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Existence of Solitary Waves in Higher Dimensions*

Walter A. Strauss

Department of Mathematics, Brown University, Providence, Rhode Island 02912, USA

Abstract. The elliptic equation Au = F(u) possesses non-trivial solutions in Rn

which are exponentially small at infinity, for a large class of functions F. Each of
them provides a solitary wave of the nonlinear Klein-Gordon equation.

1. Introduction

We define a solitary wave as a solution φ(x, t) of a wave equation whose maximum
amplitude at time t, sup \φ(x91)\, does not tend to zero as ί-> αo, but which tends to

zero in some convenient sense as |x|->oo for each t. The convergence should have
the property that physical quantities, such as the energy and charge, are finite.
Particular types of solitary waves are (1) traveling waves φ = u(x — ct) where c is a
constant vector and (2) standing waves φ = exp(iωt)u(x) where ω is a real constant.
Traditionally, solitary waves have been traveling waves, but in recent years
oscillatory factors have been allowed. The above definition includes all uses of the
term. Solitary waves have also been called "solitons" but, properly speaking, the
latter word should be reserved for those special solitary waves which exactly
preserve their shapes after interaction. Many examples of these special solitons have
been discovered in recent years in the case of two space-time dimensions. In higher
dimensions, however, even the existence of solitary waves seems to be elusive.

We consider the scalar NLKG equation

φtt-Aφ + m2φ + f(φ) = 0, (3)

where x = (x1,..., xn) e /?", Δ is the Laplacian in x and m > 0. We assume /(0) = 0 and
f(reiθ) = f(r)eiθ. If φ is a standing wave (2), Equation (3) reduces to

-Au + (m2-ω2)u + f(u) = 0. (4)
We shall show that (4) possesses non-trivial solutions exponentially small at infinity
provided \ω\<m and / satisfies certain conditions. In particular, if ω = 0, we have
φ(x) = u(x). Since we may change to a different Lorentz frame, it follows that there
exist traveling solitary waves (1) for any \c\ < 1. Alternatively we may proceed by
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putting (1) directly into (3) to obtain the equation

- Σ ^ 5 ^ + m 2 w + /(w) = °v (5)

where aij = δij + cicj. Note that (α^ ) is a positive-definite matrix because

for any ξ = (ξ1,...,ξn)eRn. Thus Equation (5) is elliptic and it can be converted into
an equation with leading term — Δv by means of a rotation and stretching of axes.
The same sort of equation comes from standing wave solutions (2) of the NLS
equation iφt — Aφ+f(φ) = 0.

In each of these cases we get an equation of the form

-Au + F(u) = 0, xeRn, (6)

where F(u) = f(u)-\-(comt.)u.
We assume that F(0) = 0, which means that (6) always possesses the trivial

solution u = 0. Let F be a real continuous function and let G = F, G(0) = 0. Consider
real-valued solutions of (6); for the complex case, see Section 2.

Some necessary conditions on F, found in part by Pohozaev [7], are the
following.

Theorem 1. If u is a solution of (6) which is sufficiently small at infinity, then

(n-2)$\Vu\2dx=-(n-2)$uF(u)dx=-2n$G(u)dx . (7)

Hence if sF(s) or G{s) (for n* 1) or H(s) = (n-2)sF(s)-2nG(s) or -H(s) is positive
(for s=t=O), then the only solution is the trivial one. For any non-trivial solution, the
energy is positive:

E=$ &\Vu\2 + G(uJ]dx=-$\Vu\2dx>0 .

The main result of this paper is the existence of non-trivial solutions of (6) for a
large class of functions F. Let

j

where the constant matrix (atj) is positive-definite and a0 is a positive constant. Let
F^s) and F2(s) be real continuous functions defined for 0 ^ s < oo. Denote by Gx

and G2 their indefinite integrals. Assume the following.

F2(s)>0 for s > 0 . (8)

As s^O, F1(s) = O(s) and F2(s) = o(s). (9)

F2(s) = o(sι + F1(s)) as s-*oo . (10)

F2(s) = O(sι + Gx(s)/s) as s-»oo , (11)

where l = (n + 2)l(n — 2) and n^3. (For the cases n=l or 2, see Section 3.)

