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Abstract. We derive new correlation inequalities for even Ising ferromagnets
whose interaction is invariant under some symmetry transformation and
satisfies a growth condition. The recent results of Schrader [1] and Messager
and Miracle-Sol [2] for the nearest neighbour (n.n.) Ising model reappear as a
special case. In addition we obtain monotonicity of <σ0σ7-> under translation of/
perpendicular to diagonal hyperplanes and the inequality <a0^> ̂  <σoσ(Σljv|,Q))
for n.n. and other interactions.

1. Introduction

Recently, Schrader [1] and, independently, Messager and Miracle-Sol [2] found
some new interesting inequalities for the n.n. Ising model. Let $ denote reflection,

and let /v(σ) be a polynomial in {σ^ ; j l ^0}, v = 1, . . . , with nonnegative coefficients.
Then, for the n.n. Ising model [1]

Π(/v±θ/v)\ ^o (i.i)

for any combination of + signs. In particular [1,2], {tfΌ^ΌΊ j)) ^s monotone
decreasing injί >0.

In this paper we analyze general even Ising ferromagnets which are invariant
under some symmetry transformation, e.g., a reflection. Under a certain growth
condition on the interaction we derive new correlation inequalities which contain
those of [1,2] as special cases (Theorems 3.1 and 3.2). The monotonicity properties
of correlations which we obtain are of interest in themselves. We hope that the other
inequalities may prove helpful to study the effects of boundary conditions as in [2]
for the n.n. Ising model.

Let 7Ld denote the ^-dimensional square lattice with unit spacing. For ίeZd, σi

denotes the "spin at site Γ with probability distribution given by some measure v- on

* Dedicated to Professor G. Ludwig's 60th birthday
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R. The interaction between the spins in a finite volume A is taken as

HΛ= Σ JikVPk-ΣWi
ί,keΛ ίeA

and the corresponding correlation functions are defined as

(^...σ^X^Z;1 j Πdv^e-^...^ (1-2)
ίeA

where ZΛ is a normalization constant such that <1>^ = 1. As it stands, Equation (1.2)
refers to free boundary conditions. By making A a torus one deals with periodic
boundary conditions.

We speak of a (general) Ising ferromagnet with constant external field μ if

Jik^0 for i φ f c , μ Ξ Ξ / i , (1.3)

and of an even Ising ferromagnet if in addition the single spin distributions are even
and all equal,

dv(-x}. (1.4)

The term "the n.n. Ising model" refers to an even Ising ferromagnet with

f-J<0 for \i-j\ = l
ίj \ 0 otherwise ,

and a next nearest neighbour (n.n.n.) interaction is of the form

for Q<\i-j\£2

0 otherwise .

In Section 2 we derive a fairly general "Main Lemma" involving arbitrary
symmetry transformations. It is shown that the usual Griffith's (or GKS)
inequalities are obtained from it as a special case. In Section 3 the Main Lemma is
applied to even Ising ferromagnets, in particular to those with reflection invariant
interaction (Theorems 3.1 and 3.2).

2. The Main Lemma

The derivation of the Main Lemma is based on the following Lemma 2.3 which is
quite well-known1. We include a proof for completeness only.

Lemma 2.1. Let v be an even positive measure on R such that every polynomial is
integrable. Then, for any integers n, m^O

J (x + x')n (x - x')mdv(x)dv(x') ^ 0 .

Proof. By x'-> — x' symmetry the integral is symmetric in n, m. For m odd it vanishes
by (x, x')-Kx', x) symmetry. If n, m are even the integrand is non-negative. QED.

Lemma 2.2. Let I be a finite index set and ai9 fo^eC, iel. Then

ΓK±>rμ;=2-|/l+1 Σ Πto-^ Π (aj+bj).
Ac I ίeA jeI\A

|41 even (odd)

Proof. Express ai9 bt by a{ ± bi and expand the l.h.s.

