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Abstract. We derive new correlation inequalities for even Ising ferromagnets
whose interaction is invariant under some symmetry transformation and
satisfies a growth condition. The recent results of Schrader [1] and Messager
and Miracle-Sol [2] for the nearest neighbour (n.n.) Ising model reappear as a
special case. In addition we obtain monotonicity of (¢ ,0 ;> under translation ofj
perpendicular to diagonal hyperplanes and the inequality {¢,0;) 20,0 ;,1.0)”
for n.n. and other interactions.

1. Introduction

Recently, Schrader [1] and, independently, Messager and Miracle-Sol [2] found
some new interesting inequalities for the n.n. Ising model. Let 3 denote reflection,

80,=0_j, j
and let f,(0) be a polynomial in {c;;j, 20}, v=1,..., with nonnegative coefficients.
Then, for the n.n. Ising model [1]

<H(ﬂi9ﬂ,)> >0 (1.1)

for any combination of + signs. In particular [1,2], {o,0, ;> is monotone
decreasing in j, >0.

In this paper we analyze general even Ising ferromagnets which are invariant
under some symmetry transformation, e.g., a reflection. Under a certain growth
condition on the interaction we derive new correlation inequalities which contain
those of [1, 2] as special cases (Theorems 3.1 and 3.2). The monotonicity properties
of correlations which we obtain are of interest in themselves. We hope that the other
inequalities may prove helpful to study the effects of boundary conditions as in [2]
for the n.n. Ising model.

Let Z* denote the d-dimensional square lattice with unit spacing. For ieZ*, o,
denotes the “spin at site i” with probability distribution given by some measure v, on

*  Dedicated to Professor G. Ludwig’s 60th birthday
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R. The interaction between the spins in a finite volume A is taken as

Hy= ) Jyo,0,— ) W0,

i,ked ied

and the corresponding correlation functions are defined as

OOy =Z3 [ [[dvi(a)e P40, ...00 (1.2)

ied

where Z , is a normalization constant such that (1) , =1. Asit stands, Equation (1.2)
refers to free boundary conditions. By making A a torus one deals with periodic

boundary conditions.
We speak of a (general) Ising ferromagnet with constant external field y if

Jp=0 for ixk, w=Ep, (1.3)
and of an even Ising ferromagnet if in addition the single spin distributions are even
and all equal,

dv(x)=dv(x)=dv(—Xx) . (1.4)
The term “the n.n. Ising model” refers to an even Ising ferromagnet with

Jo= —J<0 for |i—jl=1

0 0 otherwise ,

and a next nearest neighbour (n.n.n.) interaction is of the form
Jy for 0<|i—j|=2
0 otherwise .

ij

In Section 2 we derive a fairly general “Main Lemma” involving arbitrary
symmetry transformations. It is shown that the usual Griffith’s (or GKS)
inequalities are obtained from it as a special case. In Section 3 the Main Lemma is
applied to even Ising ferromagnets, in particular to those with reflection invariant
interaction (Theorems 3.1 and 3.2).

2. The Main Lemma

The derivation of the Main Lemma is based on the following Lemma 2.3 which is
quite well-known!. We include a proof for completeness only.

Lemma 2.1. Let v be an even positive measure on R such that every polynomial is
integrable. Then, for any integers n, m=0

J e+ x)"(x = xy"dv(x)dv(x') 20 .
Proof. By x' > — x’ symmetry the integral is symmetric in n, m. For m odd it vanishes
by (x, x)—(x’, x) symmetry. If n, m are even the integrand is non-negative. QED.

Lemma 2.2. Let I be a finite index set and a,, b,cC, iel. Then

-

Mo Te=27""" 0 X [@—b) IT (;+5) .

cI ie jel\A
|A| even (odd)

Proof. Express a;,b; by a,+b; and expand the Lh.s.

! Cf Ginibre [3] or Simon [4], p. 275ff.
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Lemma 2.3. Let v, v,o=1,...,N,,i=1,..., N be even positive measures such that
every polynomial is integrable. Let fi(x,, x), k=1,..., M, be polynomials in {x,,}, {x;}
with positive coefficients. Then

§TTdvouxox) TT dvix) [T dvilx) TT (filreos X) £ filx0, X)) 20
for any combination of + signs.