Theorem 2. Under these assumptions, there exists λ>0 and a solution u of

Lu + Fί(u) = λF2(u) (12)

which is non-negative, belongs to the Sobolev space H1, decays exponentially as
|x|-»oo, and jG1(w(x))rfx<oo.
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Examples are presented in Section 2.
A number of studies have been made of Equation (6) by restricting attention to

the radial solutions (u — u(r), r = \x\) and analyzing the resulting ordinary differential
equation; see Synge [14], Nehari [6], Anderson and Derrick [1], and Berger [2].
One-dimensional problems have also been studied by Stuart [13] and Dancer [4].
In addition, there are a large number of papers on the existence of a solution of an
equation with an inhomogeneous term g(x) in the present case, when g = 0, there is
always the trivial solution u = 0.

Nonlinear eigenvalue problems of this type have also been much studied for the
case of a bounded domain ΩcRn with Dirichlet boundary conditions. Methods of
the calculus of variations, bifurcation theory and topological degree have been
used see Pohozaev [7], Rabinowitz [9,10], for example. These methods fail to
extend to unbounded Ω because H1 is no longer compact in L2. To be compact in L2

on an unbounded domain, a class of functions has to be uniformly small at infinity.
We use the variational method with the extra constraint that the functions be radial,
which ensures the compactness.

We allow rapid growth of the nonlinearities in Theorem 2. Almost all authors
(for Ω bounded or not) require F^s) = o(sι) as s-> oo, i = 1,2. Clement [3], for the case
of (12) in a bounded domain, relaxes this condition for F 1 but requires it for F2.
Rabinowitz [11] exhibits an example where F2 does not satisfy the growth
condition and Fί = 0.

In Section 3 we prove Theorem 2 in two stages. We apply the direct variational
method to truncated versions of F1 and F2. Then we remove the truncations by a
limiting process, using techniques of Strauss [12] and Clement [3].

Classical eigenvalue problems possess an infinite sequence of solutions. By the
minimax technique, the same should be true in our case. We have not carried this
out; instead, in Section 4, we apply abstract theorems of Rabinowitz [10]. These
theorems unfortunately require the growth conditions on F x and F2 mentioned
above.
I wish to thank L. Vazquez for many stimulating discussions on this topic and P. Rabinowitz and C.
Dafermos for some helpful suggestions.

2. Examples and Necessary Conditions

We use the notation Lp = Lp{Rn), \\ \\p = IP-noτm, H1 = H1(Rn) = {ueL2\du/dxίeL2,
p

i = l,...,w}. Integrals are taken over all of Rn unless otherwise specified.

Example 1 (Pohozaev [7]).

-Au + u-\u\q'1u = 0 ,

xeRn, n ̂  3, g > 1. We have scaled out the coefficients to be 1. To apply Theorem 1,

non-trivial solution if ((n — 2)/2)sF(s) — nG(s) = — s2 + (1 — oc~1n)\s\q+1 is of one sign
that is, α ̂  n or q ̂  in + 2)/(w — 2). So assume 1 < q < (n + 2)/(n — 2). Any solution must
satisfy identity (7), which reduces to:

^
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Theorem 2 asserts the existence of a solution, where F1(s) = 0, F2(s) = \s\q~ίs,
L = — A + 1 and a scale change is used to make λ = 1. In Section 4 we show that this
solution is the first one of an infinite sequence of distinct solutions.

Example 2. - Au + (m2 -ω2)u + \u\p~1u- λ\u\q~1u = Owhere xeRn,m2 -ω2 >0and
p and q are distinct numbers larger than 1. We distinguish four cases.

Case A: q <p. Theorem 2 asserts the existence of a non-trivial solution for some
λ >0. Note that

is bounded below. There is a number λ^ so that, for λ ^ λ^ G(s) is non-negative and
the only solution is the trivial one, according to Theorem 1.

According to Theorem 1, the (integrated) energy is necessarily positive, even
though the function G(s) is not allowed to be positive if a non-trivial solution is to
exist. On the other hand, for a standing wave solution (2) of the NLKG Equation (3),
the energy density

may be positive. This is the case if ω > 0 and λ is slightly larger than A#.

Anderson [1] has computed these solutions in the case n = 3, p = 5, q = 3. His
most interesting result is that the positive solution appears to be stable with respect
to perturbations of the initial data of Equation (3) in the cases when the energy
density is positive. For this choice of p, q, and n, the inequalities

λs4 = (2s) £λs3) ^ \{2s)2 + ̂ λs3)2 = 2s2 + μ V

G{s) = y2Hs6--/^

show that Â  = 4-3~ 1 / 2

? if we normalize to make m2 — ω 2 = l. This explains the
rather mysterious fraction 3/16 = λ~2 appearing in [1].