Cf. Ginibre [3] or Simon [4], p. 275ff.
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Lemma 2.3. Let v0α, vίs α = 1, . . . , N09 ί = 1, . . . , N be even positive measures such that
every polynomial is integrable. Let fk(xQ, x),k=l9...9M,be polynomials in {x0α}> {*J
with positive coefficients. Then

ί Π Λ'o.Uoα) Π dφϊ Π Λtfxί) Π (Λ(*o, *) + Λ(*o, *')) ̂  0

/or β?ry combination of ± signs.

Proof. Obviously it suffices to consider monomials. The x0-factors can be written in
front of the product sign, and integration over x0 gives a non-negative factor.
Applying Lemma 2.2 to the remaining integrand and then using Lemma 2.1 shows
that also the remaining integral is non-negative. QED.

Main Lemma. Let A be a finite set, and let Φbea bijection of Λ. Let A0CAbe the set
of invariant elements and let A = A0uA+uA_ be some disjoint decomposition with

ΦA+=Λ_. (2.1)

Let J = {J.7.;ije/L} be a real symmetric matrix satisfying

(i) Jφίφj = Jij for all iJeΛ (invariance)
(ii) JU^Q for iφj (ferromagnet)

(iii) \Jtj\^\Ji0j\ for iφj, ι,jeΛ+ (growth condition)
(iv) JίΦj = JjφίforiJeA+

2.

Let the normalized measure μΛ on IRj^4' be given by

where ZΛ is a normalization constant, where

and where (vί? ieA} are even positive measures on IR with

vφί = v( (2.3)

and such that every polynomial in {xt, ieΛ} is integrable with respect to μΛ. For any
function f on IR1'1' let

(Φf )({*<})=/({%,-}) (2.4)

Now let /!,... ,fn be any polynomials in {xi ieA + ̂ jA0} with positive coefficients.
Then

/ Π (Λ ± Φfύ \ = ί^ Π (Λ ± Φfύ ^0 (2.5)
\ k IA k

for any combination of + signs.

Proof. First we assume that all v/s have compact support. For αe y!0, we put y0α = xa

and, for ze/L + , y^Xj and /f = xφί. Then

(Λ ± ΦΛ) W=Λ(^o» ^) ± ΛCvo» /) (2 6)
2 If Φ2 = identity, (ίv) is automatically fulfilled
3 One can equally well suppose μ^O, by xi-^—xί symmetry
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We decompose ̂  J^Xj into a sum of terms where ij run through Λ0, Λ + 9 and Λ_
and then introduce the new variables. As an example we consider the term

+ , keΛ- i,jeΛ +

= 2 Σ -W^v

By Condition (iv), the r.h.s. can be written as

Σ JiΦj(yί+y'ί)(yj+yfjϊ- Σ Λ Φ/W
iJeΛ+ i,jeΛ +

In the other terms we extract the diagonal contributions. In variance of J and vf

under Φ finally yields

i,jeΛ+ ίΦj'eΛl-f

+ Σ /Wo.+ Σ Hi(yi±y'j)\ (2-7)

Π e-^1-''-'""2^^,) -
ΐevl +

The expressions under the products signs define new even measures. Hence,
expanding the remaining exponentials in Equation (2.7), the l.h.s. of Equation (2.5)
becomes a sum of terms to each of which Lemma 2.3 can be applied by (iii) and since
all relevant elements of J are nonpositive. The case of vέ's with noncompact support
is now obtained by approximation and limits. QED.

Corollary 2.1. Equation (2.5) of the Main Lemma still holds if the fk's are elements of
the positive cone generated by functions h(xt\ zeΛ.+ u/!0, of the form

(i) h is odd and monotone increasing on R or
(ii) h is positive, even and monotone increasing on the positive half-axis.

Proof. Lemma 2.3 still holds for such functions fk

4 so the proof literally carries over
to this case.

Corollary 2.2. Let f ί 9 f 2 be functions as in the Main Lemma or as in Corollary 2.i.
Then

</l f2>A + <ΦfίΦf2>A ^ \<flΦf2>A

If Φ2 = l and μφi = μt, then

Proof. This follows at once from Equation (2.5) for n = 2.
4 Cf., e.g., [4], Equations VIII, 23/24
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Connection with Griffith's Inequalities. As a special case of the Main Lemma
consider a A and Φ with A0=φso that A = A+\uΦA + , and let μ. = μφl.,

Jiφj = 0 for iJeA + .