Proof. Obviously it suffices to consider monomials. The x -factors can be written in
front of the product sign, and integration over x, gives a non-negative factor.
Applying Lemma 2.2 to the remaining integrand and then using Lemma 2.1 shows
that also the remaining integral is non-negative. QED.

Main Lemma. Let A be a finite set, and let ® be a bijection of A. Let A, C A be the set
of invariant elements and let A=A,0A,UA_ be some disjoint decomposition with
PA, =A_. (2.1)

Let J={J,;;i,je A} be a real symmetric matrix satisfying
(i) Jginj=1;; for all i,je A (invariance)
(i)) J;;=0 for i%j (ferromagnet)

(i) |J;;| =gl for i), i,je A, (growth condition)
(iv) Jig;j=J g for i,jeA %
Let the normalized measure yi, on R“! be given by

dp () =Z 5 e Bt B [T dy (v,

ied
where Z , is a normalization constant, where
1203, pg=+p, ied,udy, (2.2)
and where {v,, i€ A} are even positive measures on R with
Voi =V; (2.3)

and such that every polynomial in {x,, ie A} is integrable with respect to u,. For any
function f on R4 et

@) ({x})=1({xp:}) - (2.4)

Now let f,...,f, be any polynomials in {x;; ie A, UA,} with positive coefficients.
Then

<1;I<Jzi¢m>f [ du, Igmwmgo 2.5)

for any combination of + signs.

Proof. First we assume that all v;’s have compact support. For ae A, we put y,, =X,
and, for ied,, y,;=x; and y;=x4; Then

(et D) ()= filvo, ) £ filyo, V) - (2.6)

2 If @2 =identity, (iv) is automatically fulfilled
3 One can equally well suppose y; <0, by x,— —x; symmetry
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We decompose ). J; x;x; into a sum of terms where i, j run through A, 4, ,and A _
and then introduce the new variables. As an example we consider the term

20y Jaxx =2 ) JigiXiXe;

iedy,ked - i,jed s+

=2 Z JioiyiVj -

i,jed+
By Condition (iv), the r.h.s. can be written as

Y T Y+ V) — Z Jiaf 0+ Vi) -

i,jed + i,jed s+
In the other terms we extract the diagonal contributions. Invariance of J and v,
under @ finally yields

d,uA=Z;1exp{— Y JuYodop—2 Y Judounit )

a*fedo aecAg,iedy

Z Jia)j()’i*‘)’é)()’i‘*‘)’})— Z (” J;«D;)()’Y,"'yyj)

i,jeds itjeds
+ Y Voot Z u,(yl+y,)} 2.7)
aedo ied+
H e_J““yoadva(yOa) l—_[ e—(‘lii—‘hd’i)yl dvi(yi)
acAg icA+
l_[ e"(-’ii_"id)i))’ézdvi(y;) .
ied s

The expressions under the products signs define new even measures. Hence,
expanding the remaining exponentials in Equation (2.7), the Lh.s. of Equation (2.5)
becomes a sum of terms to each of which Lemma 2.3 can be applied by (iii) and since
all relevant elements of J are nonpositive. The case of v;’s with noncompact support
is now obtained by approximation and limits. QED.

Corollary 2.1. Equation (2.5) of the Main Lemma still holds if the f,’s are elements of
the positive cone generated by functions h(x;), ie A, UA,, of the form

(i) h is odd and monotone increasing on R or

(i) h is positive, even and monotone increasing on the positive half-axis.

Proof. Lemma 2.3 still holds for such functions f,* so the proofliterally carries over
to this case.

Corollary 2.2. Let f,, f, be functions as in the Main Lemma or as in Corollary 2.1.
Then

rLDa 10042110204+ bS04l -
If @*>=1 and pg;=pu;, then
Sif2a2Kf108204 (2.8)

Proof. This follows at once from Equation (2.5) for n=2.

4 Cf, e.g, [4], Equations VIII, 23/24
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Connection with Griffith’s Inequalities. As a special case of the Main Lemma
consider a A and @ with A,=¢so that A=A, UPA,, and let ;= gy,

Jigj=0 for ijed, .

