33)

We will also need the expressions for Eulerian perturbations that follow from
Eqs. (20), (21), and (26), namely

δua = ±uaubuchbc + qa

b£uξ
b, (34)

δs=-ξ*Vas, (35)

δ f b h<fhάb<thVa{nξ). (36)

By thus writing the perturbed fluid variables in terms of a Lagrangian
displacement, one automatically satisfies the linearized conservation equations

A(uΎas) = 0 (37)

and

(38)
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As a result, as we will see in §111, one acquires an unconstrained action for the
linearized equations

δ(Gab-SπTab) = 0 (39)

and

δ(VbT
ab) = 0, (40)

and one also acquires a conserved canonical energy used to analyze stability.
Moreover, the restriction to adiabatίc perturbations (As = 0) amounts to little
beyond the assumption that one is dealing with a perfect fluid: any perturbation
δQ can be characterized by some displacement ξa (together with a metric
perturbation hab) provided that the total mass and entropy of the configuration

remain unchanged and that —— ΦO (in particular \Vs\ must not vanish too fast
\Vs\

near the symmetry axis of an axisymmetric equilibrium). For initially isentropic
stars, where Vs = 0, however, one is restricted to perturbations that keep the star
isentropic.

But for introducing a "potential" ξa to describe the fluid perturbations, one
pays a price in the form of an additional freedom that complicates the theory.
Before considering this new freedom, it is helpful first to recall the gauge freedom
that one always has in treating perturbations of a spacetime with tensor fields Q.
Suppose that δQ are the perturbed tensor fields tangent to the family Q(λ) and let
Ψλ be a family of diffeomorphisms generated by a vector field ζa with Ψo the
identity. Then the family of fields ΨλQ(λ) is physically indistinguishable from the
original family Q(λ\ and the corresponding Eulerian variations,

are physically equivalent to the Eulerian variations δQ. Now, however, the map
connecting fluid elements in the unperturbed spacetime to corresponding fluid
elements in the perturbed spacetime [described by tensor fields ψλQ{λJ] is ψλ°χλ

and the new Lagrangian displacement is ξa = ξa + ζa. In particular, the pair (hab, ξ
a)

= (hab — £ζgab, ξ
a + CΩ) Note that the Lagrangian variations remain unchanged:

and by choosing ζa — — ξa, one describes the fluid perturbations in a "comoving"
frame in which ξa = 0 and Δ=δ = Δ.

The additional freedom in the case of a fluid arises from a class of trivial
displacements whose existence was first out by Schutz and Sorkin [12]. For these
displacements, the Eulerian change in all fluid variables vanishes. Two pairs,
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(hab9 ξa) and (hab, ξ
a\ thus correspond to the same physical perturbation if and only

if the displacements ξa and ξa differ by a trivial displacement

where ηa satisfies the equations obtained from Eqs. (31)—(33) by setting δQ = 0\

Λ&y = 0, (42)

ηbVbs = 0, (43)

\ = 0. (44)

Because Eqs. (36) and (37) involve only Eulerian changes in the variables β, and
trivial displacement satisfies them, and therefore satisfies the full set of perturbed
equations.

Tn what follows we will be primarily concerned with perturbations of
equilibrium configurations whose velocity fields are divergence free,

Vau
a = 0, (45)

or, equivalently whose baryon density is constant along fluid lines,

uaVan = 0. (46)

This condition is automatically satisfied by models of rotating axisymmetric stars,
for the vector ua is at each point tangent to a Killing vector. More generally, one
would expect Eq. (46) to hold in a realistic fluid equilibrium; otherwise the
resulting energy production from bulk viscosity would quickly disrupt the
equilibrium. Where the entropy per baryon s is not constant, the general solution
to Eqs. (42)-(44) is then

ηa = -εabΎbsVJ + gua, (47)

where g is an arbitrary scalar and / is any scalar constant along fluid trajectories,

uΎJ = 0. (48)

To include regions where Vas vanishes, the generic trivial can be written

ηa = _ £abc Vbh yj + gua (49)

with h any scalar for which uΎah = 0 and εabcVbhVcs = 0.
In verifying that Eq. (49) provides the generic trivial and also for use in § III

below, it will be convenient to introduce the following three dimensional
formalism. Consider the manifold Ji of fluid trajectories in the background
space time. Tensor fields on M can be identified with tensor fields Ta'"b

c d on the
spacetime which are orthogonal to the velocity if,

o=τ"-\...dua=... = τa-\ y (50)
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and whose "convective derivative" [15] vanishes:

qa

m...q\q;...q;£Jm-\...s = V. (51)

In particular, the form εahc is a tensor on Jί because

W < c = W * c « d = 0 (52)

and

qa

mqb%%Knrs) = - Vmu°>εabc = 0, (53)

by Eq. (45) the quantity εabc is the volume 3-form on Jί. If we define a derivative
operator Da by

/ y e i c...d~(i m - y rttc ' " H d ^ e VpL r . . . s >

it follows that

and, from (53), that DΩαfl is a scalar on .># whenever ota is a vector on Jί.
Consider now solutions ηa to Eqs. (42)-(44). It is easy to see that any vector of

the form gua with g an arbitrary scalar satisfies the three equations by virtue of
Eqs. (11) and (45). We can therefore retrict consideration to vectors ηa orthogonal
to ua. Equation (42) then means that ηa is a vector on Jί and Eqs. (43) and (44)
have the form

ηaDas = 0, (56)

Da(nη") = 0, (57)

where we have used the fact that n and s are themselves scalars on M. In other
words, within Jί, the quantity nηa is a divergence-free vector field lying in surfaces
of constant entropy per baryon, s. Equivalently, restricting consideration to a
particular (2-dimensional) constant entropy surface s0, and regarding nηa as a 1-
form on s0, Equation (57) means that

d*(χ-1w^) = 0, (58)

where

X=VhsVhs. (59)

Thus (assuming that constant entropy surfaces are simply connected), the form
*(X~lnrl) must be exact: in index notation,

or

(60)
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where/is a scalar on Jί. When the gradient of s vanishes, Eq. (43) is automatically
satisfied, while (42) and (44) imply only that nηa = εabcVbhVcf, where / and h are
arbitrary scalars on Jί with vanishing gradient at the fluid surface.

