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Abstract. We prove that for low temperatures T the spin-spin correlation
function of the two-dimensional classical S0(n)-symmetric Ising ferromagnet
decays faster than |x|~constr provided n^2. We also discuss a nearest neighbor
continuous spin model, with spins restricted to a finite interval, where we show
that the spin-spin correlation function decays exponentially in any number of
dimensions.

I. Introduction and Results

The Mermin- Wagner theorem [1] states that at non-zero temperatures the two
dimensional Heisenberg model has no spontaneous magnetization. Consequently
the spin-spin correlation function decays to zero at large distances, although the
Mermin- Wagner theorem gives no indication of the rate of decay. Similar results
apply for the classical 50(w)-symmetric (n ̂  2) nearest neighbor Ising ferromagnets
which we study here, see for example the paper of Mermin [2]. We establish a
polynomial upper bound for the decay rate of the spin-spin correlation function for
these models at very low temperatures. Fisher and Jasnow [3] have previously
obtained a log"1!*! decay.

To describe the S0(n)-symmetric ferromagnet, we consider the infinite lattice of
unit spacing with sites labelled by indices iεTL2. To each site ί we associate an n-
component classical spin s of unit length, 1^11 = 1. The spin-spin correlation
function at inverse temperature β^T"1 is

where £ denotes a sum over nearest neighbor pairs, Ω("} is the invariant measure
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on the unit sphere in ^-dimensions and (1) is to be interpreted as the thermodynamic
limit of corresponding finite volume quantities (s0 sxy(β,N], defined as in (1) but
with sites restricted to a (2Λf+l)x (2JV + 1) periodic lattice. Let C(x) denote the
fundamental solution of Laplace's equation on the lattice : — A C(x) = δ0^x, C(0) = 0.
Note that for large |x|

CM~-7Γ~
2π

Theorem 1. For any ε>0 and β^.βQ(ε) sufficiently large

Remark. For small β the spin-spin correlation functions are known to decay
exponentially.

We prove Theorem 1 for the case n = 2 in Section II; other values of n are
handled by a straightforward generalization. For n = 2 we use the representation s
= (cos (/>, sin φ) so that (1) takes the form

te<> >> cosίψo-ψj. (3)
i — π

Our proof of Theorem 1 is motivated by the approximation [4]

(4)

In this approximation, and allowing the limit of integration in (3) to extend to
infinity, we obtain the Gaussian correlation

00 / / 00 \

x ,co II j i υ x i l i ^ i J z /
ί — oo / \ i — oo /

= eβ 1C(*}, (5)

which is essentially the bound of Theorem 1. It is difficult to justify the two
approximations leading to (5). Because (3) is the integral of a periodic function of the
φt, the limits of integration may be extended to infinity without changing (3),
however the quadratic approximation (4) is then unreasonable, since it makes sense
only if\φi — φj\ <^ 2π. In Theorem 2 (below) we show that there is a marked difference
in behavior in correlations such as (5) depending on whether the integration range is
finite or infinite. In fact, defining correlations on a v-dimensional lattice by

I \ i

we will prove (see Section III) that :

J
i — μ
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Theorem 2. For any finite μ, β, v there is an m > 0 such that

The constant m may be chosen at least as large as cosh-1(l -|-m2/4), m
= (v/2πβμ2)ll2e~βμ2v. In contrast to the exponential decay for finite μ, (5) always
gives a polynomial decay for μ — oo in two dimensions.

II. Polynomial Decay Bound for the Plane Rotator

Proof of Theorem 1. We use the representation (3) for n = 2, replacing cos(φ0 — φx)
by ei(φo~φx} since <sin(φ0 — φj>(j5) = 0. Using the periodicity of the integrand, we
make complex translations

in the numerator of (3). This means that we deform the path of integration and use
the periodicity of the cosine to cancel the lateral contours. The above translation
combined with the bound \eίz\ =1, z real, yields

β Σ cos(φi-φj)cosh(al-aj)

-(aΌ-ax) + β Σ (coshfo-o,)-!)

^e <'•'> (7)

From properties of the fundamental solution C(x) we prove below that

\ai-aj\^4β~ί if |j-/| = l, uniformly in χ,ij . (8)

Thus for any ε>0 we can find j80(e) such that for

Σ (cosh(^-α.)-l)^i(l+ε) Σ (flj-α/^

Nothing that a0 — ax= — 2β~1C(x) we obtain the bound of Theorem 1 from (7) and
(9).

Our proof of Theorem 1 has been formal in that (3) should be interpreted as a
limit of finite volume quantities <s0 sx>(/J, N), defined as in (3) but with sites in a (2JV
-f 1) x (IN + 1) periodic lattice L. All of the steps above are valid for <s0 sxy(β, N)
provided we replace C(x) everywhere by the corresponding fundamental solution
for the lattice L :

CN(x) = (2N+ίΓ2 Σ (cos/c x-l)/(4-2cos/<1-2cos/c2), (10)
/ceL*
fcΦO

where L* = {fc = (fe l 5 k2)\kί = 2π(2N +l)~1ri,rί integers, \rt\< N}. To prove (8) we use
(10), |sin0|^|0|, and l-cosθ^2π~ 2θ 2, |θ|^π, to obtain for nearest neighbors ij:

2 Σ \k,\/(kl
/ceL*
/ c Φ O

The bound (8) follows immediately, uniformly in x, ί, 7, N.
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To prove Theorem 1 for n>2, we parameterize the rc-sphere by angles
θ(1\ ..., θ(m~2\ 0, \θ(r}\^π/2, |0| ̂ π in such a way that only the components s(1), s(2)

of a unit spin vector s involve φ. We then treat <s(

0

1)s^.1) + s(

0

2)42)> = (2/n)<s^ sx> as
for the case n = 2, translating only the variables φ{. Alternatively one may apply
correlation inequalities which compare N = 2 with N^.3. See [5, 6].

III. Exponential Decay Rate for the Square Well Model

Proof of Theorem 2. The change of variable φ^φ/μ reduces the problem to the
case μ= 1. We abbreviate (φ0φxy-Δ ι(β) by (ΦoΦx) and note that it is the limit as

i
p-> oo through even integers of expectations <φ0Φx>P defined by replacing J dφ{ at

- 1
00

each site in (6) by J dφie~(t)i). Using integration by parts we have for any m>0

Since

0^(-4+roΓHx,3θ^0(l)e~™ | x~y |, mscosh"1^ +m2/4),

Theorem 2 will follow if we can find m>0 such that

(p-lKΦoΦr^p-Jfon^ A^O, all p. (11)

By Griffith's inequality [7] the left side of (11) is positive if

(p-l)<0g-2>p£#n. (12)

We again use Griffiths inequality to eliminate the ferromagnetic couplings :

IK"-1 ί dφφ»-2l ] dφe-^2

-1 / -oo

= (2/e)(vβ/π)1/2e-vβ.

Thus the choice m = (v/2πβ)1/2e-vβ satisfies (12) for all p.
Remark. Brascamp and Lieb have shown using inequalities for log concave
functions that ^φoφx)-^ μ has no long range order, see [8].
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