Case B: p<q<(n + 2)/(n — 2). Theorem 2 is again applicable. In Section 4 we
prove the existence of an infinite sequence of non-trivial solutions for each λ>0.

CaseC: p^(n + 2)/{n-2)^q. Let α-1 = 2-
. Then oc^n^β and

By Theorem 1, there can be no non-trivial solution.

Case D : (n + 2)/(n — 2) < p < q. This case remains open: we do not know whether
or not there exists a non-trivial solution.

Remark. For the equation — Au + F(u) = 0, existence essentially requires
Indeed, suppose — α = F ;(0)<0 and let f(s) = F(s)/s + oc. Let u(x) be a non-trivial
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solution small at infinity and let q(x)=f(u(x)). Then the equation can be rewritten as
— Au + qu = au. Assuming u(x) is small enough at infinity that q(x) = o(\x\~ί), it is
well-known that the operator —A+q has no positive eigenvalues (Kato [5]), so that
we reach a contradiction.

Remark. A word about real vs. complex solutions. If we restrict our consideration to
s

real solutions u(x\ then we consider real functions F(s) and G(s) = J F(σ)dσ. If we
o

allow u(x) to be complex-valued, then we assume the following.

0:[O,oo]->«,

G(z) = g(\z\) for complex z,

F(z) = g'(z)z/\z\.

It follows that

and

Iίi this case, the middle term in Equation (7) should be (2 — n) Re J UF(u)dx.

Proof of Theorem!. We have —(Δu)ΰ= — V(Vuu) + \Vu\2. So if we multiply Equation
(6) by w, integrate, and assume that u and its derivatives are small enough at infinity,
we obtain

On the other hand, the multiplier rdΰ/dr = £ x^, where we denote derivatives by
i

subscripts, gives the identities:

This proves (7). It may be illuminating to give a different proof of the second
equality in (7). We regard u as a solution of the variational problem 3 if (u) = 0, where

Motivated by the fact that rd/dr is the infinitesimal generator of the scale change
u{x)-*u{λx), we define uλ(x) = λin~2)/2u(λx) for λ>0. Then

• + G{λ{n-2)/2u(λx))}dx
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Hence

Remark. The last proof is based on the transformation u-+uλ, which leaves the
Dirichlet integral invariant. For which functions G does it also leave the integral
\G{u)dx invariant? Exactly those G for which 2nG(z) = (n-2)RQzF(z). That is,
2ng(s) = (n — 2)sg'(s), whence

if n>2.

Now a critical point of the functional S£(u) is the same as a critical point of the
Dirichlet integral subject to the constraint \\u\q + 1dx = \. Let

m = inϊ{$\Vu\2dx}1/2 subject to j> |« + 1 ώc = l

(u a test function), then m||tt| | ί + 1 ^ \\Vu\\2. This is the classical Sobolev inequality.
We are going to prove Theorem 2 by means of the variational problem

subject to the constraint \G2{u)dx = l, ueH1. The following theorem serves as
motivation for our proof. We have made some simplifications in particular, we
consider the real case only.

Theorem 3. Let Fγ and F2 be continuous functions satisfying (8) and (9) and
Fi(s) = O(s) as s-»oo. Extend F^s) to be zero for s<0. If the above problem has a
solution, then it has a solution which is non-negative, radial and exponentially
decaying.

Proof Let u be a solution. Let w+(x) = max(t/(x)),0). Then Gi(u+) = Gi(u), V(u+)
= (Vuγ and u+ eH1. So u+ is a solution of the same minimum problem and of
course u+ is non-negative. In the rest of the proof we assume w^O. To find a radial
solution we use Steiner symmetrization. In the classical use of this technique (Polya
and Szego [8], Weinberger [15]), the integrands are quadratic, the equation is linear
and the domain is bounded. However, the proof easily extends to the present case.
Let D = {(x,t)eRn+Λ :0^t^u(x)}. Let D* be the symmetrization of D in the
hyperplane x 1 = 0 . This means that each line L in Rn+1 perpendicular to x 1 = 0
intersects D* in a single line segment symmetric about xί = 0 such that the length of
LnD* equals the length oϊLnD. D* is of the form D* = {(*, t)eRn+1