There are, then, two types of trivial displacements. Those of the form ηa = gua

push the fluid along its own worldlines and so simply map each fluid element to
its position at a slightly later time in the background flow. Because the
unperturbed flow preserves both s and n, the map leaves the fluid unchanged.
Trivial displacements of the form

(61)

are permutations of fluid elements within surfaces of constant entropy that
preserve the volume of each element. They amount to a relabeling of particles and
the requirement (42) that ηa be convectively derived by the fluid means that the
initial relabeling is simply carried along by the unperturbed motion of the star.

As noted above, the introduction of a conserved baryon density n is a formal
convenience, not a logical necessity. To describe the trίvials without recourse to n,
one replaces Eq. (45) by

and writes the general trivial orthogonal to ua in the form

ηa = ̂ εab%hVJ, (62)

where

is the specific enthalpy of the fluid.

III. A Symplectic Product, Conserved Quantities, and Canonical Displacements

Having introduced a Lagrangian displacement, we can construct an action

(64)

for the perturbation Eqs. (39) and (40), [10]. The functional L{ξ,h) has the form

9ξ,h)9 (65)
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where i f (ξ, h;ξ,h) is an operator linear in (ξ, h) and in (ξ, h) and symmetric under
interchange of the two pairs. Explicitly

K ξ, h) = Uahc%ξhVcξd + Vabcd(habVcξd + habVcξd)

- TabRacJ
cξd + ̂  Wabcd - J - Gabή habhcd

-ΊKTab(habξ
c + hJc), (66)

where

Gabcd = i^α(cd ) 6 + λ(2Rabgcd + 2R c d^ f l & - 3 K f l ( c ^ ) & - 3Rb{cgd)a)

+ ±R(gacgbd + gadgbc - gabgcd), (67)

jjabcd = (ε+ p}uaucqbd + p ( ^ c d _ gadgbc) _ y p ^ ^ c d ? ^

and

2 F f l 6 c d = (e + p)(uaucqbd + Λ V r f - t/flw^cd) - ypqabqcd . (69)

The operator $£ satisfies

ξbΔ{VcT
bc) + ̂  hbcδ(Gbc - 8 π T b c ) = - &{l h;ξ,h)+ VbR

b, (70)

where

R\l h ;ξ9h)= UabcdξbVcξd + Fcdfl6/zc L

from which it follows that

L{ξΛλih + λ%^0ξbΔ{VJbc)-hhβ{Gb^ (72)

In other words, demanding that j L(ξ, h)dτ be stationary to all perturbations of ξa

M

and hab that have compact support in M implies

δ(G α f t -8πTJ = 0 and A(VbT
ab) = 0

on M.

αj Symplectic Product and Conserved Quantities

If we introduce a shorthand

)U = (£βΛ f c) (73)
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for the pair of tensor fields that describe fluid perturbations, Eq. (70) can be
written in the form

W Λ y), (74a)

where Fa(y) = 0 are the field Eqs. (39) and (40). With y and y interchanged we have3

yAF
Λ(y) = - JSf(j>, y) + VaR

a{% y). (74b)

Because the operator S£ is symmetric,

it follows from (74) that when yA and yA satisfy

FA(y) = 0 = FΛ{y), (75)

the current

Wa(y9y) = Ra{y,y)-Ra{y,y) (76)

is conserved:

VaW
a = 0. (77)

One thus obtains a conserved antisymmetric inner product

W{%y) = \W\%y)dSa, (78)
s

independent of the spacelike hypersurface S if the surface integral at spatial infinity
should vanish. We will call W the symplectic product of y and y. (The symplectic
structure associated with L degenerates to the product W when the configuration
space of fields yA and its tangent space at each point are identified.) In the case
where L is the Lagrangian density of a scalar field, W is the Klein Gordon inner'
product.

When the product W is conserved it is also gauge invariant under asymptoti-
cally well behaved gauge transformations, a fact that can be seen in the following
way. Given a solution (ξα, hab) to the field equations, one obtains from a gauge
transformation generated by the gauge vector ζa new fields (ξa — ζa,hab + £ζgab)
which again satisfy the linearized field equations. Now the expression for
W(ξ, h;ξ,h) depends only on the values of (ξa, hab\ (ξa, hab\ and their derivatives on
S. But without changing the value of ζa near 5, we are free to let ζa vanish on a
neighborhood of some S' to the future of S. We then have

W(ξ,h;ih)\s=W(ξ,h;ih)\s,=W(ξ-ζ,h+£ζg;ih)y

because near S', ζ"=0. Furthermore,

3 With the exception of comments on gauge in variance, the following discussion is valid for any linear
Lagrangian field theory
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because W is independent of hypersurface when the gauge transformed fields
satisfy the field equations and are asymptotically well behaved (i.e. give vanishing
surface integral of spatial infinity). Thus