Then (iii) becomes J{j g 0 for i +jeA + (ferromagnetic on A + ), and dμΛ — dμΛ + dμΦΛ + .
Hence, in this case

and Equation (2.8) leads to the usual GKS inequalities with respect to μΛ+ [4].

3. Applications to Ising Ferromagnets

Common symmetries in Ising ferromagnets are translations, rotations, and
reflections. We first discuss the latter.

We consider a hyperplane which is orthogonal to the unit vector β and which
passes through the point αelR^. By Θ*β we denote the reflection with respect to this
hyperplane. Then

(3.1)

and Ίίd is mapped onto itself if and only if one of the following two conditions holds

a) J8=±(
(3.2)

b) £=-^(0,..., ±1,0,..., ±1,0,...), |/2α j8eZ.

Lemma 3.1. Let the matrix J = {Jt. ije%d} be translation invariant, J^ — ./,•_,-. // J is
invariant under ΘQ

β then so it is under Θa

β for any α with 2ae1d.

Proof. By Equation (3.1), the α-dependent terms cancel. QED.

Now consider an even Ising ferromagnet on TLά with constant external field,
whose interaction is (^-invariant for some β. Consider a finite (^-invariant
sublattice A of Zd and impose free or periodic boundary conditions 5. For the former
we define Λ0 simply as the plane of reflection intersected with A (which may be
empty), in case of periodic boundary conditions Λ0 shall also contain the points
which are identified. As A+ we choose the intersection of A with one of the half
spaces determined by the plane (minus AQ\ in the positive direction of β, say. If in
addition

(3.3)

(3.4)

then the assumptions of the Main Lemma are satisfied.
Let H+β denote the half space

One can also consider other reflection invariant boundary conditions
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let θj implement ΘJj,

and let, for a set BcZd, C + (B) denote the set of all polynomials in {σ^jεB} with
positive coefficients6. Letting Λ-+TLd (always taking Θ^-invariant yΓs and the above
boundary conditions) one obtains in the thermodynamical limit, from the Main
Lemma and Corollary 2.2,

(3.6)

</ι/2>^l<W2>|, ΛeC+(#β+) . (3.7)

From this we are going to derive some more concrete relations which apply in
particular to the n.n. Ising model.

Theorem 3.1. Consider an even Ising-ferromagnet with constant external field. Let
the interaction satisfy

(i) Jίj = Jj_ί (translation invariance)
(ii) J(ίl,ί)

:=J(-ίlίi) (reflection invariance)
(iii) J(iι i} is monotone decreasing1 in i1 on {iί ^1}, for fixed i.

Let the thermodynamical limit be taken with free or periodic boundary conditions, and
let Tτ denote translation by τ in i-direction. Then, for feC+({j'Jί=a})9

one has

y^O for O^τ^τ' . (3.8)

In particular, (σ0σ(iι /}> is monotone decreasing in i± on {zΊ^O}.

Proof. By (iii) the growth condition Equation (3.3) is satisfied for any half-space H+β

with β = (1,0). By (ii) and Lemma 3. 1, J is invariant under any ΘΛ

β with β = (1, 0) and
any α with 2oceZd. We take α = (<z-l/2(τ'-τ),Q) in Equation (3.7). Then

s;/=τ_(t,_τ)/.

Equation (3.8) now follows from Equation (3.7) and translation invariance. QED.

Remark. For the n.n. Ising model Equation (3.8) has been proved in [1] and [2]. The
growth condition is trivially satisfied for n.n. interactions. We note that for n.n.n.
interactions and reflections at hyperplanes {jl=n} with integer n the growth
Condition (iii) of the Main Lemma is automatically fulfilled.