Then (for i= 1,2)

\Gi{u{x))dx= J Y

D* 0

where the middle equality follows from the definition of Z)*. On the other hand,
symmetrization does not increase surface area. We apply this fact to the boundary
of
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where R and ε are positive numbers. Thus

f {l+82\Vu\2}ί/2dx+ J su(x)dS
\x\<R \x\=R

J εu*(x)dS.
| | | C | = J R

Since u — u*eL2, we may choose a sequence Rn-+oo so that the integral of \u — u*\
over \x\=Rn tends to zero. Noting that 0 ^ {1 +s2\Vu\2}112 - 1 ^ ^ε2\Vu\2, and taking
R = Rn-+co, we obtain

j
Dividing both sides by ε2 and letting ε-»0, we get

\\Vu\2dx^\\Vu*\2dx.

This shows that u* is a solution of the same minimum problem as u. If we repeat this
procedure successively over an appropriate sequence of hyperplanes, we get a non-
negative radial solution.

Call the radial solution u. It is continuous for r = \x\ Φ 0, by the Radial Lemma of
Section 3. It satisfies an equation

urr+- ur-F(tt) = 0, 0<r<αo ,

where F(u) = u + F1(u)-λF2(u). Thus r1~n(rn~1ur\ = urr + {{n-l)/r)ur is continuous

and hence u is a C 2 function for r + O. Let

By (8) and (9), p(r)-*0 as r ^ oo. Hence q(r) ̂  ^ for large enough r. Now υ = rin~ 1)/2u
satisfies the equation

whence

9 ί / x ( w — l ) ( w — 3 ) 1 <,

,, = ̂  + [«W + ^2 Ĵ V2

Thus w = v2 satisfies the inequality wrr^w for large enough r. From this inequality
follows the exponential decay of w, hence of u.

In fact, it implies that Q = e~r(wr + w) in non-decreasing for large r. If Q remains
non-positive for large r, then (erw\ = e2rQS0, which implies that w = 0(e~r) as
r-> oo. If, on the other hand, Q ^ 2δ >0, then wr -h w is certainly not integrable near
oo. But the functions v2,v2,w and wr are all integrable on an interval R<r<oo
because ueH1. This contradiction proves the exponential decay.

3. Existence

Radial Lemma 1. Let n^2. Every radial function ueH1 is almost everywhere equal
to a function U(x\ continuous for x + O, such that

|t/(x)|^c|x|<1-»>/2||M||H1 for \x\^l ,

where c depends only on n.
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Proof. Let m = (n-1)/2. For υeC^nH1, we have

(r2mv2\ = ((rmv)2\ = 2(rmv\rmv ^ (rmv)2 + (rmv)2

v ) r γ

If ft ̂ 3 , we integrate over an interval [0,r] to obtain

o
_ l o π - l i - l I U J I 2

" 1 " 1where IS"1"1! is the area of the unit sphere in Rn. If ueH1, we let

]vε(r)= ]ζε(ρ)u(r-ρ)dρ,
— ε

where ζε is the usual approximate delta function, and pass to the limit to obtain the
result. In case n = 2, the differential inequality takes the form

We integrate over an interval [r, oo] to obtain

For r ̂  1, we may replace 1/ρ by ρ to obtain

The proof is completed as before.

Compactness Lemma 2. Let {PN} and {QN} be two sequences of continuous
functions: R^>R. For c>0, let y(c) = sup{|ί| :t = PN(s) for some N and s such that
\QN(s)\ύc\PN(s)\}.

Assume i) y (c)<oo for all c>0. (In other words, PN/QN-*0 uniformly as
PN^co.)

ii) {uN} is a sequence of measurable functions: Rn^R such that

q = sup j \QN(uN(x))\dx < oo .
N

iii) PN(uN(x))-+υ(x) for a.e. xeRn .
a) Then

B

for all bounded sets B.

b) Assume in addition that
iv) PN(s) = o(QN(s)) as s->0 uniformly in N.
v) uN(x)-+0 as |x|—• oo, uniformly in x and N.
Then j\PN(uN)~v\dx^O.
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Proof. We use the method of [12]. Fix N and s > 0. Let c > 4q/ε. Let B be a bounded
set. By iii) and Egorov's lemma, choose a set ZcB of measure less than ε/(4γ(c))
such that PN(uN)-*v uniformly on B/Z. Let

Z' = {xeZ:\QN(uN(x))\Sc\PN(uN(x))\}, Z" = Z\Z'.