W(ξ,h;ih)\s=W(ξ-ζ,h + £#;ih)\s; (79)

that is, W is invariant under asymptotically nice gauge transformations, as claimed.
We will ultimately use the symplectic product W to eliminate the trivial

displacements. In the meantime, the product affords us a simple construction of
the conserved canonical energy associated with the asymptotically timelike Killing
vector of the background spacetime. A Killing vector ta generates a family of
diffeomorphisms Tλ which commute with the operator ££ and with Ra:

Tx&(y9y)=<?(Txy,Txy)9 (80)

(81)

where Tλ acts on tensor fields by the differential map Tλ*.
Differentiating Eqs. (80) and (81) with respect to λ, we have

% y) = n£ty, y) + &{y9 £ty), (82)

£tR
a(% y) = Ra(£ty, y)+Ra(y, £ty), (83)

and it follows from (74a) that if yA is a solution to the field equations

FΛ(y)=0,

its Lie derivative, £tyA, is again a solution:

FA(£tyA) = 0. (84)

By Eq. (77), one thus acquires, for every solution yA to the field equations, a
conserved current Wa{y, y) and associated conserved canonical momentum con-
jugate to ία,

Pt(y) = jW(y,y) = ̂  Wa(y,y)dSa, (85)
s

where the dot ( ) is used to mean the Lie derivative £ r An equivalent form for the
conjugate momentum Pt is

Pt(y)=$ίRa(y,y)-taL(y)-]dsa, (86)

s

which can be derived using the identity

\VaA
atbdSb=$AadSa, (87)

s s

valid for any vector field Λa that vanishes on dS one takes as the vector Aa the
quantity Ra(y, y\ and, from Eq. (74a) with Fa(y) = 0, obtains

y, y)dSa = j [Ra(y, y) + R*(y9 y)]dSa.
s

Equation (86) then follows from the defining Eq. (76) for Wa.
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In this way one finds via the symplectic product the conserved quantities
associated by Noether's theorem with the symmetry vector f. In the present case,
where the vector ta is asymptotically timelike, the conserved quantity is the
canonical energy

c ) { ) . (88)

Explicitly,

/Cdi%,L ε^βεbdf

λfί\TΓabcdτ7 i: rz z ϊjycdabh. w ε pacegpbdf r/ί, p L
2 l \ U Va^bVc^d^ΔV YlcdV aSb ^2π gVancdVbne

I 1 \
ί_ j Tyί/ubcd seabed \ L. L
2 | ~ Ϊ 6 ^ ) " b c ά

(89)

When the background is axisymmetric as well, with axial Killing vector φa, the
canonical angular momentum

Jc=-W(£φy,y) (90)

is also conserved. If the hypersurface S is taken to be asymptotically null, rather
than spacelike, the canonical energy and momentum are no longer exactly
conserved. Instead, they change in time due to the radiation of energy and angular
momentum at future null infinity, expressed in this context by a nonvanishing
contribution from the surface integral of Wa at null infinity. In particular, we will
see in §IV that the canonical energy decreases monotonically from one asymptoti-
cally null hypersurface, 5, to any other, S\ in its future.

From the gauge invariance of the symplectic product, it follows that the
quantities Ec and Jc are also invariant under asymptotically well behaved gauge
transformations. Unfortunately, however, these canonical conserved quantities are
not invariant under the additional freedom associated with trivial displacements.
In particular, it is not difficult to show (see Appendix A) that Ec(η) will in general
be nonzero for trivial displacements /f, and thus

Ec(ξ + η) = Ec(ξ) + W(£tξ, η) + W(£tη9 ξ) + Ec(η)

b) ErteΓs Theorem

The symplectic product provides, in addition to the canonical energy and
momentum, a conserved quantity associated with the trivial displacements. This
turns out to be a relativistic generalization of ErteΓs theorem [16], the con-
servation of circulation in constant entropy surfaces. After first obtaining the
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relativistic version of ErteΓs theorem in a direct way, we will see that for the
perturbed fluid it is related by the sympleetic product to the trivial displacements.

For an isentropic fluid, the generalization of circulation conservation has the
well known form [17]

£uωab = 0, (91)

where

In _1_ -r» \ In _1_ -n \

(92)

is an extension of the Newtonian vorticity. An equivalent form (see below) is the
statement that the integral

is constant along a family of closed curves cλ obtained by dragging the first curve
c0 with the fluid. The generalization of ErteΓs theorem - which applies to
nonisentropic fluids having two parameter equations of state - has a similar form,
namely4

£ « K ^ c ] s ) = 0. (93)

To verify Eq. (93), first use Eqs. (6) and (10) to cast the equation of motion (9) in the
form

Then

and we have

I [a\ n b c] I " [α\ n ) 3

= 0,

as claimed, where the relation

£Mp;s=Fc£Ils = 0

was used.
4 One can avoid use of the baryon density n by redefining ωab in the manner ωab — Ϋ[a{ub] expH), with
H the specific enthalpy introduced in Eq. (63)
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An integral form of the relation follows by writing Eq. (93) in the manner

d£uυ = 0, (94)

where v is the pullback to a surface of constant entropy £f of the form — — ua.