Then (iii) becomes J;; <0 forije A, (ferromagneticon A, ),and du,=du, dug, .

ij=
Hence, in this case

j fld’fzd/‘A:(jf1dﬂ/1+)(ff2d#/1+)

and Equation (2.8) leads to the usual GKS inequalities with respect to u, [4].

3. Applications to Ising Ferromagnets

Common symmetries in Ising ferromagnets are translations, rotations, and
reflections. We first discuss the latter.

We consider a hyperplane which is orthogonal to the unit vector f and which
passes through the point acIR?. By 0} we denote the reflection with respect to this
hyperplane. Then

O4j=j—2[(-x-F1F G.1)

and Z* is mapped onto itselfif and only if one of the following two conditions holds

a) f=+(,...,1,0,...), 20-feZ
3.2)

1
b) f=—=0,...,+1,0,...,+1,0,..), }/20-PeZ.

0t +

Lemma 3.1. Let the matrix J ={J,;;1,je Z"} be translation invariant, J ;= J ; _,. If J is
invariant under @2 then so it is under O for any o with 2ue?°.

Proof. By Equation (3.1), the a-dependent terms cancel. QED.

Now consider an even Ising ferromagnet on Z¢ with constant external field,
whose interaction is @j-invariant for some B. Consider a finite @j-invariant
sublattice A of Z* and impose free or periodic boundary conditions . For the former
we define 4, simply as the plane of reflection intersected with A (which may be
empty), in case of periodic boundary conditions A, shall also contain the points
which are identified. As A, we choose the intersection of A with one of the half
spaces determined by the plane (minus 4,), in the positive direction of §, say. If in
addition

IJi@;?jl.S_IJ for i%j, ijed, (3.3)

y
ij
then the assumptions of the Main Lemma are satisfied.

Let H,j; denote the half space

Hy={jeZ’;(j—2)-f 20}, (34)

5 One can also consider other reflection invariant boundary conditions
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let 9 implement @,
950,=00z; (3.5)

and let, for a set BCZ‘, C,(B) denote the set of all polynomials in {o;;je B} with
positive coefficients®. Letting A —Z* (always taking ©-invariant A’s and the above
boundary conditions) one obtains in the thermodynamical limit, from the Main
Lemma and Corollary 2.2,

JThE%4> 20, (3.6)
<f1f2>§|<f1'9;f2>l’ kaC+(H;;z) . 3.7

From this we are going to derive some more concrete relations which apply in
particular to the n.n. Ising model.

Theorem 3.1. Consider an even Ising-ferromagnet with constant external field. Let
the interaction satisfy

() Ji;=J;_; (translation invariance)

(i) J,. 5= -,y (reflection invariance)

(i) J;, ; is monotone decreasing” in i, on {i, 21}, for fixed i.
Let the thermodynamical limit be taken with free or periodic boundary conditions, and
let T, denote translation by t in 1-direction. Then, for feC  ({j;j,=a}),
geC.({j;j, =a}, acZ, one has

(STg>z{/T,9>20 for O0=t=7". (3.8)
In particular, {o,0,;, ;> is monotone decreasing in i, on {i; = 0}.

Proof. By (iii) the growth condition Equation (3.3) is satisfied for any half-space H ;;,
with f=(1,0). By (ii) and Lemma 3.1, J is invariant under any @} with §=(1,0) and
any o with 20eZ¢ We take a=(a—1/2('—1),0) in Equation (3.7). Then
£, TgeC ,(H}y) and

Gf=T__of.
Equation (3.8) now follows from Equation (3.7) and translation invariance. QED.

Remark. For the n.n. Ising model Equation (3.8) has been proved in [1] and [2]. The
growth condition is trivially satisfied for n.n. interactions. We note that for n.n.n.
interactions and reflections at hyperplanes {j, =n} with integer n the growth
Condition (iii) of the Main Lemma is automatically fulfilled.