Thus \PN(uN)\^y(c) on Z' and I P ^ a ^ c " 1 \QN(uN)\ on Z". Hence

B B\Z

This proves a). To prove b), let ε>0. By iv) choose δ>0 so that
sup\PN(s)/QN(s)\^ε/2q for |s|^(5. By v) choose R>0 so that sup|%(x)|<(5 for

|X|>JR. Then

j |PNMx))|ix ^ f f |βw(%(x))|ώc ̂  f
\x\>R Z(l Z

Applying Part a) of this lemma to B = {\x\^R}, we conclude that

This completes the proof.
We are now ready to begin the proof of Theorem 2. Let F 1.and F2 satisfy

conditions (8)—(11), where

We extend them by zero for negative s:Fί(s) = 0 for s<0. We may also assume
L=-Δ+I.

Lemma 3. There exists a non-trivial solution of (12) in case F^s)^^ for all s

Proof In this case O ^ G ^ s ) ^ ^ 2 . Let

M = infj {i(|Fu|2 + u2) + G1(u)}dx

subject to the conditions

ueH1, u radial, Ji(μ) = J G2(u)dx = 1 .

By (8), G2(s)>0 for s>0. So for any y>0, there exists uoeC™, u0 radial, with
.#(wo)=y. Thus M is finite. Choose any minimizing sequence: WVGH1, UV radial,
j((uv) = 1, if(MV)->Aί. Then {wv} is bounded in H 1 and {G^wJ} is bounded in L1. By
Sobolev's inequality, {uv} is also bounded in Ii+1, where I + 1 = 2n/(n — 2) and n ^ 3.
By compactness on bounded subsets of Rn, there is a subsequence, which we still
denote by {wv}, converging to a limit w weakly in H1 and almost everywhere. Hence
Gi(uv)~*Gi(u) a e (̂  = 1?2). We shall apply the Compactness Lemma with uN = uv,
PN = G2, and QN(s)=\s\ι + 1 + G1(s) + s2. Hypothesis i) is satisfied because
\s\ι + 1 + G1{s)ScG2(s) => |s| bounded => G2{s) bounded.
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Hypothesis v) is satisfied because of the Radial Lemma. Thus Jί{u^Jt{u). Hence
Ji{u) = 1 and also u is radial.

By Fatou's Lemma and weak convergence, we have J?(ii)^limjS?(uv)^M. By
definition of M, <g(u) = M. Thus u attains the minimum. Now, because Fx and F2

are sublinear and continuous, it is easy to check that if and Jί are C1 functionals on
H) = {weH1 :w is radial}. Their Frechet derivatives are Ji'(w)υ = \F2(w)υdx and
Se\yήv = \{Vw-Vv + wv + F^vjdx. Thus there exists λeR, ueH1 such that Jί?'(φ
= λJίf{u)υ for all υeH}. Let h= -Au + u + Fί(u)-λF2(u). Then h is radial and is
orthogonal to all radial test functions. Hence h = 0.

Remark. If the space Hlr\LP were used, the preceding method could be made to
work for functions Ft of polynomial growth at infinity; the Ft could have faster
growth if Orlicz spaces were used. Instead, in the following argument we allow more
general conditions on Ft by using an extra passage to the limit.

Lemma 4. Let Ft(s) be as in Theorem 2 (zero for s<0). Then

G2(s) = o(sι+1 + Gί(s)) as s->oo . (30)

For N>0 define the truncated functions

^''WN) for s>N

and let GiN(s) be their indefinite integrals. Then

sF2N{s) = O(sι+1 + G1N(s)) as s->oo uniformly in N . (31)

For any c>0, there exists y(c)>o such that

J+1 + G1N(s)^cG2N(s)^G2N(s)Sy(c). (32)

For any σ>0, let cσ = sup i\(s); then

F1N(s)^ca+-sFlN(s) for N>σ, seR (33)
σ

Proof To prove (33), we let σ<N and consider 3 cases. For s^σ, we have F1N(s)
= Fί(s)Scσ. For σ^s^N 9 we have FίN(s) ^ s F ^ / σ = sF1N(s)/σ. For NSs, we have
FίN(s) = F^N) ^ sF^m/σ = sF1N(s)/σ.