Integrating the 2-form d£uv over a 2-surface in £f bounded by c0 and using Stokes'
theorem, we have

Thus if ψλ is the family of diffeos generated by the velocity ua,

co a A co U A ψλ(c0)

In other words, the integral

^ β " (95)

is constant along any closed path that lies in a surface of constant entropy and
moves with the fluid:

A final alternative form of the conservation theorem is

£uα = 0, (96)

where the scalar α is defined by

1

n

For the perturbed fluid we have

a=-εabΎahωbc. (97)

and from Eqs. (96) and (20),

£Δu0ί = \ubucΔgbc£uQc = O9

whence

£uzlα = 0. (98)

Equivalently,

is preserved by the fluid flow, where, as before, c is a closed curve in a surface of
constant entropy carried with the fluid.
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A correspondence between ErteΓs theorem and the trivial displacements arises
in the following way. If the pair (ξa, hab) satisfy the linearized field equations, then
the quantity W(η, O ξ.h) is conserved for any trivial displacement ηa, since trivials
satisfy the perturbation equations. In the next paragraph we will see that by
writing the trivial displacement ηa in the form (61), the quantity W can be brought
to the form

W(η9O;ξ,h)=$fΔpιfdSa. (99)
s

Because Eq. (99) holds for arbitrary scalars /, Lie derived by the fluid velocity,
conservation of the product W is equivalent to the linearized version of ErteΓs
theorem,

Because the product W is invariant under gauge transformations of either
argument, we are free to evaluate it in a comoving gauge for the pair (ξa, hab) - that
is, in a gauge for which ξa = 0. From expression (71), it then follows that the
integrand in expression (76) for Wa has the form

Ra(η, 0 0, h) - Kα(0, h;η,0) = Vcdabhcdηh

= (ε + p)(uaubη%c-±ηaubuchbc)-±ypηaqbchbc

b b p, (100)

where Eq. (69) was used to obtain the second equality, and Eqs. (20), (23), and (27)
were used to find the final expression.

It will be useful in the manipulations that follow to introduce a scalar t for
which S is a surface of constant t and with δt defined to vanish. Then, defining the
volume element dσ by

dSa=Vatdσ,

we have, from Eqs. (78) and (100),

sn

After an integration by parts and some algebra, we obtain the relations

and

\ f b d ( a (101)

S^ - \fzabcdVbsVc(uMdSa. (102)
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Combining the expressions on the right hand sides of Eqs. (101) and (102), and
making use of the relation

Δ

\ n I n
we have

In our comoving gauge,

whence, from Eqs. (20), (24), and (26), we obtain

\ 1

[nueVet
(103)

and

uΛ\dsa.

Now the bracketed expression in Eq. (97) has vanishing projection orthogonal to
ua:

%s^n Vcpud- ^ Vdu

= nq
a

eε
ebcdVbsudlDcp-

= 0

by Eq. (10). Thus, finally,

and

(104)

(105)

The connection between the set of trivial displacements and ErteΓs theorem
can be obtained in a more familiar context. In particular, the trivials generate
families of transformations
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that change the Lagrangian density L only by a divergence:

, ξ)-λVaR"(η, ξ)-±λ2VaR"(η,η)

λ2Ra(η,η)-]. (106)

These transformations are therefore what Trautman, in his extension of Noether's
theorem, calls generalized invariant transformations [18]; and one can show
directly that the associated conserved quantity is the product W given in Eq. (105).
Thus ErteΓs theorem arises via Noether's theorem as the conservation law
associated with the trivial displacements. Our calculation, which obtained the
relation by means of the symplectic product, also suggests a way to pick a set of
displacements that eliminates the spurious freedom arising from the trivials.

c) Canonical Displacements

We noted in a) that the canonical energy Ec can have different values for pairs
(ξa, hab)and (ξa + ηa,hab) that describe the same physical perturbation. As we shall
see in §IV below, however, one would like to test stability by asking whether Ec is
positive definite. In order that such a procedure make sense, it is first necessary to
restrict the class of allowed displacements in such a way that the functional Ec have
a unique value for each physical perturbation. That is, one would like to find a
class of "canonical" pairs (ξa, hab) for which

i) the time evolution of a canonical pair is canonical and

ii) if (ζa, hab) and (ξa, hab) are canonical displacements corresponding to the
same physical perturbation, then Ec(ξ, h) = Ec(ξ, h).

In particular, condition ii) implies that Ec(ξ, h) = 0 only if (ξ, h) is trivial. One
can often do better than this in that it is often possible to find a unique canonical
pair corresponding to each physical perturbation this property appears not to be
universally true, however, and will not be required for the proof of generic
instability in § IV.

Let us now define a canonical pair as a solution (ξa, hab) to the linearized
equations which is orthogonal to all trivial displacements with respect to the
product W:

for all trivial η. By Eq. (99), this condition is simply the requirement

Δiξfh)aι = 0; (107)

in other words, a canonical identification of fluid elements from the unperturbed
to the perturbed spacetime preserves their (generalized) vorticity in surfaces of
constant entropy. Equivalently,

adla = 09 (108)

where c lies in any constant entropy surface.
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Conditions i) and ii) are easily seen to be satisfied by the class of canonical pairs
just defined. Condition i) is an immediate consequence of ErteΓs theorem, Eq. (98).
Condition ii) follows from the fact that if (ξ, h) and (ξ, h) correspond to the same
physical perturbation, then (ξ — ξ,h — h) is trivial - that is, equal within a gauge
transformation to a trivial displacement (^,0). Thus (ξ,h) is equal within a gauge
transformation to (ξ + η, h) and by the gauge in variance of the functional Ec,