Monotonicity along diagonals is obtained by considering reflections at the
“diagonal hyperplanes”® {i;i-8=0} where

-

%

6 Throughout one can also take C ,(B) to denote the positive cone generated by the functions h(x;) in
Lemma 2.1 with jeB

7 Not necessarily strictly monotone

8 For the spin 1/2 n.n. Ising reflections at diagonal hyperplanes were also considered in [2]

©,...,+1,0,...,+1,0...) . (3.9)

p
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Theorem 3.2. Consider an even Ising ferromagnet with constant external field. Let
the interaction satisfy
(i) translation invariance,

(1) invariance under reflection at the diagonal hyperplane {i;i-f} =0 with f as in
Equation (3.9),

(iii) J,; is monotone decreasing” with the distance of i and j (i=})).
Let the thermodynamical limit be taken with free boundary conditions, and let T,
denote translation by icZ°. Then, for any B of Equation (3.9) and any

feC({j:j-B=a/)/2})

acZ

geC.({j;j-pza/)/2})
one has

S Tyzpdy 2 Toyzpg) 20, 0ST<737,7eNUL0} . (3.10)
In particular, if (ii) holds for each diagonal hyperplane then, for iy,...,i;20,

0000 20000, iy 4. iy 1renia) - (3.11)

If, in addition, invariance under each reflection i—(i, ...,— iy, iy 1, -..) holds then,
for ieZ°,

00017 2000 (g)j,1,007 -
Proof. By (iii) the growth condition Equation (3.3) is satisfied for any half-space H ;;,
for § as in Equation (3.9). By Lemma 3.1 and (ii) J is invariant under any such @}
when 20eZ°. In Equation (3.7) we take o =(a—1'+ 1:)[3/]/5. Thenf, T,,5,9€C . (H,p)
and, by Equation (3.1),
op‘fz T—V7(t’— r)ﬂf'

Equation (3.10) now follows from Equation (3.7) and translation invariance.

To prove Equation (3.11) we note that by reflection invariance we can always
assume i; <...<i, Choosing f and 7 such that

1
v = -6 v+5nv
B 2( 1 )

%

T=1i,
we get from Equation (3.10)

{040 2{000(0,15,....i1+inins ,,.,.)> .

Equation (3.11) is now obtained inductively, and the rest is trivial. QED.

The result shows that for given )'|i,| the two point function is minimal on the
coordinate axes and maximal on the diagonals. The results hold in particular for the
n.n. Ising model since assumptions (i)—(iii) of Theorem 3.2 are satisfied. In the 2-
dimensional n.n. Ising model it is known that, for T> T, (o0, is not an (isotropic)
function of the distance r=(i? +i3)'/?, not even asymptotically [5].
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In special cases other choices of A, are possible. A trivial example for d=2 is
J;j= —J for |i—j|=2 and zero otherwise. For a reflection at the line j, = —1/2 one
may take A, to consist of every second line parallel to the j,-axis. The growth
condition is then satisfied. However, this example corresponds to two independent
n.n. Ising models and leads to nothing new.

We now briefly discuss possible applications of the Main Lemma to other
symmetry transformations.

Inversion ji——j. The set of invariant elements is 4, = {0}. For 4, one may takee.g.,

A,

Il

d
Ql {ieZ’nbox;j,=...=j,_,=0,j,>0} .

Again it is difficult to satisfy the growth Condition (iii) of the Main Lemma, at least
it is not fulfilled for n.n. and n.n.n. interactions.

Rotations. To be specific we consider d=2 and a rotation @ by = so that #*=1.
Again A,={0}, and as A4, one may take, e.g.,

A, ={jeZ*nbox;j, >0 or j, =0,j,>0} .
Again the growth condition is not satisfied for n.n. and n.n.n. interactions.

Translations (with periodic boundary conditions). In this case ®*+1 so that
Condition (iv) of the Main Lemma is not automatically satisfied. Periodicity of the
interaction will assure it, e.g. for d=1, if Jy,=J,,, for k+0. Also the growth
condition can be satisfied for suitable J,,, but such a model seems not very
interesting.

Triangular and Other Lattices. The Main Lemma can also be applied to the
triangular lattice with reflection invariant n.n. interaction. The resulting inequalities
are similar to those of Theorems 3.1 and 3.2. It may be that rotations and inversions
could be usefully exploited in more general lattices, also nonlinear transformations
might in some cases be considered.
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