Monotonicity along diagonals is obtained by considering reflections at the
"diagonal hyperplanes"8 { i ; i β = Q} where

£ = ( 0 , . . . , ±1,0,.. .,±1,0...). (3.9)

6 Throughout one can also take C+(B) to denote the positive cone generated by the functions h(Xj) in
Lemma 2.1 with jeB
7 Not necessarily strictly monotone
8 For the spin 1/2 n.n. Ising reflections at diagonal hyperplanes were also considered in [2]
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Theorem 3.2. Consider an even Ising ferromagnet with constant external field. Let
the interaction satisfy

(i) translation invariance,
(ii) invariance under reflection at the diagonal hyperplane {i i β} = 0 with β as in

Equation (3.9),
(iii) Jtj is monotone decreasing7 with the distance of i and j (iφj).

Let the thermodynamical limit be taken with free boundary conditions, and let Tt

denote translation by ie%d. Then, for any β of Equation (3.9) and any

one has

<fTτVτβg>*<fTτlVιβgy>0, 0^τ^τ';τ,τ'eNu{0} . (3.10)

In particular, if (ii) holds for each diagonal hyperplane then, for z'1,...,fd^0,

<^o^>^<ffo^ ( 0 f... f i l + ... + i n + l f . . . f i d )>. (3.11)

If, in addition, invariance under each reflection z— >(z, . . ., — i^ ik+ι? - •) holds then,
forieZd,

Proof. By (iii) the growth condition Equation (3.3) is satisfied for any half-space H*β

for β as in Equation (3.9). By Lemma 3.1 and (ii) J is invariant under any such ΘΛ

β

when 2αEZd. In Equation (3.7) we take α - (a - τ'+ τ)j8/J/2. Then/, Tτγ

and, by Equation (3.1),

Equation (3.10) now follows from Equation (3.7) and translation invariance.

To prove Equation (3.11) we note that by reflection invariance we can always
assume i1 rg . . . 5Ξ in. Choosing β and τ such that

= i v

τ = ί1

we get from Equation (3.10)

Equation (3.11) is now obtained inductively, and the rest is trivial. QED.
The result shows that for given £ |f v | the two point function is minimal on the

coordinate axes and maximal on the diagonals. The results hold in particular for the
n.n. Ising model since assumptions (i)-(iii) of Theorem 3.2 are satisfied. In the 2-
dimensional n.n. Ising model it is known that, for T> Tc, <σ0

σϊ) ^s not an (isotropic)
function of the distance r = (il + il)112, not even asymptotically [5].
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In special cases other choices of A+ are possible. A trivial example for d = 2 is
Jij— —J for \i—j\ = 2 and zero otherwise. For a reflection at the line^ = —1/2 one
may take Λ+ to consist of every second line parallel to the72-axis. The growth
condition is then satisfied. However, this example corresponds to two independent
n.n. Ising models and leads to nothing new.

We now briefly discuss possible applications of the Main Lemma to other
symmetry transformations.

Inversionjt->—j. The set of invariant elements is Λ0 = {0}. For Λ+ one may take e.g.,

Λ+= \J

Again it is difficult to satisfy the growth Condition (iii) of the Main Lemma, at least
it is not fulfilled for n.n. and n.n.n. interactions.

Rotations. To be specific we consider d = 2 and a rotation Φ by π so that Φ2 = 1.
Again Λ0 = {0}, and as Λ+ one may take, e.g.,

Λ+ ={/eZ2nbox;</1>0 orj ' 1=0j 2>0}.

Again the growth condition is not satisfied for n.n. and n.n.n. interactions.

Translations (with periodic boundary conditions). In this case Φ 2 Φ 1 so that
Condition (iv) of the Main Lemma is not automatically satisfied. Periodicity of the
interaction will assure it, e.g. for d=ί, if Jok = Jok + 2 f°r ^φO. Also the growth
condition can be satisfied for suitable Jofc, but such a model seems not very
interesting.
Triangular and Other Lattices. The Main Lemma can also be applied to the
triangular lattice with reflection invariant n.n. interaction. The resulting inequalities
are similar to those of Theorems 3.1 and 3.2. It may be that rotations and inversions
could be usefully exploited in more general lattices, also nonlinear transformations
might in some cases be considered.
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