Then

W{ξ + ή,ϊι;ξ + η,h)=W{ifι;ξ9h)+W(ή,O;ξ,ty^

Now if η is trivial, so also is ή and if (ξ, h) is canonical, so also is (ξ, h) thus
W{ή90;ξ9h) = 0 and W{ξ9h η,0) = 0. Finally, because (ξ,h) and (ξ9ίi) are ortho-
gonal to all trivials, so is (ξ — ξ,h — h), and so also, therefore, is (η, 0). Thus
W{ή90\η90) = 09 and

Under what circumstances can one find a canonical pair (ξ9 h) corresponding
to a physical perturbation described by an arbitrary pair (ξ,h)Ί Without loss of
generality one can assume for the canonical pair the form

where η is trivial,

n

From the canonical condition

we then have

or

1 , .
~εabcdVaoίVbsVcfud= -Δiξth)oί. (109)

For a rotating star, the fluid velocity has the form

where ta and φa are the translational and rotational Killing vectors and we have

£ J = O=>/ = /(α,s,0-Ωί),

where φ and t are scalars satisfying

φ»Vaφ = t°Vat=l,φΎat,tΎaφ = 0.
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Equation (109) has the solution

For nonaxisymmetric perturbations, canonical pairs corresponding to each
physical perturbation will exist when

\Vocx Fs|φO

away from the axis of symmtery, and when \Voc x Fs|—>0 near the axis no faster
than (φaφa)

ml2 for a perturbation with angular dependence eimφ.

IV. Generic Instability of Rotating Stars

a) Canonical Energy of Asymptotically Null Hypersurfaces

Before phrasing a stability criterion, we need to show that the canonical energy of
a perturbation, evaluated on a sequence of asymptotically null hypersurfaces, is a
decreasing function of time. Let S1 and S2 be two asymptotically null hyper-
surfaces and let (w, r, 0, φ) with — oo < u < oo and r > r0 be a standard null chart for
M outside a bounded region. In particular, where the chart is defined, S^Sy is
taken to be a surface u = u1(u = u2); lines of constant r, 0, and (/> are trajectories of
the Killing vector ta and the metric has the asymptotic form given, for example, in
Newman and Unti [19] and characteristic of a stationary geometry:

^ " = 0 , ^ = - ! , ^ = 0,^ = 0,

ΎM

Let us consider a region R bounded by the surfaces Sλ, S2, and by an
r = constant cylinder. We have

0=\VaW
a= J" WadSa. (112)

R 3R

Thus

Ec(u2)-Ec(uί)= - lim J Wr2dΩdu. (113)
r-*co ui

An asymptotic regularity condition is now required to define Ec uniquely and
to ensure that the expression on the right hand side of Eq. (113) be the energy
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radiated to null infinity between S1 and S2. One obtains a sufficient condition by
demanding that in the asymptotic chart (111), hab have the asymptotic behavior
[19]

hrr = 0{r~ λ\ hrθ = 0{r-2\ hrφ = O(r~2),

hθθ= --ί-2Reσ° + O ( r - 4 ) = - ^ s i n 2 θ ,

θ φ ° 5), (114)
r3 sinθ

where σ° is the leading term in the shear of the u,θ,φ = constant null geodesies. In
this case one finds (see below)

4πr

and

Ec(u2)-Ec(u1)=-^] \σ°\2dΩdu. (116)

The change in Ec from Sί to S2 is thus the Bondi mass radiated between the two
hypersurfaces.

The asymptotic gauge Condition (114) is, however, unnecessarily restrictive. In

fact, we will see that lim r2Jr is invariant under any change of gauge

as long as the physical components η{ι) of the gauge vector (that is, the components
in an orthonormal frame) vanish as r->oo, and in addition δ ^ ^ o ^ ^ a n d
ήu = o(r~1). In particular, the expression

lim \\Wr2dΩdu (118)

will have the same value (will be the radiated energy between uλ and u2) in all
gauges for which the physical components hmj) are O(r~1) and for which hu{i)

— ̂ gu(ι)h = o(r~1). It follows that the value of the canonical energy Eu will also be
unique for gauges satisfying the above regularity conditions.

Finally, we observe that the de Donder gauge, which will be used below to
facilitate our initial-value discussion is in this class of asymptotically regular
gauges. That is, writing

we have that outside the source

u uc

v _ i Ώ vcd — ()
Vcy Yab l-^acbdϊ ~ ~ U '
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whence

VίOϋ-)^"1) a n d drγ^ = oir'1);

further, the gauge condition Vbγ
ab = O implies that f^^dj^^oir'1). The

identification of the expression lim \\ Wr2dΩdu with the radiated energy and its
r-»oo

invariance under gauge transformations can be seen in this way. Outside the star
the current Wa has a the simplified form

1 JX/a _ fa I bdfn ceg YΎ L p L ] acen bdf U U U -
2 \64π nybndeycnfgj 22π nncdVbnef>

after some algebra, the component W=WaVar can be written in terms of the
tensor yab in the manner

Wr= ^(-ybcVybc + ybcVyc + fbVcy
bc + ±yVa)>)Var. (121)

16π

Now if the gauge is regular, so that yu{ΐ) = o(r~1) and dry
u{ί) = o(r~ι), then yr

{i)

^ ^ ( r " 1 ) as well and we have

^ + o(r-2), (122)

where ma has the (w, r, θ, φ) components

(123)

In the Newman-Unti gauge (114), the expression is just \W= -—2~|(J0|2, as

expected. Moreover, under an asymptotically regular gauge transformation, Jr

retains the form (80), and

yabrnamb-+yabm
amb + 2Vaηbm

amb - mamaVbη
b = yahm

amb + o{r~ί). (124)