We also prove (31) in 3 cases. For s ̂  N, (31) is identical with (11). For s>N,we
have

GiN(s) =]FiN = G£N) + (s-N)Ft(N) . (34)
o

For N<S<2N,WQ have from (11) and (34)

F2(N) = O(Nι + G^NyN) = O(sι + 2G1(iV)/s) = O(sι + G1N(s)/s) .

For 5^2AΓ, we have from (10) and (34),
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To prove (30), let ε>0. By (10) there exists T = T{ε) so large that

F2(ή<ε(i^ + F1(ή) for t^T. (35)

For 5^7^ we integrate (35) over the interval [7^5] to get

G 2 (5)^ε l | -p j +G1(5)I +G2(T)-εGί(T)-ε

Thus (30) holds. That is, there exists T = T(ε)^T so that

G 2 ( ί)<ε(ί ί + 1 + G1(ί)) for t^Γ . (36)

To prove (32), let c>0. Let ε = l/(2c). Let s satisfy the inequality

sz + 1 + G 1 N(s)^cG 2 i V(s). (37)

Case ί: s^N. Then GiN{s) = G^s), so that (36) and (37) imply that s^ T. Hence

Case 2: s>N. By (34), (37) takes the form

I + 1 (37)

In this case, we will show that N<T'=T(l/(2c)). Thus N runs through a finite
number of integers. By (37), s is also bounded by a function of c. Hence so is G2N(s).
It remains to prove a contradiction if we suppose that N ̂  T. In that case, we may
choose ί = JV in both (35) and (36). Then we add (s-N) times (35) to (36) to obtain

G2(Λ0 + (s- N)F2(N) < γc {Nι + x + ( 5 - N)Nι + Gγ{N) + {s- N)F£N)} .

This indeed contradicts (37').

Proof of Theorem 2. For fixed N, we apply Lemma 3. There exists uNe H1, uN radial,
un minimizes

subject to the constraints that veH1, v is radial and G2N(ι;)dx = l. Furthermore,

- AuN + uN + FίN(uN) = λNF2N(uN) . (38)

Multiplying (38) by uN and integrating, we find

ί {IVuN\2 + u2

N + uNF1N(uN)}dx = λN J uNF2N(uN)dx . (39)

Now choose u0 as in the proof of Lemma 3. Let N>svφ\uo(x)\. Then
GίN(u0) = Gi(u0). By the minimization property of %, we have

Thus {uN} is bounded in H1 and j GίN(uN)dx is bounded. By Sobolev's inequality,
{%} is bounded in Lι + ί. By (31), §uNF2N(uN)dx is also bounded.

By compactness, there is a subsequence, still denoted by {%}, such that %
converges to some limit u weakly in H1 and a.e. Hence GiiV(%)-^Gf(w) and
^ jv(%)~^i(w) a e We now apply the Compactness Lemma 2b) with

PN(s) = G2N(s) and QN(s) = \s\ι+
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Assumption i) of Lemma 2 is identical with (32), while Assumption v) follows from
the Radial Lemma 1. Therefore J G2(u)dx = l.

Lemma 5. {λN} is a bounded sequence of positive numbers.

Assuming the validity of Lemma 5, the right side of (39) is bounded, whence
J uNFίN(uN)dx is also bounded. By the Compactness Lemma 2a) with PN = FiN and
QN(S) = sFίN{s), we deduce that FiN(uN)-^Fi(u) in L\oc for ΐ = l,2. Taking a sub-
sequence λN->λ, we see that each term in (38) converges in the sense of distributions.
We conclude that

To show u is non-negative, let u~(x) = min(w(x), 0) and let A = {x:u(x) < 0}. Since
ueHί

9 it follows that u'eH1 and d(u~)/dxj = (du/dxj)". Multiplying the differential
equation by w~, we obtain

0 = J {Vu'Vu' +uu~ +F{u)u~}dx

Hence u = 0 on A so that uΞ>0. (Another proof could be based on the method of
Theorem 3.) Finally, by the proof of Theorem 3, u is a C 2 function for x Φ 0 which
decays exponentially as r->oo. We also note that from the differential equation we
have

f {\Vu\2 + u2 + uFί(u)}dx = λ J uF2(u)dx ,

from which it follows that λ^O. If λ = 0, then u = 0 and jG2(w)dx = 0, which is a
contradiction.