Thus lim r2W is unchanged, and so the expression (118) for the radiated energy

and the quantity Ec are independent of gauge (up to asymptotic regularity).

b) Stability Criteria

We now have the machinery required to state criteria governing the stability of
rotating fluids to nonaxisymmetric perturbations. Consider a spacelike hy-
persurface S with unit normal na along the gradient Vat

na = e-Ύat (125a)

where

e~2v=-VbtV
bt. (125b)
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By a canonical initial data set D = (ξa, hab £nξ
a, £nhab) on S will be meant a solution

to the initial value equation

δ(Gb

a-8πTb

a)Vbt\s = 0, (126)

set in a de Donder gauge

Vb(hab-±gabh)\s = 0, (127)

and satisfying the additional condition

^ t h ) α | s = 0. (128)

The surface S is to be asymptotically spacelike, not null, to simplify an analysis of
the initial value equations below. In Appendix B, however, we show that the
canonical energy can be negative for canonical data on a strictly spacelike
hypersurface S, only if it is negative for some canonical data on an asymptotically
null hypersurface 5". Thus one is free to consider data on either S or Sf.

A sufficient condition for instability may now be stated in the following
manner.

i) If £ c(D)<0 for some canonical initial data D, then the configuration is
unstable or marginally unstable: there exist nonaxisymmetric perturbations which
do not die away in time.

Similarly, for stars in which εabcVbsVcoιΦθ, a sufficient condition for stability is
ii) If £ c (D)^0 for all canonical data D, the configuration is stable in the sense

that for any perturbation, the magnitude of Ec is bounded in time and only finite
energy can be radiated.

Ideally, one would like to show that when Ec<0 for some canonical data, the
configuration is strictly unstable, that within the linearized theory the time evolved
data radiates infinite energy and that |£ c | becomes infinite along a sequence of
asymptotically null hypersurfaces. There is as yet no formal proof of this
conjecture, but it is easy to show that if EC(D) <0, the time derivatives £tξ

a and £thab

must remain infinitely large forever. Thus a configuration with £ c < 0 will be
strictly unstable unless it admits nonaxisymmetric perturbations which are time
dependent but non-radiative. The key fact here, that the perturbation's time
derivatives are bounded away from zero (in an integral norm) when Ec(D)<0,
follows immediately from the expression (88) for Ec in terms of the symplectic
product. That is, because Ec is always bounded above by its initial negative value,
£ c | s , the pair (£tξ,£th) is also bounded away from zero by the relation

<0. (129)

c) Generic Instability

The aim of this final section is to establish that all rotating stars are unstable to
nonaxisymmetric perturbations in the sense of i) above. That is, there always exists
canonical initial data having angular dependence of the form (ξa, hab)
= Re(ξaeimφ,habe

{mφl where £φξ
a = £φhab = °> a n d f o r w h i c h £ c < 0 ; such initial data

can be found for all m greater than some m0. It is easier to work with complex
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perturbations than with their real parts, and so we will really calculate an
expression that gives the sum of the canonical energies corresponding to the real
and imaginary parts of a complex perturbation having angular dependence eιmφ.

Suppose, first, that for each integer m one can find canonical initial data on S
having the following properties:

[ξ\ hab; £nξ
a, £nhj = (ξaeimφ, habe

imφ; £ Λ |V m *, £nh
abe^φ), (130)

where

\\ξ"\\<k,\\Vaξ
b\\<k, (131)

\hab <k, (132)

where k is a constant independent of the integer m, r is asymptotically a radial
coordinate, and where by \\Ta'"b

c ά\\ is meant the L2 norm on S of the
components of Tα 6

c d with respect to a field of Lorentz frames; finally

ξaφa = ξata = O. (133)

Expression (89) for the canonical energy then involves three types of terms.
Terms having no (^-derivatives of the displacement vector ξa and at most one φ-
derivative of hab are bounded for all data of the type specified above by a constant
independent of m — that is, they are of order m°. Terms involving one φ-derivative
of ξa are of order m, and terms involving two ^-derivatives of ξa are of order m2.
For sufficiently large m, if ξa remains finitely large, the terms of order m2 will
dominate the functional Ec. (Because ||Fα/ϊ6c|| <k even terms involving £φhab are
only of order m.) The only term in expression (89) in which two φ-derivatives of ξa

occur is

-liUabcdVaξ*Vcξdt?dSe

= - \ \ [(ε + p)uaucqbd + p{gabgcd - gadgbc) - ypqabqcd~\ Vaξ* VcξdfdSe

m2

(134)

Thus the only term of order m2 is negative definite, and if, for example, ξa is
independent of m, then for sufficiently large m,Ec<0.

It remains to be shown that canonical data satisfying Conditions (130)—(133)
and for which ξa is independent of m can be found for all sufficiently large m. The
difficulty here lies in solving the simultaneous constraint Eqs. (126)—(128), and it
will be helpful to introduce a derivative operator ζ/)a, identical for tensors on S
(tensors orthogonal in all indices to na) to the covariant derivative induced on S by
the metric on M [20]:
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If one now chooses for the perturbed metric on S a tensor hab whose form is given
by the equation

hab-29abh = σnanb + τanb + τbna^ ( 1 3 6 )

with

τβnβ = 0, (137)

the de Donder condition takes the form

£nσ= -πσ + @bτ
b + 2£)bvτb (138)

£nτ*= -@avσ-{2πa

b + πja

 b + na@bv)τ\ (139)

where

Kb=Ja

cKnb (140)

is the extrinsic curvature of S. When Eqs. (138) and (139) are used to replace first
time derivatives of the quantities σ and τa by their spatial derivatives, the initial
value Eq. (126) becomes two spatial constraints of the form

inδ Tabnanb = 9b9
hσ + Ah3)hσ + Bbc9bτc

+ Eσ + Fbτb, (141)

Sπδ r * n / c = 2tb@
bτa + λab2hσ + Babc2hτc

τb, (142)

where Λa, ...,Fab are tensors on S constructed from na and the metric gab.
In considering the requirement that the perturbation be canonical, we will use

the form of ΔOL given by Eq. (104), instead of the simpler form (97), because the
former expression involves only first derivatives of ξa orthogonal to S (the
alternative form involves only first derivatives along ua, but second derivatives
along na). We have

Using the fact that the indices c and d must be orthogonal to Vat and Vbs, we
obtain, for perturbations with angular dependence eimφ,

Then if rb = δb—tbVat—φbVaφ denotes the projection operator orthogonal to ta

and φa, a sufficient condition for the vanishing of Δa is that

0. (144)

If ξ" is chosen orthogonal to t" and φa

ra

bξb = ξa, (145)
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we find, using Eqs. (20), (23), and (26)-(28), together with the relations

φbuΎ(bξc)=-ξbφΨcub,

that Eq. (144) takes the form

/ c ^ (b ^ ) ] , (146)

where

ξ°
n(ε + p) b r n Ύ

>\cfc +1 ™ Φ%^ + ̂  </> v ] hbc. (147)

Together, Eqs. (146) and (147) express the fluid derivative £uξa\s in terms of spatial
derivatives of the displacement ξa\s and first spatial derivatives of the metric
perturbation hab.

It is now not difficult to show that initial data satisfying Conditions (130)—(133)
exists. We need a solution (ξa,hab\£nξ

a,£nhab) to Eqs. (138), (139), (141), (142), and
(146). First note that when Eqs. (141), (142) and (146) are used to eliminate £nhab

and £uξ
a in favor of hab\s, ®chab\s, ξa\s, @bξa\s, and 2βbξa\s, the remaining Eqs.

(138) and (139) are an elliptic system for σ| s and τ f l | s whose source involves only ξa\s

and its spatial derivatives. Furthermore, only single ^-derivatives of ξa occur in the
expression for £uξa and in δTa

b, so by choosing ξa = ξaeimφ with ξa independent of
m, the source terms in the elliptic system are bounded by km, with k a constant
independent of m. Fortunately the elliptic system conforms to the conditions of a
theorem recently proved by Cantor for elliptic operators on Rn [21]. In Appendix
B the theorem is applied to show that the elliptic system is invertible for
sufficiently large m and that the resulting metric perturbations satisfy Conditions
(131) and (132). Because ξa\s can be chosen arbitrarily, we impose Condition (133)
by fiat and similarly require ξa=zξa

e

{mφ with ξa independent of m. Then [with £uξ
a

determined by Eq. (146)], Conditions (130)—(133) are met, and the canonical
energy will be negative for sufficiently large m.
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Appendix A: Canonical Energy of a Trivial Displacement

From Eqs. (88) and (99), the canonical energy of a trivial displacement η has the
form

Ec(η) = \ W(£tη, η) = f £JuaΔ ηadSa, (A. 1)
s
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where

rfJ^VJiVJ. (A.2)

Because ηa is trivial, δη<x = 0 and

Δ £
η η % J a . (A3)

By choosing / to be scalar of the form

/ = g cos m(φ - Ωί), (A.4)

with £tg = £φg = 0, and using for the velocity the explicit form

we find

V[acosm(φ - Ωt)ub]= sinm(φ - Ωt)V[atVb]φ. (A.5)

Using Eqs. (A.4)-(A.6), we can rewrite the expression on the right of Eq. (A.I) in
the form

EM = i f [~ rnΩg ήnm(φ-Ωt)~]βabcdVa0LVhhVctVdφ[-mg sin(φ~-Ωt)']~uedSe

s I1

= ±πm2 j Ωg2εabcdVaaVbhVctVdφuedSe. (A.6)
s

U.nless Va x Vs vanishes everywhere, the magnitude of Ec is thus arbitrary and
unless εabcdVa(xVbsVctVdφ has the same sign everywhere, the sign of Ec is arbitrary as
well. [That is, Ec may be freely varied by suitably choosing the functions g and
(where Vas = 0)h.']

Appendix B: Initial Data

Two results are obtained here. The first relates initial data on spacelike hyper-
surfaces to data on asymptotically null hypersurfaces, and the second concerns the
existence of solutions to the initial value equations.

Proposition 1. Canonical intial data for which Ec<0 exists on an asymptotically null
spacelike hyper surface if such data exists on a strictly spacelike hyper surface.