Proof of Lemma 5. It follows from (39) that λN>0. Now fix ueCc°°. By (38),

W 2 i v K ) , VHPUN, Vυ) + (%, t;) + (FίN(uN\ v) .

By (33),

with fc independent of σ and AT, where we have used (39) and the known bounds.
Given ε>0, choose N>σ = k/ε. Then

If {AN} were unbounded, then a subsequence would satisfy λN->co and so
(F2N(wN),ι;)->0. On the other hand, by the Compactness Lemma 2a) just as above,
(F2N(uNXv)^>(F2(u),v). Thus (F2(u),v) = 0 for all test functions υeCf. Hence
F2(u) = 0. By (8), G2(u) = 0. This contradicts j G2(u)dx = l and completes the proof
of Lemma 5 and Theorem 2.

Remark. If the dimension n = 1 or 2, Theorem 2 is valid under weaker conditions. If
π = 2, we replace (n + 2)/{n — 2) by an arbitrary positive number. Since H1 is
contained in a certain exponential Orlicz space Lφ, we actually need only replace
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sι+ίby Φ(s). The proof is unchanged. If n = 1, strongly convergent sequences in Hι

converge uniformly; hence the direct method of Lemma 3 works. Theorem 2 is
valid without any growth conditions (10), (11).

Remark. Our proof shows that, for each y > 0, there is a solution with J G2(u)dx = y.

Remark. There exists a non-positive as well as a non-negative solution if Ft are
continuous real functions satisfying

sF2(s)>0 (8*)

and (9), (10), (11) with sι replaced by \s\\ and oo by ± oo.

4. Existence of Many Solutions

Theorem 4. Let L = I — A. Let Ft =0. Let F2 be a continuous real function such that

sF2(s)>0 for 5 + 0 , (41)

F2(s) = O(\s\p) as |s|->oo where p<(n + 2)/(n-2) = l, (42)

F2 is odd and F2(0) = 0 . (43)

For any y>0, there exists an infinite sequence of distinct pairs of radial solutions of

(12),

(4>±%) fc=o,i,2,...,

with (Luk, uk) = y.

Proof We apply Theorem 2.10 of Rabinowitz [10], which is based on the minimax
characterization of the higher eigenvalues. We use the space E = Hl (the radial
functions in H1) and the functional f(u) = JG2(u)dx. We need only verify the
hypothesis of Lemma 2.11 of [10]. Let uN-+u weakly in Hi, hence in Lι+ ί. By the
Compactness and Radial Lemmas and (42), we have F2(uN)-^F2(u) strongly in LP',
where (p')~ 1+p~1 = l, and hence strongly in (Hi)*.

A special case of Theorem 4 can be found in Berger [2]. The following theorem
is based on a variational method without constraints.

Theorem 5. Let F be a real continuous function which satisfies (42), as well as

F(s)/s-+ — oo as 5-> + oo , (44)

sF(s) ^ ocG(s) for some α > 2 , (45)

F(s) = o(s) as s-+0. (46)

Then the equation Lu + F(u) = 0 possesses at least one non-trivial solution. If F is odd,
there is an infinite number of distinct pairs of solutions, ±uk (fe = 0,1,2,...).

Proof We apply Theorems 3.9 and 3.37 of [10]. We use L = I-Δ, E = Hl and
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The only novel feature is the verification of condition (PS)+ of [10]. Let {uN} be a
sequence satisfying

hN= — AuN + uN + F(uN)-*0 in H'1 .

Just as in [10], p. 172, these conditions imply that {%} is bounded in H*. As in the
proof of Theorem 4, F(uN)^F(u) strongly in Π and hN-^0 strongly in if"1, for a
subsequence which converges weakly to some u in H1 and a.e. Hence

This proves (PS)+ and Theorem 5.

Example 1. -Au + u-\u\q~ίu = 0, where l<q<(n + 2)/{n-2). Both Theorems 4
and 5 imply the existence of an infinite sequence of radial solutions M0, UV W2, .... (If
we apply Theorem 4, the eigenvalue λΛ has to be scaled out.) The solution uk has
exactly k nodes as a function of r. For some computer-generated solutions, see [1].
Example 2. -Δu + u + \u\p~1u-λ\uq~1u = 0, where l<p<q<(n + 2)/(n-2).
Theorem 5 is applicable for every λ>0. The case of larger p and q is open.
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