Let S be the strictly spacelike hypersurface with initial data set D
= (ξa,hab;£nξ

a,£nhab) for which Ec<0, An asymptotically null hypersurface Sr will
be chosen in this way: let B be a compact region containing the fluid and pick S' so
that within B, S' coincides with 5, and outside of B, S' lies in the domain of
dependence of S — B. Let Φλ,λe[0,ao) be a family of diffeomorphisms that
smoothly contract the spacetime so that Φλgab and Φλhab converge in a second
derivative norm to a flat metric ηab on S — B as λ-* oo. Now the initial data sets ΦλD
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on S with background fields ΦλQ are equivalent to the data ΰ on S with
background field Q; therefore ΦλD has the same canonical energy when Ec is
constructed from the background fields ΦλQ as has D with Ec constructed from Q.
But by the stability of the Cauchy problem on spacelike surfaces, the data ΦλD
time evolved to S' from S — B has norm that approaches zero as the norm of ΦλD
approaches zero on S — B. Thus the contribution to Ec of the data on S — B and S'
— B becomes negligible as A->oo: only the data on B (where S and S' coincide)
contributes. Whence EC{S)-+EC(S') as A-^oo, and for sufficient large λ, the data
ΦλD, time evolved to S' has canonical energy Ec(S')<0.

In order to state the second proposition, definitions of some weighted Sobolev
spaces are necessary. Given /':R 3->IR 4, the U norm of / is

P

1 / p (B.i)

To demand asymptotic regularity one employs the function

σ{x) = {\+rψ2 (B.2)

on R 3 and additional smoothness is incorporated by bounding the derivatives

Daf = δγ...da

k

kf

of/ Thus one defines the weighted norm | \p s δ by

I / U a = Σ \°*+MD*f\P, (B.3)

where |α| = £ αi5 for integers s ^ 0 and real numbers δ. The corresponding weighted
ί

Sobolev space Mξtδ is the completion of CQ functions from 1R3->1R4 with respect to
the norm ||p>Sj<5. Finally, we note that Mp

Sfδ can be divided into a set of closed
subspaces Sm invariant under £φ, where φa is a rotational Killing vector of IR3 and
]R4DlR3 (in other words, Sm contains functions of the form / = Re/, where / has
values in (C4 and £φf= ±imf). Given an integer m0, we write

Mϊ,t= U Sm, (B.4)

m>mo

a n d n o t e t h a t MP

>δ a n d Sm a r e B a n a c h s p a c e s w i t h n o r m | \PfStδ.

Proposition 2. Let A be an elliptic operator on MP

}δ, axisymmetric

l£φ9A]=Q9 (B.5)

and satisfying

fl«eMJ_2>2_,βl M < 2 , (B.6)

α α -ά α eMf_ 2 ; 0 | α | = 2 , (B.7)

where

F2= Σ άjr.
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Then for sufficiently large m0, the restriction A of A to Mξ^δ is an isomorphism

A:MP.->MP_7 δ + 9 when p > 3 , s > 2 + - and <5< — - - 2 .
s,d s 2,otz P P

To establish Proposition 2, we require the following

Lemma. Let λ-*Lλ be a continuous curve from [0,1] to the space of linear Banach
space maps Lλ \jrf-*0$, and suppose each Lλ is an injection with closed range. Then if
the initial map Lo is an isomorphism of stf onto 3S, so is the final map Lv

For the proof of the Lemma, see for example Cantor [21].
Consider now the curve λ-*Aλ of differential operators on Mp

δ defined by

Aλ = {l-λ)V2 + λA.

Each operator Aλ satisfies (B.5)-(B.7), and a theorem due to Cantor [21] then
implies that each Aλ is a map Aλ:M

P

δ—>MP_2 δ + 2 having closed range and finite
dimensional kernel. From (B.5) it follows that [£ φ ,yl ; ]=0, and consequently, if
feKεrAλ, so is the projection fm of / onto Sm (defined in spherical coordinates by,

for example, /^ = eίl Since Kerv42 is finite dimensional
2π έ

there is an integer mλ large enough that K e r ^ contains no functions in Sm for
m>mλ. Thus, if mo=lubmA, the restriction Aλ of Aλ to the subspace Mp

δ is an
injection Mp

δ-*Mp_2^δ + 2. Furthermore, the range of λλ is closed in Mp_ltδ + 2

because the range of Aλ is closed in Mf_2 δ + 2. Thus λ-+Aλ is a curve satisfying the
conditions of our lemma. But the first map Ao = V2\MP

SO is
 a n isomorphism, whence,

by the Lemma, Ax is an isomorphism as well in other words, A, restricted to MP

δ,
is an isomorphism.

Because the spacetime is topologically Euclidean and asymptotically flat, one
can pick a global chart in which the initial value Eqs. (141) and (142) together have
the form Af = g, with (/°,/ 1,/ 2,/ 3) = (σ,τ 1,τ 2,τ 3), and where A is an operator
satisfying (B.5)-(B.7). Consequently, for sufficiently large m, the initial value
equations with source of the form g = KQ(geimφ) can be inverted to give σ\s and τ α | s

with components in Mξδ when the components oίg are in Mf_2 ό + 2. Because A is a
Banach space isomorphism,

WPs<k\g\p-2,δ + 2 a n d \τa\Pδ<k\g\P-2,δ + 2 (B 8)

Finally, because the source g involves only first (^-derivatives of ξa, by choosing ξa

of the form R e [ | V m φ ] with \ξ%<kίov s = 2, say and satisfying Eq. (133), we have

\9\Ps-2,δ+2<kmS~1 ' ( B 9 )

ConditionJ131) then follows from Eqs. (136), (138), (139), (B.8), and (B.9). In other
words, if ξa is of order m°, the source g will be of order m. Because the solution
(σ, τa) to the elliptic system is smoother by two derivatives than the source, hab and
Vahbc will be of order m° and by choosing p sufficiently large, the Mp

δ norm
guarantees the asymptotic condition required by Eq. (132). Thus initial data of the
form required in §IV can always be found for sufficiently large integers m.
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